M2PM2 Algebra II Problem Sheet 7

1. Show that if A_1, A_2 are square matrices, then $A_2 \oplus A_1$ is similar to $A_1 \oplus A_2$.

2. Suppose that λ is an eigenvalue of a block-diagonal matrix $A = A_1 \oplus \cdots \oplus A_k$. Prove that dim $E_{\lambda}(A) = \sum_{i=1}^{k} \dim E_{\lambda}(A_i)$, where $E_{\lambda}(A)$ and $E_{\lambda}(A_i)$ are the λ -eigenspaces of A and A_i .

3. (i) Write down all the possible Jordan Canonical Forms having characteristic polynomial $x(x + 1 + i)^2(x - 3)^3$.

(ii) Calculate the number of non-similar Jordan Canonical Forms having characteristic polynomial $x^3(x-1)^6$.

4. Find the JCFs of the following matrices:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 0 & 3 \end{pmatrix},$$
$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & i & 2 \\ 0 & 0 & 0 & 0 & 0 & i \end{pmatrix},$$

5. Among the following matrices, which pairs are similar?

(2	1	1	1	1	2	0	1	1		2	0	0	1		2	0	0	1		2	0	0	1	
0	2	1	1		0	2	1	1		0	2	1	1		0	2	0	1		0	2	1	0	
0	0	2	1	,	0	0	2	1	,	0	0	2	1	,	0	0	2	1	,	0	0	2	1	ŀ
$ \left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right) $	0	0	2/		$\sqrt{0}$	0	0	$_2$ /		0	0	0	2		0	0	0	$_2$ /		$\int 0$	0	0	$_2$ /	

6. Let A_n be the $n \times n$ matrix having all of its entries equal to 1. Find the JCF of A_n .

7. Let $J_n(\lambda)$ be a Jordan block. Prove that the matrix $J = J_n(\lambda) - \lambda I$ is similar to its transpose. Deduce that $J_n(\lambda)$ is similar to its transpose.

8. Prove that every square matrix over \mathbb{C} is similar to its transpose.

9. (i) Show that if $\lambda \neq 0$, then $J_n(\lambda)^2$ is similar to $J_n(\lambda^2)$.

(ii) Using the JCF theorem and part (i), prove that every invertible matrix A over \mathbb{C} has a square root (i.e. show $\exists B$ such that $B^2 = A$).