M45P72 Modular Representation Theory Assessed Coursework Deadline Monday December 2

Throughout, let G be a finite group and K an algebraically closed field of characteristic p.

1. This is a follow-up to Q2 of Sheet 2. Let G be a subgroup of S_n , let $\Omega = \{1, \ldots, n\}$, and denote by $K\Omega$ the KG-module with basis Ω , where the multiplication by $g \in G$ is defined by the permutation action on Ω . Let

$$S = \{\sum_{\omega \in \Omega} \lambda_{\omega} \omega : \sum \lambda_{\omega} = 0\}, \ T = \{\lambda \sum_{\omega \in \Omega} \omega : \lambda \in K\}$$

Then S and T are KG-submodules of $K\Omega$, and we define the KG-module $V = S/(S \cap T)$. (Sheet 2, Q2 shows that if $G = S_n$ then V is a simple KG-module.)

- (i) Suppose $G = A_n$. Show that V is a simple KG-module provided $n \ge 4$ and $(n, p) \ne (4, 2)$.
- (ii) Now suppose *n* is prime, and identify Ω with the set of elements of the field $\mathbb{F}_n = \{0, 1, \dots, n-1\}$ of *n* elements. For $0 \neq a \in \mathbb{F}_n$, $b \in \mathbb{F}_n$ define the permutation $t_{a,b} : \mathbb{F}_n \to \mathbb{F}_n$ by

$$t_{a,b}(x) = ax + b \quad (x \in \mathbb{F}_n),$$

and let $G = \{t_{a,b} : a, b \in \mathbb{F}_n, a \neq 0\}.$

- (a) Show that G is a subgroup of S_n .
- (b) Show that if $p \neq n$, then V is a simple KG-module. (Recall p is the characteristic of K.)
- (c) Show that if p = n and $p \ge 5$, then V is not a simple KG-module.

2. Find the Brauer character table of G in the following cases:

- (i) $G = A_4, p = 3.$
- (ii) $G = A_5$, p = 2. (You may assume the isomorphism $A_5 \cong SL_2(4)$.)
- (iii) $G = SL_2(3), p = 2.$
- (iv) $p = 2, G = NH < GL_3(3)$, where $H = \langle h \rangle$ and

$$N = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : a, b \in \mathbb{F}_3 \right\}, \ h = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

(Note that $N \cong C_3^2$, $N \triangleleft G$ and $H \cong C_8$.)

(v) In each of cases (i)-(iv), find the composition factors (and multiplicities) of $V \otimes V$, where V is a simple KG-module of largest dimension.

3. Let V be a KG-module, and let $V^* = \text{Hom}_K(V, K)$, the dual space.

(a) Show that V^* is a KG-module, with multiplication defined for $g \in G, \phi \in V^*$ by

$$(g\phi)(v) = \phi(g^{-1}v) \quad (v \in V).$$

- (b) If W is a submodule of V, show that V^* has a submodule $X \cong (V/W)^*$, and that $V^*/X \cong W^*$.
- (c) Deduce that V is semisimple iff V^* is semisimple.
- (d) Prove that $\operatorname{Soc}(V^*) \cong (V/\operatorname{Rad}(V))^*$.
- (e) Show that $(KG)^* \cong KG$ (isomorphism of KG-modules).
- (f) Deduce that a KG-module P is projective iff P^* is projective.
- (g) Show finally that if P is a projective indecomposable KG-module, then Soc(P) is simple.

Note: in fact $Soc(P) \cong P/Rad(P)$, but this is more tricky to prove (and not required).