M2PM2 Algebra II Problem Sheet 4

1. (a) Prove that if there is a surjective homomorphism from S_n onto C_r , then r must be 1 or 2.

(b) Prove that if N is a normal subgroup of S_n such that the factor group S_n/N is cyclic, then $N = S_n$ or A_n .

2. Define V to be the following set of permutations in S_4 :

 $V = \{e, (12)(34), (13)(24), (14)(23)\}$

(so V consists of the identity and all permutations of cycle-shape (2,2)).

- (i) Show that V is a subgroup of S_4 .
- (ii) Show that for any $g \in S_4$ and $v \in V \setminus \{e\}$, the element $g^{-1}vg$ has order 2 and is an even permutation. Deduce that $V \triangleleft S_4$.
- (iii) The factor group S_4/V has order 6, so by lecs is isomorphic to C_6 or D_6 . Which?
- **3.** Find all the homomorphic images of the following groups:

(i) D_8 (ii) D_{24} (iii) S_4 . *Hint:* Try to do this without finding all the normal subgroups!

4. Prove that the only abelian simple groups are C_p with p prime.

5. (a) Let $N \triangleleft G$, and let H be a subgroup of the factor group G/N. Prove that there is a subgroup K of G such that $N \subseteq K$ and H = K/N.

(b) In (a), show that $H \triangleleft G/N$ iff $K \triangleleft G$.

(c) Deduce that if N is a maximal normal subgroup of G, then the factor group G/N is simple.

6. (a) Find a composition series for the group D_{24} .

(b)* Find a composition series for the group GL(2,3). (Use Project 2!)

7. For a group G, we say that elements $x, y \in G$ are *conjugate* in G if there exists $g \in G$ such that $y = g^{-1}xg$.

- (i) Define the relation \sim on G by $x \sim y$ iff x, y are conjugate in G. Prove that \sim is an equivalence relation.
- (ii) The equivalence classes of \sim are called the *conjugacy classes* of G. Prove that a subgroup H of G is normal iff it is a union of conjugacy classes.
- (iii) Find the conjugacy classes of D_8 . Hence find all the normal subgroups of D_8 .
- (iv)* Show that two elements of S_n are conjugate iff they have the same cycleshape. Hence find all the normal subgroups of S_4 and S_5 .