M45P72 Modular Representation Theory Problem Sheet 3

- **1.** Let G be a finite group and let K be a splitting field for G.
 - (i) Let S be a simple KG-module with projective cover P_S . Prove that for any simple KG-module T,

 $\dim \operatorname{Hom}_{KG}(P_S,T) = \left\{ \begin{array}{l} 1, \text{ if } T \cong S \\ 0, \text{ if } T \not\cong S \end{array} \right.$

(ii) Let $0 \to V \to^{\phi} W \to^{\psi} X \to 0$ be an exact sequence of KG-modules (i.e. ϕ is injective, ψ is surjective and $\text{Im}\phi = \text{Ker}\psi$). Prove that if P is a projective KG-module, there is a corresponding exact sequence

 $0 \to \operatorname{Hom}_{KG}(P, V) \to \operatorname{Hom}_{KG}(P, W) \to \operatorname{Hom}_{KG}(P, X) \to 0.$

(iii) Let U be a KG-module, and S a simple KG-module. Prove that the multiplicity of S as a composition factor of U is dim $\operatorname{Hom}_{KG}(P_S, U)$. (Hint: consider a composition series $0 = U_0 \subset \cdots \subset U_n = U$. Use induction on n and the previous parts of the question.)

2. Let G be a non-abelian finite simple group of even order, let K be a field of odd characteristic, and let V be a nontrivial simple KG-module. Prove that dim V > 2. (Hint: let $t \in G$ be an element of order 2. Consider the image of t under the corresponding matrix representation.)

3. Find the decomposition matrix D and the Cartan matrix C for the following groups and characteristics:

- (i) $S_3 \times S_3, p = 2$
- (ii) D_{2n} (*n* odd), p = 2
- (iii) $S_4, p = 2 \text{ or } 3$
- (iv) $A_5, p = 2, 3 \text{ or } 5$
- (v) $S_5, p = 2$
- (vi) $PSL_2(11), p = 11$
- (vii) the subgroup $\langle (12345), (2354) \rangle$ of S_5 , with p = 2.

4. Let G be a finite group, and K an algebraically closed field of characteristic p, where p does not divide |G|. Prove that if $\operatorname{IBr}(G)$ is the set of Brauer characters of the simple KG-modules, then $\operatorname{IBr}(G) = \operatorname{Irr}(G)$, the set of characters of the simple $\mathbb{C}G$ -modules.

5. Let G be a finite group, and K an algebraically closed field of characteristic p. Suppose that H is a subgroup of G of order coprime to p. Let P_1 denote the projective cover of the trivial KG-module. Prove that dim $P_1 \leq |G:H|$. (Hint: as $H \subseteq G_{p'}$, for $\chi \in \operatorname{Irr}(G)$ we have $\chi_H = \sum_{\phi \in IBr(G)} d_{\chi\phi}\phi_H$. Now consider the induced character 1_H^G and use Frobenius reicprocity.)

Find some examples where equality holds (i.e. dim $P_1 = |G:H|$).