M2PM2 Algebra II Problem Sheet 5

		6 / 6	2	1	0	5 \	
		2	1	1	-2	1	
1.	Calculate the determinant of the matrix	1	1	2	-2	3	
		3	0	2	3	-1	
		$\setminus -1$	-1	-3	4	$_{2}$ /	

2. For a real number α define

$$A(\alpha) = \begin{pmatrix} 1 & \alpha & 0 & -1 \\ 1 & 1 & 0 & -1 \\ 2 & \alpha & 1 & -1 \\ -1 & \alpha & 1 & 1 \end{pmatrix}$$

- (a) Find the determinant of $A(\alpha)$.
- (b) Find a value α_0 of α such that the system $A(\alpha_0)x = 0$ has a nonzero solution for $x \in \mathbb{R}^4$.
- (c) Prove that when $\alpha < \alpha_0$, there is no real 4×4 matrix B such that $B^2 = A(\alpha)$.

3. Let A, B be $n \times n$ matrices. Prove that if |A| = 0 or |B| = 0, then |AB| = 0. Note: you may NOT assume the result |AB| = |A| |B| from lecs (this qn is supposed to be part of the proof of that result). But you MAY assume the result in lecs that says a matrix is invertible iff it has nonzero determinant.

- 4. Prove the rule for the expansion of a determinant by the i^{th} row stated in lectures.
- **5.** Let B_n be the $n \times n$ matrix

(-2)	4	0	0	 0	0	0 \
1	-2	4	0	 0	0	0
0	1	-2	4	 0	0	0
0	0	0	0	 1	-2	4
$\setminus 0$	0	0	0	 0	1	$^{-2}/$

- (a) Prove that if $n \ge 4$, then $|B_n| = 8|B_{n-3}|$.
- (b) Prove that $|B_n| = 0$ if n = 3k 1 (where k is a positive integer).
- (c) Find $|B_n|$ if n = 3k or 3k + 1.

7. Let $A = \begin{pmatrix} B & C \\ \mathbf{0} & D \end{pmatrix}$, where B is $s \times s$, D is $t \times t$, C is $s \times t$, and **0** is the $t \times s$ zero matrix. Prove that $\det(A) = \det(B) \det(D)$.

8. Express the matrices
$$\begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 3 & 8 & 7 \end{pmatrix}$ as products of elementary matrices.

8. For a prime p, let $M_n(\mathbb{Z}_p)$ denote the set of $n \times n$ matrices over \mathbb{Z}_p .

(a) Let $A = \begin{pmatrix} 2 & 1 \\ 5 & 6 \end{pmatrix} \in M_2(\mathbb{Z}_p)$. For which primes p is A invertible? For which p is A diagonalisable over \mathbb{Z}_p ?

(b) Let p = 3 and let $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & \alpha \end{pmatrix} \in M_3(\mathbb{Z}_3)$. For which values of $\alpha \in \mathbb{Z}_3$ is B

diagonalisable over \mathbb{Z}_3 ?

(c)* Let $C = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix} \in M_2(\mathbb{Z}_p)$. For which primes is C diagonalisable over \mathbb{Z}_p ?

9. For $n \times n$ matrices A, B, write $A \sim_1 B$ to mean that B can be obtained from A by a sequence of elementary row operations; and $A \sim_2 B$ to mean that A and B are similar.

(a) Prove that \sim_1 and \sim_2 are equivalence relations.

(b) Is either of these relations contained in the other? (i.e. does $A \sim_1 B \Rightarrow A \sim_2 B$, or vice versa?)