In this project we study a new ring and find its maximal ideals. Define

R = set of continuous functions $f : [0, 1] \to \mathbb{R}$.

1. Show that with the usual definitions of addition and multiplication of functions, R is a commutative ring with 1.

- **2.** Let $\gamma \in [0, 1]$, and define $M_{\gamma} = \{f \in R : f(\gamma) = 0\}$. Show that
 - (a) M_{γ} is an ideal of R.
 - (b) M_{γ} is a maximal ideal.
- **3.** In this part you will prove that every maximal ideal of R is equal to M_{γ} for some γ .
 - (a) Let I be an ideal of R, and assume that for any $x \in [0,1]$, $\exists f \in I$ such that $f(x) \neq 0$. Deduce that I = R in the following steps.
 - (1) Let $x \in [0, 1]$. Show that there is an open neighbourhood N_x of x, and a function $f \in I$, such that $f \neq 0$ on N_x .
 - (2) The open neighbourhoods N_x ($x \in [0,1]$) cover [0,1]. As [0,1] is *compact*, there is a finite set of these neighbourhoods $N_{x_1}, \ldots N_{x_k}$ that also cover [0,1].
 - (3) For $1 \leq i \leq k$, let $f_i \in I$ be a function that is nonzero on N_{x_i} . Let $f = f_1^2 + \cdots + f_k^2$. Show that $f \in I$.
 - (4) Deduce that I = R.
 - (b) Using part (a), prove that every maximal ideal of R is equal to M_{γ} for some γ .
- 4. Decide whether or not M_{γ} is a principal ideal.

Solution 1. Routine!

2. (a) Routine!

(b) Suppose $M_{\gamma} \subset J \subseteq R$, where J is an ideal. Choose $f \in J$ with $f(\gamma) \neq 0$. Let $g \in R$, and choose a scalar λ such that $(g - \lambda f)(\gamma) = 0$. Then $g - \lambda f \in M_{\gamma} \subset J$, hence $g \in J$. Therefore J = R. This shows that M_{γ} is maximal.

- **3.** (a) (1) Routine!
 - (2) This is just a given fact.
 - (3) As I is an ideal each $f_i^2 \in I$, so $f \in I$.
 - (4) $f \neq 0$ on [0,1], so $1/f \in R$. So I contains a unit, hence I = R.

(b) Let M be a maximal ideal. By (a), $\exists \gamma \in [0,1]$ such that $M \subseteq M_{\gamma}$. Therefore $M = M_{\gamma}$ as M is maximal.

4. Suppose M_{γ} is principal, say $M_{\gamma} = fR$. If $\exists \alpha \neq \gamma$ such that $f(\alpha) = 0$, then $g(\alpha) = 0$ for all $g \in fR = M_{\gamma}$, which is clearly false. Hence f(x) is nonzero for all $x \neq \gamma$. Now define $h : [0, 1] \to \mathbb{R}$ by

$$h(x) = \begin{cases} f(x), \ x \le \gamma \\ -f(x), \ x > \gamma \end{cases}$$

As f is continuous and $f(\gamma) = 0$, it follows that h is also continuous and so $h \in M_{\gamma}$. Hence $\exists g \in R$ such that h = fg. But this implies that g(x) = 1 for $x < \gamma$ and g(x) = -1 for $x > \gamma$. So g cannot be continuous, which is a contradiction. Hence M_{γ} is non-principal.