Proposition 14.5 Let U, V be FG-modules with full RG-lattices U_0, V_0 . Then

- (i) $\operatorname{Hom}_{RG}(U_0, V_0)$ is a full *R*-lattice in $\operatorname{Hom}_{FG}(U, V)$.
- (ii) $\pi \operatorname{Hom}_{RG}(U_0, V_0) = \operatorname{Hom}_{RG}(U_0, \pi V_0).$
- (iii) Suppose U_0 is a projective RG-module. Then

$$\frac{\operatorname{Hom}_{RG}(U_0, V_0)}{\pi \operatorname{Hom}_{RG}(U_0, V_0)} \cong \operatorname{Hom}_{kG}(\frac{U_0}{\pi U_0}, \frac{V_0}{\pi V_0}).$$

(iv) If U_0 is projective, then

$$\dim_F \operatorname{Hom}_{FG}(U, V) = \dim_k \operatorname{Hom}_{kG}(\frac{U_0}{\pi U_0}, \frac{V_0}{\pi V_0})$$

Proof (i) First we show LHS is contained in RHS. Take R- and F-bases u_1, \ldots, u_r and v_1, \ldots, v_s of U_0 and V_0 , respectively. Any RG-homomorphism $U_0 \to V_0$ is represented by a matrix over R (wrt these bases), and this matrix also represents an FG-homomorphism $U \to V$.

Next, LHS is a lattice, as it is contained in $\operatorname{Hom}_R(U_0, V_0)$, which is a free *R*-module $(\cong R^{rs})$.

Finally, LHS is a full lattice: let $\phi: U \to V$ be an *FG*-homomorphism, and let $\phi(u_i) = \sum_j \lambda_{ji}v_j$ with $\lambda_{ji} \in F$. There exists $0 \neq a \in R$ such that $a\lambda_{ji} \in R$ for all i, j (as *F* is the field of fractions of *R*). Then $a\phi$ maps $U_0 \to V_0$, so $\phi \in F \operatorname{Hom}_{RG}(U_0, V_0)$. Hence $\operatorname{Hom}_{RG}(U_0, V_0)$ spans $\operatorname{Hom}_{FG}(U, V)$ over *F*, showing the LHS is full.

(ii) The map $V_0 \to \pi V_0$ sending $x \to \pi x$ is an *RG*-isomorphism, so any *RG*-homomorphism $U_0 \to \pi V_0$ is a composite $U_0 \to V_0 \to \pi V_0$, hence is in $\pi \operatorname{Hom}_{RG}(U_0, V_0)$.

(iii) Consider the natural map $\operatorname{Hom}_{RG}(U_0, V_0) \to \operatorname{Hom}_{RG}(U_0, V_0/\pi V_0)$ (sending a homom $\phi : U_0 \to V_0$ to its composition with the natural map $V_0 \to V_0/\pi V_0$). The kernel of this map is $\operatorname{Hom}_{RG}(U_0, \pi V_0)$, which is equal to $\pi \operatorname{Hom}_{RG}(U_0, V_0)$ by part (ii). Also the assumption that U_0 is projective implies that the map is surjective. Hence

$$\frac{\operatorname{Hom}_{RG}(U_0, V_0)}{\pi \operatorname{Hom}_{RG}(U_0, V_0)} \cong \operatorname{Hom}_{RG}(U_0, \frac{V_0}{\pi V_0}).$$
(0.1)

Let $\alpha \in \operatorname{Hom}_{RG}(U_0, \frac{V_0}{\pi V_0})$. Then $\pi U_0 \subseteq \operatorname{Ker}(\alpha)$, so α factors as

$$U_0 \to rac{U_0}{\pi U_0} o^eta \; rac{V_0}{\pi V_0}.$$

The map $\alpha \to \beta$ is an isomorphism

$$\operatorname{Hom}_{RG}(U_0, \frac{V_0}{\pi V_0}) \to \operatorname{Hom}_{kG}(\frac{U_0}{\pi U_0}, \frac{V_0}{\pi V_0}).$$

Combined with (0.1), this proves (iii).

(iv) By (i), the LHS is equal to the *R*-rank of the lattice (free *R*-module) $\operatorname{Hom}_{RG}(U_0, V_0)$. The RHS is the same, by (iii). \Box