1. (a) List the cycle-shapes of elements of A_5 , and calculate how many elements there are of each shape. Check that your answers add up to $|A_5|$.

(b) List the cycle-shapes of elements of the alternating group A_8 .

(c) Calculate the number of elements of order 2 or 3 in A_7 .

- (d) Find the number of subgroups of order 5 in A_6 .
- (e) Find all isomorphism types of subgroups of order 6 in A_6 .

2. (a) Write down two permutations in A_9 , both of which have order 12 and send $1 \rightarrow 6$, $2 \rightarrow 3$ and $9 \rightarrow 5$.

(b) Let $I = \{1, 2, ..., 2n\}$ and let $f : I \to I$ be the permutation sending $i \to 2n + 1 - i$ for all $i \in I$. Find the signature sgn(f) in terms of n.

(c) Prove that every even permutation in S_n can be expressed as a product of an even number of 2-cycles, and cannot be expressed as a product of an odd number of 2-cycles.

3. True or false:

- (a) S_5 has a subgroup which is isomorphic to D_{20} .
- (b) A_5 has a subgroup which is isomorphic to D_{10} .
- (c) S_5 has a subgroup which is isomorphic to D_{12} .
- (d) D_{12} is isomorphic to $D_6 \times C_2$.

4. Let G_1, G_2, G_3 be groups.

- (i) Prove that $G_1 \times G_2 \cong G_2 \times G_1$.
- (ii) Prove that $(G_1 \times G_2) \times G_3 \cong G_1 \times (G_2 \times G_3)$.
- (iii) If $G_1 \cong H_1$ and $G_2 \cong H_2$, show that $G_1 \times G_2 \cong H_1 \times H_2$.
- (iv) Show that $G_1 \times G_2$ has a subgroup isomorphic to G_1 .

5. (a) Among the groups C_{36} , $C_2 \times C_{18}$, $C_3 \times C_{12}$, $C_4 \times C_9$, $C_6 \times C_6$, which pairs are isomorphic?

(b) Calculate the numbers of abelian groups there are, up to isomorphism, of orders 16, 17 and 18.

6. Find examples of groups G with the following properties:

- (i) $|G| = 2^n$ and $x^2 = e$ for all $x \in G$, where n is an arbitrary positive integer
- (ii) |G| > 8, G is non-abelian, and $x^4 = e$ for all $x \in G$

(iii) G is infinite and non-abelian, and G has a subgroup H such that |G:H| = 2 and H is abelian (recall |G:H| is the *index* of H in G, i.e. the number of distinct right cosets of H in G).

7. Let G be a group with the property that $x^2 = e$ for all $x \in G$.

- (i) Prove that G is abelian.
- (ii) Assuming that G is finite and |G| > 2, show that |G| is a multiple of 4.
- (iii) Show that if |G| = 4, then $G \cong C_2 \times C_2$.

8*. (Harder question) As in Q6(iii), recall that the index |G : H| of a subgroup H of a group G is defined to be the number of distinct right cosets of H in G. Note that G can be finite or infinite, and so can |G : H|.

(i) Suppose A, B are subgroups of G with $A \subseteq B \subseteq G$. Prove that |G : A| = |G : B| |B : A|.

(ii) Suppose that H and K are subgroups of finite index in G (i.e. |G:H| and |G:K| are finite). Prove that $H \cap K$ is also a subgroup of finite index in G.