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Abstract

In this paper we complete the determination of the maximal subgroups
of positive dimension in simple algebraic groups of exceptional type over
algebraically closed fields. This follows work of Dynkin, who solved the
problem in characteristic zero, and Seitz who did likewise over fields whose
characteristic is not too small.

A number of consequences are obtained. It follows from the main theo-
rem that a simple algebraic group over an algebraically closed field has only
finitely many conjugacy classes of maximal subgroups of positive dimension.
It also follows that the maximal subgroups of sufficiently large order in finite
exceptional groups of Lie type are known.
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1 Introduction

Let G be a simple algebraic group of exceptional type G2, F4, E6, E7 or E8
over an algebraically closed field K of characteristic p (where we set p =∞
if K has characteristic zero). In this paper we determine the maximal closed
subgroups of positive dimension in G. Taken together with the results of
[25, 30, 40] on classical groups, this provides a description of all maximal
closed subgroups of positive dimension in simple algebraic groups.

We obtain a variety of consequences, including a classification of maxi-
mal subgroups of the associated finite groups of Lie type, apart from some
subgroups of bounded order.

The analysis of maximal subgroups of exceptional groups has a history
stretching back to the fundamental work of Dynkin [11], who determined the
maximal connected subgroups of G in the case where K has characteristic
zero. The flavour of his result is that apart from parabolic subgroups and
reductive subgroups of maximal rank, there are just a few further conjugacy
classes of maximal connected subgroups, mostly of rather small dimension
compared to dimG. In particular, G has only finitely many conjugacy classes
of maximal connected subgroups.

The case of positive characteristic was taken up by Seitz [31], who de-
termined the maximal connected subgroups under some assumptions on p,
obtaining conclusions similar to those of Dynkin. If p > 7 then all these as-
sumptions are satisfied. This result was extended in [21], where all maximal
closed subgroups of positive dimension in G were classified, under similar
assumptions on p.

In the years since [31, 21], the importance of removing the character-
istic assumptions in these results has become increasingly clear, in view of
applications to both finite and algebraic group theory. For example, [24,
Theorem 1] shows that any finite quasisimple subgroup X(q) of G, with q
a sufficiently large power of p, can be embedded in a closed subgroup of
positive dimension in G; this is used to prove that maximal subgroups of
finite exceptional groups Gσ (σ a Frobenius morphism) are, with a bounded
number of exceptions, of the form Xσ with X a maximal closed subgroup
of positive dimension in G (see [24, Corollaries 7,8]).

Here we complete the solution of this problem. We determine all maximal
closed subgroups of positive dimension in G in arbitrary characteristic. For
the purposes of one of our applications to finite groups of Lie type, we in
fact prove a slightly more general result, admitting the presence of field
endomorphisms and graph automorphisms of G. Henceforth we simply refer
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2 MARTIN W. LIEBECK AND GARY M. SEITZ

to these as “morphisms of G”.

Let G be of adjoint type, and define Aut (G) to be the abstract group
generated by inner automorphisms of G, together with graph and field mor-
phisms. In the statement below, by a subgroup of maximal rank we mean
a subgroup containing a maximal torus of G, and Symk denotes the sym-
metric group of degree k. Also F̄p denotes the algebraic closure of the prime
field Fp. Recall also that a Frobenius morphism of G is an endomorphism σ
whose fixed point group Gσ is finite.

Here is our main result.

Theorem 1 Let G1 be a group satisfying G ≤ G1 ≤ Aut (G); in the case
where G1 contains a Frobenius morphism of G, assume that K = F̄p. Let
X be a proper closed connected subgroup of G which is maximal among
proper closed connected NG1(X)-invariant subgroups of G. Then one of the
following holds:

(a) X is either parabolic or reductive of maximal rank;

(b) G = E7, p 6= 2 and NG(X) = (22 ×D4).Sym3;

(c) G = E8, p 6= 2, 3, 5 and NG(X) = A1 × Sym5;

(d) X is as in Table 1 below.

The subgroups X in (b), (c) and (d) exist, are unique up to conjugacy in
Aut(G), and are maximal among closed, connected NG(X)-invariant sub-
groups of G.

Table 1

G X simple X not simple

G2 A1 (p ≥ 7)
F4 A1 (p ≥ 13), G2 (p = 7), A1G2 (p 6= 2)
E6 A2 (p 6= 2, 3), G2 (p 6= 7), A2G2

C4 (p 6= 2), F4
E7 A1 (2 classes, p ≥ 17, 19 resp.), A1A1 (p 6= 2, 3), A1G2 (p 6= 2),

A2 (p ≥ 5) A1F4, G2C3
E8 A1 (3 classes, p ≥ 23, 29, 31 resp.), A1A2 (p 6= 2, 3), A1G2G2 (p 6= 2),

B2 (p ≥ 5) G2F4
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Theorem 1 determines the maximal subgroups M of any such group G1
such that M ∩ G is closed and has positive dimension: namely, either M
contains G, or M = NG1(X) for X as in (a)-(d) and MG = G1. Below
we shall give applications with G1 = G and with G1 = G〈σ〉, where σ is a
Frobenius morphism of G.

In Tables 10.1 and 10.2 at the end of the paper we present further infor-
mation concerning the subgroups X in Table 1:

(1) We give the precise action (as a sum of explicit indecomposable
modules) of X on L(G), and also, in the cases G = F4, E6, E7, on the module
V , where V is the restricted irreducible G-module of high weight λ4, λ1, λ7
respectively (of dimension 26 − δp,3, 27, 56). These actions are recorded in
Tables 10.1 and 10.2, and proofs can be found in Section 9.

(2) We give the values of |NG(X) : X|; this is always at most 2. In all
cases where X has a factor A2, NG(X) induces a graph automorphism on
this factor, and the only other case where |NG(X) : X| = 2 is that in which
G = E8 and X = A1G2G2, where NG(X) has an element interchanging the
two G2 factors. These facts follow from the constructions of the maximal
subgroups A1A2, A1G2G2 < E8 in [31, p.46, 39], of A2G2 < E6 in [31, 3.15],
and from [24, 8.1] for A2 < E7 and A2 < E6.

The subgroups of G of type (a) in Theorem 1 are well understood. Max-
imal parabolic subgroups correspond to removing a node of the Dynkin
diagram (possibly two nodes if G1 contains an element involving a graph
or graph-field morphism). Subgroups which are reductive of maximal rank
are easily determined. They correspond to various subsystems of the root
system of G, and we give a complete list (with a proof in Section 8) of those
whose normalizers are maximal in G, in Table 10.3 in Section 10. Likewise,
Table 10.4 lists the maximal connected subgroups of maximal rank (again
with a proof in Section 8).

Application of Theorem 1 with G1 = G gives a complete determina-
tion of the maximal closed subgroups of positive dimension in G - they are
just the subgroups NG(X) for X as in (a)-(d). We state this formally for
completeness:

Corollary 2 (i) The maximal closed subgroups of positive dimension in G
are as follows: maximal parabolics; normalizers of reductive subgroups of
maximal rank, as listed in Table 10.3; the subgroups (22 ×D4).Sym3 < E7
and A1 × Sym5 < E8 in Theorem 1(b,c); and subgroups NG(X) with X as
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in Table 1.

(ii) The maximal closed connected subgroups of G are as follows: max-
imal parabolics; maximal closed connected subgroups of maximal rank, as
listed in Table 10.4; and all subgroups X in Table 1, omitting the subgroup
A1G2G2 < E8.

The subgroup A1G2G2 < E8 in Table 1 lies in a subgroup F4G2 so is
not maximal connected; however its normalizer in E8 interchanges the two
G2 factors, and indeed NE8(X) is maximal in E8.

On glancing at the main results of [21, 31] and comparing them with
our Theorem 1, the reader will notice that the conclusions are very similar.
Indeed, the only subgroups present in our Table 1 which are not already in
[21, 31] are

G2 < E6 for p = 2, 3,
A2 < E7 for p = 5,
B2 < E8 for p = 5.

Constructions for these maximal subgroups essentially follow along the lines
of constructions given in [31], apart from the maximal G2 < E6 for p = 2,
for which a new approach is required (see Lemma 6.3.7).

Thus the bulk of our work is concerned with proving that very few maxi-
mal subgroups occur in small characteristics (apart from those in conclusion
(a) of Theorem 1). We shall discuss below some of the methods we use, but
first we present some consequences of our main result.

The next corollary applies to all types of simple algebraic groups, clas-
sical and exceptional.

Corollary 3 If H is a simple algebraic group over an algebraically closed
field, then H has only finitely many conjugacy classes of maximal closed
subgroups of positive dimension.

This is immediate from Theorem 1 when H is of exceptional type. For
H classical, some argument is required, and is given in Section 8.

Theorem 1 also has significant applications to the study of maximal
subgroups of finite exceptional groups of Lie type. Let G be an exceptional
adjoint algebraic group over F̄p, where p is a prime. Let σ be a Frobenius
morphism of G such that L = Op

′
(Gσ) is a finite exceptional simple group

of Lie type over a finite field Fq1 . Finally, let L1 be a group such that
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L ≤ L1 ≤ Aut(L), and let M be a maximal subgroup of L1 not containing
L.

Corollary 4 There are absolute constants c, d (independent of G,L,L1)
such that if |M | > c then M is explicitly known, and determined up to Gσ-
conjugacy, falling into at most d log log q1 conjugacy classes of subgroups.

In order to specify precisely what the “explicitly known” maximal sub-
groups are in the conclusion of Corollary 4, we need some further discussion.

Our paper [21] contains a “reduction theorem” for maximal subgroups
M of L1 as above: namely, [21, Theorem 2] explicitly determines all maximal
subgroups M for which F ∗(M) is not simple.

Assume now that M0 = F
∗(M) is simple. Denote by Lie(p) the set

of finite simple groups of Lie type in characteristic p. If M0 6∈ Lie(p),
the possibilities for M0 up to isomorphism are given in [26] (although the
determination of the conjugacy classes of such subgroups is largely an open
field at the moment). There is an absolute upper bound (independent of q1)
on the order of these groups. We thus focus on the case where M0 ∈ Lie(p).
Say M0 =M(q), a group of Lie type over Fq, where q is a power of p.

We say that M(q) has the same type as G if M(q) ∼= G
(∞)
δ for some

Frobenius morphism δ of G (where G
(∞)
δ denotes the last term in the derived

series of Gδ); such maximal subgroups are determined up to Gσ-conjugacy
by [22, 5.1]. And we say that M is a subgroup of L1 of maximal rank
if M = NL1(Dσ), where D is a σ-stable connected reductive subgroup of
maximal rank in G; such maximal subgroups are determined in [19].

We now recall a definition taken from [24]. Let Σ = Σ(G) be the root
system of G, and for a subgroup L of ZΣ, let t(L) be the exponent of the
torsion subgroup of ZΣ/L. For α, β ∈ Σ, call the element α−β of ZΣ a root
difference. Define

t(Σ(G)) = max {t(L) : L a subgroup of ZΣ generated by root differences }.

R. Lawther has computed the values of t(Σ(G)) for all exceptional groups
except E8:

G G2 F4 E6 E7
t(Σ(G)) 12 68 124 388

The following result is a characteristic-free version of [24, Corollary 7].
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Corollary 5 Let L = Op
′
(Gσ) and L ≤ L1 ≤ Aut(L), as above, and let

M be a maximal subgroup of L1 with F
∗(M) = M(q), q a power of p. Let

Gσ = G(q1). Assume that

q > t(Σ(G)).(2, p− 1) if M(q) = A1(q),
2B2(q) or

2G2(q)
q > 9 and M(q) 6= Aε2(16) otherwise.

Then one of the following holds:

(i) M is a subgroup of maximal rank;

(ii) M(q) has the same type as G;

(iii) q = q1 and M(q) = O
p′(Xσ), where X is a simple maximal con-

nected σ-stable subgroup of G given in the second column of Table 1. The
possibilities are as follows (one Aut(Gσ)-class of subgroups for each group
M(q) listed):

G M(q)

G2 A1(q) (p ≥ 7)
F4 A1(q) (p ≥ 13), G2(q) (p = 7)
E6 A

ε
2(q) (ε = ±, p ≥ 5), G2(q) (p 6= 7),
C4(q) (p 6= 2), F4(q)

E7 A1(q) (2 classes, p ≥ 17, 19), Aε2(q) (ε = ±, p ≥ 5)
E8 A1(q) (3 classes, p ≥ 23, 29, 31), B2(q) (p ≥ 5)

Corollary 5 can be deduced quickly from Theorem 1 and results in [24], as
follows. First, [24, Corollary 7] implies that either conclusion (i) or (ii) holds,
or M(q) = Op

′
(Xσ) for some simple maximal closed connected σ-stable

subgroup X of G not containing a maximal torus. Applying Theorem 1
with G1 = G〈σ〉, it follows that X is as in the second column of Table 1,
and hence M(q) is as in conclusion (iii).

Corollary 4 follows from Corollary 5, together with the above discussion:
by [22, 5.1], the number of classes of maximal subgroups of the same type as
G is bounded above by d log log q1 (note that log log q1 is an upper bound for
the number of maximal subfields of Fq1); the number of classes of maximal
subgroups which are parabolic or of maximal rank is bounded by a constant;
and by [21, Theorem 2], the number of classes of maximal subgroupsM with
F ∗(M) non-simple is also bounded. By Corollary 5, the remaining maximal
subgroups M are either as in Corollary 5(iii) (hence fall into boundedly
many classes), or have F ∗(M) simple of bounded order. Corollary 4 follows.
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We now turn to a general discussion of the proof of Theorem 1. In
view of [21, 31], we need only determine maximal subgroups X which are
simple and of small rank (at most 4) in low characteristics (at most 7). The
precise list of cases to be dealt with is given in Proposition 2.2.1. Given
this, the argument begins in similar fashion to that in [31]. Namely, we
define a specific 1-dimensional torus T in X, and show that the maximality
hypothesis forces T to determine a labelling of the Dynkin diagram of G by
0’s and 2’s. Such a labelled diagram specifies completely the weights of T
in its action on L(G).

The next step is to use this labelling information to determine the pos-
sibilities for the composition factors of X on L(G). Every irreducible X-
module restricts to T , giving a certain collection of T -weights. The fact that
the full list of composition factors of L(G) ↓ X must determine a collection
of T -weights which is compatible with a labelling of the Dynkin diagram
with 0’s and 2’s severely restricts the possibilities for L(G) ↓ X. Indeed, the
“Weight Compare Program” used for [31] carries out the above procedure,
and prints out a list of possibilities for the composition factors of L(G) ↓ X
corresponding to each possible labelled diagram. For a little more discussion
of this, see the remarks following Lemma 2.2.6.

So at this point we have lists of possibilities for the composition factors
of L(G) ↓ X. In a couple of cases - namely X = A1 or B2 with p = 2
- these lists are formidably long and not especially useful and we develop
special techniques to handle these cases utilizing certain ideals in L(X). In
the other cases the information provided by the Weight Compare Program
is quite helpful.

We remarked after Theorem 1 that very few new maximal subgroups
arise in the small characteristics we are considering here. Thus our aim
for the most part is, given a listed possibility for L(G) ↓ X, to obtain a
contradiction to the maximality hypothesis on X. If we can force X to
have a nontrivial fixed point on L(G), such a contradiction is immediate
(see Lemma 2.2.10(iv)). This was the main tool used in [31] to reduce the
possibilities for L(G) ↓ X to a manageable list. However in small character-
istics, it is much less easy to force the existence of a fixed point - indeed, it
is often impossible. The main reason is that in small characteristics there
are usually several indecomposable X-modules of low dimension involving
the trivial module; thus, even if L(G) ↓ X has trivial composition factors, it
may be impossible to prove it has a trivial submodule since these indecom-
posables may be present.

Thus at this point, new methods are required to supplement those of [31].
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To our aid comes one of the few advantages of being in small characteristic:
given an irreducible X-module V (λ) appearing as a composition factor of
L(G) ↓ X, there is a reasonable probability of it being totally twisted - that
is, of the form V (μ)(q) for some power q = pa with a ≥ 1. Indeed, for p = 2
or 3 almost all of our listed possibilities for L(G) ↓ X have at least one
nontrivial totally twisted composition factor, and usually there are several
such.

The point about totally twisted composition factors is that they are
annihilated by L(X). Thus, if we can actually force there to be a totally
twisted submodule in L(G) ↓ X, it follows that CL(G)(L(X)) 6= 0. It turns
out that we can indeed force this in many cases (although this may require
some effort) and this is the starting point of our new method.

Let A = CL(G)(L(X)), and suppose we have shown that A 6= 0. An
elementary lemma (see 2.3.4) shows that A is contained as a subalgebra
in the Lie algebra L(D) of a maximal rank reductive subgroup D lying in
a small list of possibilities. A detailed analysis of this subalgebra leads in
many cases to the construction of group elements in G which stabilize A (or
possibly an ideal of A), yet cannot normalize X, and this contradicts our
maximality hypothesis. These group elements are usually obtained by an
exponentiation process.

This then is a rough outline of the argument. However, there are a
number of cases where the above method does not work - for instance,
when we cannot force A 6= 0. For these, different and very substantial
arguments are required, bringing into play a full panoply of available tools
from algebraic group theory (see for example the proofs of Proposition 3.3.3,
Proposition 4.1.4, and Proposition 4.2.17).

Notation

Throughout the paper we take G to be a simple adjoint algebraic group
of exceptional type over an algebraically closed field K of characteristic p.
Fix a maximal torus TG of G. Let Σ(G) denote the root system of G and fix
a system of fundamental roots Π(G) and BG the Borel subgroup generated
by TG and all TG-root subgroups corresponding to fundamental roots. Write
Π(G) = {α1, . . . , αl}, and use the ordering of fundamental roots and Dynkin
diagrams given in [6, p.250]. On occasion we will make use of the simply
connected cover Ĝ of G. Write λ1, . . . , λl for the fundamental dominant
weights.
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Let L(G) denote the Lie algebra of G, and define

L = L(G)′

so that L = L(G) unless (G, p) = (E6, 3) or (E7, 2), in which case L has
codimension 1 in L(G) (see Lemma 2.1.1). We shall use the standard no-
tation eα (α ∈ Σ(G)) for root vectors in L(G), and set fα = e−α. The root
subgroup of G corresponding to α will be denoted by Uα = {Uα(c) : c ∈ K}.

Let X be a simple algebraic group over K. For a dominant weight λ,
let VX(λ) be the rational irreducible KX-module of high weight λ, WX(λ)
the Weyl module of high weight λ, and TX(λ) the indecomposable tilting
module of high weight λ. Often we use just λ to denote the irreducible
module VX(λ). Additional notation for certain indecomposable modules
will be given in Section 10.

IfM1, . . . ,Mr are rational KX-modules and n1, . . . , nr positive integers,
then the notation

(M1)
n1/ . . . /(Mr)

nr

denotes a rational KX-module which has the same composition factors as
the direct sum (M1)

n1 ⊕ . . . ⊕ (Mr)nr . For example, if μ1, . . . , μr are dis-
tinct dominant weights, then μn11 / . . . /μ

nr
r denotes a KX-module which has

composition factors VX(μi) appearing with multiplicity ni for each i.

Finally,
M1|M2| . . . |Mr

denotes a rational KX-module V which has a series 0 = Vr < Vr−1 < . . . <
V1 < V0 = V of submodules such that Vi−1/Vi ∼=Mi for 1 ≤ i ≤ r.



2 Preliminaries

This chapter contains a number of preliminary results which will be used
in our proof of Theorem 1. The first section consists of some lemmas on
representation theory. In the second we start the proof proper, by defining
a certain 1-dimensional torus T in our subgroup X, and establishing the
T -labelling of the Dynkin diagram of G by 0’s and 2’s referred to in the
Introduction. In the third section we prove some general results about the
algebra A = CL(L(X)

′) which are fundamental to our analysis in later
chapters.

2.1 Lemmas from representation theory

Recall that G is an exceptional adjoint algebraic group over K in character-
istic p, L(G) is the Lie algebra of G, and L = L(G)′, the derived subalgebra.

Lemma 2.1.1 Either L(G) is an irreducible module for G or one of the
following holds:

(i) (G, p) = (E6, 3) or (E7, 2), L = L(G)
′ has codimension 1 in L(G),

and L is irreducible for G.

(ii) (G, p) = (G2, 3) or (F4, 2) and L(G) has an ideal I generated by root
elements for short roots such that both I and L(G)/I are irreducible for G.
Moreover, L(G) is indecomposable.

Proof Recall that Ĝ is the simply connected cover of G. Let π : Ĝ→ G be
the canonical map and let T̂G be the preimage of TG. Then L(Ĝ) has basis
{eα, hαi : α ∈ Σ(G), αi ∈ Π(G)}. If α0 is the root of highest height, then
eα0 is a maximal vector for B̂G, the preimage of BG, of weight λi, where
i = 2, 1, 2, 1, 8 according as G = G2, F4, E6, E7, E8 respectively. It follows
from [13] that L(Ĝ) is irreducible except for the cases (i),(ii) indicated.

In the exceptional E6 and E7 cases in (i), the corresponding Weyl module
has a 1-dimensional submodule with irreducible quotient (see [13]), and it is
straightforward to find a nonzero central element of L(Ĝ). So in these cases
the adjoint representation has an irreducible submodule of codimension 1.
It follows from the commutator relations that this submodule is L = L(G)′,
so that (i) holds.

Now suppose that (G, p) = (G2, 3) or (F4, 2). Here we let I be the ideal
of L(G) generated by root vectors for short roots. Commutator relations
imply that I is a proper ideal and that if β is the highest short root, then

10
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eβ is a maximal vector. It follows from [13] that both I and L(G)/I are
irreducible. Finally, a consideration of commutator relations among root
vectors in L(G) implies that L(G) is indecomposable.

Lemma 2.1.2 Let 0 6= l ∈ L and let C = CG(l).

(i) If l is semisimple, then C contains a maximal torus of G.

(ii) If l is nilpotent, then Ru(C) 6= 1 and hence C is contained in a
proper parabolic subgroup of G.

Proof If l is semisimple, then [4, 11.8] implies that l is in the Lie algebra
of a maximal torus of G. So in this case C contains a maximal torus and (i)
holds.

Now suppose that l is nilpotent. Here [4, 14.26] shows that l ∈ L(U)
where U is a maximal unipotent subgroup of G.

Suppose Ru(C) = 1. Now l is centralized by a root subgroup in Z(U),
so that UC = (U ∩ C)0 is nontrivial and UC is contained in a maximal
unipotent subgroup of C0. Our supposition implies C0 is reductive so there
is an element k ∈ C0 such that UC ∩ UkC = 1.

Write k = u1hwu2, where u1, u2 ∈ U , h is in a maximal torus of B =
NG(U) and w represents an element of the Weyl group of G. Then U ∩Uk =
U ∩ Uwu2 = (U ∩ Uw)u2 . Now l ∈ L(U) ∩ L(Uwu2) = (L(U) ∩ L(Uw))u2 =
L(U ∩ Uw)u2 , where the last equality holds since U,Uw, and (U ∩ Uw) are
all products of root groups. Indeed, U ∩ Uw is the product of those root
subgroups for positive roots which w leaves positive. In particular, D =
Z(U ∩ Uw) is a connected group (it is invariant under a maximal torus
of B) of positive dimension, so Du2 ≤ C(L(U ∩ Uw)u2) ≤ C. But then
Du2 ≤ UC ∩UkC = 1, a contradiction. Therefore, Ru(C) 6= 1 and by [5], C is
contained in a proper parabolic subgroup of G, giving (ii).

The next few lemmas are standard results on representations. Notation
is as in the Introduction. Let H be a simply connected simple algebraic
group over K.

Lemma 2.1.3 Let λ be a dominant weight for a maximal torus of H, and
write λ = μ0 + pμ1 + ∙ ∙ ∙+ pkμk, where each μi is restricted.

(i) VH(λ) ∼= VH(μ0)⊗ VH(μ1)(p) ⊗ ∙ ∙ ∙ ⊗ VH(μk)(p
k).

(ii) VH(λ) ↓ L(H) is a direct sum of irreducible modules each isomorphic
to V (μ0).
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Proof Part (i) is just the Steinberg Tensor Product Theorem, and (ii)
follows from (i) and the fact that the differential of the Frobenius map is
0.

Lemma 2.1.4 ([16, p.207]) Let V be a rational KH-module. Suppose λ is
a maximal dominant weight for which the corresponding weight space of V
is nonzero, and v ∈ V has weight λ. Define

〈Hv〉 = 〈h(v) : h ∈ H〉.

Then 〈Hv〉 is an image of the Weyl module WH(λ).

We will use the following consequence of Lemma 2.1.4 on several occa-
sions. Denote by w0 the longest element of the Weyl group of H. Recall
that for weights λ, μ we write μ < λ to mean that λ−μ is a sum of positive
roots.

Lemma 2.1.5 Let V be a rational KH-module, and suppose that H pre-
serves a nondegenerate bilinear form on V . Let v be a weight vector of
weight λ, a maximal dominant weight for H.

(i) 〈Hv〉 is an image of the Weyl module WH(λ), and if M is the image
of the maximal submodule of WH(λ), then M is a totally singular subspace
of V .

(ii) If λ 6= −w0(λ), then 〈Hv〉 is a singular subspace of V .

(iii) Suppose w ∈ V is a maximal vector for H having weight δ which is
not subdominant to −w0(λ). Then 〈Hw〉 ≤M⊥.

Proof We know that 〈Hv〉 is an image of WH(λ), and we set M to be
the image of the maximal submodule. Let R denote the radical of M with
respect to the H-invariant form on V .

(i) Suppose R < M and consider the non-degenerate space R⊥/R. If
δ 6= λ is the high weight of a composition factor ofM , then δ is subdominant
to λ (i.e. δ is dominant and δ < λ). Hence composition factors of V/R⊥

have high weight of the form −w0(δ) for δ subdominant to λ. It follows that
v ∈ R⊥ and hence 〈Hv〉 < R⊥.

Now M/R is a non-degenerate subspace of R⊥/R so R⊥/R = (M/R) ⊥
D for some non-degenerate space D. However 〈Hv〉/R is indecomposable,
a contradiction. This proves (i).

(ii) By (i) we see that M is singular and from the first paragraph of the
argument we have 〈Hv〉 < M⊥. So 〈Hv〉/M is an irreducible submodule of
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M⊥/M of high weight λ. The dominant weight −w0(λ) is the high weight
of the dual of VH(λ), so our assumption implies that 〈Hv〉/M is singular
and hence so is 〈Hv〉. This establishes (ii).

For (iii) first note that H-composition factors ofM each have high weight
subdominant to λ. Hence, composition factors of V/M⊥ have high weights
subdominant to −w0(λ). It follows that w ∈ M⊥ and hence 〈Hw〉 ≤ M⊥,
as required.

Lemma 2.1.6 ([1, 3.9]) Let H = SL2(K), and let λ, λ
′ be dominant weights

for H with p-adic expressions λ =
∑
piμi and λ

′ =
∑
piμ′i, respectively.

Then there is a 2-step indecomposable H-module with composition factors
of high weights λ and λ′ if and only if there exists k such that μi = μ

′
i for

i 6∈ {k, k + 1}, μk + μ′k = p− 2, and μk+1 − μ
′
k+1 = ±1.

We shall require some basic information about tiltingmodules taken from
[32, Section 2]. Recall that a rational H-module V is a tilting module if V
has a filtration by Weyl modules and also a filtration by dual Weyl modules.
For a dominant weight λ, there is a unique indecomposable tilting module
T (λ) = TH(λ) with highest weight λ, and any tilting module is a direct sum
of T (λ)’s. A direct summand of a tilting module is again a tilting module,
and the tensor product of tilting modules is a tilting module.

Now let H = A1, and for a positive integer c, denote by T (c) the unique
indecomposable tilting X-module of high weight c. We shall require the
structure of certain of these tilting modules. These are given in the next
lemma.

Lemma 2.1.7 Let H = A1.

(i) For 0 ≤ r ≤ p− 2, T (r + p) is uniserial, has dimension 2p, and has
a series

T (r + p) = (p− r − 2)|(r + p)|(p− r − 2).

(ii) For 0 ≤ r ≤ p− 2, T (r + 2p) has dimension 4p and has a series

T (r + 2p) = (2p− r − 2)|((r + 2p)⊕ r)|(2p− r − 2).

(iii) The above tilting modules are projective for both unipotent elements
of X and nilpotent elements of L(X).

Proof Part (i) is [32, 2.3(b)], and (ii) follows from the same kind of
argument. In each case T (c) can be constructed as a direct summand of a
tensor product of restricted irreducible modules including at least one tensor
factor of high weight p− 1. Then (iii) follows as in the proof of [32, 2.3].
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2.2 Initial Reductions

In this section we begin the proof of Theorem 1 with a number of lemmas
which will be fundamental for what follows.

As in the statement of Theorem 1, let G1 be a group satisfying G ≤ G1 ≤
Aut (G); in the case where G1 contains a Frobenius morphism of G, assume
that K = F̄p. Let X be a proper closed connected subgroup of G which is
maximal among proper closed connected NG1(X)-invariant subgroups of G.
Write S = NG1(X), so that X = (S ∩G)

0.

Let TX , TG be maximal tori of X and G, respectively, with TX ≤ TG. We
assume that X is not of maximal rank so that the containment is proper.
In addition, we set

L = L(G)′, A = CL(L(X)
′).

Notice that L is the image of dπ where π : Ĝ → G is the canonical map
from the simply connected cover Ĝ of G. Hence L has a basis consisting of
root vectors eα for α ∈ Σ(G), together with some basis of L(TG) ∩ L.

The results of [31] and [21] determine X under the assumption that the
characteristic p is not too small in cases where X is simple of relatively small
rank. Specifically, the following is established.

Proposition 2.2.1 ([31, 21]) Theorem 1 holds unless X is simple, CG(X) =
1 and X,G, p are as in the following table.

G X = A1 X = A2 X = B2, G2 X = B3 X = A3, C3, B4
G2 p ≤ 3
F4 p ≤ 3 p ≤ 3 p = 2
E6 p ≤ 5 p ≤ 3 p ≤ 3 p = 2
E7 p ≤ 7 p ≤ 5 p ≤ 3 p = 2
E8 p ≤ 7 p ≤ 5 p ≤ 5 p = 2 p = 2

In the table, blank space indicates that there are no cases requiring consid-
eration.

In view of this, we assume throughout that X,G, p are as in the table in
Proposition 2.2.1, and that CG(X) = 1.

We next rule out the possibility that S contains special isogenies of G
for the cases (G, p) = (F4, 2) or (G2, 3) (i.e. morphisms whose fixed point
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group in G is a finite twisted group of type 2F4 or
2G2). By settling this

early, we avoid repeated technicalities in lemmas to follow.

Lemma 2.2.2 Assume (G, p) = (F4, 2) or (G2, 3) and that Theorem 1 holds
for subgroups S not containing special isogenies. Then it is not possible for
S to contain special isogenies.

Proof By way of contradiction assume that τ ∈ S is a special isogeny, so
that τ2 induces a field morphism of G, corresponding to an odd power, say
q, of p. Then [24, 1.13] shows that τ2 induces a Frobenius morphism of X
with fixed point group of the form X(q). Note that τ induces an involutory
automorphism of X(q). As q is an odd power of p, this cannot be a field or
graph-field morphism of X. Hence Proposition 2.2.1 implies that X = B2
and G = F4. Here S = X〈τ〉.

Let R be maximal among τ2-invariant, connected subgroups of G such
that X ≤ R. We are assuming that Theorem 1 holds for the group G〈τ2〉.
So from the statement of the theorem we see that R is either reductive of
maximal rank or parabolic. In the first case a consideration of subsystem
groups implies R = D4, C4, or B4. It follows from [19] that G = RR

τ with
the intersection R∩Rτ being of maximal rank. As R∩Rτ is S-invariant, this
is a contradiction to the maximality of X. Finally, assume R is parabolic.
Then so is Rτ . Here too, R ∩ Rτ contains a maximal torus, as can be seen
from the Bruhat decomposition.

In view of Lemma 2.2.2, from this point forward we assume that special
isogenies are not present in S.

The next result is required when Frobenius morphisms are present in S.

Lemma 2.2.3 Let σ be a Frobenius morphism in S < G1. Then there is a
semilinear transformation ω : L→ L such that the following hold:

(i) ad(gσ)v = ωad(g)ω−1v for any g ∈ G, v ∈ L.

(ii) L(X), L(X)′, and A are all invariant under ω.

(iii) If 0 6= V ≤ L is ω-stable, then NG(V ) and CG(V ) are σ-stable.

(iv) If 0 6= V ≤ L is ω-stable, then V has a basis of ω-fixed vectors.

(v) ω sends semisimple elements to semisimple elements and nilpotent
elements to nilpotent elements.

Proof A relatively easy proof of (i) follows from representation theory.
Consider the representation G → G → GL(L), where the first morphism
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is σ and the second is the adjoint representation. If L is irreducible, then
it follows from a weight consideration that this representation is a twist of
the adjoint representation. Similarly, for the cases (G, p) = (G2, 3), (F4, 2),
where the representation is reducible, although this requires additional ar-
guments (e.g. Lemma 1.3 of [23]). Thus the representation is equivalent
to the representation G → GL(L) → GL(L), where the first map is the
adjoint representation and the second is given by a field automorphism of
GL(L). This field automorphism can be realized as conjugation by a semi-
linear transformation of L corresponding to a q-power map with respect to
a certain basis. An application of Lang’s theorem shows that we can adjust
the semilinear map by an element of GL(L) to obtain a semilinear map ω
satisfying (i).

Another argument which yields all parts of the lemma can be obtained
from the general theory. As σ is a Frobenius morphism, G is defined over Fq
for some q. That is, the coordinate ring K[G] can be written K[G] = K⊗R,
where R is an algebra over Fq and σ∗, the comorphism of σ, induces the q-
power map on R. Letting δ denote the q-power map on K, extended to
K[G] by inducing the identity on R, we have δσ∗ = q, the q-power map on
K[G].

Viewing L(G) as the left invariant derivations of K[G], one calculates
that conjugation by δ defines a semilinear morphism, ω, of L(G) which
preserves the Lie algebra structure. Hence ω acts on L and (i) holds. As
K = F̄q and X is σ-stable, X is defined over Fq and one checks that L(X)
is ω-stable, giving (ii).

Let 0 6= V ≤ L be ω-stable. Then (iii) follows from (i). To establish
(iv) we first claim that V contains a nonzero vector fixed by ω. Now L has
a basis e1, ..., en of vectors fixed by ω. Choose 0 6= v ∈ V with v =

∑
kiei

with as few nonzero coefficients as possible. We may assume k1 6= 0 and
hence we make take k1 = 1. If all coefficients are in Fq, then v is fixed
by ω. Otherwise, v − ωv 6= 0 and has fewer non-zero coefficients than v,
a contradiction. Hence the claim holds. Choose v1 6= 0 fixed by ω. Then
v1 ∈ Vω, an Fq-space and we can find a basis {v1, . . . , vn} of Lω. This is
also a K-basis of L and we have V = 〈v1〉 ⊕ (V ∩ 〈v2, . . . , vn〉). The latter
summand is ω-stable, so (iv) follows from an induction.

Finally, let v ∈ V . From (i) we conclude that CG(v)σ
−1
= CG(ω

−1v).
Now v is semisimple if and only if its centralizer is reductive, so ω sends
semisimple elements to semisimple elements. Also, v is nilpotent if and only
if some power of ad(v) is 0. So (v) follows.
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In view of the previous lemma we will sometimes regard S as acting on
L(G).

We next define a certain 1-dimensional torus of X that is fundamental
for what follows. Fix a system of TX -invariant root subgroups of X, one
for each root in the root system Σ(X) of X, and let Π(X) be a system
of fundamental roots. If γ ∈ Σ(X)+ and if Uγ , U−γ are the corresponding
TX -root subgroups of X, then we let hγ(c) be the image of the matrix
diag(c, c−1) under the usual surjection SL2 → 〈Uγ , U−γ〉.

Definition 2.2.4 For c ∈ K∗ set

T (c) = Πγ∈Σ(X)+hγ(c),

and
T = 〈T (c) : c ∈ K∗〉.

Lemma 2.2.5 (i) T (c)eα = c
2eα for each α ∈ Π(X).

(ii) T (c)h = h for all h ∈ L(TX).

Proof Part (ii) is immediate since T ≤ TX and TX acts trivially on L(TX).
For (i) fix α ∈ Π(X). Then T (c)eα = creα, where r =

∑
γ∈Σ(X)+〈α, γ〉. Let

Σ(X)∗ denote the dual root system consisting of roots δ∗ = δ/(δ, δ), for
δ ∈ Σ(X). Then r = Σγ∈Σ(X)+〈γ

∗, α∗〉 = 2〈ρ∗, α∗〉, where ρ is the half-sum
of positive roots in Σ(X). But it is well known that ρ is the sum of all
fundamental dominant weights of Σ(X)∗ and α∗ is a fundamental root in
Σ(X)∗. Part (i) follows.

Note that since each root in Σ(X) is an integral combination of roots in
Π(X) the previous lemma determines all weights of T on L(X), showing, in
particular, that these weights are all even.

We remark that it follows from the definition of T and the previous
lemma that NS(T ) covers S/X and contains a representative of the long
word w0 of the Weyl group of X. Indeed Lemma 2.2.5(i) implies that w0
inverts T , field morphisms send each term to a suitable p-power, and if a
graph morphism of X is present in S (cases X = A2, A3), it can be taken to
centralize T .

We next pass to weights of T on L. For β ∈ Σ(G), eβ is a weight vector
of T and we write

T (c)eβ = c
tβeβ ,
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where tβ is an integer.

Lemma 2.2.6 (i) The TX-weights on L are each integral combinations of
elements of Σ(X).

(ii) There exists a system of fundamental roots Π(G) of Σ(G) such that
tβ = 0 or 2 for each β ∈ Π(G).

Proof A weight of TX on L will be called integral if it is a sum of roots
in Σ(X). If λ is a dominant weight for TX , then all weights of VX(λ) differ
from λ by a sum of roots in Σ(X). Hence either all weights of VX(λ) are
integral or none are. Moreover, if δ is another dominant weight and if there
is a nontrivial extension of VX(λ) by VX(δ), then λ and δ are either both
integral or neither is integral.

Consequently, we may write L = I ⊕ J , where both summands are X-
invariant, all weights of I are integral and there are no integral weights in
J . It follows that I is the sum of L(TG) ∩ L and all root spaces 〈eβ〉 for
β ∈ Σ(G) such that β ↓ TX is integral. Let D = 〈TG, Uβ : β ↓ TX integral 〉,
a maximal rank reductive subgroup of G. By [15, 27.2], D leaves I and
J invariant. Note also that the decomposition is preserved by S. Hence
X is contained in the full stabilizer in G of the decomposition, a group of
maximal rank. This contradicts the maximality of X unless this stabilizer
is G. However, by Lemma 2.1.1, L is indecomposable under the action of G
(usually irreducible). Now L(X) ≤ I, so I 6= 0 and hence I = L. Part (i)
follows.

It follows from (i) that tβ is an even integer for each β ∈ Σ(G). It is
possible to choose a fundamental system Π(G) such that tβ ≥ 0 for each β ∈
Π(G) (this just amounts to choosing an appropriate fundamental region).
Let H = 〈TG, U±β : β ∈ Π(G), tβ = 0 or 2〉. Then H is a Levi subgroup
of G. Since every positive root is a sum of fundamental roots we also have
H = 〈TG, U±β : β ∈ Σ(G), tβ = 0 or 2〉. So the previous lemma shows that
L(X) ≤ L(H).

If H < G, then there is a nontrivial torus Z ≤ Z(H). Then Z ≤
CG(L(X))

0 ≤ NG(L(X))0. However, Lemma 2.2.3 implies that S normalizes
NG(L(X))

0 so the maximality of X forces X = NG(L(X))
0 > Z. However

X contains no torus centralizing L(X), a contradiction. It follows that
H = G and (ii) holds.

Weight Compare Program From now on we assume that Π(G) has
been chosen to satisfy conclusion (ii) of the previous lemma. Consequently,
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X determines a labelling of the Dynkin diagram with all labels either 0 or
2: writing Π(G) = {α1, . . . , αl} and ti = tαi , we call

t1t2 . . . tl

the T -labelling or T -labelled diagram of G.

Such a labelled diagram then determines all T -weights on L and these
are bounded by the T -weight of the highest root of Σ(G). So in all cases
the T -weights are bounded by twice the height of the highest root. By
Lemma 2.2.6(i), composition factors of L(G) ↓ X have weights which are
integral combinations of roots, and the composition factors each determine
a certain collection of T -weights. The combination of T -weights over all
composition factors (including multiplicities) must agree with the list of
T -weights determined by the labelled diagram.

In practice we begin with an exceptional group G, a simple group X,
and prime p. We then determine all possible composition factors which
have T -weights bounded by twice the height of the highest root. We next
determine all T -weights of these composition factors. This requires knowing
dimensions of weight spaces of irreducible modules in positive characteristic
and this can be accomplished using the computer program of [13] or the
Sum Formula. Much of the information required is given in tables of [31],
but in a few cases supplemental information is required.

The Weight Compare Program simply lists all T -weights corresponding
to the various labelled diagrams and then compares these with weights of
irreducible modules. The output is a list of compatible composition factors
for L(G) ↓ X.

The labelled diagram of T also determines a certain parabolic subgroup
of G. In the next lemma we use the notation UX to indicate the maximal
unipotent subgroup of X generated by all TX -root subgroups corresponding
to positive roots.

Lemma 2.2.7 Let P = 〈TG, Uβ : β ∈ Σ(G), tβ ≥ 0〉.

(i) P is a parabolic subgroup of G with Levi factor LP = 〈TG, Uβ : tβ = 0〉
and unipotent radical Q =

∏
Uβ, where the product is taken over all β ∈

Σ(G) for which tβ > 0.

(ii) LP = CG(T ).

(iii) UX ≤ Q.

Proof It follows from the commutator relations and action of T that the
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group Q defined in (i) is a unipotent group normalized by LP . Also, LP is
generated by a maximal torus and root subgroups corresponding to a closed
subsystem of Σ(G), from which it follows that LP is the corresponding (re-
ductive) subsystem subgroup. Let B be a Borel subgroup of LP containing
TG. Then QB is a connected solvable subgroup with the property that it
contains either Uβ or U−β for each β ∈ Σ(G). It follows that QB is a Borel
subgroup of G and hence P is a parabolic subgroup of G with unipotent
radical Q. This proves (i).

The action of T on TG-root subgroups of G is determined by its action on
root vectors. So the TG-root subgroups centralized by T are precisely those
with tβ = 0. On the other hand, CG(T ) is a Levi subgroup of G containing
TG, hence generated by root subgroups. It follows that CG(T ) = LP , giving
(ii).

To establish (iii) we first claim that P = NG(L(Q)). As Q / P , we
have P ≤ NG(L(Q)). If the containment were proper, the normalizer would
contain a root subgroup Uβ for which U−β ≤ Q. But then Uβ cannot
normalize the nilpotent algebra L(Q). This gives the claim.

The T -weights on L are even integers and for each even integer r let Lr
denote the subspace of L spanned by all weight vectors of weight r or more.
Consider the filtration

∙ ∙ ∙ ≤ L4 ≤ L2 ≤ L0 ≤ L−2 ≤ L−4 ≤ ∙ ∙ ∙

of L. It follows from [15, 27.2] that P stabilizes each term of the filtration
and that UX stabilizes each term, centralizing successive quotients. Also
L2 = L(Q), so that UX ≤ NG(L(Q)) = P . Hence, UX ≤

⋂
CP (L2i/L2i+2),

a normal unipotent subgroup of P . Hence (iii) holds.

We shall also require results from [23, Section 6] concerning labellings
of arbitrary 1-dimensional tori in G. If J is a 1-dimensional torus, then
there is a fundamental system Π(G) such that J(c)eβ = c

lβeβ for β ∈ Π(G),
where the lβ are non-negative integers. Thus J determines a non-negative
labelling of Π(G) (label β with the integer lβ), and by [23, 6.2] this labelling
is unique, up to graph automorphisms of G.

The following result follows from the proof of [23, 6.3].

Lemma 2.2.8 Let J and J ′ be 1-dimensional tori in G. Then the following
are equivalent:

(i) J and J ′ are conjugate in AutG;
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(ii) J and J ′ have the same weights on L(G);

(iii) J and J ′ determine the same labelled diagram, up to graph auto-
morphisms.

We now continue with the analysis of our maximal subgroup X.

Lemma 2.2.9 Let λ be a dominant weight of TX . Then each T -weight of
VX(pλ) is a multiple of 2p provided (X, p) 6= (A1, 2), (B2, 2), (C3, 2).

Proof The TX -weights of VX(pλ) have the form pγ, where γ is λ minus
a sum of roots. So by Lemma 2.2.6, it is only necessary to show that, with
the exceptions in the statement, pλ ↓ T is a multiple of 2p.

Now λ is a sum of fundamental weights. By the assumption after Propo-
sition 2.2.1 we have X = A1, A2, A3, B2, B3, C3, or B4. In the following
table we express the fundamental weights λi in terms of fundamental roots
in Π(X). We use the notation

∑
ciαi = (c1, c2, . . .).

A1 : λ1 =
1
2(1).

A2 : λ1 =
1
3(2, 1), λ2 =

1
3(1, 2).

A3 : λ1 =
1
4(3, 2, 1), λ2 =

1
2(1, 2, 1), λ3 =

1
4(1, 2, 3).

B2 : λ1 = (1, 1), λ2 =
1
2(1, 2).

B3 : λ1 = (1, 1, 1), λ2 = (1, 2, 2), λ3 =
1
2(1, 2, 3).

C3 : λ1 =
1
2(2, 2, 1), λ2 = (1, 2, 1), λ3 =

1
2(2, 4, 3).

B4 : λ1 = (1, 1, 1, 1), λ2 = (1, 2, 2, 2), λ3 = (1, 2, 3, 3), λ4 =
1
2(1, 2, 3, 4).

From Lemma 2.2.6 and the expressions above we can immediately find
the T -weights of the fundamental weights λi, and we see that these are all
even except when X = A1, A3, B2 or C3. Note that denominators in these
cases are powers of 2.

For the exceptional cases note that Lemma 2.2.6(i) shows that X is of
adjoint type, hence VX(pλ) is a representation of the adjoint group, so that
pλ is a sum of roots. If p is odd, then by the above pλ is a sum of roots if
and only if λ is, and so in this case we have all T -weights a multiple of 2p,
as required.

Finally, assume p = 2. In view of the exceptions in the statement of
the lemma, we need only consider X = A3. Write λ = aλ1 + bλ2 + cλ3.
The T -weight of λ is 3a+ 4b+ 3c. Use the above to express 2λ in terms of
roots. Then the coefficient of α3 is

1
2(a+ 2b+ 3c). So for 2λ to be a sum of
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roots, this number must be an integer and hence a+ c is even. This implies
that the T -weight of λ is even and hence the T -weight of 2λ is a multiple of
2p = 4, as required.

The next lemma gives basic information about the centralizer of X and
its action on L(G).

Lemma 2.2.10 (i) CS(X) = 1.

(ii) CG(X) = CG(L(X)
′) = 1.

(iii) If 0 6= V < L and V is S-invariant, then X = NG(V )0 and CG(V ) =
1.

(iv) CL(X) = 0.

(v) X is of adjoint type.

Proof The equality CG(X) = 1 is an assumption we made following
Proposition 2.2.1. Hence CS(X) consists of Frobenius morphisms of G and
possibly an element in the coset of a graph automorphism, if G = E6.
Centralizers of Frobenius morphisms are finite by definition, so if CS(X) >
1, then it is generated by an involution, say τ , in the coset of a graph
automorphism of G = E6. But then CG(τ) has dimension 52 or 36 (see
[9, 2.7] for p > 2, and [2, Section 19] for p = 2), which is greater than
dimX. This is a contradiction as S normalizes CS(X) = 〈τ〉 and hence also
normalizes its centralizer in G. This proves (i). By Lemma 2.2.3, CG(L(X)

′)
is S-invariant. Maximality of X implies that this centralizer is finite, hence
centralized by X. So the second part of (ii) follows from the first part.

Given a subspace V < L as in (iii), its stabilizer contains X and is S-
invariant by Lemma 2.2.3(iii). Hence X = NG(V )

0 by maximality. Then
CG(V ) is finite, hence centralized by X. So (iii) follows from (ii).

By Lemma 2.2.3(i), J = CL(X) is S-invariant. Assume J 6= 0. Of course
X acts trivially on this space so we consider the action of S/X on J . If we
define A(G) to be the group generated by inner and graph automorphisms
of G, then NA(G)(X) = X〈τ〉, where τ is the identity or an involutory outer
automorphism of X. In either case S acts on J1, an eigenspace of τ on
J . Now S/X〈τ〉 is generated by the image of a Frobenius morphism. If σ
is such a morphism, then by Lemma 2.2.3(iv), σ has a fixed point on J1.
From the Jordan decomposition and Lemma 2.2.3(v) we see that S normal-
izes a 1-space 〈e〉 < L with e either semisimple or nilpotent. Maximality
implies that X = CG(e)

0. However, by Lemma 2.1.2, CG(e)
0 is either re-
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ductive of maximal rank or has a nontrivial unipotent radical, according to
e being semisimple or unipotent. In either case we have a contradiction to
maximality. Hence J = 0, completing the proof of (iv).

Finally, (v) follows from Lemma 2.2.6(i).

Lemma 2.2.11 Assume that G = E6 and S contains an element in the
coset of a graph automorphism of G. Then X = A2.

Proof Suppose that τ ∈ S is in the coset of a graph automorphism of
G. If τ induces an inner automorphism of X, then τx ∈ CS(X) for some
x ∈ X, which contradicts Lemma 2.2.10(i). Therefore, τ induces a graph
automorphism of X, so the assertion follows from the assumption made after
Proposition 2.2.1.

Lemma 2.2.12 (i) If e is a long root element of L(G), then any subspace
of L containing e is normalized by the corresponding root subgroup of G.

(ii) If V is an S-invariant subspace of L(G), then V does not

contain a long root element of L(G).

Proof (i) Let U = Uγ (γ ∈ Σ(G)) be the long root subgroup of G with
L(U) = 〈e〉, and let J be the corresponding subgroup 〈U±γ〉 ∼= SL2. Then
J has composition factors 2/1a/0b on L(G).

First assume that p 6= 2. Then L ↓ J is completely reducible and it fol-
lows that elements of U induce elements of the form 1+c ad(e)+ 12c

2(ad(e))2

on L. So any subspace of L invariant under ad(e) is also invariant under the
action of U .

When p = 2, the situation is a little more complicated. Here L(J) ∼= sl2,
which is indecomposable for J with a trivial submodule. Since L is self-dual
it follows that L ↓ J is a tilting module, so that the restriction is a direct
sum of TJ(2) (which can be realized as gl2), together with irreducibles of
weights 0 and 1. Therefore, in the action on L/〈e〉, elements of U induce
1+c ad(e). Since we are only considering subspaces that contain e the result
follows.

(ii) Suppose V contains a long root element of L(G). Then (i) implies
that V is normalized by a long root subgroup of G. But then Lemma 2.2.10
implies that X contains a long root subgroup of G, and [22, 2.1] yields the
precise embedding of X in G. Combining this with the possibilities listed in
Proposition 2.2.1 we see that CG(X) has positive dimension, contradicting
Lemma 2.2.10.
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When G = E6 or E7, we sometimes consider the irreducible 27- and
56-dimensional modules V27 = VE6(λ1) and V56 = VE7(λ7) for the simply
connected cover Ĝ of G. The following lemma will be useful in this regard.

Lemma 2.2.13 Assume that G = E6 or E7 and let V = V27 or V56. Let
X̂ be the connected preimage of X in Ĝ. If G = E6, assume that S does
not contain elements in the coset of a graph or graph-field morphism of G.
Then CV (X̂) = 0.

Proof Write SG = G〈σ〉 with σ ∈ S a field morphism. Then S = X〈τ, σ〉,
where τ ∈ G is either the identity or an involution. Let W = CV (X̂) and
assume this is nonzero. If τ = 1, set W1 = W . If τ 6= 1, we have one of
two possible situations. In the first case W = W1 ⊕W2, corresponding to
the eigenspace decomposition of W under the action of τ , and we assume
W1 6= 0. Here we note that τ acts as an involution or possibly an element
of order 4 squaring to −1 in the E7 case. In the second case p = 2, τ is an
involution, and we let W1 denote the fixed points of τ .

There is a semilinear map ω satisfying 2.2.3(i) for vectors v ∈ V . Suppose
ω fixes the subspace W1. As in 2.2.3(iv) we can then choose a vector w ∈W
such that 〈w〉 is fixed by both ω and τ . But then S stabilizes NG(〈w〉)
and so maximality implies X = NG(〈w〉)o. However, the dimension of this
stabilizer is at least 78− 26 = 52 or 133− 55 = 78, according as G = E6 or
E7, and this contradicts Proposition 2.2.1.

Now suppose ω does not stabilize W1 and W2. Here G = E7 and τ
induces an element of order 4 with ω interchanging the spaces. So ω2 leaves
W1 and W2 invariant. Hence, we can choose a 2-space, say M , stabilized
by both ω and τ which intersects each Wi in a ω

2-invariant 1-space. Then
NG(M) is S-invariant. If 0 6= v ∈M , then NG(M) ≥ NG(〈v〉)∩NG(M/〈v〉).
Arguing as in the above paragraph we see that this intersection has dimen-
sion at least 78− 54 = 24, so this contradicts Proposition 2.2.1.

2.3 Subalgebras of L

Continue with the notation of the previous section, so that X is a maximal
S-invariant simple connected subgroup of G. Recall that L = L(G)′ and
A = CL(L(X)

′).

Many of our later arguments will be based on the fact that in low char-
acteristic we are often able to show that A is nonzero. While this is not
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immediately conclusive, the study of this subalgebra of L(G) plays a funda-
mental role in our analysis. In this section we establish several basic results
concerning the subalgebra A.

Write A(G) for the group generated by inner and graph automorphisms
ofG. Then Aut(G)/A(G) is cyclic and is generated by a Frobenius morphism
of G. We have S = (S ∩ A(G))〈σ〉, where σ = 1 or a Frobenius morphism
of G, and S ∩ A(G) = X〈τ〉, where τ induces a trivial or an involutory
graph automorphism of X. When considering actions of S on L we write
S = X〈τ, ω〉, where ω is the semilinear transformation of L provided by
Lemma 2.2.3.

Let R be the subalgebra of A generated by all nilpotent elements. Then
R is S-invariant. Note that all T -weight vectors of A for nonzero weights are
contained inR, hence A/R affords a trivialX-module. Hence, Lemma 2.2.10(iv)
shows that if A 6= 0 then also R 6= 0.

We begin by recording the following consequence of Lemma 2.2.10(iii).

Lemma 2.3.1 If E is any S-invariant subalgebra of L, then NG(E)
0 = X

and CG(E) = 1. In particular, if R 6= 0 then NG(R)0 = X and CG(R) = 1.

Lemma 2.3.2 Suppose A 6= 0, and let E ≤ A be an X-invariant subalgebra
and J a minimal ideal in E. Then either J is X-invariant or X leaves
invariant an abelian ideal of E containing J .

Proof For x, y ∈ X, xJ and yJ are both ideals in E, so that [xJ, yJ ] ≤ xJ∩
yJ . Minimality of J implies that this commutator is trivial if xJ 6= yJ . Now
NX(J) is closed (work in GL, noting that subspace stabilizers are closed).
So either X normalizes J , or J has infinitely many conjugates under the
action of X.

Suppose the latter holds and set B = Σx∈XxJ , an X-invariant ideal of
R. As above, intersections of distinct summands are trivial, so we may write
B = x1J ⊕ ∙ ∙ ∙ ⊕ xkJ , for suitable x1, ..., xk ∈ X.

Choose x ∈ X with xJ /∈ {x1J, ..., xkJ}. Then as above xJ commutes
with each summand in B. As xJ ≤ B, xJ is abelian. Therefore J , and
hence also B, is abelian, proving the lemma.

Corollary 2.3.3 Assume A 6= 0 and let I be minimal among X-invariant
subalgebras of A. Then I is abelian or simple.
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Proof Let J be a minimal ideal of I. Set R = E in Lemma 2.3.2 and
conclude that either J is X-invariant or it is contained in an abelian X-
invariant ideal of I. Minimality of I shows that either J = I or I is abelian.
Hence, I is simple or abelian.

The next lemma is fundamental to our study of the embedding of the
subalgebra A in L.

Lemma 2.3.4 Suppose (X, p) 6= (A1, 2), (B2, 2), (C3, 2) and A 6= 0. Then
A ≤ L(D), where

D = 〈TG, Uα : α ∈ Σ(G), eα has T -weight a multiple of 2p〉

is a semisimple maximal rank subgroup of G with Z(D) = 1. For p > 2, the
possibilities for D are as follows:

G p D

E8 3 A2E6, A8, A
4
2

5 A4A4
E7 3 A2A5
E6 3 A

3
2

F4 3 A
2
2

G2 3 A2

In particular, p is not a good prime for G.

Proof (i) Let Δ = {α ∈ Σ(G) : tα ≡ 0 mod 2p} and set D = 〈TG, U±β :
β ∈ Δ〉. Then Δ is a closed subsystem of Σ(G) and D is a reductive group
of maximal rank. Moreover, D 6= G as L(X) 6≤ L(D).

Let V be anX-composition factor of A. Write V = V0⊗V
(p)
1 ⊗∙ ∙ ∙⊗V

(pk)
k ,

with each Vi restricted. Then L(X)
′ acts trivially on each tensor factor V

(pi)
i

for i > 0, and hence V ↓ L(X)′ is homogeneous of type V0. On the other
hand, since V0 is restricted, L(X)

′ is irreducible on V0. As L(X)
′ is trivial

on V we conclude that V0 = 0. So Lemma 2.2.9 shows that all T -weights of
V are multiples of 2p. It follows that A ≤ L(D).

We have Z(D) ≤ CG(L(D)) ≤ CG(A). Lemma 2.2.10(iii) gives CG(A) =
1, and hence it follows that Z(D) = 1. When p > 2 the listed possibilities for
D are the only reductive subgroups of maximal rank having trivial center.
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Lemma 2.3.5 Assume that 0 6= A ≤ L(D) as in Lemma 2.3.4, and that
p is odd and no weight of T on L(X) is divisible by p. If V is a nonzero
S-invariant subspace of A, then ND(V )

0 = TX .

Proof By Lemma 2.2.10(iii) we have NG(V )
0 = X. Hence ND(V ) ≤

D ∩ NG(X). Now D is generated by TG, together with root groups Uα for
which eα has T -weight a multiple of 2p. Hence it follows from the hypothesis
on T -weights that (D ∩NG(X))0 = TX , as required.

Observe that by definition D is NS(T )-invariant. If A 6= 0 and D is as
in Lemma 2.3.4, then from the action of T on L(D) we obtain a labelling of
the Dynkin diagram of D corresponding to weights of T on root vectors in a
basis of fundamental roots. Detailed information regarding these labellings
will be obtained in the course of later arguments.

We will use the following terminology. Say D = EF , a product of
two commuting semisimple subgroups. We have R ≤ A ≤ L(D) and R ≤
L(E)+L(F ). By “the projection of R to L(E)” we mean the image of R in
the Lie algebra (L(E) + L(F ))/L(F ).

We will study these projections in some detail, particularly when X =
A1. Most of the relevant lemmas will be carried out in context, but for p = 3
certain lemmas are required for the analysis of both X = A1 and X = A2.
We present these lemmas next.

Lemma 2.3.6 Assume p = 3 and 0 6= A ≤ L(D), where D has a factor
E = A2 ∼= SL3. Assume that there is no such factor with T -labelling 00,
and that if all A2 factors of D are G-conjugate, then one has different labels
from the others. Then D has an NS(T )-invariant A2 factor, and for any
such factor R projects faithfully to L(A2).

Proof We first observe the existence of an NS(T )-invariant A2 factor of
D. This is clear from Lemma 2.3.4 unless D is a product of A2’s. If G = F4
and D = A2A2, then the two simple factors are not conjugate, so both are
NS(T )-invariant. Otherwise, all factors are G-conjugate and the assertion
is clear from our hypothesis.

So let E be an NS(T )-invariant factor A2 of D. Suppose the projection
of R to L(E) has a nontrivial kernel and choose a minimal ideal J in this
kernel. Then Lemma 2.3.2 implies that either J isX-invariant or else J ≤ B,
an abelian X-invariant ideal of R. In the former case, J and all its images
under NS(T ) are centralized by E, so the sum of these images contradicts
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Lemma 2.2.10(iii). So we may assume the latter holds and that B projects
nontrivially to E. As in the definition of R we may assume B is generated
by nilpotent elements, hence so is its projection to L(E).

Suppose e ∈ L(E) = sl3 is a root element which centralizes the projection
of B. It follows that for c ∈ K∗, ce centralizes B and u = 1 + ce ∈ E =
SL3 is a unipotent element centralizing B. Once again this contradicts
Lemma 2.2.10(iii). So we can assume there is no such root element.

We now consider possible T -labellings of E. There is an element s ∈
NX(T ) ≤ NS(T ) which inverts T . So s normalizes E, interchanging positive
and negative T -weight spaces of B and their projections to L(E). Let the
T -labelling of E be ab, with a ≥ b.

Suppose first that 0 is the only T -weight in the projection of B to L(E).
The projection of B to L(E) is generated by nilpotent elements so b = 0 and
CL(E)(T ) = L(A1T1), the Lie algebra of a Levi subgroup. But all nilpotent
elements in this subalgebra are root elements, a contradiction.

So we now assume the projection of B to L(E) has a nilpotent element
for a nonzero T -weight, which we may assume to be positive. If a > b > 0,
then all T -weight spaces in L(E) for positive weights are 1-dimensional and
generated by root elements, so this does not occur. Suppose the labelling is
a0. Then the T -weight space of L(E) for weight a is the Lie algebra of the
unipotent radical of a maximal parabolic, of which all nonzero vectors are
root elements. This is again a contradiction.

Finally, assume the labelling is aa. If 2a is a T -weight of the projection
of B we again get a root element. So assume that this is not the case.
Then the projection of B has a nilpotent element of weight a. The problem
here is that there are both root elements and also regular nilpotent elements
of this weight in L(E). However, applying s we see that there is also a
nilpotent element of weight −a centralizing the projection of B, whereas
the centralizer of a regular nilpotent element contains no such element. So
again we have a root element, which yields a final contradiction.

The next lemma concerns a special but important case where D = A8 <
E8, which will be needed when X = A1.

Lemma 2.3.7 Assume p = 3, X = A1, G = E8 and 0 6= A ≤ L(D) with
D = A8. Then there does not exist an S-invariant subalgebra C of A such
that C ↓ X = (2(3))r with r > 1.

Proof Suppose false and let C be a minimal such algebra. Let E,H,F
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be the weight spaces of C corresponding to T -weights 6, 0,−6, respectively.
Weight considerations imply that both E and F are abelian and [EF ] ≤ H..

Write NX(T ) = T 〈s〉 where s inverts T and acts on C, inducing −1 on
H, while interchanging E and F . If h1, h2 ∈ H, then [h1, h2] ∈ H, while s
fixes this commutator. It follows that H is also abelian.

We first claim that L(D) = L(D)′ ⊕ Z(L(D)) and L(D)′ is simple. In-
deed, there is a morphism γ : SL9 → D and since L(G) ↓ D = L(D) ⊕
∧3W ⊕ ∧3W ∗ we see that Z(sl9) is in the kernel of dγ. This shows that
dγ(sl9) is a simple subalgebra of L(D) of codimension 1. On the other
hand D is unique up to G-conjugacy and if we take D to have root system
with basis {α1, α3, . . . α8,−δ}, where δ is the highest root, then we see that
0 6= z = h1−h3+h2 centralizes L(D). This establishes the claim. It follows
that L(D)′ contains all nilpotent elements of L(D) and is the image of sl9
under dγ.

We will consider the preimage, say Ĉ, of C in sl9 and adopt obvious
notation. As a vector space, Ĉ = Ê ⊕ Ĥ ⊕ F̂ , with each summand a weight
space for T̂ , the connected component of the preimage of T in SL9.

We proceed in several steps.

Step 1. C does not contain a nontrivial abelian subalgebra, say F , which
is S-invariant.

For suppose otherwise and choose an X-invariant irreducible subspace of
F with basis {e, h, f}. Since C is homogeneous under the action of X and
since NS(T ) leaves the 0-weight space invariant, we can choose the subspace
such that 〈h〉 is stabilized by NS(T ). Let ê, ĥ, f̂ be preimages in sl9. Then
[ĥ, ê] = z ∈ Z(sl9). On the other hand, the commutator must have weight 6
(with respect to the connected preimage of T ). Hence, [ĥ, ê] = 0. Similarly,
[ĥ, f̂ ] = 0 and, of course, [ĥ, ĥ] = 0. Now consider the element cI ± ĥ for c
a scalar. For suitable c, this element has determinant 1 and its image in D
centralizes 〈e, h, f〉. Now consider the sum of all conjugates of 〈e, h, f〉 by
elements ωj , a subspace of F . (Here, as before, ω is the semilinear map on L
corresponding to σ provided by Lemma 2.2.3, where S = X〈σ〉.) As all the
images are abelian and contain h, this is an S-invariant subspace of L(D)
centralized by a non-identity element of D. This contradicts Lemma 2.2.10,
establishing the claim.

Step 2. There does not exist a 3-dimensional S-invariant ideal of C.

For suppose otherwise and let I be such an ideal with basis e, h, f con-
sisting of weight vectors of weights 6, 0,−6. By Step 1, I is not abelian, so I
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is simple by Corollary 2.3.3. In particular I is generated as an algebra by e
and f . Now [e, C] = I ∩ [e, C] ≤ I ∩ (E +H) = 〈e, h〉, so that CC(e) has di-
mension at least dim(C)− 2. Similarly for f . Then CC(I) = CC(e)∩CC(f)
has dimension at least dim(C) − 4 > 0. Also, CC(I) is X-invariant and
ω-invariant. It follows that C = I ⊕ CC(I). Let 0 6= ho ∈ CC(I) be a
weight vector for weight 0. As in Step 1 we see that preimages of ho in sl9
commute with preimages of e and f , and hence with the preimage of I. So
the argument of the previous paragraph implies CG(I) > 1, a contradiction.

Step 3. C = C ′ = 〈E,F 〉.

By minimality of C and Step 1 we see that either C = C ′ or C ′ = 〈e, h, f〉,
an irreducible X-module. The latter contradicts Step 2, so C = C ′. Now
〈E,F 〉 is an ideal of C with abelian quotient. So C = C ′ = 〈E,F 〉, as
required.

For h ∈ H, write h = hs + hn with hs semisimple and hn nilpotent.
Define Hss = {hs : h ∈ H}, the subspace of semisimple parts of elements of
H.

Step 4. There exists an ω-invariant decomposition E = E1⊕∙ ∙ ∙⊕Ek, where
each Ei is Hss-invariant with kernel containing a hyperplane, and such that
distinct summands have distinct kernels.

To see this, first note that elements of Hss have the form f(h) for h ∈ H,
where f is a polynomial (here we are viewing elements of D as images of
elements of sl9). Hence elements of Hss commute and normalize E and F .
Note that Hss, E, F are all ω-invariant. It follows from Lemma 2.2.3(iv)
that each of these spaces has a basis of fixed points under ω.

Now (Hss)ω acts on Eω (a vector space over Fq). If J is an irreducible
summand, then KJ decomposes under the action of (Hss)ω as a sum of
weight spaces, where the weights are conjugate under 〈ω〉 so that the various
weights are q-powers of each other. In particular, the weights all have the
same kernel which contains a hyperplane in (Hss)ω.

It follows from the above paragraph that there is an ω-invariant decom-
position E = E1 ⊕ ∙ ∙ ∙ ⊕ Ek where each Ei is (Hss)ω-invariant with kernel
containing a hyperplane. Moreover, distinct summands have distinct ker-
nels. Taking K-spaces we see each Ei is invariant under Hss and Step 4
follows.

Step 5. There is an ω-invariant decompostion C = C1⊕ . . .⊕Ck, where each
Ci is an ideal. In particular, distinct summands commute.
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First note that from the uniqueness of the Jordan decomposition we see
that s also induces −1 on Hss, and so it follows that setting Fi = Esi , we
have F = F1⊕ ∙ ∙ ∙ ⊕Fk, where for each i, the kernel of Fi and Ei agree. For
i 6= j, [Ei, Fj ] ≤ H and taking brackets with an element of H in the kernel
of one action but not the other, we find that [Ei, Fj ] = 0.

Now set Ci = 〈Ei, Fi〉. Then for each i, Ci is an ω - invariant ideal of C
and these ideals commute pairwise. A dependence relation among the ideals
implies Z(C) is nontrivial, a contradiction. Hence, C = C1 ⊕ ∙ ∙ ∙ ⊕ Ck.

Step 6. We claim k = 1.

Let J be a minimal ideal in Ci, hence a minimal ideal of C. Sup-
pose J is not X-invariant. Then Lemma 2.3.2 implies J is abelian and
I =

∑
x∈X,i≥0 xω

iJ is a sum of minimal abelian ideals. Distinct summands
commute so that I is also abelian. As this sum is invariant under X and ω,
this contradicts Step 1. Hence, X leaves invariant minimal ideals, Ji ≤ Ci
for each i. Choose an irreducible X-submodule, 〈e1, h1, f1〉 in J1. An earlier
argument shows that, ĥ1, a preimage of h1, commutes with both Ê2 and F̂2
and hence centralizes Ĉ2. Hence

∑
i≥0 ω

iJ2 is invariant under X and ω and

is centralized by nonidentity element of D, arising from ĥ1. This contradicts
Lemma 2.2.10. Therefore k = 1, as claimed.

Set Hn = {hn : h ∈ H}. If Hn = 0, then H is diagonalizable and
induces scalars on E and F . By our supposition, dimH > 1, so there is an
element 0 6= h ∈ H which centralizes E and F . But then h ∈ Z(C) = 0, a
contradiction. Hence Hn 6= 0. Now Hn induces a nilpotent algebra on E, so
CE(Hn) 6= 0.

If Hn centralizes E, then conjugating by s, we find that Hn centralizes
〈E,F 〉 = C. As in Step 1 this implies the existence of a nontrivial (unipo-
tent) element of D centralizing C, against Lemma 2.2.10. Set Eo = [E,Hn],
so that 0 < Eo < E. As H is abelian we see that [Eo,H] ≤ Eo.

We next argue that [Eo, F ] ≤ Hn. Let eo ∈ Eo, e ∈ E, and f ∈ F .
Write [eo, f ] = hn + hss. Then [e, [eo, f ]] = [e, hn + hss]. On the other hand
[e, [eo, f ]] = [eo, [e, f ]] ∈ [eo,H] ≤ Eo. This shows that [E, hn + hss] ≤ Eo.
As [E, hn] ≤ Eo < E, this implies hss centralizes E/Eo. Hence hss is in
the kernel of the action on E = E1 and F = F1 and so hss centralizes C.
Arguing as in Step 1 we get hss = 0.

Using the above paragraph and conjugation by s we see that the subspace
Eo ⊕ (Hn ∩ C) ⊕ Eso is a proper ideal of C and is S-invariant. Let I be a
minimal ideal contained within this ideal. Then the argument at the start of
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Step 5 shows that I is X-invariant. Adding the translates of I by powers of
ω we obtain a proper subalgebra, invariant under both X and ω. Minimality
of C implies that I is invariant under ω and by Step 1, I ∼= 2(3) is a simple
algebra. But this contradicts Step 2.

The analysis of the embedding A ≤ L(D) yields information regard-
ing certain nilpotent elements. The following lemmas show that in special
situations the nilpotent elements can be exponentiated to yield unipotent
elements of G.

Lemma 2.3.8 Assume p = 5 and 0 6= A ≤ L(D), where D = A4A4 <
E8. Let e = e1 + e2 ∈ L(A4A4), where each ei is a nilpotent element of
the corresponding factor sl5 with e

3
i = 0 (as a matrix in sl5). Then there

is a nontrivial unipotent element in D which leaves invariant each ad(e)-
invariant subspace of L(D)′.

Proof Suppose ad(e) fixes a subspace W of L(D). Consider the natural
surjective homomorphism π : SL5 × SL5 → D. As in the previous lemma,
the differential dπ is a surjective map sl5 ⊕ sl5 → L(D)′, which has codi-
mension 1 in L(D). Let e be the image of ê = ê1 + ê2, where êi ∈ sl5 is a
nilpotent element. Since dπ is an isomorphism when restricted to a maximal
nilpotent subalgebra, we have ê3i = 0 for i = 1, 2.

Fix i ∈ {1, 2}, and set ûi = exp(êi) = 1 + êi + 12 ê
2
i . Let αi = adêi. Then

for wi ∈ sl5 we have:

αi(wi) = êiwi − wiêi,

α2i (wi) = [êi, [êi, wi]] = ê
2
iwi − 2êiwiêi + wiê

2
i ,

α3i (wi) = ê
3
iwi − 3ê

2
iwiêi + 3êiwiê

2
i − wiê

3
i = −3(ê

2
iwiêi − êiwiê

2
i ),

α4i (wi) = −ê
2
iwiê

2
i .

Then

û−1i (wi)ûi = (1− êi + ê2i /2)(wi)(1 + êi + ê
2
i /2)

= wi − êiwi + ê2iwi/2 + wiêi − êiwiêi + ê
2
iwiêi/2 + wiê

2
i /2

−êiwiê2i /2 + ê
2
iwiê

2
i /4

= wi − αi(wi) + α2i (wi)/2− α
3
i (wi)/6− α

4
i (wi).

Now let w ∈W . Setting û = û1û2 and ŵ = w1 + w2, we have

û−1ŵû = ŵ − ad(ê)(ŵ) + ad(ê)2(ŵ)/2− ad(ê)3(ŵ)/6− ad(ê)4(ŵ).



MAXIMAL SUBGROUPS OF EXCEPTIONAL ALGEBRAIC GROUPS 33

The result follows by taking images in D and L(D) under the above mor-
phism π and its differential.

A similar but easier argument yields the following result.

Lemma 2.3.9 Assume p = 3 and 0 6= A ≤ D, where all factors of D are
of type Ak. Suppose e ∈ L(D) and that the projection of e to each factor
has square 0 (as a matrix in L(Ak)). Then there is a nontrivial unipotent
element of D which leaves invariant each ad(e)- invariant subspace of L(D)′.

The following is a more specialized variant of Lemma 2.3.8.

Lemma 2.3.10 Assume p = 5 and M < sl5, both T -invariant subalgebras
of L. Assume that all T -weights of M are 10, 0 or −10 and that all T -
weights of sl5 are at most 40. If e ∈ M has weight 10 and e4 = 0, then
exp(e) = 1 + e+ e2/2 + e3/6 ∈ NSL5(M).

Proof First verify that within SL5 we have exp(e)exp(−e) = 1. Now fix
an element m ∈M . We check that exp(e)(m)exp(−e) is equal to

(m+ em+ (e2/2)m+ (e3/6)m) + (−me− eme− (e2/2)me− (e3/6)me)+
(m(e2/2) + em(e2/2) + (e2/2)m(e2/2) + (e3/6)m(e2/2))+
(−m(e3/6)− em(e3/6)− (e2/2)m(e3/6)− (e3/6)m(e3/6)).

Next, set α = ad(e) and check that

α(m) = em−me,

α2(m) = [e, [e,m]] = e2m− 2eme+me2,

α3(m) = e3m− 3e2me+ 3eme2 −me3,

α4(m) = e4m− 4e3me+ 6e2me2 − 4eme3 +me4.

It follows that

(∗) exp(e)(m)exp(−e) = m+ α(m) + α2(m)/2 + α3(m)/6 + α4(m)/24
+(1/12)(e3me2 − e2me3) + (1/36)(e3me3).

Now α3(m) ∈ M has T -weight at least 20, so by hypothesis α3(m) = 0.
Then 0 = e(α3(m))e = 3(e2me3− e3me2) so that 0 = e3me2− e2me3. Also,
as an element of sl5, e

3me3 has weight at least 50, so by hypothesis this
element is also 0. It now follows from (∗) that exp(e)(m)exp(−e) ∈ M , as
required.



3 Maximal subgroups of type A1

In this section we prove our main theorem, Theorem 1 of the Introduction, in
the case where the subgroup X is of type A1. Recall that G is an exceptional
adjoint algebraic group, and G1 is a group satisfying G ≤ G1 ≤ Aut(G).
Naturally, we consider only the small characteristic cases required by Propo-
sition 2.2.1.

Theorem 3.1 Suppose that X is maximal among proper closed connected
NG1(X)-invariant subgroups of G. Assume further that

(i) CG(X) = 1, and

(ii) p ≤ 7 if G = E7, E8; p ≤ 5 if G = E6; and p ≤ 3 if G = F4, G2.

Then X is not of type A1.

Let X, p be as in the hypothesis of the theorem, with X = A1. Write
S = NG1(X).

Then Lemma 2.2.10 shows that CS(X) = 1, whence S = X〈σ〉, where
either σ = 1 or σ is a Frobenius morphism of G. Moreover, it follows from
Lemma 2.2.2 that σ is not an exceptional isogeny of F4 or G2 in case p = 2, 3,
respectively.

Since X = A1, the torus T defined in Definition 2.2.4 is a maximal torus
of X. We have NX(T ) = T 〈s〉, where s inverts T . Let TG be a maximal
torus of G containing T . Recall that Σ(G),Π(G) denote the root system
and a fundamental system of G relative to TG.

We shall prove Theorem 3.1 in sections, one for each value of p. The
case where p = 2 is somewhat less technical than other cases, so we treat
this case first.

We shall need a little notation concerning A1-modules. The irreducible
KA1-module of high weight r is denoted by V (r) or just by r, and the
corresponding Weyl module by W (r). Recall also from the Introduction
that the notation r/s/t/ . . . denotes an A1-module with composition factors
r, s, t, . . ., while the notation V = V1|V2| . . . Vk denotes an A1-module V
having a series with successive factors V1, V2, . . . , Vk.

3.1 The case p = 2

In this section we establish Theorem 3.1 in the case p = 2. Assume then
that p = 2 and X = A1 is maximal S-invariant, as in the theorem.

34
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By Lemma 2.2.10(v), X is of adjoint type. Hence we can write L(X) =
〈e, h, f〉, where e, h, f are vectors of T -weights 2, 0,−2 respectively, and
[e, f ] = 0. In particular, if we define

I = 〈e, f〉

then I is an ideal of L(X). Note that I = L(X)′.

In addition we let δ denote the root of highest height in Σ(G), and eδ
the corresponding TG-root vector in L(G).

By Lemma 2.2.6, the torus T determines a labelling of the Dynkin di-
agram of G by 0’s and 2’s. Let P = QLP denote the parabolic subgroup
described in Lemma 2.2.7, with unipotent radical Q and Levi subgroup LP .
Then LP = CG(T ). If l ∈ L(X) and v ∈ L(G) it will be convenient to write
lv rather than [l, v].

The first lemma records some immediate consequences of Lemma 2.2.10.

Lemma 3.1.1 (i) CG(X) = 1.

(ii) CL(X) = 0.

(iii) CG(I) = 1.

The case G = G2 requires a different argument from the other cases, and
we begin by ruling out this case.

Lemma 3.1.2 G 6= G2.

Proof Suppose G = G2, and consider the action of X on the 6-dimensional
symplectic module V = VG(λ1). By [19], G2 is transitive on singular 1-
spaces with point stabilizer being parabolic. If S contains Frobenius mor-
phisms, then these are field morphisms and as in Lemma 2.2.13 we conclude
that CV (X) = 0. By Steinberg’s tensor product theorem, irreducible KX-
modules have dimension a power of 2. It follows that X acts irreducibly on
a 2-space in V .

Now X induces an adjoint group in its action on each composition factor,
from which we see that nontrivial composition factors are each nontrivial
twists of the usual module. Using the facts that there are no nontrivial
extensions among such modules and that CV (X) = 0, we conclude that
V ↓ X is completely reducible. But then L(X) induces the identity on V ,
which is not possible.
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The key tool in establishing Theorem 3.1 (for p = 2) is the following
Proposition.

Proposition 3.1.3 Assume that G = E6, E7 or E8, and that

feδ = c1eα + c2eβ ,

where c1, c2 are scalars, and either c2 = 0, or c1, c2 6= 0 and α, β are orthog-
onal roots in Σ(G). Then CG(I) > 1.

We make the following remark for later use in the case X = B2 (handled
in Chapter 5). In the case G = E8, maximality is not used in the proof
of Proposition 3.1.3. It is used for E6 and E7, but only to rule out a case
where δ has T -weight 2; here, 2 is the largest T -weight and this could not
occur if X = B2.

The proof of Proposition 3.1.3 follows from two key lemmas.

Lemma 3.1.4 Assume the hypotheses of Proposition 3.1.3. Then feδ ∈
CL(G)(I).

Proof For notational reasons it will be convenient to work with G = E8.
The other cases are similar and changes required for these cases will be
noted in the course of the proof. For α a root we regard the corresponding
fundamental subgroup Jα ∼= SL2 and with this identification regard Uα(c) =
I + ceα.

As [ef ] = 0, we have e(feδ) = f(eeδ). Since e is in the Lie algebra of
the maximal unipotent group corresponding to the system of positive roots
and since δ is the root of highest height, we have eeδ = 0. So the main issue
here is to show that f(feδ) = 0.

Let V = {V (c) : c ∈ K} be the T -invariant 1-dimensional unipotent
group of X having Lie algebra 〈f〉. By the argument of Lemma 2.2.7(i), V
is contained in the product of TG-root groups of G corresponding to negative
roots. Write

V (1) = U−β1(b1) . . . U−βk(bk)U−γ1(d1) . . . U−γs(ds),

where all βi, γi ∈ Σ(G)+, each βi has T -weight 2 and each γj has T -weight
greater than 2. By definition, T = {T (d) : d ∈ K∗}, where T (d) denotes
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the image in X of the diagonal maxtrix of SL2 having eigenvalues d, d
−1.

Conjugating the above expression for V (1) by T (c1/2), we obtain

V (c) = U−β1(b1c) . . . U−βk(bkc)U−γ1(d1c
a1) . . . U−γs(dsc

as),

where each aj is a positive integer at least 2. Adjusting f by a scalar
multiple, it follows that we may write

f = b1e−β1 + ...+ bke−βk .

We claim that βj 6= δ for all j. To see this note that βj has T -weight
2, whereas this is not the case for δ since the expression for δ in terms of
fundamental roots has all coefficients at least 2. (For G = E6 or E7, δ could
have T -weight 2 if the labelling had just one 2 and this was over either
α1 or α6 in the E6 case and over α7 in the E7 case. But in these cases
dimCG(T ) > dimG/2, and since X is generated by two conjugates of T we
conclude that CG(X) has positive dimension, contradicting Lemma 3.1.1(i).)
This proves the claim.

Consequently we have

feδ =
∑
bieδ−βi ,

where the sum ranges over those i for which δ − βi is a root. In the case
where G = E8 this condition forces each βi appearing in the sum to have
coefficient of α8 equal to 1.

Now by hypothesis we have feδ = c1eα + c2eβ . We will proceed under
the assumption that c1, c2 6= 0. The changes required for the other case are
obvious. Write

α = δ − βi0 ,

β = δ − βi1 .

Then
ffeδ =

∑
c1bieα−βi +

∑
c2bjeβ−βj (∗)

where the sums range over i, j such that α−βi, β−βj , respectively, are roots.
Also, it is conceivable that there is a situation where α = βi or β = βj , in
which case hα or hβ would appear in the expression for ffeδ.

Now W (E7) is transitive on roots with α8-coefficient equal to 1, and
fixes δ. Since δ−α8 is a root, so is δ− βi for all roots βi with α8-coefficient
equal to 1. Therefore βi0 and βi1 are the only roots in {β1, ..., βk} with
α8-coefficient nonzero.
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We first consider those terms in ffeδ with α8-coefficient equal to 0. This
part of the expression has the following form:

bi0bi1eδ−βi0−βi1 + bi1bi0eδ−βi1−βi0 + b
2
i0eδ−2βi0 + b

2
i1eδ−2βi1 .

As p = 2, the first two terms add to 0. Since δ has at least one odd
coefficient when expressed as the sum of fundamental roots, it cannot be
twice a positive root. Suppose δ − 2βi0 is a root. Then this root has α8-
coefficient equal to 0. Such roots are in Σ(E7), and all of these are conjugate.
Hence, δ− 2βi0 is W (E7)-conjugate to α4. Therefore, there is a root γ such
that δ − 2γ = α4. However, the α4-coefficient of δ is even, so this is a
contradiction. Essentially the same argument works for G = E6 or E7. Of
course the above comments apply equally to βi1 . We have shown that the
only relevant terms in ffeδ involve roots of the form α−βi and β−βj , roots
having α8-coefficient 1. These positive roots are all conjugate under W (E7).
Fix i. There is an element w ∈W (E7) such that (α−βi)w = δ−α8. Hence,
(δ−βi0 −βi)

w = δ−α8 and so (βi0 +βi)
w = α8. Hence βi0 +βi is a positive

root. Similarly for βi1 + βj .

Since p = 2 we have V (c)2 = 1. This is an equation in Q and we
consider the image of this equation in the class two group Q/Q0, where
Q0 = [[Q,Q], Q]. We have

V (c) = U−β1(b1c) . . . U−βk(bkc)U−γ1(c1c
2) . . . U−γt(ctc

2) (modulo Qo),

where γ1, ..., γt are the roots of T -weight 4 and the corresponding root el-
ements are in the center of Q/Q0. Order the βi such that βi0 is first
and βi1 is second. If we square this expression for V (c) and rearrange,
we obtain terms of the form U−βi−βj (a), which arise from the expression
U−βi(c)U−βj (d) = U−βj (d)U−βi(c)U−βi−βj (cd). Consider those terms where
βi + βj has α8-coefficient equal to 1. This contribution to (V (c))

2 (modulo
Q0) has the form

∏
U−βi0−βi(c1bic

2) ∙
∏
U−βi1−βj (c2bjc

2),

where the first product is over those i such that βi0 + βi is a root and the
second over those j such that βi1 + βj is a root.

Now V (c)2 = 1, so the above expression must also be 1. Fix an i ap-
pearing in the first product. If there exists a j for which βi0 +βi = βi1 +βj ,
then we must have c1bi + c2bj = 0. For this i and j we have then have
α−βi = β−βj and the corresponding contribution to (*) is 0. On the other
hand, if there is no such j, then necessarily c1bi = 0 and the coefficient of
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eα−βi in (*) is 0. This accounts for all terms in the first product. There may
remain terms in the second product, but if so, as above, they correspond to
j for which c2bj = 0.

We have now accounted for all terms in (*) and this completes the proof
of the lemma.

The next step is to pass from the centralizer in L(G) of 〈e, f〉 to the
centralizer in G.

Lemma 3.1.5 Assume the hypotheses of Proposition 3.1.3. Then there is
an element g ∈ G for which CL(G)(feδ) = L(CG(g)).

Proof We will give the argument for G = E8. The cases of E6 and E7 are
entirely similar.

First consider the case where feδ = c1eα. If c1 = 0, then eδ ∈ CL(G)(I);
and if c1 6= 0 then Lemma 3.1.4 gives eα ∈ CL(G)(I). So in any case there is
a root γ such that eγ ∈ CL(G)(I).

We next compute the dimension of CL(G)(eγ). Take A1E7 < E8 with
eγ ∈ L(A1). Here and in the following all maximal rank groups are taken
to contain TG. By [23, 2.1], we have L(E8) ↓ A1E7 = L(A1E7) ⊕ (V2 ⊗
V56), where V2 is a usual 2-dimensional module for A1 and V56 is the 56-
dimensional irreducible module V (λ7) for E7. It is clear that CV2⊗V56(eγ)
has dimension 56. For the other term, write L(A1) = 〈eγ , hγ , fγ〉, where
[eγ , fγ ] = hγ . As p = 2, hγ is in the center of L(A1), and so 〈eγ , hγ〉 is an
ideal of L(A1E7). As TX < A1E7, there is an element in the Lie algebra of
a maximal torus of L(A1E7) which normalizes but does not centralize eγ . It
follows that dim(CL(A1E7)(eγ)) = 136 − 2 = 134. Hence dim(CL(G)(eγ)) =
134 + 56 = 190.

Let Uγ be a root subgroup of G having Lie algebra 〈eγ〉. Then CG(Uγ) =
P ′, where P is a parabolic subgroup of G having Levi factor E7T1. It
follows that dim(CG(Uγ)) = 190, so that CL(G)(eγ) = L(CG(Uγ)). Since
CG(Uγ) = CG(u) for 1 6= u ∈ Uγ , this establishes the lemma in the case
where feδ = c1eα.

Now consider the other case, which is similar but slightly more compli-
cated. Here feδ = c1eα + c2eβ with c1, c2 6= 0 and α, β perpendicular roots.
Here we set g = Uα(c1)Uβ(c2) and compare the dimensions of CL(G)(feδ)
and L(CG(g)).

Consider the subsystem group A1A1D6 of E8, where we take the A1
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subgroups to correspond to α and β. We can embed A1A1D6 < A1E7. As
above, L(E8) ↓ A1E7 = L(A1E7)⊕ (V2 ⊗ V56). Using this together with the
information in [23, 2.1,2.3] we conclude that

L(E8) ↓ A1A1D6 = L(A1A1D6)⊕ (0⊗ 1⊗ λ5)⊕ (1⊗ 0⊗ λ6)⊕ (1⊗ 1⊗ λ1).

Here, λ5, λ6 denote the two 32-dimensional spin modules for D6, and 1 de-
notes the usual 2-dimensional A1-module. One checks that the decomposi-
tion is actually a direct decomposition by looking at the action of Z(L(A1A1))
= 〈hα, hβ〉.

Write l = c1eα + c2eβ . Then dim(C0⊗1(l)) = 1 = dim(C1⊗0(l)) and
dim(C1⊗1(l)) = 2. Hence

dim(CL(G)(l)) = dim(CL(A1A1D6)(l)) + 32 + 32 + 24.

We next consider the first term of this sum.

Now 〈eα, hα〉 is an ideal of one of the A1 factors and similarly for β. Also
[eα, fα] = hα and [eβ , fβ ] = hβ . From the containment A1A1 < A2A2 (the
latter invariant under TG), we see that there exist elements tα, tβ ∈ L(TG),
such that [tα, eα] = eα, [tα, eβ ] = 0, [tβ , eβ ] = eβ , and [tβ , eα] = 0.

It follows from the above remarks that [l, L(A1A1D6)] is a 4-space, so
that dim(CL(A1A1D6(l)) = 72 − 4 = 68. Hence, dim(CL(G)(l)) = 68 + 32 +
32 + 24 = 156.

From [2, Section 17] we have CG(Uα(c1)Uβ(c2)) = U78B6, where U78
denotes a 78-dimensional unipotent group. Moreover, as in [2] we have
CG(Uα(c1)Uβ(c2)) = CG(Uα(c1c)Uβ(c2c)) for all c 6= 0. Therefore we have
CG(g) ≤ CG(l). Taking Lie algebras we have L(CG(g)) ≤ L(CG(l)) ≤
CL(G)(l) and from the dimension considerations above, we have equality,
which proves the result.

Proposition 3.1.3 is immediate from Lemmas 3.1.4 and 3.1.5.

Proof of Theorem 3.1 for p = 2

The Theorem will follow from Lemma 3.1.1 and Proposition 3.1.3, pro-
vided we can verify the hypotheses of the Proposition. In this section we
analyse when these hypotheses are satisfied and study the cases where they
are not.

Since LP centralizes T , to establish the hypotheses of Proposition 3.1.3
we can replace f by an LP -conjugate of f . We will give a detailed argument
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in the case of E8. The E7 and E6 cases are very similar and we will present
details for only the less obvious configurations. Write L′P = L1 . . . Ls, a
product of simple groups Li. For G = E8 we take j maximal such that the
fundamental root αj is in Π(LP ), and order the simple factors of LP so that
αj ∈ Π(Ls). As in the proof of Lemma 3.1.4 we write f = b1e−β1 + . . . +
bke−βk .

We begin with an easy lemma indicating one way in which the hypotheses
of Proposition 3.1.3 are satisfied.

Lemma 3.1.6 Suppose that G = E8, that at most two βi have nonzero coef-
ficient of α8, and that if there are two such βi then these roots are orthogonal.
Then the hypotheses of Proposition 3.1.3 are satisfied.

Proof Maintaining the notation of Lemma 3.1.4, suppose the roots are βi0
and βi1 . It was seen in the proof of 3.1.4 that these roots each have coefficient
of α8 equal to 1. Then feδ = c1eα+c2eβ , where α = δ−βi0 and β = δ−βi1 .
We then have 〈α, β〉 = 〈δ−βi0 , δ−βi1〉 = 〈δ, δ〉−〈βi0 , δ〉−〈δ, βi1〉+〈βi0 , βi1〉 =
2− 1− 1− 0 = 0, as required.

The next lemma provides a restriction on composition factors, which will
be used at several points in the proof.

Lemma 3.1.7 Let V be a self-dual module for X = A1 for which CV (X) =
0. Suppose the X-composition factors on V are 6x/4y/2z/0w, where we
indicate just the high weights of composition factors and their multiplicities.
Then w ≤ 2y.

Proof First observe that from [1] we see that the relevant Weyl modules
have the following structure, where in each case the module is uniserial:
W (2) = 2|0,W (4) = 4|0|2, and W (6) = 6|4|0.

If v ∈ V is a T -weight vector of weight 6, then by Lemma 2.1.4, 〈Xv〉
is an image of W (6). Consider the sum, say V6, of all cyclic modules of
this form. By assumption there are no fixed points and one can argue by
consideration of the socle of this module that V6 = (6|4)a ⊕ 6x−a. Now,
factor out V6 and repeat with high weight 4 vectors in V/V6 to generate
V4/V6 = (4|0|2)b⊕(4|0)c⊕4y−a−b−c. As there do not exist trivial submodules,
we necessarily have c ≤ a.
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Now consider high weight 2 vectors in V/V4. As V is self dual, there
are no trivial quotient modules, so these generate V , and we have V/V4 =
(2|0)d ⊕ 2z−b−d.

Consider the preimage of the fixed point space of V/V4 in V/V6. The
fixed point space of this preimage can have dimension at most a, as otherwise
there would be a fixed point in V . Since the fixed point space of V4/V6 has
dimension c, at most a − c trivial modules in V/V4 can pull past the high
weight 4 composition factors in V4/V6, of which there are y − a. Therefore,
we have the inequality d ≤ (y − a) + (a− c). Consequently, c+ d ≤ y.

Now w = b + c + d, and by the previous paragraph b ≥ w − y. On the
other hand, b ≤ y, so we obtain w ≤ 2y, as required.

Lemma 3.1.8 Let G = E8. Then Theorem 3.1 (p = 2) holds if α8 6∈ Π(LP ).

Proof Recall that f has T -weight −2, hence is a linear combination of
terms of the form e−β where β is a positive root which involves just one
fundamental root of T -weight 2. In the situation of this lemma, the only
roots β which can contribute to feδ are those with nonzero coefficient of α8.

First suppose j < 7. Then α8 is orthogonal to the root system of LP ,
and all fundamental roots αi for i > j are labelled by 2. Here, e−βceδ = 0
unless βc = α8, so feδ = aeδ−α8 for some scalar a, and we immediately have
the hypotheses of Proposition 3.1.3, hence the Theorem.

Next suppose that j = 7 and Ls = Ar for some r. The space S spanned
by all root vectors of T -weight 2 and having α8-coefficient 1 is a natural
(r + 1)-dimensional module for Ar. So, replacing f by an Ls-conjugate,
we can assume that there is at most one βi with nonzero coefficient of α8.
With this conjugation we again have the hypotheses of Proposition 3.1.3.
Similarly, if Ls = D6, then S is the natural 12-dimensional orthogonal space
for Ls, and so Ls has two orbits of nonzero vectors on S, represented by a
root vector and the sum of two root vectors for orthogonal roots. Hence by
the proof of Lemma 3.1.6 we have the hypotheses of Proposition 3.1.3 and
hence the Theorem holds.

There is only one further case to consider here, where L′P = E7. Here
dimCG(T ) = 134. Now X is generated by two conjugates of T , so that
dimCG(X) ≥ 134 + 134 − 248 = 20. Of course, this implies CG(X) 6= 1, a
contradiction, so we again have Theorem 3.1

Lemma 3.1.9 Assume G = E8. Then Theorem 3.1 (p = 2) holds if j = 8
and there is no fundamental node adjacent to both Π(Ls) and another Π(Lr).
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Proof First assume Ls = Ai with i ≤ 5. Suppose αl is a fundamental root
not in Π(LP ) but adjoining Π(Ls). By hypothesis there is only one root of
T -weight 2 with nonzero coefficient of both α8 and αl, namely the sum of
the roots from αl to α8. Moreover, l is unique unless i = 5, in which case
there are two possible choices for l. In any case Lemma 3.1.6 implies that
the hypothesis of Proposition 3.1.3 holds, and so we have the Theorem.

The remaining cases are where Ls = A6, A7 or D7. For the last two
cases we will apply Lemma 3.1.7. The non-negative T -weights on L(G) are
as follows: 064, 256, 428, 68 if Ls = A7; and 0

92, 264, 414 if Ls = D7. Hence
the composition factors of L(G) ↓ X are 68/428/248/064 and 414/264/092,
respectively. In both cases we contradict Lemma 3.1.7.

So this leaves us with the case Ls = A6. There are two ways in which
this can occur; either Π(LP ) = {α3, ..., α8} or Π(LP ) = {α2, α4, ..., α8}. In
the second case consider all roots with α8-coefficient 1 and α3-coefficient 1.
The span of the corresponding root vectors is a natural module for an A5
Levi factor of Ls. Hence, conjugating f by an element of Ls, if necessary,
we can obtain the hypothesis of Proposition 3.1.3 with feδ a multiple of a
root vector. The first case is similar. Here the weight −2 subspace of L(G)
is the sum of two irreducible modules for Ls = A6, a natural module and
the wedge-square of this module. For the latter module we argue as above
that we can conjugate f by an element of A5 < Ls so that there is at most
one βi for which the coefficient of α8 and α2 are both nonzero. Indeed, after
the conjugation we can take this βi = α2 + α4 + α5 + . . . + α8. Moreover,
the summand affording the natural module has only one basis vector with
nontrivial coefficient of both α1 and α8, namely α1+α3+α4+ . . .+α8. Once
again Lemma 3.1.6 implies we have the hypothesis of Proposition 3.1.3. This
completes the proof of the lemma.

Lemma 3.1.10 Theorem 3.1 holds for G = E8, p = 2.

Proof The configurations not covered by the previous two lemmas are
those where α8 ∈ Π(Ls) and there exists another simple factor, say Lr, of
LP , such that some fundamental root αk is adjacent to both Π(Lr) and
Π(Ls).

First suppose k ≥ 5. Consider the roots β of T -weight 2 which involve
both αk and α8. Then W (Lr) is transitive on such roots. Define J to be
the sum of the corresponding root spaces of L(G). Note that Lr is the only
component of LP acting nontrivally on J . There are several possibilities for
the action of Lr on J . If Lr is of type A or D and this action is a natural
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module for Lr, then we once again have the hypotheses of Proposition 3.1.3
and hence the Theorem holds.

Next consider the case where (k, Lr) = (7, E6). Here the T -labelling
is 00000020, and we compute that L(G) ↓ X = 62/427/252/082, giving a
contradiction by Lemma 3.1.7.

The remaining cases are as follows: (k, Lr) = (6, D5) or (5, A4). Here, J
is a spin module, or the wedge-square of the natural module, respectively.

In both of these cases we consider the action of Lr on J . To understand
the orbit structure we work in the simple algebraic groups E6, D5 and con-
sider a maximal parabolic subgroup of type D5, A4 respectively. The action
of a Levi subgroup on the unipotent radical is the action of Lr on J in each
case, and orbit representatives are given by [29]. From [29] we conclude that
there are in each case exactly two orbits on nonzero vectors, represented by
a root vector and the sum of two root vectors for orthogonal roots. This
settles each of these cases.

Now assume k < 5, where the possibilities are as follows:

k = 4 : L = A4A2A1, A4A1A1, A4A2, or A4A1
k = 3 : L = A6A1 or A5A1.

In each case we look at the space J spanned by all root vectors of T -weight
-2 having nonzero coefficient of α8 and αk. When k = 4, the factors of
LP other than Ls act on J as a natural module or a tensor product of two
natural modules. In each case, there are just two orbits on nonzero vectors,
with representatives given by a root vector or the sum of multiples of two
root vectors for orthogonal roots.

Finally, suppose that k = 3. When LP = A6A1 one checks that J is the
tensor product of natural modules for the A1 factor and a Levi subgroup A5
of the A6 factor. So here again, we have the hypothesis of Proposition 3.1.3
after conjugating by an element of LP . Now consider the case LP = A1A5.
Here J is the sum of the natural module for the A1 factor and a trivial
module corresponding to the root α2+α4+α5+ ...+α8. Conjugating by an
element of LP we once again obtain the hypotheses of Proposition 3.1.3.

At this point we have established Theorem 3.1 for G = E8 (p = 2) and
we now discuss the other types.

Lemma 3.1.11 Theorem 3.1 holds if G = E7, p = 2.
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Proof The argument here is very similar to the arguments of the last
few lemmas. Proceeding as in those lemmas there are a number of easy
cases which are dealt with just as before. The remaining ones are as follows:
L′P = D6, E6, A2A3A1, D5, A1A5, A4A2, A6, D5A1. Note that α1 is the only
fundamental root not orthogonal to δ.

In the first two cases dimCG(T ) >
1
2 dimG. Since X is generated by

two conjugates of T it follows that CG(X) has positive dimension, which
contradicts Lemma 2.2.10. In the last five cases, a consideration of T -weights
implies that X has the following composition factors on L(G):

6/416/225/047; 62/415/228/039; 65/415/225/033; 47/235/049; 410/232/049,

respectively. These all contradict Lemma 3.1.7.

In the third case Π(A2) = {α1, α3}. Here we must consider roots βi of
T -weight 2 with nontrivial coefficient of α1 and α4. Note that W (A1A3)
is transitive on such roots, and the sum of the corresponding root spaces
affords a tensor product of natural modules for A1 and A3. As in previous
cases this yields the hypotheses of Proposition 3.1.3.

Lemma 3.1.12 Theorem 3.1 holds if G = E6, p = 2.

Proof Here too, the argument is similar to previous ones. This time,
α2 is the only fundamental root not orthogonal to δ. The only cases re-
quiring special consideration are where L′P = D5, A2A1A1, D4, A5, A1A4,
A1A2A2, A4, A4. The last two entries are due to the two distinct types of
A4 Levi factor. In the first case, dimCG(T ) = 46 >

1
2 dimG, which gives a

contradiction as in previous cases. In the last six cases a consideration of
T -weights shows that X has the following composition factors on L(G):

48/216/030; 4/220/036; 45/220/028; 62/49/216/020;

6/410/214/026; or 65/410/26/026.

In each of these case we contradict Lemma 3.1.7.

This leaves the second case. Here the only difficulty is where Π(A2) =
{α2, α4} and in this case we aim to verify the hypotheses of Proposition 3.1.3.
Consider those roots βi appearing within the expression for f for which βi
has nonzero coefficient of α2. Under the action of the Levi factor LP , the
sum of the corresponding root spaces is the sum of two natural modules
for the A1 factors of LP . Hence, conjugating by an element of LP , we can
assume that at most two βi satisfy this condition. If there are two, then they
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are automatically orthogonal so Lemma 3.1.6 shows that the hypotheses of
Proposition 3.1.3 hold and hence Theorem 3.1 holds.

It remains to consider the case G = F4. We have separated this case
from the others as there are certain degeneracies in the commutations in
characteristic 2 which complicate matters. We will continue with the same
sorts of arguments, but paying attention to possible difficult issues. Note
that L(G) has two nontrivial G-composition factors, namely the two 26-
dimensional restricted modules for F4 of high weights λ1 and λ4.

Lemma 3.1.13 X does not have a fixed point on either G-composition fac-
tor of L(G).

Proof Let V denote one of the 26-dimensional modules for G = F4 and
suppose that CV (X) 6= 0. Recall from Lemma 2.2.2 that S = X〈σ〉, where
σ is either the identity or a field morphism of G. In the latter case, the
argument of Lemma 2.2.3 shows that there is a semilinear map ω satisfying
(i), (iii), and (iv) of Lemma 2.2.3. Hence, ω stabilizes CV (X), and hence by
Lemma 2.2.3, ω fixes a nonzero vector v ∈ CV (X). Then the stabilizer Gv
is S-invariant, and has dimension at least 52 − 26 = 26, which contradicts
the maximality of X.

Now G = F4 admits a graph morphism, and the image of X under this
morphism is another maximal subgroup of type A1. Consequently, it will
suffice to consider just half of the potential labelled diagrams.

Lemma 3.1.14 LP cannot have semisimple rank 3.

Proof Suppose otherwise. By the above remarks we need only consider
the cases where L′P = B3 or A1A2, where in the second case we take the
A1 root system to consist of long roots. Consider the 26-dimensional G-
module V , where V = V (λ1) in the first case, and V = V (λ4) in the second.
Starting from the labelled diagram, compute the T -weights, and then the X-
composition factors on V . The result is 46/014 in the first case, and 43/26/08

in the second. Now Lemma 3.1.7 gives a fixed point in each case.

Lemma 3.1.15 It is not the case that e, f ∈ CL(F4)(eγ), for a long root γ.



MAXIMAL SUBGROUPS OF EXCEPTIONAL ALGEBRAIC GROUPS 47

Proof We first claim that CL(F4)(eγ) = CL(F4)(Uγ), where Uγ is the TG-
root subgroup corresponding to γ. Notice that this claim, together with
Lemma 3.1.1, will establish the Lemma.

In the course of the proof of Lemma 3.1.5 we showed that CL(E6)(eγ) =
L(CE6(Uγ)). Also, L(CE6(Uγ)) ≤ CL(E6)(Uγ) ≤ CL(E6)(eγ). It follows that
CL(E6)(eγ) = CL(E6)(Uγ), and intersecting with L(F4) we have CL(F4)(eγ) =
CL(F4)(Uγ), as required.

Lemma 3.1.16 The T -labelling of the Dynkin diagram of G cannot be 22∗∗
or 2020.

Proof Assume false. As before we write

f = b1e−β1 + ...+ bke−βk ,

where each βi has T -weight 2. If the coefficient of α1 is zero for each βi,
then feδ = 0. Since eeδ = 0, as well, this contradicts the previous lemma.
So we may assume that some βi has nonzero coefficient of α1.

If the T -labelling is 22∗∗, and if βi has nonzero coefficient of α1, then
βi = α1. And if the T -labelling is 2020, then conjugating by an element of
the A1 factor of LP corresponding to α2, we may suppose that just one βi
has nonzero coefficient of α1 and βi = α1. Reordering, if necessary, we can
take i = 1. Hence, in either case feδ = bieδ−α1 .

Suppose βi has α2-coefficient equal to 0 for each i > 1. Then e−βifeδ = 0
for all i. Hence ffeδ = 0. Also, efeδ = feeδ = 0. But this contradicts the
previous lemma. Therefore, for some i > 1, βi has nonzero coefficient of α2.

At this point we can argue as in the proof of Lemma 3.1.4. The expres-
sion for f came from a corresponding expression for V (c), which involved
root groups for all roots βi together with some of T -weight larger than 2.
However, in view of the previous discussion we can now check that V (c)2 6= 1,
a contradiction.

Lemma 3.1.17 Theorem 3.1 holds if G = F4, p = 2.

Proof In view of earlier comments regarding the graph automorphism
and Lemmas 3.1.14 and 3.1.16, it will suffice to consider the cases where
L′P = B2 or A1A1, where in the latter case the A1 factors correspond to
α1, α4.
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Consider the last case. Conjugating by an element of the A1-factor
corresponding to α1 we may assume that no βi has nonzero coefficient of α1.
But then feδ = 0, contradicting Lemma 3.1.15.

So this leaves the case where L′P = B2. From a consideration of the
weights on long roots we see that if V = VG(λ1) then V ↓ X = 8/64/4/06.

The Weyl module WX(8) is uniserial with the following structure (see
[1]): 8|0|4|6. Consider a weight vector v ∈ V of weight 8 and the corre-
sponding cyclic module 〈Xv〉, which is an image of this Weyl module. The
maximal submodule of 〈Xv〉 is singular under the bilinear form on V (see
Lemma 2.1.5). However, the multiplicity in V ↓ X of the irreducible module
of high weight 4 is just 1, so this irreducible cannot occur within 〈Xv〉. By
Lemma 3.1.13, X has no nonzero fixed points on V . Consequently, 〈Xv〉
must be irreducible and non-degenerate. Applying Lemma 3.1.7 to the per-
pendicular space of 〈Xv〉 within V , we contradict Lemma 3.1.13, completing
the proof.

3.2 A1-modules

In this subsection we present some preliminary results concerning A1-modules
which will be used to settle the cases with p odd.

We begin with a definition taken from [31, p.55]. Let X = A1, and
V (r) the irreducible KX-module of high weight r. Write r =

∑t
0 rip

i with
0 ≤ ri ≤ p− 1 for all i, so that by Steinberg’s tensor product theorem (see
Lemma 2.1.3), V (r) ∼= V (r0)⊗ V (r1)(p) ⊗ . . .⊗ V (rt)(p

t). We say that V (r)
has p-type zero if r0 = 0 or p− 2.

Lemma 3.2.1 Let M be a finite-dimensional rational KX-module. Then

M =MX(0)⊕N,

an X-invariant decomposition, where every composition factor of MX(0)
has p-type zero, and no composition factor of N has p-type zero. If M is
self-dual then so are MX(0) and N .

Proof This is [31, 4.2].

IfM is an X-module, T is a maximal torus of X, and r is a non-negative
integer, let Mr be the T -weight space in M corresponding to the weight r.
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Lemma 3.2.2 Let M be a finite-dimensional self-dual X-module in char-
acteristic p 6= 2, with highest weight r. Define Y = 〈Xv : v ∈ Mr〉, and
let Z be the intersection of all maximal X-submodules of Y . Then Z is to-
tally singular, and Y/Z is a non-degenerate subspace of Z⊥/Z isomorphic
to V (r)nr , where nr is the multiplicity of V (r) as a composition factor of
M .

Proof By Lemma 2.1.4, for v ∈Mr, 〈Xv〉 is an image of the Weyl module
WX(r). Let Ev be the maximal submodule of 〈Xv〉, so that the composition
factors of Ev are each of high weight strictly less than r. By Lemma 2.1.5, Ev
is totally singular. Composition factors of M/(Ev)

⊥ also have high weight
less than r so Mr < (Ev)

⊥ and hence Y ≤ (Ev)⊥.

Let E < Y be the sum of the spaces Ev, as v ranges over Mr. Then
Y/E ∼= V (r)nr and by the above paragraph E is totally singular. It follows
that E = Z.

Finally, consider Y/Z ≤ Z⊥/Z. By definition of Y , the quotient space
has all composition factors of high weight strictly less than r. This implies
that Y/Z is non-degenerate.

Now we return to our maximal S-invariant subgroup X = A1 < G, with
maximal torus T , satisfying the hypotheses of Theorem 3.1. Assume p is
odd.

Recall the notation L = L(G)′. For r ≥ 0, let nr be the multiplicity
of V (r) as a composition factor of L ↓ X. By Lemma 2.2.6, T gives a
labelling of the Dynkin diagram of G with 0’s and 2’s. Hence, if nr 6= 0
then r ≤ 2ht(δ), twice the height of the highest root δ in Σ(G). As in
Lemma 3.2.1 we have

L ↓ X = LX(0)⊕N

where none of the composition factors of N have p-type zero.

Since p is odd and X is of adjoint type, the Lie algebra L(X) is simple
and we can write L(X) = 〈e, h, f〉 with

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Recall the notation
A = CL(L(X)).

The next lemma, though elementary, is of fundamental importance through-
out our proof.
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Lemma 3.2.3 Suppose the highest T -weight in LX(0) is a multiple of p,
say kp. Then either nkp−2 ≥ 2nkp, or there is a composition factor kp in
A = CL(L(X)).

Proof Let v ∈ L be a maximal vector of weight kp. Then ev = 0. If also
fv = 0, then v ∈ CL(L(X)), which therefore has a composition factor kp. So
assume fv 6= 0. Then fv has weight kp− 2, and as 〈Xv〉 is L(X)-invariant,
〈Xv〉 has kp−2 as a composition factor. We deduce from Lemma 2.1.5 that
〈Xv : v ∈ Lkp〉 has singular subspace with nkp composition factors kp − 2,
and it follows that nkp−2 ≥ 2nkp.

The same argument yields the following:

Lemma 3.2.4 Let V be an X-module of highest weight kp, and for each s
let ms be the multiplicity of V (s) as a composition factor of V .

(i) If V is self-dual, then either mkp−2 ≥ 2mkp, or there is a composition
factor kp in CV (L(X)).

(ii) In any case, either nkp−2 ≥ nkp, or CV (L(X)) has a composition
factor kp.

The next two lemmas are relevant to the cases p = 5 or 7.

Lemma 3.2.5 Suppose p = 5 or 7.

(i) We have

W (2p− 2) = (2p− 2)|0, W (2p) = 2p|(2p− 2),
W (4p− 2) = (4p− 2)|2p, W (4p) = 4p|(4p− 2).

(ii) If p = 7 then n0 < n2p−2, and if p = 5 then n0 < n2p−2 + np(2p−2).

(iii) If n2p > 0 and n2p ≥ n2p−2 + n4p−2 + n2p2−4p, then A contains a
submodule 2p.

Proof (i) is immediate since the indicated extensions exist by Lemma 2.1.6,
and the dimensions sum to that of the Weyl module.

(ii) For p = 7, the only irreducible module of high weight at most 2ht(δ)
which extends the trivial module is 2p− 2. Hence if n0 ≥ n2p−2 then L ↓ X
must have a trivial submodule or quotient. Since L is self-dual, this implies
that CL(X) 6= 0, a contradiction. Hence n0 < n2p−2. The p = 5 argument is
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the same, only here the irreducible p(2p−2) is also in the range and extends
0.

(iii) The only irreducibles in the required range which extend 2p are
2p − 2, 4p − 2, and 2p2 − 4p (only for p = 5) so the conclusion follows as
above.

Lemma 3.2.6 Assume that p = 5 or 7.

(i) Suppose the highest LX(0)-weight is 2p or less. Then n2p−2 ≥ 2n0.

(ii) Suppose the highest LX(0)-weight is 4p − 2 or less. Then either
n2p−2 ≥ 2n2p, or A contains a submodule 2p.

(iii) Suppose the highest LX(0)-weight is 4p and n4p = 1. Then either
n2p−2 ≥ 2n2p − 2, or A contains a submodule 2p or 4p.

Proof (i) We work in the X-module M = LX(0). If Y = 〈Xv : v ∈
M2p〉, then by Lemmas 3.2.2 and 3.2.5, Y has radical Z ∼= (2p − 2)l. Let
V = Z⊥/Z and write V = (Y/Z) ⊥ E. Then Y/Z = (2p)n2p . Set W =
〈Xv : v ∈ E2p−2〉. If 2p − 2|0 appears as a submodule of W , then in
the preimage of this (i.e. 2p − 2|0|Z), generating with a suitable vector
of weight 2p − 2 gives a submodule 0 of L ↓ X, a contradiction. Therefore
Z⊥/Z = (2p−2)n2p−2−2l⊕0n0 . Since L has no submodule 0, we have n0 ≤ l.
Hence n0 ≤ l ≤ 1

2n2p−2.

(ii) Suppose A does not contain a submodule 2p. If v ∈ L is a maximal
vector of weight 4p−2 then by Lemma 2.1.4, 〈Xv〉 is an image ofW (4p−2).
By Lemma 3.2.5(i) this image must be an irreducible 4p−2. Thus the spaces
〈Xv〉 for all such vectors v generate a non-degenerate submodule Y of L
containing all the 4p− 2 composition factors. Then Y ⊥ is X-invariant and
has highest LX(0)-weight 2p or less. The conclusion now follows from the
argument of part (i).

(iii) Suppose A contains no 2p or 4p submodule. As in (ii), if v is a
maximal vector of weight 4p then 〈Xv〉 = W (4p) = 4p|(4p − 2). Let Y be
the (singular) submodule 4p−2, and work now in Z = Y ⊥/Y . If w ∈ Z is a
maximal vector of weight 4p− 2, then 〈Xw〉 = 4p− 2 or 4p− 2|2p. But the
latter cannot occur, for if it did, generating with a weight 4p − 2 vector in
the preimage of 〈Xw〉 in Y ⊥ would yield a submodule 2p. Therefore Z has a
non-degenerate submodule containing all its 4p−2 composition factors (and
no others). Now under the action of X the maximal vectors in Z of weight
2p must generate 2p|2p−2 or 2p, and at most one of the latter can occur (as
Y ⊥ has no submodule 2p). Hence Z has a submodule (2p − 2)n2p−1 which
is totally singular, whence n2p−2 ≥ 2n2p − 2.
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If we have A = CL(L(X)) nonzero, then by Lemma 2.3.4 we know that
A ≤ L(D), where D is a semisimple subgroup of maximal rank in G as
defined in 2.3.4. The next lemma provides additional information under
these circumstances.

Lemma 3.2.7 Suppose p is odd and 0 6= A ≤ L(D) as in Lemma 2.3.4. If
V is a nonzero S-invariant subspace of A, then ND(V ) ≤ NX(T ) = T 〈s〉.
In particular, ND(V )

0 = T and ND(V ) contains no non-identity unipotent
elements.

Proof By Lemma 2.3.5 we have ND(V )
0 = T and ND(V ) ≤ NX(T ). As

p is odd, NX(T ) contains no unipotent elements, and the result follows.

The next result gets rid of a particular possibility for the labelling of T .

Lemma 3.2.8 If G = F4, E7 or E8 and p 6= 2, then T is not a regular torus
(i.e. the T -labelling is not the one with all labels 2).

Proof Suppose T is regular, so CG(T ) = TG. Let l = 4, 7 or 8 be the
rank of G and let Π(G) = {α1, . . . , αl}. Now NX(T ) = T 〈s〉 where s is an
involution inverting T . The longest element w0 of the Weyl group W (G)
inverts T , and hence we may take s = nw0 , an element of NG(TG) mapping
to w0. Note that in the cases under consideration w0 sends each fundamental
root to its negative.

We can write L(X) = 〈e, h, f〉, where f = es. Working in a root system
relative to TG, write e =

∑l
1 cieαi . Then f = e

s =
∑
±cie−αi . If some

ci = 0, then there is a rank 1 torus T1 centralizing e and f , hence centralizing
L(X), contrary to Lemma 2.2.10(iii). Hence ci 6= 0 for all i; that is, e is
regular nilpotent in L(G).

Now let U be a 1-dimensional unipotent subgroup of X normalized by T ,
and embed UT < BG = UGTG, a Borel subgroup of G, with U < UG, T <
TG. Then UG/U

′
G =

∏l
1 Ūαi , a commuting product (where Ūαi denotes the

image of Uαi). Pick 1 6= u ∈ U , and say umaps to
∏
Ūαi(di) (where di ∈ K).

If some dj = 0, then 〈uT 〉 = U maps to
∏
i 6=j Ūαi , and hence U is

contained in the unipotent radical of the minimal parabolic subgroup P of
G corresponding to the root αj . But this means that e ∈ L(U) ⊆ L(Ru(P )),
whereas e is regular, a contradiction.

Hence dj 6= 0 for all j. This implies that u is a regular unipotent element
of G. But for p ≤ 7, regular unipotent elements have order greater than p
(see [42, 0.4]), so this is impossible.
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3.3 The case p = 7

In this subsection we prove Theorem 3.1 for p = 7.

Assume the hypotheses of Theorem 3.1, with p = 7. Then G = E7 or
E8, and X = A1 is a maximal S-invariant subgroup of G.

As in the previous section, let L = L(G) and denote by nr the multiplic-
ity of V (r) as a composition factor of L ↓ X. Since p = 7 is a good prime
for G, Lemma 2.3.4 gives

A = CL(L(X)) = 0.

From Section 3.2 we have the following inequalities among the multiplic-
ities nr:

(a) if the highest LX(0)-weight is 7k for some k, then n7k−2 ≥ 2n7k
(Lemma 3.2.3)

(b) n0 < n12 (Lemma 3.2.5(ii))

(c) either n14 = 0 or n14 < n12 + n26 (Lemma 3.2.5(iii))

(d) if the highest LX(0)-weight is 14 or less (resp. 26 or less) then
n12 ≥ 2n0 (resp. n12 ≥ 2n14) (Lemma 3.2.6)

(e) if the highest LX(0)-weight is 28 and n28 = 1, then n12 ≥ 2n14 − 2
(Lemma 3.2.6(iii)).

(f) T is not a regular torus in G (Lemma 3.2.8)

As discussed in the Introduction and after Lemma 2.2.6, the Weight Com-
pare Program lists all possibilities for the composition factors of L ↓ X
which are compatible with the fact that there is a T -labelling of Π(G) with
0’s and 2’s. Combining this with the restrictions (a)-(f) above, we obtain
the following.

Lemma 3.3.1 The possibilities for the multiplicities of the composition fac-
tors of L ↓ X are as follows:

G Case L ↓ X T -labelling

E7 (1) 103/83/65/47/29 0002002
(2) 14/122/104/82/63/44/28/0 2002002

E8 (3) 104/86/610/416/214 00002000
(4) 182/16/143/126/104/85/65/44/26/03 00020020

Lemma 3.3.2 Cases (1), (2) and (3) of Lemma 3.3.1 do not occur.
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Proof First consider G = E7, and assume case (1) or (2) holds.

In case (1) we have LX(0) = 0, so by [31, 4.6], X is conjugate to any A1
in G whose torus determines the same labelled diagram as T . By [31, p.65],
if we take an A1 lying in a subsystem subgroup A2A5, projecting to a regular
A1 in each factor (with no field twist), then this A1 also has labelled diagram
0002002, and hence is conjugate to X. Therefore X < A2A5, centralizing
Z(A2A5), a group of order 3, contrary to the fact that CG(X) = 1 (by the
hypothesis of Theorem 3.1).

Now consider case (2). By [31, p.65], a 1-dimensional torus T ′ which
lies in a subgroup A1A1B4 of a subsystem subgroup A1D6, projecting to
a regular torus in each factor has the same weights on L as does T . It
then follows from Lemma 2.2.8 that T and T ′ are conjugate in G. So T
lies in a subgroup A1A1B4 < A1D6. Now if V56 denotes the 56-dimensional
E7-module V (λ7), then by [23, 2.3],

V56 ↓ A1D6 = 1⊗ λ1/0⊗ λ5,

and hence V56 ↓ A1A1B4 = 1 ⊗ 2 ⊗ 0/1 ⊗ 0 ⊗ λ1/0 ⊗ 1 ⊗ λ4. Hence we
see that the T -weights on V56 are 11, 9

3, 74, 55, 37, 18 and their negatives. It
follows that the composition factors of X (or rather its preimage in simply
connected E7) on V56 are 11/9

2/7/52/34/12. Since the only composition
factor extending the 2-dimensional module of high weight 1 is 11 = 4⊗ 1(7),
we deduce that X stabilizes a 2-space in V56. The variety of all 2-spaces in
V56 has dimension 108, so the stabilizer Y of this 2-space has dimension at
least dimG−108 = 25. Note thatX < Y 0. However this is not an immediate
contradiction to the maximality of X, as Y 0 may not be S-invariant.

Suppose first that X lies in no parabolic subgroup of G. Let M be a
maximal connected subgroup of G containing Y 0. Then M is not reductive
of maximal rank (as CG(M) ≤ CG(X) = 1), and M is not parabolic. As
dimM ≥ 25, it follows from [31, Theorem 1] that M = A1F4 or G2C3.
Again, Y 0 lies in no parabolic or maximal rank subgroup of M . Considering
the other maximal subgroups of M in turn, we deduce that Y 0 = M . But
neither A1F4 nor G2C3 stabilizes a 2-space in V56 (see [23, 2.5]).

Thus X lies in a parabolic subgroup P of G. As L ↓ X has just one
trivial composition factor, P is a maximal parabolic. Write P = QR, where
Q = Ru(P ) and R is a Levi subgroup. Recall that S = X〈σ〉, with σ
either trivial or a Frobenius morphism of G. If P is σ-stable then X < P
is not maximal S-invariant, a contradiction. Therefore P 6= P σ. Now P σ

is G-conjugate to P , and by the Bruhat decomposition we have P ∩ P σ =
P ∩ P g = (P ∩ Pw)x for some g ∈ G, x ∈ P and w ∈ NG(TG), where TG
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is a maximal torus in P ∩ Pw. In the notation of [7, Section 2.8], we have
P = PJ and R = LJ , where J = Π(G)\{j} for some j.

Now by [7, 2.8.7] we have P ∩ Pw = ULK , where U is a unipotent
group and K = J ∩ w(J). Since X lies in a conjugate of P ∩ Pw and
has only one trivial composition factor on L(G), it follows that K = J ,
whence w ∈ NG(LJ) = NG(R). If T1 = Z(R) then NG(T1)/CG(T1) ∼= Z2,
generated by the action of w0, the longest element of the Weyl group W (G).
As CG(T1) = R, we therefore have NG(R) = R〈w0〉, and hence P ∩ Pw =
P ∩ Pw0 = R. This means that X ≤ Rx. But then X is centralized by the
torus T x1 , contradicting the fact that CG(X) = 1.

Finally, consider case (3) of Lemma 3.3.1. Here G = E8. In this case we
have LX(0) = 0, and using [31, 4.6 and p.65] as in the proof of case (1) above,
we see that X is contained in a subsystem subgroup D4D4, centralizing
Z(D4D4) = 2

2, again a contradiction to CG(X) = 1.

The last possibility (4) in Lemma 3.3.1 is very much more complicated
to handle. We state this as a separate proposition, and deal with it in a
series of lemmas.

Proposition 3.3.3 There does not exist a maximal S-invariant subgroup
X = A1 in G = E8 (p = 7) such that

L(G) ↓ X = 182/16/143/126/104/85/65/44/26/03.

Assume the proposition is false, and let X be such a maximal A1. The
first goal in the proof is to determine the precise action of X on L(G) as a
direct sum of explicit indecomposables.

First decompose L(G) into blocks, according to (possible) nontrivial ex-
tensions of irreducible X-modules, given by Lemma 2.1.6: this gives

L(G) ↓ X = LX(0)⊕ LX(2)⊕ LX(4)⊕ LX(6),

where
LX(0) has composition factors 14

3/126/03,
LX(2) has composition factors 16/10

4/26,
LX(4) has composition factors 18

2/85/44, and
LX(6) = 6

5.

Each of LX(0), LX(2), LX(4), LX(6) is self-dual.

We shall describe the structures of these summands in terms of tilting
modules. Recall that T (c) denotes the indecomposable tilting X-module of
high weight c. The structure of these modules is given in Lemma 2.1.7.
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Lemma 3.3.4 We have LX(0) = T (14)
3.

Proof If v ∈ LX(0) is a weight vector of weight 14, then as there are no
irreducible submodules of high weight 14 (by Lemma 2.3.4) we have 〈Xv〉 =
W (14) = 14|12. Generating by all such vectors we get W (14)3. Factoring
out this submodule the quotient must be of the form W (12)3 = (12|0)3, as
otherwise there would be a trivial quotient module, hence a fixed point.

We have shown that LX(0) has as filtration by Weyl modules. Since it
is self-dual it also has a filtration by dual Weyl modules. Therefore LX(0) is
a tilting module and thus the direct sum of indecomposable tilting modules
of the form T (c). As the high weight is 14 and T (14) = 12|(14 + 0)|12 by
Lemma 2.1.7, we have the assertion.

Lemma 3.3.5 LX(2) has one of the following structures:

(i) 16⊕ (T (10))i ⊕ (W (10)⊕W (10)∗)j ⊕ 26−2i−2j ⊕ 104−i−2j, where 0 ≤
i ≤ 3, 0 ≤ j ≤ 2.

(ii) T (16) ⊕ T (10)i ⊕ (W (10) ⊕W (10)∗)j ⊕ 25−2i−2j ⊕ 102−i−2j, where
0 ≤ i ≤ 2, 0 ≤ j ≤ 1.

Proof Recall that LX(2) = 16/10
4/26. First assume that there is an

irreducible submodule of high weight 16. Since LX(2) is self-dual, so is this
summand and we work within the orthogonal complement. Here we can
apply [32, 2.4] to get (i).

Now assume that there does not exist an irreducible submodule of high
weight 16. If v ∈ LX(2) is a T -weight vector of weight 16, then 〈Xv〉 =
Z = 16|10. Then LX(2)/Z = 103/26 and we can choose a T -weight vector
here of weight 10 for which the corresponding X-module has a quotient
10/16. It follows from [12] that Ext1X(W (16),W (10)) has dimension 1, with
an extension given by T (16). We claim that T (16) is a submodule of LX(2):
for otherwise, there would exist a uniserial module of shape 10|16|10; and
then, working in the direct sum of this module and W (10) = 10/2, we
could construct an extension of W (16) by W (10) with 2 as a submodule,
contradicting the above information on Ext1. This proves the claim.

By construction the T (16) submodule is nondegenerate. Taking an or-
thogonal complement we obtain (ii) using [32, 2.4].

In the next lemma we consider LX(4). In one part of the lemma we
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use the notation M(18) to refer to the maximal submodule of T (18). Thus
M(18) = (18⊕ 4)|8.

Lemma 3.3.6 LX(4) has one of the following structures:

(i) 182 ⊕ T (8)i ⊕ (W (8) ⊕W (8)∗)j ⊕ 85−i−2j ⊕ 44−2i−2j, where 0 ≤ i ≤
2, 0 ≤ j ≤ 2.

(ii) 18 ⊕ T (18) ⊕ T (8)i ⊕ (W (8) ⊕W (8)∗)j ⊕ 83−i−2j ⊕ 43−2i−2j, where
0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

(iii) (W (18)⊕W (18)∗)⊕ T (8)i⊕ (W (8)⊕W (8)∗)j ⊕ 83−i−2j ⊕ 44−2i−2j,
where 0 ≤ i ≤ 2, 0 ≤ j ≤ 1.

(iv) M(18) ⊕M(18)∗ ⊕ T (8)i ⊕ (W (8) ⊕W (8)∗)j ⊕ 83−i−2j ⊕ 42−2i−2j,
where 0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

(v) T (18)2 ⊕ T (8)i ⊕ 81−i ⊕ 42−2i, where 0 ≤ i ≤ 1.

Proof Recall that LX(4) = 18
2/85/44. If there exists a submodule of the

form 182, then this splits off and using [32, 2.4] we get (i).

Now suppose there is a single 18 submodule which splits off. Working
in a complement, the argument given in the proof of Lemma 3.3.5(ii) yields
(ii).

Next suppose that there is single 18 submodule, which does not split off.
Suppose, in addition, that there exists an indecomposable submodule of the
form 8|18 =W (18)∗. On the other hand generating by a high weight vector
of weight 18 we must get a submodule W (18). Hence we have submodule
W (18)⊕W (18)∗. There is a complement to this submodule and we get (iii)
by an application of [32, 2.4].

Now suppose that there is a single 18 submodule, say Z, which does
not split off, but no submodule W (18)∗. The nonsplitting condition implies
that there is a vector v of weight 8 such that 〈Xv〉 > Z. Now 〈Xv〉/Z is
an image of W (8), so the nonexistence of a W (18)∗ submodule implies that
J = 〈Xv〉 = 8|(18 ⊕ 4) ∼= M(18)∗. By duality, LX(4) has a submodule R
such that LX(4)/R ∼= (18⊕ 4)|8. Also, J ≤ R.

By assumption and duality there is no W (18) quotient. Hence an 8 sub-
module of R which pulls past the 4 quotient of LX(4)/R, also pulls past
the 18 quotient. Do this as many times as possible, lifting 4 submodules
upwards. Taking a maximal vector in LX(4) − Z of weight 18, the corre-
sponding cyclic module generates M ∼= W (18), so the 8 submodule cannot
block the 18 submodule of LX(4). There is a submodule D > J such that
D/J = (18⊕ 4)/8 and D = (18⊕ 4⊕ 8)|(18⊕ 4⊕ 8).
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Now there is an 4 submodule of D/M which does not correspond to an
4 submodule of LX(4). It is therefore blocked by the 8 submodule of M
and we obtain a submodule of the form M(18). This module added to J
yields a submodule M(18)⊕M(18)∗. It is easy to see that this submodule
is nondegenerate. Splitting it off and applying [32, 2.4], we obtain (iv).

Finally, we consider the case where there is no 18 submodule. Here we
can proceed as in part (ii) of the preceding lemma to split off T (18)2 and
then obtain (v).

Now let u be a non-identity unipotent element of X. Our next aim is to
identify the conjugacy class of u in G. Recall that Jr denotes a unipotent
Jordan block of dimension r.

Lemma 3.3.7 The following give the Jordan blocks of u in its action on
certain X-modules.

(i) T (14) ↓ u = T (16) ↓ u = T (18) ↓ u = J47 .

(ii) T (10) ↓ u = T (8) ↓ u = J27 .

(iii) (W (10)⊕W (10)∗) ↓ u = J27 ⊕ J
2
4 .

(iv) (W (8)⊕W (8)∗) ↓ u = J27 ⊕ J
2
2 .

(v) (M(18)⊕M(18)∗) ↓ u = J47 ⊕ J
2
6 ⊕ J

2
4 .

Proof Parts (i) and (ii) are immediate from Lemma 2.1.7. For the re-
maining parts first note that if E ↓ 〈u〉 is a direct sum of J7’s and if e ∈ E,
then there exists a J7 summand of E containing e. From here the Jordan
decomposition of x on E/〈e〉 is transparent. Now W (10) = T (10)/2 and
W (8) = T (8)/4. Further we note that u has the same Jordan form on a
module and its dual. Together these facts yield (iii) and (iv). For (v) con-
sider M(18)∗ = T (18). Here u acts on 8 as J3 ⊕ J1. Factor out J3 and get
Jordan decomposition (J7)

3 ⊕ J4 on the quotient space. By construction,
the image of the J1 is not contained in the J4 summand and it follows that
we may assume that this image is contained in one of the J7 summands. At
this point, factoring out the image of J1 yields the assertion.

We now consider the possible Jordan forms of u on L(G). First, LX(0) =
T (14)3 and LX(6) = 6

5, together contributing J177 . The only J2-blocks
occur within W (8) and W (8)∗, each contributing a single J2. So the total
contribution is Jk2 , with k = 0, 2 or 4. The only trivial Jordan blocks occur
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within 8 and 16 submodules, each of which contribute a single J1. Hence
the total contribution is at most J61 .

The remarks of the previous paragraph, together with [18, Table 9],
which lists the Jordan block structure of all unipotent classes of G in their
action on L(G), restrict the possibilities for the G-class of the unipotent
element u ∈ X to the following.

Lemma 3.3.8 One of the following holds:

(i) u = A4A2, L(G) ↓ u = J197 ⊕ J
11
5 ⊕ J

18
3 ⊕ J

6
1 .

(ii) u = D6(a2), L(G) ↓ u = J297 ⊕ J
4
5 ⊕ J

4
4 ⊕ J3 ⊕ J

6
1 .

(iii) u = E7(a5), L(G) ↓ u = J297 ⊕ J
2
6 ⊕ J5 ⊕ J

4
4 ⊕ J

3
3 ⊕ J

3
1 .

(iv) u = E8(a7), L(G) ↓ u = J307 ⊕ J
4
5 ⊕ J

6
3 .

(v) u = A6, L(G) ↓ u = J357 ⊕ J
3
1 .

(vi) u = A6A1, L(G) ↓ u = J357 ⊕ J3.

(vii) u = A4A3, L(G) ↓ u = J247 ⊕ J
2
6 ⊕ J

3
5 ⊕ J

6
4 ⊕ J

6
3 ⊕ J

4
2 ⊕ J

3
1 .

(viii) u = A5A1, L(G) ↓ u = J257 ⊕ J
6
6 ⊕ J

4
5 ⊕ J3 ⊕ J

4
2 ⊕ J

6
1 .

(ix) u = D5(a1)A2, L(G) ↓ u = J287 ⊕ J
3
5 ⊕ J

2
4 ⊕ J

6
3 ⊕ J

4
2 ⊕ J

3
1 .

(x) u = E6(a3)A1, L(G) ↓ u = J287 ⊕ J
2
6 ⊕ J

3
5 ⊕ J

2
4 ⊕ J

2
3 ⊕ J

4
2 ⊕ J

3
1 .

In the next lemma we use the possibilities for the blocks LX(2) and
LX(4) given by Lemmas 3.3.5 and 3.3.6 to identify the class of u in G.

Lemma 3.3.9 If u is a non-identity unipotent element of X, then u lies in
the class A6A1 in G, and L(G) ↓ u = J357 ⊕ J3.

Proof Suppose J42 occurs in the decomposition L(G) ↓ u. This can only
arise from a summand (W (8)⊕W (8)∗)2 in LX(4). So Lemma 3.3.6 implies
that LX(4) ↓ u = J67 ⊕ J

2
5 ⊕ J

3
3 ⊕ J

4
2 ⊕ J1. This immediately rules out

possibilities (viii) and (x) of Lemma 3.3.8. Cases (vii) and (ix) require an
additional J33 to come from other blocks. This implies that either i = 0, j = 2
in 3.3.8(i) or i = 0, j = 1 in 3.3.8(ii). Then LX(2) ↓ u = J47⊕J5⊕J

4
4⊕J

3
3⊕J1

or J67 ⊕ J
2
4 ⊕ J

3
3 . Neither of these yield a sufficient number of blocks J1.

For the remaining possibilities there are no J2’s, and henceW (8)⊕W (8)∗

does not occur. Note that J4 only appears in W (10) ⊕ W (10)∗ and in
M(18)⊕M(18)∗. The latter involves J6. For D6(a2) the former must appear
twice. Then LX(2) ↓ u = J47⊕J5⊕J

4
4⊕J

3
3⊕J1 and the J3 contribution gives

a contradiction. In the E7(a5) case, we need LX(4) ↓ u = J87 ⊕ J
2
6 ⊕ J

2
1 so

the latter must occur and we have a contradiction from the J5 contribution.
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The A6 case is easy to rule out due to the absence of a J3 block. Indeed,
we see from Lemma 3.3.8 that in each case such a block exists. Next consider
E8(a7), where there is no J1 or J2 block. It follows that neither 8 nor
W (8) ⊕W (8)∗ can occur in LX(4). We find that LX(4) = T (18)2 ⊕ T (8)
which restricts to u as J107 . We must then have LX(2) ↓ u = J

3
7 ⊕ J

4
5 ⊕ J

6
3 ,

whereas 3.3.5 implies that LX(2) contributes an even number of J7’s.

Finally, consider A4A2. Here we need to account for J
11
5 and this is

possible only if LX(2) = 16⊕ 26⊕ 104 and LX(4) = 182⊕ 85⊕ 44. Checking
the action of e we see that L(G) ↓ e = J177 ⊕ J

10
5 ⊕ J

8
4 ⊕ J

9
3 ⊕ J

10
2 . It follows

that dimCL(G)(e) = dimCG(e) = 54. Consider the possibilities for the class
of e. There is a Levi subgroup R such that e is distinguished in L(R) (see
[7, p.164]).

If R = G, then e is in the Richardson orbit of the Lie algebra of the
unipotent radical of a distinguished parabolic of G (see [7, p.137]). Hence
CG(e) has the same dimension as the centralizer of the corresponding dis-
tinguished unipotent element, namely the dimension of the Levi factor of
the parabolic. But such unipotent elements all have centralizer dimension
less than 54. So the Levi subgroup R must be proper. Now e is trivial on
L(Z(R)) and yet there are no trivial Jordan blocks in the decomposition
of L(G). This is only possible if R = A6A1T1, so that L(T1) < L(A6) (as
p = 7). However, one checks that regular nilpotent elements in A6A1 have
Jordan decomposition J357 ⊕ J3. This contradiction completes the proof.

The class of u immediately determines the action of X on L(G).

Lemma 3.3.10 We have

L(G) ↓ X = T (14)3 ⊕ T (18)2 ⊕ T (8)⊕ T (16)⊕ T (10)2 ⊕ 65 ⊕ 2.

We next determine the class of a nonzero nilpotent element e ∈ L(X).

Lemma 3.3.11 e has type A6A1.

Proof From the preceding lemma and the fact that e is projective on all
the tilting modules we see that L(G) ↓ e = J357 ⊕ J3. As we saw at the end
of the previous result, this is only possible if e has type A6A1.

Recall that T < TG, a maximal torus of G, and the root system of G
relative to TG is Σ(G), with fundamental system Π(G) = {α1, . . . , α8}. If
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δ is the highest root, then {α1, α3, . . . , α8,−δ} is a fundamental system for
a subsystem of type A8; let E be the corresponding subsystem subgroup
A8. Define Y to be a subgroup A1 of E, embedded via an indecomposable
representation 4|1⊗1(7) ∼=W (8)∗ on VA8(ω1). Ultimately we shall show that
X is G-conjugate to Y . Write L(Y ) = 〈e′, h′, f ′〉 with [e′, f ′] = h′, [e′, h′] =
2e′, [f ′, h′] = −2f ′.

Lemma 3.3.12 Replacing X by a suitable G-conjugate, we may assume the
following:

(i) T < TG < E = A8 where the T -labelling of A8 has all labels 2.

(ii) e = e′ = eα1 + 2eα3 + 3eα4 + 4eα5 + 5eα6 + 6eα7 + fδ.

(iii) f ′ = fα1 + 6fα4 + 5fα5 + 4fα6 + 3fα7 + 2fα8 + eδ.

(iv) h = h′.

Proof We can view the Y -module W (8)∗ as the space of homogeneous
polynomials of degree 8 in two variables x, y, with the natural action of
Y = PSL2. A maximal torus of Y is then a regular torus of A8 and one
checks that this torus determines the same labelling with respect to G as
does T .

Let U1 = {U1(c) : c ∈ K} be a 1-dimensional unipotent subgroup of
Y . Using the usual basis x8, x7y, x6y2, . . . , y8 for the space of homogeneous
polynomials, and taking U1(c) to send x→ x, y → cx+ y, we find that the
matrix form of U1(c) on W (8)

∗ is (recalling p = 7)

















1
c 1
c2 2c 1
c3 3c2 3c 1
c4 4c3 6c2 4c 1
c5 5c4 3c3 3c2 5c 1
c6 6c5 c4 6c3 c2 6c 1
c7 0 0 0 0 0 0 1
c8 c7 0 0 0 0 0 c 1

















It is immediate that the Lie algebra of U1 is generated by a nilpotent element
e′ of type A6A1, and e

′ is as in (ii). Replacing X by a G-conjugate we may
assume that e′ = e. Similarly, f ′ is as in (iii).

We claim CG(e) = U33A1, where U33 is a unipotent group of dimension
33. As p is good, dimCG(e) = dimCL(G)(e), and from the Jordan block
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decomposition we see that the latter dimension is 36. Next note that CG(e)
contains no torus of rank 2: for otherwise, say T2 ≤ CG(e), CG(T2) is a
Levi factor of G, and e would necessarily have a trivial Jordan block on the
Lie algebra of this Levi factor, a contradiction. By [39, III,3.12] we have
CG(e) = CG(v) for some unipotent element v ∈ G. A check of unipotent
element centralizers [28] shows that the only such centralizer of dimension
36 is U33A1, proving the claim.

Now T < NG(〈e〉), and so T acts on CG(e). Take a subgoup A6A1 lying
in A8, corresponding to the subsystem with base α1, α3, α4, α5, α6, α7,−δ.
Now e ∈ L(A6A1T1), and the center of this Levi subgroup is a 1-dimensional
torus T0 < CG(e). Also there is a 1-dimensional torus T1 < A6A1 inducing
weight 2 on e. One checks that

T0(c) = hα1(c
4)hα2(c

7)hα3(c
8)hα4(c

12)hα5(c
9)hα6(c

6)hα7(c
3)

and

T1(c) = hα1(c
6)hα3(c

10)hα4(c
12)hα5(c

12)hα6(c
10)hα7(c

6)h−δ(c).

Conjugating in C(e) we may assume T < T0T1 and write T (c) = T0(c
i)T1(c

j).
From the action of T on e we get j = 1. As the largest T -weight is 18 we see
that i = ±3. Now there is an element of the Weyl group W (G) inverting T0
and inducing an involutory graph automorphism of A8. Adjusting by an in-
ner automorphism of A6A1 we may assume this element centralizes e and T1.
Conjugating by such an element we may now assume T (c) = T0(c

−3)T1(c).
Similarly, if TY is the maximal torus of Y normalizing 〈e〉 we may conjugate
within CG(e) to get T (c) = TY (c). Hence we may take h = h

′, proving
(iv).

From the proof of the last lemma we have T (c) = T0(c
−3)T1(c), from

which we obtain the following.

Lemma 3.3.13 Relative to the usual base α1, . . . , α8, G = E8 has T -labelling
2(−18)222222.

The aim now is to conjugate from f ′ to f using an element of CG(e) ∩
CG(T ). Lemma 3.3.15 below determines the latter intersection.

Notice that f ′ − f ∈ CL(G)(e) and has T -weight −2. The next lemma
determines the dimension of certain weight spaces of CL(G)(e).
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Lemma 3.3.14 The T -weight spaces of CL(G)(e) corresponding to weights
0 and −2 each have dimension 3 and lie in LX(0) = T (14)3.

Proof Consider the composition factors of L(G) ↓ X and look for those
containing fixed points of e of T -weight 0 and −2. These only occur within
composition factors 0 and 12, respectively, both of which must occur within
LX(0) = T (14)

3. One checks that the Jordan blocks of T (14) under the
action of e are as follows, where each block has length 7 with basis having
the given T -weights:

(−12,−10,−8,−6,−4,−2, 0),
(−14,−12,−10,−8,−6,−4,−2),
(0, 2, 4, 6, 8, 10, 12),
(2, 4, 6, 8, 10, 12, 14).

The result follows.

Lemma 3.3.15 C = CG(e) ∩ CG(T ) is a 3-dimensional group of the form
T0U1U2, where U1, U2 are commuting unipotent groups, normalized by the
torus T0. For suitable choices of signs these groups are given explicitly as
follows:

(i) T0 = {hα1(c
4)hα2(c

7)hα3(c
8)hα4(c

12)hα5(c
9)hα6(c

6)hα7(c
3) : c ∈ K∗}

(ii) U1 = {U11222110(c)U11232100(±3c)U11122210(±c) : c ∈ K}

(iii) U2 = {U−11122111(c)U−11221111(±2c)U−01122211(±3c) : c ∈ K}.

Proof One first calculates using Lemma 3.3.12(ii) that for suitable choices
of signs these groups U1, U2 do in fact lie in C. Now CG(e) = U33A1 is con-
nected and T normalizes CG(e). As T has connected centralizer in A1 as well
as U33, we conclude that C is connected. The previous lemma shows that
the T -weight space in CL(G)(e) for weight 0 has dimension 3. Hence C has
dimension at most 3. From the Bruhat decomposition we see that T0U1U2
has dimension 3. Also, a direct check shows that U1 and U2 commute, with
both normalized by T0 and affording T -weights 2,−1, respectively. It follows
from this and the structure of CG(e) that C must have a unipotent radical
of dimension 2. This gives the result.

Note that f ′ − f lies in CL(G)(e) and has T -weight −2. Let J denote
the full weight space of CL(G)(e) corresponding to weight −2. Lemma 3.3.14
shows that dim J = 3.
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The group C acts on the coset f ′ + J , and we shall show that under
this action there are precisely two orbits. To this end we consider the map
φ : C → J given by c→ f ′ − (f ′)c.

Lemma 3.3.16 (i) φ(T0) = {kfα8 : k 6= 2}.

(ii) φ(U1) = 〈j1〉, where j1 = ae01122210+be11122110+ce11221110+de11222100
for some scalars a, b, c, d.

(iii) Set J0 = 〈fα8〉 and J1 = 〈j1〉. Then φ(T0U1) = J̃0 + J1, where
J̃0 = J0\{2fα8}.

Proof For (i) note that by construction T0 centralizes fα1 , fα4 , fα5 , fα6 , fα7
and eδ. However, T0 induces nontrivial scalars on fα8 . The assertion follows
as the coefficient of fα8 in f

′ is 2.

Part (ii) is checked by straightforward computation. Moreover viewing
U1 as K

+ we see that φ ↓ U1 is linear.

Finally, (iii) follows follows from (i) and (ii), noting that U1 fixes fα8 .

We have now identified a 2-space of J , namely J0+J1. The action of U2
is a little more complicated as, unlike U1, the map to J is not linear.

Lemma 3.3.17 We have φ(U2(c)) = cl1 + c
2l2 + c

3l3, where

l1 = rf11122211 + sf11222111 + tf0112221 +me123433221 + ne12244321 + qe22343221
l2 = ue11122110 + ve11221110 + we01122210,
l3 = xfα8 ,

for suitable constants r, s, . . . , x.

Proof This is a direct computation. The quadratic and cubic terms arise
from conjugating eδ (which appears in f

′) by U2.

Lemma 3.3.18 We have J = J0 + J1 + J2, where J2 = 〈l1〉.

Proof Consider the image of U2 in L(G)/(J0 + J1). We have l3 ∈ J0 and
clearly l1 is not contained in J0 + J1. Also the image must span a 1-space
as it is contained in J/(J0 + J1). The only possibility is that l2 ∈ J0 + J1
(forcing d = 0 in 3.3.16(ii)) and J = J0 + J1 + 〈l1〉. Indeed, otherwise
the existence of linear and quadratic coefficients forces the image to span a
2-space.
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We can now establish the key result.

Lemma 3.3.19 We have f ′+J = (f ′)ToU1U2∪(f ′−2fα8)
ToU1U2 . Moreover,

f ′ − 2fα8 is of type A5A1.

Proof Arguing as in the proof of Lemma 3.3.16(i) we first note that f ′ +
J0 = f

′T0∪{f ′−2fα8}. Next note that U1 < CG(fα8), so that Lemma 3.3.16
implies f ′ + J0 + J1 = (f

′ + J0)
U1 = f ′T0U1 ∪ {f ′ − 2fα8}

U1 .

As U2 fixes fα8 , it is easily checked that J0 + J1 is U2-invariant. Choose
x ∈ f ′ + J and write x = f ′ + j0 + j1 + j2 with obvious notation. From
3.3.16 and 3.3.17 we see that there are elements u2 ∈ U2, a0 ∈ J0, and
a1 ∈ J1 such that (f ′ + ao + a1)u2 = x. Hence f ′ + J = (f ′ + J0 + J1)U2 =
(f ′T0U1 ∪ {f ′ − 2fα8}

U1)U2 = f ′T0U1U2 ∪ {f ′ − 2fα8}
U1U2 .

Finally we note that f ′−2fα8 = fα1+6fα4+5fα5+4fα6+3fα7−eδ. This
element is clearly a regular nilpotent element of an A5A1 subsystem.

We can now complete the proof of Proposition 3.3.3. Lemma 3.3.19
shows that L(X) is conjugate to L(Y ). But then L(X) < L(A8) and so is
centralized by an element of order 3 in G. This contradicts Lemma 2.2.10(ii).

The proof of Theorem 3.1 for p = 7 is now complete.

3.4 The case p = 5

In this section we prove Theorem 3.1 assuming p = 5. Let X = A1 be
maximal S-invariant in G, as in the hypothesis of the theorem. We have
G = E6, E7 or E8.

We begin with E6 and E7, which are relatively easy to handle.

Lemma 3.4.1 G is not E6 or E7.

Proof Assume G = E6 or E7. Then p = 5 is good, so A = CL(L(X)) =
0 by Lemma 2.3.4. Using the Weight Compare Program, together with
Lemmas 3.2.3 - 3.2.8, we check that the only possibilities for L ↓ X are as
follows:

(1) G = E6, L ↓ X = 102/84/62/43/25/02, T -labelling 200202

(2) G = E6, L ↓ X = 22/162/14/12/10/82/2/0, T -labelling 222222
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(3) G = E7, L ↓ X = 103/86/65/44/211/03, T -labelling 0002002.

Consider first case (1). Here [31, p.65] shows that there is a 1-dimensional
torus T ′ < A1A5, projecting to a torus in a regular A1 in each factor and
having the same weights on L as T . Then Lemma 2.2.8 shows that T and T ′

determine the same labelled diagram of G and hence are conjugate. Thus,
T < A1A5. Consider the 27-dimensional E6-module V27 = V (λ1). By [23,
2.3], V27 ↓ A1A5 = 1⊗λ1/0⊗λ4, whence we see that the T -weights on V27 are
8, 62, 44, 24, 05 and their negatives. It follows that V27 ↓ X = 8/6/42/2/02.
Of these composition factors, only 8 = 3⊗ 1(5) extends 0, and hence we see
that X fixes a 1-space in V27. Let M be the stabilizer of this 1-space, so
X < M and dimM ≥ dimG− 26 = 52.

If σ does not lie in the coset of a graph-field morphism of G, then Lem-
mas 2.2.11 and 2.2.13 give a contradiction. Thus σ lies in the coset of a
graph-field morphism.

It is well known that E6 has precisely three orbits on the 1-spaces of V27
(for example, this follows from [29]). The stabilizers of 1-spaces in the three
orbits are P1, F4 and a subgroup U16B4T1 lying in P6 (see for example [8]).
Thus M is one of these stabilizers.

Suppose first thatM ≤ P1. Then X < P1∩P σ1 = P1∩P
g
6 for some g ∈ G.

Now the number of (P1, P6)-double cosets in G is equal to the number of
(W (D5),W (D5))-double cosets in W (G); this number is 3, since the action
of W (G) on the cosets of W (D5) is the action of O

−
6 (2) on singular points,

which is rank 3. Thus, up to G-conjugacy there are three possibilities for
P1∩P

g
6 . By inspection these have Levi subgroups D5T1, D4T2 and A4T2. In

the first case P1∩P
g
6 = L1 = D5T1, and the central torus T1 of this centralizes

X, a contradiction. In the second case, D4 has 3 trivial composition factors
on V27 (see [23, 2.3]), whereas X has only 2 such. Finally, in the third
case, we see from Table 8.7 of [23] that A4 has three composition factors on
V27, each of which are natural 5-dimensional modules or their duals. This
implies that X has a composition factor appearing with multiplicity at least
3, which is not the case.

Thus M 6≤ P1. Similarly, M 6≤ P6.

Finally, if M = F4 then by the maximality of X, M is not σ-stable. So
X lies in M ∩Mσ, a subgroup of F4 of dimension at least 26. From our
knowledge of the maximal connected subgroups of F4 (p = 5) (see [31]), we
see that M ∩Mσ must lie in a parabolic or reductive subgroup of maximal
rank in F4. Maximal rank reductive subgroups have nontrivial centralizer,
which is not possible. Hence, X is contained in a maximal parabolic P of
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F4. The composition factors X on V26 = VF4(λ4) are as above with one less
fixed point. Let F be the fixed point space in V26 of the unipotent radical of
P . Then the Levi factor has irreducible, dual actions on F and on V26/F

⊥.
But this is not consistent with the composition factors of X. This completes
the proof for case (1).

The argument for case (2) is similar. Here the T -label is 222222, and
as a linear combination of fundamental roots we have λ1 =

1
3(435642), from

which we see that the T -weights on V27 are 16, 14, 12, 10, 8
2, 62, 42, 22, 03 and

their negatives. Hence V27 ↓ X = 16/12/8/02, and again it follows that X
fixes a 1-space in V27. Now we obtain a contradiction as in case (1) above.

Finally, in case (3), [31, p.65] tells us that T < A2A5, projecting to
a regular torus in each factor. Letting Ĝ be the simply connected group
E7, we work with the 56-dimensional Ĝ-module V56 = V (λ7). By [23, 2.3],
V56 ↓ A2A5 = λ1 ⊗ λ1/λ2 ⊗ λ5/0 ⊗ λ3, from which we calculate that the
T -weights on V56 are 9, 7

3, 56, 39, 19 and their negatives. It follows that
V56 ↓ X̂ = 9/72/53/36/12 (where X̂ is the preimage of X in Ĝ). Since the
module is self dual we conclude that X̂ stabilizes a 2-space corresponding
to a module of high weight 1. If this space is uniquely determined, then by
Lemma 2.2.3 it is ω-invariant and its stabilizer is σ-invariant. However any
2-space stabilizer has dimension at least 133 − 55 − 54 = 24, so this is a
contradiction. So assume there are two submodules of high weight 1.

We then have V56 ↓ X̂ = 9⊕12⊕72⊕(53/36). Letting u be a non-identity
unipotent element of X̂, we find that u has Jordan block decomposition
J25 +J

2
4 +J

4
2 on the first three terms. Hence from [18] we see that u is in one

of the following G-classes: A3A2A1, (A3A1)
′,(A3A1)

′′, 2A2A1. Now consider
the possible Jordan form on the summand 53/36. By [32, 2.4] we can write
this space as a direct sum of submodules of the form 5, 3,W (5),W (5)∗ or
T (5), where T (5) denotes the tilting module of high weight 5. The Jordan
forms of u on these modules are, respectively, J2, J4, J5 + J1, J5 + J1, J

2
5

(see the proof of Lemma 3.3.7). From [18] we see that only A3A2A1 and
(A3A1)

′′ remain as possibilities. Moreover, in the former case the Jordan
decomposition forces V56 ↓ X = 9⊕12⊕72⊕34⊕5⊕T (5). So here there is a
unique irreducible submodule of high weight 5, which yields a contradiction
as in the previous paragraph. Hence u has type (A3A1)

′′.

Now consider the action on L = L(G). From the above and [18] we see
that L ↓ u = J175 + J

9
3 + J

21
1 . By Lemma 2.2.10 we have CL(X) = 0. Using

this it is easy to argue that the block with composition factors 103/86/03

must be a tilting module. Hence L ↓ X = T (10)3 ⊕ 44 ⊕ (65/211). The last
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summand is a direct sum of submodules of the form T (6),W (6),W (6)∗, 6 or
2, and it is clearly impossible to get a sufficient number of J1 blocks. This
completes the proof.

We now move on to the case where G = E8, p = 5, which requires a great
deal more effort. The reason is that p = 5 is not a good prime for G, and so
A = CL(L(X)) can be non-zero. However, we do know by Lemma 2.3.4 that
if A 6= 0 then A ≤ L(D), where D = A4A4, a subsystem subgroup of G; in
particular, the number of T -weights on L which are multiples of 2p = 10 is
equal to dimD = 48. Using the Weight Compare Program together with
this condition and Lemmas 3.2.3-3.2.8, we obtain the following.

Lemma 3.4.2 The possibilities for L ↓ X are as in the table below:

Case L ↓ X T -labelling

(1) 182/16/143/124/105/86/68/4/28/03 00020020
(2) 28/26/223/20/183/164/143/12/104/83/6/4/22/0 20020202
(3) 22/182/164/143/123/105/86/62/4/26/03 00020022
(4) 38/34/30/28/26/223/20/182/164/142/12/103/82/6/22 22202022
(5) 42/38/34/28/262/222/20/182/164/142/104/82/22/0 22022022
(6) 34/28/262/223/20/183/164/142/12/104/83/22/0 20020222
(7) 46/42/38/34/30/28/26/222/20/182/162/142/103/82/22 22202222

In each case in the table, we shall need to establish that A 6= 0. For this
we require the structure of various Weyl modules:

Lemma 3.4.3 For p = 5 the following are co-socle series for the indicated
Weyl modules:

W (8) = 8|0, W (10) = 10|8, W (18) = 18|10, W (20) = 20|18,

W (28) = 28|18|20, W (30) = 30|(28 + 10)|18,

W (38) = 38|(30 + 8)|10, W (40) = 40|(38 + 0)|8.

Proof The first line follows from Lemma 3.2.5. For the other cases, we
first find the composition factors of the given Weyl modules using the Sum
Formula. The nontrivial extensions between these are given by Lemma 2.1.6.
The indicated series follow from this together with Lemma 2.1.5, the uni-
versality of Weyl modules.
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Lemma 3.4.4 In each of cases (1) − (7) in Lemma 3.4.2, we have A 6= 0
and A ≤ L(D) with D = A4A4. Also,the multiplicities of the T -weights
which are divisible by 10, and the T -labelling of D = A4A4 (up to graph
automorphisms) are as in the table below.

Case T -weights divisible by p T -labelling of A4A4
(1) 024, 1012 0 0 10 0, 0 0 10 0
(2) 016, 1012, 204 10 0 10 0, 10 0 10 0
(3) 022, 1012, 201 10 0 0 10, 0 0 10 0
(4) 012, 1010, 206, 302 10 0 10 10, 10 0 10 10
(5) 012, 1010, 205, 302, 401 10 0 10 0, 10 10 10 10
(6) 014, 1011, 205, 301 10 0 10 10, 10 0 10 0
(7) 010, 109, 206, 303, 401 10 0 10 10, 10 10 10 10

Proof The multiplicities and labellings of D = A4A4 are routinely calcu-
lated from L ↓ X. Less obvious is the fact that A 6= 0 in each case, which
we now establish.

For cases (1) and (3) of Lemma 3.4.2, it follows from Lemma 3.2.6(ii)
that A 6= 0.

Consider cases (2) and (6). Suppose A = 0. Working in LX(0), gen-
erating with a vector of weight 28, then one of weight 20, and then one of
weight 18, we see that L ↓ X has a singular subspace Z ∼= 18, and Z⊥/Z
has a non-degenerate subspace M ∼= 28 + 20 + 18, and M⊥ (perp taken in
Z⊥/Z) has composition factors 104/83/0. It is easy to see that M⊥ has a
submodule 102, and hence L has a submodule 10. Hence in fact A 6= 0, as
required.

Now consider (4) and (7). Working in LX(0), let v be a vector of weight
38, and Y = 〈Xv〉. Then by Lemma 3.4.3, either A 6= 0 or Y ∼= 38|8a

with a ≤ 1. Suppose the latter, and let S = 8a be the radical of Y . In
S⊥ ∩ LX(0)/S, let Z/S = (Y/S)⊥. Then Z/S = 30/28/20/182/103/82−2a,
and using Lemma 3.2.4 we see that A has a composition factor 30.

Finally, consider (5). Define Y, S, Z as in the previous paragraph, so
Z/S = 28/20/182/104/82/0. Considering cyclic submodules generated by
weight vectors in the usual way, we see that there is a submodule 102, whence
A has a submodule 10.

At this point we study the subalgebra A in detail. Recall that R is the
subalgebra of A generated by its nilpotent elements.
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Lemma 3.4.5 The T -weights on L(D) are at most 40.

Proof This follows from the previous lemma.

Lemma 3.4.6 In the T -labelling of D = A4A4, it is not possible that one
of the A4’s has all labels either 0 or 10 with at least one 0.

Proof Assume false. First suppose R has a T -weight vector e of weight
strictly greater than 10. Then e is nilpotent and there is a unique expression
e = e1 + e2, with each ei nilpotent in one of the sl5 factors. Each ei is a
T -weight vector of the corresponding factor, so Lemma 3.4.5 implies that
e3i = 0 for each i. Hence, Lemma 2.3.8 implies that ND(R) contains a
unipotent element, contrary to Lemma 3.2.7.

Now suppose that the largest weight of R is 10, so that R ∼= (2(5))k for
some k. If there exists a T -weight vector e = e1 + e2 ∈ R of weight 10 such
that both projections ei satisfy e

4
i = 0, then we can apply Lemma 2.3.10 to

each factor to obtain a unipotent element exp(e1)exp(e2) ∈ ND(R) (see (*)
in the proof of Lemma 2.3.8), again contradicting Lemma 3.2.7. Therefore
we may assume the condition on the projections fails, which forces one of
the ei to be a regular nilpotent element in L(A4). Say e2 is regular.

In view of Lemma 3.4.4 this forces all labels of the corresponding A4 to
be 10, so by hypothesis the first factor has labels 10 and 0. The centralizer
(modulo center) of e2 in the second factor sl5 has dimension 4 and is spanned
by the powers of e2. So the weights of these vectors are 10, 20, 30, 40, with
each weight space of dimension 1.

We may assume that σ normalizes T , so σ normalizes D and ω (as in
Lemma 2.2.3) normalizes L(D). Since T has non-isomorphic centralizers in
the A4 factors it follows that σ stabilizes each factor and ω stabilizes the
corresponding Lie algebras.

We claim the projections of R (see the discussion preceding 2.3.6 for the
definition) to the two L(A4) factors are both faithful. For suppose otherwise
and let J be a minimal ideal in the kernel of one of the projections. If J
is X-invariant, then taking the sum of the images of J under powers of
ω we obtain a subspace that is stable under X as well as ω. On the other
hand the centralizer of this subspace contains the other factor, contradicting
Lemma 2.2.10(iii). Thus Lemma 2.3.2 implies the existence of an abelian
X-invariant ideal in R, which, as above, must project nontrivially to both
factors.

Now e2 is nilpotent so centralizes an element in the projection of this
ideal to the second factor. However, by earlier remarks on the centralizer
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of e2, this forces e2 to lie in the projection and, as the ideal is abelian, e2
must actually span the projection. Write NX(T ) = T 〈s〉, where s sends each
T -weight to its negative. So s normalizes D. As NG(D)/D ∼= Z4, it follows
that s normalizes each A4 factor. But this forces the projection of the ideal
to contain a weight vector of weight −10, a contradiction. This establishes
the claim.

The weight space of R ∼= (2(5))k for weight 10 is abelian, so the claim,
together with earlier information on the centralizer of e2, implies that k =
1. The centralizer information and Lemma 2.3.3 together imply that R is
simple. Hence, R ∼= sl2.

Now consider the projection to the first A4 factor. Here there is a 0
label, so e1 cannot be regular. Therefore, working in sl5, Lemma 2.3.10
shows that we can exponentiate all scalar multiples of e1, obtaining a 1-
dimensional unipotent group, U1. Similarly, we get U

s
1 , using multiples of

es1.

Let M̂ = 〈U1, U s1 〉, a subgroup of SL5. Then M̂ is connected, and
Lemma 2.3.10 shows that M̂ normalizes the preimage, say F , of the pro-
jection of R. The action must be faithful, as otherwise the kernel would
centralize R contradicting Lemma 2.3.1. Hence M̂ induces a subgroup of
PSL2.

As e ∈ R, e1 ∈ F and so L(U1) ≤ F (see the argument in [33, 2.5])
and similarly L(U s1 ) ≤ F . But then L(M̂) ≥ F , so M̂ has type A1 and
[1] implies that M̂ is completely reducible on the natural module for SL5.
If M̂ is reducible, then it is centralized by a torus of the SL5 factor, and
this torus would then centralize R, a contradiction. On the other hand, if
M̂ is irreducible, then it contains a regular unipotent element and so the
projection of R contains a regular nilpotent element, which we have already
seen to be false. This completes the proof of the lemma.

It is now immediate to establish the main result in this subsection:

Lemma 3.4.7 There is no maximal S-invariant A1 in G = E8 when p = 5.

Proof By Lemma 3.4.4, we have A = CL(L(X)) 6= 0, and A ≤ L(D)
where D = A4A4. The T -labelling of D is given in Lemma 3.4.4, and in
each case we have a contradiction by Lemma 3.4.6.

This completes the proof of Theorem 3.1 for p = 5.



72 MARTIN W. LIEBECK AND GARY M. SEITZ

3.5 The case p = 3

In this section we prove the main theorem assuming p = 3. Let X = A1
be a maximal S-invariant subgroup of G as in the hypothesis. The proof
proceeds along the lines of the previous section, but is necessarily much more
involved at a number of points, since p = 3 is a bad prime for all exceptional
groups.

The first order of business is to settle the case G = G2.

Lemma 3.5.1 G 6= G2.

Proof Assume that G = G2. Since p = 3, L = L(G) has an ideal
I generated by all root vectors for short roots. In particular I and L/I
both have dimension 7. Lemma 2.2.2 shows that S does not contain special
isogenies, so that the argument of Lemma 2.2.3 extends to yield an action
of S on I and on L/I. By Lemma 2.2.6, T determines a labelling of the
Dynkin diagram of G, and this labelling is 20, 02 or 22.

If the T -labelling is 20 then checking T -weights on short root vectors,
we find that (L/I) ↓ X = 62/0. It follows that X has a unique fixed point
on L/I, so the stabilizer of this in G is S-invariant. However, this stabilizer
has dimension at least 14−6 = 8, contradicting maximality of X. Similarly,
if the labelling is 02, then we find that I ↓ X = 22/0 and again we have a
fixed point.

Finally, suppose the labelling is 22. Here we find that I ↓ X = 6/4
and as I is a self-dual module, this must be a direct decomposition. But
then A = CL(L(X)) 6= 0. Hence by Lemma 2.3.4 we have A ≤ L(D) with
D = A2. However the number of T -weights on L divisible by 2p is only 4,
so this is a contradiction.

Now we prove a number of representation-theoretic lemmas which will
be useful in restricting the possibilities for L ↓ X.

The first lemma gives the co-socle series of all Weyl modules for A1 of
high weight up to 46 which correspond to possible irreducibles in LX(0).

Lemma 3.5.2 For p = 3 and r ≤ 46 with V (r) ∈ LX(0), the co-socle series
of the Weyl module W (r) is as given in the table below.
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r co-socle series of W (r)

4 4|0
6 6|4
10 10|4|6
12 12|(10 + 0)|4
16 16|12|0
18 18|12|16
22 22|(18 + 10)|12
24 24|22|10
28 28|10|22|24
30 30|(28 + 12)|(18 + 10)|22
34 34|(30 + 16)|12|18
36 36|(30 + 0)|(34 + 12)|16
40 40|(36 + 28 + 4)|(30 + 10 + 0)|12
42 42|(40 + 6)|(28 + 4)|10
46 46|40|(42 + 4)|6

Proof This follows from the Lemma 2.1.6, together with the universal
property of Weyl modules. The structure of W (30) is a little more compli-
cated than other cases and here we also use the Sum Formula.

Lemma 3.5.3 (i) Either n0 = 0 or n0 < n4 + n12 + n36.

(ii) If the highest LX(0)-weight is 10 or less, then n4 ≥ 2n0.

(iii) If the highest LX(0)-weight is 16 or less, then n16 + n4 ≥ n0.

Proof (i) The only irreducibles appearing in L ↓ X which extend the trivial
module are 4, 12 and 36. So (i) follows as in the proof of Lemma 3.2.5(ii).

(ii) Let Y1 = 〈Xv : v ∈ LX(0)10〉 (recall LX(0)10 denotes the T -weight
10 subspace of LX(0)), so that Y1 is a sum of images of W (10). Then
Y1 ≤ LX(0) and in LX(0)/Y1 let Y2/Y1 = 〈Xv : v of weight 6〉. Then
Y2/Y1 is a sum of images of W (6), and so from 3.5.2 we see that only 10,
6 and 4 occur as composition factors of Y2. Moreover, LX(0)/Y2 = 4

a/0n0 .
Generating in LX(0)/Y2 with vectors of weight 4, we see that since L has
no trivial quotient (see Lemma 2.2.10(iv)), LX(0)/Y2 ∼= (4|0)n0 + 4a−n0 .
Hence, since L has no trivial submodule (again by Lemma 2.2.10(iv)), Y2
has at least n0 composition factors 4. Therefore n4 ≥ 2n0, as required.



74 MARTIN W. LIEBECK AND GARY M. SEITZ

(iii) If v ∈ LX(0) is a vector of T -weight 16, then 〈Xv〉 is an image
of W (16), which by Lemma 3.5.2 is of the form 16|12|0. As CL(X) = 0,
Y = 〈Xv : v ∈ LX(0)16〉 = 16n16/12a, where a ≤ n16. Now work in
LX(0)/Y . Generating with a weight 12 vector gives an image of W (12) =
12|(10+0)|4. Say Z/Y = 〈Xv : v ∈ (LX(0)/Y )12〉 has b composition factors
0 and c composition factors 4. Since L has no trivial submodule, we have
a+ c ≥ b.

In L/Z, the only composition factors present are 10, 6, 4, 0, and only 4
extends 0. Say the multiplicities of 0,4 are d, e respectively. As there is no
trivial quotient (otherwise L would have a fixed point), e ≥ d. We now have

n0 = b+ d, n4 = c+ e, n16 ≥ a, a+ c ≥ b, e ≥ d.

Therefore n4 ≥ c + d = n0 − b + c ≥ n0 − (a + c) + c = n0 − a ≥ n0 − n16,
as required.

The next result is a variation of Lemma 3.5.3 in a couple of special cases.

Lemma 3.5.4 (i) If the highest LX(0)-weight is 16 or less, then either
n10 ≥ 2n12, or there is a composition factor 12 in A.

(ii) If the highest LX(0)-weight is 22 or less, then either n16 ≥ 2n18, or
there is a composition factor 18 in A.

Proof (i) If v is a maximal vector of weight 16, then 〈Xv〉 is an image
of W (16) = 16|12|0. So, assuming there is no submodule 12, it follows that
〈Xv〉 ∼= 16. Thus by Lemma 3.2.2, Y = 〈Xv : v ∈ L16〉 is a non-degenerate
subspace, and applying Lemma 3.2.4 to the space Y ⊥ we obtain n10 ≥ 2n12.

(ii) Assume there is no composition factor 18 in A. Let v be a max-
imal vector in LX(0) of weight 22. Then 〈Xv〉 is an image of W (22) =
22|(18 + 10)|12. By assumption the composition factor 18 does not appear,
as otherwise there exists a submodule 18 or 18|12 and Lemma 3.2.4 implies
that 18 occurs as a composition factor of A. Therefore 〈Xv〉 ∼= 22, 22|10, or
22|10|12 for each weight vector v of weight 22. Let Y = 〈Xv : v ∈ LX(0)22〉,
and let S be the radical of Y , a singular (see 2.1.6) subspace with all com-
position factors of weight 10 or 12. Now apply Lemma 3.2.4 to S⊥/S to
see that n16 ≥ 2n18 or CS⊥/S(L(X)) has 18 as a composition factor. In the
latter case, taking preimages and applying the argument of Lemma 3.2.4 we
see that A also has a composition factor of weight 18.
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Lemma 3.5.5 Assume the highest LX(0)-weight is less than 40. If n4 +
n12 + n16 + n36 < n6 + n0, then A 6= 0.

Proof Assume A = 0. Let r1 be the highest weight in LX(0). Define
Y1 = 〈Xv : v ∈ LX(0)r1〉. Repeat in the space LX(0)/Y1, generating a space
Y2/Y1 with vectors of maximal weight in LX(0)/Y1. Continue until we have
generated a space, Yk/Yk−1 say, with high weight vectors of weight 6.

The only values of r < 40 for which the Weyl module W (r) has a com-
position factor 0 are r = 4, 12, 16, 36. Hence Yk has at most n36 + n16 + n12
composition factors 0. Also, as A = 0 by assumption, Yk has no submodule
6. As the only module in the required range which extends 6 is 4, it fol-
lows that Yk has at least n6 composition factors 4. Hence LX(0)/Yk has at
most n4 − n6 composition factors 4, and has at least n0 − n12 − n16 − n36
composition factors 0. Since LX(0) has no trivial quotient, it follows that
n4 − n6 ≥ n0 − n12 − n16 − n36, giving the conclusion.

Lemma 3.5.6 Assume the highest LX(0)-weight is less than 40. Then A
has a submodule which is a direct sum of at least n6 − 12n4 copies of 6. In
particular, if n6 − 12n4 > 0, then A 6= 0.

Proof Begin as in the previous lemma. Let r1 < 40 be the highest weight
in LX(0). Define S1 = 〈Xv : v ∈ LX(0)r1〉 and let Y1 be the radical of
S1. Then Y1 is a singular space and, taking perpendicular spaces in LX(0),
Y ⊥1 /Y1 = (S1/Y1) ⊥ W . Now similarly generate a submodule of W using
the highest weight vectors of W . Say the radical of this submodule is Y2/Y1.
Then Y2 is a singular space. Continue in this way until we have generated
by weight vectors of weight 16 (if any such exist). At this point we have a
singular space, Yk.

Observe from Lemma 3.5.2 that for 40 > r ≥ 16, the Weyl module W (r)
has no composition factors 4 or 6, and hence neither does Yk.

We continue the process further, paying more attention to the structures
obtained. In Y ⊥k /Yk, generate with weight 12 vectors (if any exist) in a
suitable non-degenerate summand. This gives us a singular space Yk+1/Yk
with composition factors among those of the maximal submodule of W (12),
namely 10, 4, 0; say 4 appears with multiplicity a.

In Y ⊥k+1/Yk+1, generate a submodule with vectors of weight 10. Since

W (10) = 10|4|6, the weight 10 vectors generate a submodule of form (10|4|6)b+
(10|4)c + 10d. We then get the next singular subspace Yk+2 such that
Yk+2/Yk+1 = (4|6)b + 4c.
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Finally, we pass to Y ⊥k+2/Yk+2 where the highest weight is at most 6. The

submodule P/Yk+2 generated by vectors of weight 6 has shape (6|4)e + 6f

and we get a singular space Yk+3/Yk+2 ∼= 4e.

Now the module 6 does not extend the indecomposable 4|6 (generate
with weight 6 vectors in a putative such extension). Hence P/Yk+1 contains
a submodule 6b+f−c (interpreted as the 6b if f ≤ c), and consequently P/Yk
contains 6b+f−c−a. Since Yk has no composition factor 4, it has no compo-
sition factor extending 6, and hence L contains a submodule 6b+f−c−a.

The singular space Yk+3 has composition factors 4, 6 occurring with mul-
tiplicities a+ b+ c+ e, b respectively. We deduce that

n4 ≥ 2(a+ b+ c+ e), n6 = 2b+ e+ f.

Hence n6 − 12n4 ≤ b+ f − a− c, giving the conclusion of the lemma.

Lemma 3.5.7 If G = F4 or E6 then the possibilities for L ↓ X are as in
the table below. In each case A 6= 0, and A ≤ L(D) with D = A22 (G = F4)
or A32 (G = E6). The T -labellings of G and of D are as in the table.

G Case L ↓ X T -labelling T -labelling
of G of D

F4 (1) 102/8/63/44/23/0 0202 6 0, 6 0
(2) 14/102/63/44/22/0 2202 6 0, 6 6
(3) 16/14/10/63/42/22/0 2022 6 6, 6 0

E6 (1) 102/82/64/47/23/03 200202 6 0, 6 0, 6 0
(2) 14/103/8/64/46/22/03 220202 6 6, 6 0, 6 0
(3) 16/14/12/102/8/63/44/22/02 222022 6 6, 6 6, 6 0
(4) 22/18/16/14/122/102/8/6/4/22/0 222222 6 6, 6 6, 6 12

Proof By Lemma 2.3.4, if A 6= 0, then A ≤ L(D) with D = A22 or A
3
2

for G = F4 or E6, respectively. Thus the number of T -weights which are
multiples of 6 is equal to 16 or 24, respectively. Using the Weight Compare
Program, together with this condition and Lemmas 3.5.3 - 3.5.6, we see that
the possibilities for L ↓ X are as in the table. Moreover, Lemma 3.5.6 shows
that in all cases A has a composition factor of high weight 6. Finally, the
T -labellings of D are easily calculated.

Lemma 3.5.8 If G = E7 then the possibilities for L ↓ X are as in the table
below. In each case A 6= 0, A ≤ L(D) with D = A2A5, and the T -labellings
of G and of D are as in the table.
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Case L ↓ X T -labelling T -labelling
of G of D

(1) 16/14/123/104/83/63/48/22/07 2002020 6 6, 6 0 6 0 0
2002020 6 0, 0 6 0 6 0

(2) 103/83/68/412/26/04 0002002 6 0, 0 0 6 0 0
(3) 14/12/105/82/67/410/25/03 2002002 6 0, 0 6 0 0 6
(4) 18/162/14/123/104/83/62/45/22/07 2202002 6 0, 6 6 0 0 6
(5) 12/104/84/65/411/23/09 2000202 6 6, 0 0 0 6 0

2000202 6 0, 6 0 0 0 6
(6) 16/142/12/104/8/67/48/24/03 2200202 6 6, 0 6 0 0 6
(7) 142/12/104/82/65/411/2/09 0020202 6 0, 6 0 6 0 0
(8) 22/182/162/142/123/103/8/63/43/24/0 2220202 6 6, 0 6 0 6 6
(9) 162/14/123/103/83/63/46/22/07 0220022 6 6, 6 0 6 0 0

0220022 6 0, 0 6 0 6 0
(10) 20/162/142/123/103/8/63/46/2/07 2220022 6 6, 6 6 0 0 6
(11) 18/162/142/122/103/8/65/46/24/02 2002022 6 0, 6 0 6 0 6
(12) 22/20/18/16/142/124/104/8/6/45/2/06 2202022 6 6, 6 0 6 6 0
(13) 28/24/222/20/18/16/142/123/103/8/42/2/04 2222022 6 12, 6 6 0 6 6
(14) 222/182/16/142/123/104/8/63/42/24/0 0220222 6 6, 0 6 0 6 6
(15) 26/22/182/162/14/123/103/63/43/22/0 2220222 6 6, 6 0 6 6 6
(16) 28/26/22/183/162/14/123/103/62/42/22/0 2202222 6 12, 6 0 6 6 6

Proof By Lemma 2.3.4, if A 6= 0 then A ≤ L(D) with D = A2A5, and so
the number of T -weights divisible by 6 is equal to dimD = 43. Using the
Weight Compare Program, together with this condition and Lemmas 3.5.3
- 3.5.6, and 3.2.5 we see that the possibilities for L ↓ X are as in the table.
The T -labellings of D = A2A5 are easily calculated from the weights, and
we see that these must be as indicated. It remains to show that A 6= 0.

In cases (2),(3),(6),(8),(11),(14),(15) and (16), Lemma 3.5.6 shows that
A 6= 0. For cases (5) and (7) Lemma 3.5.5 gives the same conclusion. And
in cases (1) and (12), Lemma 3.5.4 gives A 6= 0.

In cases (9) and (10), LX(0) = 16
2/123/103/63/46/07. If v is a vector

of weight 16, then 〈Xv〉 is an image of W (16). Assume A = 0. Then
Lemma 3.5.2 implies that 〈Xv〉 is irreducible, so that LX(0) = 162 ⊥ W
for some (non-degenerate) subspace W . Applying Lemma 3.2.4 to W we
conclude that A 6= 0, which we are assuming false.

Now consider case (4) where LX(0) = 18/16
2/123/104/62/45/07. As-

sume A = 0. We will show that there is a fixed point. Let v be a weight
vector of weight 18. Then Lemma 3.5.2 implies that 〈Xv〉 ∼=W (18). Let Y
be the maximal module so that Y is singular with composition factors 16, 12.
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We can write Y ⊥/Y = 18 ⊥ J where J has highest weight 12. Generate by
a maximal vector to obtain a subspace E = 12/0a/4b/10c, with a, b, c ≤ 1.
First assume a = 1 and b = 0. Then the preimage of E has a submodule 16
with quotient 12 ⊕ (12/0/10c). As 0 does not extend 10 or 16 we conclude
that L ↓ X has a fixed point, a contradiction.

Let N be the preimage of the radical of E, so that E = 16/12/0a/4b/10c

and E is singular. We have E⊥/E = 18 ⊥ 12 ⊥ F , where F has all weights at
most 10 and the irreducibles 4 and 0 occur with multiplicities 5−2b, 7−2a,
respectively. The remaining cases are a = b = 0; a = 0 and b = 1; and
a = b = 1. For these cases we find that E has a submodule 02, 04, 02,
respectively. Taking preimages of this submodule we obtain a submodule of
L with composition factors 02/10c/12/16; 04/4/10c/12/16; 03/4/10c/12/16,
respectively. In each case the submodule has a fixed point.

Finally, consider case (13) where we show that L has a trivial submodule.
We have LX(0) = 28/24/22

2/18/16/123/103/42/04. Let v1 be a vector
of weight 28, and generate Y1 = 〈Xv1〉. This is an image of W (28), say
Y1 = 28|10a|22b (a, b ≤ 1) with radical Z1 = 10a|22b. Now work in the space
Z⊥1 /Z1. After splitting off Y1/Z1 we generate with a vector v2 of weight 24
to get 〈Xv2〉/Z1 = Y2 = 24|22c|10d, with radical Z2 = 22c|10d. Likewise, in
Z⊥2 /Z2, generate with a vector of weight 22 to get Y3 = 22

2−2b−2c|10e|12f ,
with radical Z3 = 10

e|12f ; and in Z⊥3 /Z3 generate with a vector of weight
18 to get Y4 = 18|12g with radical Z4 = 12g. Finally, in Z⊥4 /Z4, generate
with a suitable weight vector of weight 16 to get Y5 = 16|12h|0k. Taking
preimages of all the Zi subspaces we obtain a singular space S for which

S⊥/S = 28 ⊥ 24 ⊥ 22(2−2b−2c) ⊥ 18 ⊥ 16 ⊥M,

where

M = 123−2(f+g+h)/103−2(a+d+e)/42/04−2k.

If k > 0 then by Lemma 3.5.2 we have h = 1, and hence f = g = 0. But
then S has a trivial submodule. So assume k = 0.

Suppose f + g + h = 1. Then M = 12/103−2((a+d+e)/42/04. As M is
self-dual, first generating with a weight vector of weight 12 and arguing as
above we see that 02 occurs as a submodule ofM . (Indeed, as 12 occurs with
multiplicity 1, only composition factors of high weight 4 can block trivial
factors). Taking the preimage of 02 over S we conclude that LX(0) contains
a trivial submodule. Finally suppose f + g+h = 0. Here we see that LX(0)
has a trivial submodule provided M does. By way of contradiction assume
M = 123/103−2(a+d+e)/42/04 does not have a trivial submodule. Let J be
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the submodule ofM generated by cyclic submodules with generator a weight
vector of weight 12. Then J = 123/10x/4y/0z. Since we are assuming M
has no fixed point we have 1 ≥ y ≥ z. But then we see that M/J must have
a trivial quotient and hence a fixed point as required.

Lemma 3.5.9 If G = E8 then the possibilities for L ↓ X are as in Tables
1 and 2 below. In each case A 6= 0, and A ≤ L(D), with D = A2E6 for
the cases in Table 1 and D = A8 for those in Table 2. In all cases with
D = A2E6, at least one of the T -labels of the A2 factor is nonzero.

Table 1 : D = A2E6

Case L ↓ X T -labelling
(1) 223/183/163/143/127/106/83/66/43/26/04 02200200
(2) 162/143/123/107/83/613/414/26/08 22000020
(3) 142/123/108/84/613/419/27/08 00200020
(4) 182/163/143/126/106/83/68/412/26/05 00020020
(5) 302/28/26/24/223/20/183/163/143/124/105/65/43/23/02 20020220
(6) 12/106/86/615/421/29/010 00200002
(7) 20/183/163/143/126/108/82/67/410/26/05 20020002
(8) 28/262/22/20/184/164/14/127/106/65/45/22/04 02202002
(9) 32/302/28/224/20/186/163/143/127/105/8/6/25/02 22202002
(10) 22/20/183/163/144/126/106/8/67/49/25/05 22000202
(11) 26/24/222/184/164/142/126/105/82/64/44/24/02 02200202
(12) 36/342/302/262/22/186/165/14/126/102/8/6/4/22/02 20220202
(13) 24/22/20/184/164/144/124/105/8/66/47/25/04 20002022
(14) 30/28/26/24/223/20/184/162/143/125/106/64/45/23/02 22002022
(15) 32/28/26/24/223/186/163/143/125/104/63/44/22/03 20202022
(16) 34/302/28/26/24/223/20/184/162/143/125/105/ 02202022

63/43/23/0
(17) 28/24/224/20/185/16/144/125/107/8/64/44/25/03 22000222
(18) 48/46/42/40/38/34/32/30/28/26/222/184/162/142/ 22220222

123/102/62/42/22/0
(19) 38/32/302/283/24/224/20/185/16/143/125/107/ 22002222

62/42/24/0
(20) 42/40/34/32/302/28/26/222/20/184/162/142/125/ 02202222

105/62/42/23/0
(21) 542/52/48/44/362/342/302/26/22/183/162/14/ 22222220

123/102/6/4/22/0
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Table 2 : D = A8

Case L ↓ X T -labelling
(1) 104/86/614/424/210/010 00002000
(2) 222/20/183/162/144/126/108/8/65/48/26/04 20020020
(3) 282/26/24/222/20/185/163/143/124/107/63/44/24/03 22020020
(4) 342/302/26/24/222/20/184/164/143/124/103/62/4/24/0 22202020
(5) 16/143/123/108/83/611/417/27/07 00020002
(6) 14/122/109/85/612/419/29/08 00002002
(7) 18/163/143/124/107/83/69/412/27/06 20002002
(8) 24/223/183/163/144/124/106/82/65/44/26/03 22002002
(9) 20/18/163/145/123/106/610/413/25/07 00200202
(10) 30/282/26/223/20/184/163/143/126/105/63/43/24/03 22200202
(11) 28/26/24/223/184/163/143/125/105/8/63/44/24/02 20020202
(12) 42/402/302/284/26/223/20/184/143/124/105/6/42/24/0 22220202
(13) 40/38/32/302/282/26/24/223/184/162/142/124/105/ 22202202

62/42/23/0
(14) 22/183/165/143/126/104/83/65/46/27/04 00020022
(15) 26/222/20/183/163/143/126/106/65/47/24/04 20020022
(16) 38/34/32/30/28/26/24/223/184/163/142/125/104/ 22202022

62/42/23/0
(17) 32/262/223/184/163/14/126/106/64/44/22/04 02200222
(18) 34/30/28/262/24/222/184/164/14/125/104/8/62/42/23/0 20020222
(19) 46/42/40/38/34/32/30/28/26/24/222/183/162/142/ 22202222

123/103/62/42/23

Proof By Lemma 2.3.4, if A 6= 0 then A ≤ L(D) with D = A2E6, A8 or
A42, and so the number of T -weights divisible by 6 is equal to dimD = 86, 80
or 32. Using the Weight Compare Program, together with this condition,
Lemmas 3.5.3 - 3.5.6, and the fact that there must be a composition factor
isomorphic to L(X), we find that the possibilities for L ↓ X are as in Table 1
when D = A2E6 and as in Table 2 when D = A8, and there are no possibili-
ties when D = A42. The Weight Compare Program gives the multiplicities of
all weights and checking those that are a multiple of 6 we see that in Table
1 the A2 factor of D must have a nonzero label.

It remains to show that A 6= 0 in each case. For Table 1, this follows
from Lemma 3.5.6 in all cases except (18), (20) and (21). And in these cases,
Lemma 3.2.3 gives A 6= 0.

Now consider Table 2. For all cases except (12),(13) and (19), we have
A 6= 0 by Lemma 3.5.6. In case (13), the only composition factors present
which extend 30 are 28 and 12. Here we consider 〈Xv〉 for v a weight vector
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of weight 40. If the radical E of this has a composition factor 30 then clearly
A 6= 0 from the structure of W (40) given in Lemma 3.5.2. So suppose E has
no composition factor 30. Taking perps in LX(0) we have E

⊥/E = 40 ⊥W ,
where W has high weight 30. Generate with weight vectors of W of weight
30 and take preimages to obtain a submodule J of L such that J has a
singular submodule S such that J/S = 302. As S is singular, 28 can occur
as a composition factor with multiplicity at most 1. Hence the argument of
Lemma 3.2.3 shows that A 6= 0.

In case (19), let v be a maximal vector of weight 46. Then 〈Xv〉 is an
image of W (46). Since 40 appears with multiplicity only 1, it follows that
〈Xv〉 = Y is a non-degenerate submodule isomorphic to 46. Now apply
Lemma 3.2.4 to Y ⊥ to see that L ↓ X has a composition factor 42, whence
A 6= 0 in this case.

Finally, consider case (12). Here

LX(0) = 42/40
2/302/284/223/184/124/105/6/42/0.

Suppose A = 0. Consider Y1 = 〈Xv〉 for v a vector of weight 42. and let
Z1 be the image of the maximal submodule. Lemma 3.2.3 implies that 40
occurs as a composition factor of Z1, so that Z1 = 40/28

a/10b/4c. Next
work in Z⊥1 /Z1 = 4+W1. Generate by weight vectors of weight 30 in W1 to
get a module of shape 302/28d/12e/18f/22g/10h. The module has a singular
submodule with quotient 302 and we take the preimage of this submodule to
get a singular submodule S of shape 40/28a+d/22g/18f/12e/10b+h/4c. We
repeat this procedure two more times generating by vectors of weight 22
and then weight 18. In this way we are able to construct modules of shapes
223−2g/18i/10j/12k and 184−2f−2i/12x which occur as appropriate sections
of L.

From the constructions of the previous paragraph we can find a submod-
ule N of LX(0) such that N = 40/28

a+d/22g/184−i−f/ ∙ ∙ ∙. Note that g ≤ 1
and that 4− i− f ≥ 2. Choose a submodule E ≤ F ≤ N with E/F = 22g,
taking E = F = 0 in case g = 0.

Now W (18) = 18|12|16 and 16 does not occur as a composition factor
of LX(0). Also, neither 18 nor 12 extends either 40 or 28. So if 18 occurs
as a composition factor of E, then there is a submodule of E with highest
weight 18 and Lemma 3.2.3 implies that 18 occurs as a composition factor
of A. So we may assume that 18 does not occur as a composition factor of
E.

Now use the above information on extensions to conclude that there is a
submodule M/F < N/F with shape 184−i−f/12r and this submodule is the
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sum of cyclic modules each with generator of high weight 18. Now 22 does
not extend 12 and Ext1X(22, 18) has dimension 1. It follows that M has a
submodule for which 18 occurs as a composition factor, while 22 does not.
But as in the previous paragraph this implies 18 occurs as a composition
factor of A.

We have established in the previous lemmas that A = CL(L(X)) 6= 0 in
all cases, and A ≤ L(D). At this point we study the algebra A in detail. In
the following we will consider certain projections of R, where we recall that
R is the subalgebra of A generated by all nilpotent elements. We refer the
reader to the discussion preceding Lemma 2.3.6 for definitions.

Lemma 3.5.10 Assume that D has a factor K ∼= SL3. Then K can be
chosen so that R projects faithfully to this factor and one of the following
holds:

(i) R ∼= 2(r) (isomorphism of X-modules) for r a power of 3, and the
T -labelling of the A2 factor has equal labels 2r.

(ii) R ∼= 2(r)⊕(1(r)⊗1(s)) or 2(s)⊕(1(r)⊗1(s)) for r < s nontrivial powers
of 3. The T -labels of the A2 factor are 2r, s− r or s+ r, s− r, respectively.

Proof We first claim thatK can be chosen to be invariant underNS(T ) and
that R projects faithfully to L(K)/Z(L(K)), a simple algebra of dimension
7. This is immediate from Lemma 2.3.6 together with Lemmas 3.5.7, 3.5.8,
and 3.5.9, with the possible exception of the first E6 case where the labels
of the A2 factors are equal. In the exceptional case note that since X = A1,
we have NX(T )/T = Z2. An element in this group which inverts T must lie
in NG(D)−D so interchanges two of the A2 factors while fixing the third.
Hence NS(T ) leaves invariant one of the factors. The proof of Lemma 2.3.6
shows that the projection of R to such a factor is faithful.

Assume first that R has dimension greater than 3. As R has no trivial
X-submodules, the existence of a trivial composition factor of R also implies
the existence of a composition factor 1(r) ⊗ 1(3r) for r a power of 3. Let the
T -labels of K = A2 be x, y, each a multiple of 6.

Now dim(R) ≤ 7 and R has no trivial submodules. It follows that
R ∼= 2(r) ⊕ 2(s), 1(r) ⊗ 1(s), 0|1(r) ⊗ 1(s), or 2(r) ⊕ (1(s) ⊗ 1(t)), where r, s, t
are powers of 3. Notice that if there exists a trivial quotient, then the
corresponding maximal submodule is an ideal of R, as can be seen by taking
commutators.
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Suppose R ∼= 1(r) ⊗ 1(s) or 0|1(r) ⊗ 1(s). Comparing T -weights we see
that the projection of R to L(K) contains a pair of root vectors for opposite
roots. The commutator of these vectors is a toral element. Now R has
no weight 0 vectors unless R ∼= 0|1(r) ⊗ 1(s). But here R′ is contained in
the maximal submodule. This is a contradiction as the toral element is a
commutator in R.

Next assume R ∼= 2(r) ⊕ 2(s). As R has a 2-dimensional weight space for
weight 0, we see that one of the labels x, y must be 0. It follows that r = s
and the labels are 2r and 0. Let E be the 2-dimensional subalgebra of R
spanned by T -weight vectors for positive weights. Comparing weights we
see that E projects to the Lie algebra of the unipotent radical of a maximal
parabolic of K. Similarly, the span F of the negative weight vectors projects
to the Lie algebra of the opposite parabolic. Therefore, the projections of
E,F generate the 7-dimensional algebra L(K)/Z(L(K)), a contradiction.

Now suppose R ∼= 2(r) ⊕ (1(s) ⊗ 1(t)), with s < t. Notice that the
projection to L(K) has weight vectors for three positive weights. It follows
that these must project onto the nilpotent radical of a Borel subalgebra. In
particular, two of the weight vectors commutate to yield a third. It follows
that r = s or r = t. Comparing weights we have (ii).

It remains to argue that if R ∼= 2(r), then the labels are both 2r, as in
(i). Assume false. Then it is easy to see that weight vectors for nonzero
weights project to root elements of L(K). Suppose R is abelian. Let e ∈ R
be a weight vector for the positive weight 2r. There is a unique expression
e = e1 + e2, where e1 is a root element in L(K) and e2 a nilpotent element
in the product of the remaining factors of D. Viewing e1 as an element of
sl3 it is straightforward to check that there does not exist y ∈ sl3 for which
[e1y] is a nonzero element of the center. It follows that e1 commutes with
the preimage of the projection of R, hence 1+e1 ∈ K is a unipotent element
of K centralizing R, a contradiction. Therefore, Corollary 2.3.3 implies that
R must be simple. Then the corresponding root elements must be opposite
and generate sl2. But then the projection of R is centralized by a torus of
A2, a contradiction.

At this point we can handle all cases for which D has a factor A2.

Lemma 3.5.11 No case in Lemma 3.5.7, 3.5.8 or Table 1 of 3.5.9 can occur.

Proof For G = F4 or E6, the labellings of D = A
2
2 or A

3
2 are given in

Lemma 3.5.7. Lemma 3.5.6 implies that in each case R has a composition
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factor 2(3). Consider a factor E = A2 of D, where the projection of R is
faithful (see Lemma 3.5.10). If the T -labelling of E is 6 0, then this contra-
dicts Lemma 3.5.10. If the labelling is 6 12, then Lemma 3.5.10 implies that
R ∼= 2(9) ⊕ (1(3) ⊗ 1(9)), whereas R has a composition factor 2(3). Finally,
suppose the labelling is 6 6. By 3.5.10 we have R ∼= 2(3) or 2(3)⊕(1(3)⊗1(9)).
In the latter case, a vector e ∈ R of weight 12 has projection squaring to 0
in all factors of D, which yields a contradiction by Lemma 2.3.9 (together
with 3.2.7). So assume R ∼= 2(3). If R is abelian then projections to E
of weight vectors for nonzero weights must be root vectors (otherwise an
element of weight 6 would be a regular nilpotent element and cannot cen-
tralize the projection of elements of weight 0 or −6) and we now obtain a
contradiction as at the end of the proof of Lemma 3.5.10. Otherwise, R is
simple and projects faithfully to all simple factors of D (since CG(R) = 1).
Lemma 3.5.7 shows that some such factor has T -labels 6 0 or 6 12, so this
gives a contradiction as above.

Now consider G = E7, with possibilities given in Lemma 3.5.8. In cases
(2),(3),(6),(8),(11),(14) and (15), Lemma 3.5.6 implies that A contains 62,
which gives a contradiction by Lemma 3.5.10.

In cases (4) and (7) the labelling on the A2 factor of D is 6 0, which is
impossible by Lemma 3.5.10.

In cases (1),(9) and (10) A has 12 as a composition factor by Lemma 3.5.4(i).
Then a vector e ∈ R of weight 12 has projection squaring to 0 in both
factors A2 and A5, so 2.3.9 and 3.2.7 give a contradiction. In case (12),
Lemma 3.5.4(ii) shows that 18 is a composition factor of A and we get the
same contradiction.

Now consider case (5). Here we must have the first case where the T -
labelling of A2A5 is 6 6, 0 0 0 6 0. Hence Lemma 3.5.10 implies that R ∼= 6 or
6⊕12. In the latter case we obtain a contradiction using 2.3.9 as above, so as-
sume R ∼= 6. As in the last paragraph of the proof of Lemma 3.5.10, R is sim-
ple and projects faithfully to L(A5)/Z(L(A5)), with image R1 = 〈e1, h1, f1〉,
say, where e1, f1 have T -weights 6, -6, respectively. In the group A5 there
is a Levi subgroup A3A1T1 acting on the 8-dimensional space of weight 6
vectors in L(A5). This Levi subgroup has a subgroup of dimension at least
11 centralizing e1; likewise, this centralizer has a subgroup of dimension at
least 3 centralizing f1, hence centralizing R1. It follows that CG(R) has
positive dimension, a contradiction by Lemma 2.2.10.

This leaves cases (13) and (16). In the former the proof of 3.5.8 showed
that L has a fixed point, an immediate contradiction. In case (16) the A2
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factor is labelled 6 12, so 3.5.10 implies that R ∼= 18+ 12. But Lemma 3.5.6
shows that R has 6 as a composition factor, a contradiction.

Finally, consider G = E8, with D = A2E6. The possibilities are given in
Table 1 of Lemma 3.5.9.

In cases (1)-(8),(10),(11),(13),(14),(16) and (17), Lemma 3.5.6 shows
that A contains at least two composition factors of high weight 6, which
contradicts Lemma 3.5.10.

In cases (18), (20) and (21), Lemma 3.2.3 implies that 48, 42 or 542 is
a composition factor of A, which is impossible by Lemma 3.5.10. In cases
(9) and (19), Lemma 3.2.3 shows that 30 is a composition factor of A; by
Lemma 3.5.10, this means that the labelling of the A2 factor of D is 6, 24.
Consider the labelling of the E6 factor. The non-negative weights in L(D)
are respectively 016, 612, 1210, 187, 243, 303 and 014, 611, 129, 188, 244, 303, 361.
In neither case can we obtain a compatible labelling of the E6 factor.

In the last two cases (12) and (15), the non-negative T -weights in L(D)
are 014, 611, 129, 189, 244, 302, 36 and 016, 613, 1210, 188, 243, 30, and using this
we check that the labelling of the A2 factor must be 6 12. Hence R ∼= 18+12
by Lemma 3.5.10. However, 3.5.6 shows that R has a composition factor 6,
which is a contradiction.

It remains to exclude the cases in Table 2 of Lemma 3.5.9 - that is, when
G = E8 and D = A8. Thus for the rest of this section we assume that
D = A8. Let C denote the sum of all X-invariant subspaces of L of type
2(3). Then C ≤ R and C is ω-invariant, where ω is the semilinear map on
L as given in Lemma 2.2.2.

Lemma 3.5.12 C is a subalgebra of A = CL(L(X)) unless A contains a
two-step indecomposable submodule with socle 12 and quotient 0.

Proof Suppose W and V are X-submodules of C isomorphic to 2(3).
We then get a map W × V → [V,W ] ≤ A given by Lie commutation.
Correspondingly, there exists a map W ⊗ V → [V,W ]. On the other hand,
we have 2 ⊗ 2 ∼= T (4) ⊕ 2, where T (4) denotes the tilting module of high
weight 4; T (4) is uniserial of the form 0|4|0. Twisting by a field morphism
we obtain

2(3) ⊗ 2(3) ∼= (0|12|0)⊕ 2(3).

The conclusion follows as otherwise A would contain a trivial submodule.
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Lemma 3.5.13 Assume that D = A8 and the largest T -weight in L(D) is
strictly less than 24. Then R ∼= 2(3).

Proof First suppose there is a weight vector of R with weight at least 12.
The hypothesis implies that this vector corresponds to a nilpotent element
of sl9 with square 0. Hence Lemma 2.3.9 yields a contradiction. Since R
has no fixed points under the action of X, we conclude that R ∼= (2(3))k for
some k ≥ 1. Then Lemma 2.3.7 gives the result.

We can now compete the proof of Theorem 3.1 for p = 3.

Lemma 3.5.14 No case in Table 2 of Lemma 3.5.9 can occur.

Proof In cases (1),(5),(6),(7) and (9), Lemma 3.5.6 implies that 6 occurs as
a composition factor of A with multiplicity at least 2. However, the highest
T -weight in L(D) is less than 24, so Lemma 3.5.13 yields a contradiction.
In cases (2),(14),(15) and (17), Lemma 3.5.4(ii) implies that A contains 18.
Let e ∈ A be a vector of weight 18. As the highest T -weight in L(D) is less
than 36, we have e2 = 0. Now Lemma 2.3.9 gives a contradiction.

Now consider case (3). We claim that A has a composition factor 18 or
24 in this case. Suppose false. Let Y = 〈Xv : v ∈ LX(0)28〉 and let S be
the radical of Y . Then S⊥/S = 28 ⊥W where W has high weight 24. Next
generate by a weight vector in W of weight 24 obtaining an image, say J , of
W (24). Let N be the radical of J . Then 22 must appear as a composition
factor of the preimage of N , as otherwise 24 would occur as a composition
factor of A, which we are assuming false. Now N is a singular space and
N⊥/N = 28 ⊥ 24 ⊥ R where R has largest weight 18 and the composition
factor 18 occurs with multiplicity 5. Generating by weight vectors for weight
18 and taking preimages over N we obtain a submodule E having a singular
submodule F such that E/F = 185 and where F highest weight 22. The
only irreducibles appearing in L that extend 18 are 22 and 12 and these
occur with combined multiplicity 6, hence their combined multiplicity in F
at most 3. It follows that 18 occurs as a submodule of E. If e ∈ A is a
vector of weight 18, then e2 = 0 (as there are no vectors of weight 36), so
Lemma 2.3.9 gives a contradiction.

In case (4), after first working in the usual way with two cyclic modules
generated by weight vectors of weight 34 we obtain a submodule with highest
composition factor 30. Then 3.2.4 implies that there is a composition factor
30 in A, and so a vector e ∈ A of weight 30 satisfies e2 = 0, giving a
contradiction by 2.3.9 again.
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Cases (8),(10), and (11) are based on the following fact:

(∗) Suppose L has a submodule M = 22a/18b/16c ∙ ∙ ∙, where a ≤ 1 and
c < b− a. Then 18 occurs as a composition factor of A.

To establish (∗) we first choose submodules E ≤ F ≤M with F/E = 22a

and choose F of largest possible dimension. We claim that 18 occcurs as a
composition factor of M/F with multiplicity at most 1. Indeed weight vec-
tors of weight 18 in M/F generate images of W (18) = 18|12|16. Moreover,
22 does not extend 12 or 16 and Ext1X(22, 18) has dimension 1. So if the
claim is false we can replace F by a larger submodule of M , a contradiction.
So the claim holds and E = 18d/16e/ ∙ ∙ ∙ with d ≥ b − a and e ≤ c. At
this point we generate cyclic submodules of E with weight vectors of weight
18. But now our hypothesis and Lemma 3.2.4 imply that 18 occurs as a
composition factor of A. This proves (∗).

Now consider case (8). We claim that A has a composition factor 24 or
18 here. For suppose not. Then generating with a vector of weight 24 gives a
cyclic submodule 24|22|10a (a ≤ 1). Factoring out the radical R of this and
generating with a vector of weight 22 gives 22/18b/10c/12d with b ≤ 1. If
b = 1, we work in the preimage of this, and generate with vectors of weight
22 to obtain a submodule 22|(18 + 10x)|12y; now Lemma 3.2.4 shows that
A has a composition factor 18, contrary to assumption. Hence b = 0.

Generate with vectors of weight 18 to see that L ↓ X has a submodule
M of the form 183/S where S is singular of shape 22/16f/12d+e/ ∙ ∙ ∙. As
f ≤ 1 the hypotheses of (∗) hold which yields the claim. Letting e ∈ A be
a vector of weight 18 or 24, we have e2 = 0, giving a contradiction by 2.3.9.

We next consider case (10). Here we argue that A has a composition
factor 18 or 30. Suppose not. Generate with vectors of weight 30, then
22, then 18. The weight 30 vector yields a submodule 30/28/22a/18b and
then the 22 vectors contribute a section 223−2a/18c/12d ∙ ∙ ∙. Here a ≤ 1 and
b+c ≤ 2 as there exists a singular subspace where 18 occurs with multiplicity
b + c. If b = c = 1 then there is a submodule M = 22a/182/12d/ ∙ ∙ ∙
and the claim is immediate from (∗). So assume b + c ≤ 1. We then
generate by 18 vectors to get a section of shape 184−2b−2c/16d/12e. Taking
appropriate preimages we construct a submodule M = 22a/184−b−c/16d ∙ ∙ ∙.
All composition factors 16 occur within a singular subspace of M so that
d ≤ 1 < 4 − a − b − c. Once again we can apply (∗) to get the claim. At
this point we proceed as above, using nilpotent elements of weight 18 or 30
to get a contradiction.

Essentially the same argument settles case (11) where we first claim that
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either 24 or 18 occurs as a composition factor of A. We then complete the
argument in the usual way using 2.3.9.

Next consider case (13). Let v be a vector of weight 40. If 〈Xv〉 has a
composition factor 30, then 3.5.2 and 3.2.4 show that it has a submodule
lying in A with composition factor 30. Otherwise, factoring out the radical
of 〈Xv〉 and generating with vectors of weight 30, we see that L has a
submodule 302/28a/W where a ≤ 1 and whereW has all composition factors
less than 28. It follows from 3.2.4 that A has a composition factor 30. Now
2.3.9 gives a contradiction in the usual fashion. Cases (16) and (18) are
entirely similar but easier - in each case we obtain a composition factor 30
in A. And in case (19), the same argument shows that there is a composition
factor 42 in A.

It remains to deal with case (12). The proof of Lemma 3.5.9 shows that
A has a composition factor of high weight 42, 30, or 18. In either of the first
two cases we can take a nilpotent argument of weight 42 or 30 and obtain
a contradiction as in previous cases. So assume 18 is the largest T -weight
appearing in A. Suppose the weight space of A for weight 18 has dimen-
sion at least 2. Viewing L(D) as an image of sl9 we see that vectors in
this weight space square to elements of weight 36, where the correspond-
ing weight space has dimension only 1. Taking linear combinations of two
inidependent weight vectors of weight 18 we can find a weight vector with
square 0 and once again we obtain a contradiction. So we now assume that
18 occurs a composition factor of A with multiplicity 1.

The cyclic submodule of A, say Y , generated by a weight vector of weight
18 is either 18 or 18|12, and we will consider cases accordingly.

The T -labelling ofD = A8 is 6606606(12). Working out the 1-dimensional
torus T of X viewed as a torus in SL9 we have

T (c) = h1(c
56/3)h2(c

94/3)h3(c
114/3)h4(c

134/3)h5(c
136/3)h6(c

120/3)×
h7(c

104/3)h8(c
70/3).

This torus has (non-integral) weights on the 9-space, V , as follows:

56/3, 38/3, 20/3, 20/3, 2/3,−16/3,−16/3,−34/3,−70/3.

First suppose Y = 18. By the above Y is uniquely determined and hence
S-invariant. Taking preimages in sl9 we obtain a subspace Ŷ < sl9 with
a basis of T -weight vectors of weights 18, 0, 0,−18. Weight consideratons
show that Ŷ preserves a decomposition V = V2⊕V7 where V2 is the 2-space
spanned by basis vectors corresponding to weights 56/3 and 2/3, while V7 is
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spanned by the remaining basis vectors. But then there is an involution in
SL9 inducing −1 on V2 and 1 on V7 which centralizes Ŷ . This contradicts
Lemma 2.2.10(iii).

Now suppose Y = 18|12 and let I be the socle. Here too Y and hence I
are uniquely determined, hence S-invariant. Then Y has dimension 7 with
a basis of weight vectors for weights 18, 12, 6, 0 − 6,−12,−18 while I has
dimension 4 with weights 12, 6,−6,−12. Let y ∈ Y be a weight vector of
weight 18, the highest weight of A. Then weight considerations imply that
[yI] ≤ I so that y ∈ NL(I), an X-invariant subspace. It follows that 〈Xy〉 =
Y ≤ NL(I). In particular, I is a subalgebra. Say I has basis {a, b, c, d} where
these are weight vectors of weights 12, 6,−6,−12 respectively. As there is
no weight vector of weight 0 in I we must have [bc] = 0. Moreover, weight
considerations imply that 〈b, c〉 is an (abelian) ideal of I. As I is irreducible
under the action of X, an application of Lemma 2.3.2 (with I the subalgebra
and J a minimal ideal contained in 〈b, c〉) shows that I is abelian.

We claim that the preimage, Î, of I in sl9 stabilizes a proper subspace
of V . Let â, b̂, ĉ, d̂ be the (uniquely determined) nilpotent elements of sl9 in
the preimages of a, b, c, d, respectively and let z generate the center of sl9.
Consider B̂, the subalgebra generated by â and d̂. First suppose that B̂ is
abelian. Then B̂ consists of nilpotent elements so that C = CV (B̂) 6= 0 and
C is invariant under Î. Now suppose that B̂ is non-abelian, so that z ∈ B̂.
Then B̂ has a basis of weight vectors for weights 12, 0,−12 and weight
considerations show that V = V4 ⊕ V5 where V4 is the 4-space spanned by
the basis vectors for weights 38/3, 2/3,−34/3,−70/3 and V5 is spanned by
the other weight vectors. But then B̂ induces a subalgebra of sl4 on V4,
whereas z induces a nonzero scalar, which cannot have trace 0. This is a
contradiction and the claim is established.

It follows from the claim that I is contained in a maximal parabolic
subalgebra of L(D) corresponding to the stabilizer of a proper subspace
of V . Then I induces linear transformations on the nilpotent radical of
this parabolic, acting as an abelian algebra of nilpotent matrices. Hence I
centralizes an element n of this nilpotent radical. Then n2 = 0 and 1 + n is
a unipotent element of SL9 centralizing Î. Hence CD(I) > 1, contradicting
Lemma 2.2.10.

This completes the proof of Theorem 3.1 in all characteristics.



4 Maximal subgroups of type A2

In this section we prove Theorem 1 in the case where the subgroup X is
of type A2. Recall that G is an exceptional adjoint algebraic group, and
G1 is a group satisfying G ≤ G1 ≤ Aut(G). We consider only the small
characteristic cases required by Proposition 2.2.1.

Theorem 4.1 Suppose that X = A2 is maximal among proper closed con-
nected NG1(X)-invariant subgroups of G. Assume further that

(i) CG(X) = 1, and

(ii) p ≤ 5 if G = E7, E8; p ≤ 3 if G = E6, F4; and G 6= G2.

Then G = E7, p = 5, and G contains a single conjugacy class of maximal
subgroups A2; these satisfy

L(E7) ↓ A2 = VA2(11)⊕ VA2(44).

Suppose X, p are as in the hypothesis of the theorem, with X = A2.
Write S = NG1(X). Then Lemma 2.2.10 shows that CS(X) = 1, whence
S = X〈σ, τ〉, where σ is either trivial or a Frobenius morphism of G, and τ
induces either a trivial or a graph automorphism of X. By Lemma 2.2.2, σ
is not an exceptional isogeny of F4 or G2 in case p = 2, 3, respectively.

Recall that Σ(G),Π(G) denote the root system and a fundamental sys-
tem of G. Recall also that T is the 1-dimensional torus in X defined in
Definition 2.2.4 and T determines a labelling of Π(G) by 0’s and 2’s (see
Lemma 2.2.6). Let Σ(X) be the root system of X, and let Π(X) = {α, β}
be a fundamental system. Denote by Uγ (γ ∈ Σ(X)) the corresponding root
subgroup of X, and by eγ the corresponding root vector in L(X).

By Lemma 2.2.10(v), X is of adjoint type, so that each composition
factor of L(G) ↓ X has the form ab with a ≡ b mod 3, where ab denotes the
irreducible X-module VX(aλ1 + bλ2). Set L = L(G)

′, and define nab to be
the multiplicity of ab as a composition factor of L ↓ X.

The rest of this section is divided into three subsections, according as
p = 2, 3 or 5.

4.1 The case p = 5

Assume p = 5, so that G = E7 or E8. As usual we can use the Weight
Compare Programme to obtain a list of possible composition factors of L ↓ X

90
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corresponding to each possible T -labelling of the Dynkin diagram of G with
0’s and 1’s.

We make a few observations regarding these T -labellings. The labellings
limit the possible T -weights of composition factors of L ↓ X. For example
if G = E8, then the largest potential T -weight is 58, as this is the weight
afforded by eδ if δ is the root of highest height in Σ(G) and the labelling is
22222222. However, in fact, the largest T -weight that can occur is 36, which
is established using (2.6) and (2.7) of [31]. Such information is helpful in
reducing the number of composition factors that need to be considered.

The output of the Weight Compare Program shows that the only com-
position factors which can appear in L ↓ X are 00, 11, 30, 03, 22, 41, 14, 60,
06, 33, 52, 25 and 44. From [23, 1.9 and 1.14], we see that of these, only 33
extends the trivial module, and dimExt1X(V (33),K) = 1. As CL(X) = 0 by
Lemma 2.2.10(iii), and L = L(G) is self-dual, it follows that either n00 = 0
or n00 < n33, where nλ denotes the number of composition factors of L ↓ X
of high weight λ. Inspection of the list provided by the Weight Compare
Program now reduces the number of possibilities for L ↓ X to three:

Lemma 4.1.1 One of the following holds:

(i) G = E7, the T -labelling is 0002000, and L ↓ X = 223/30/03/117

(ii) G = E7, the T -labelling is 2002020, and L ↓ X = 44/11

(iii) G = E8, the T -labelling is 00020000, and L ↓ X = 33/602/062/227/112.

We handle these three cases separately. The E8 case is easy:

Lemma 4.1.2 Case (iii) of Lemma 4.1.1 does not occur.

Proof Suppose 4.1.1(iii) holds. For c ∈ K∗ let T1(c) be the image of the
matrix diag(c, c, c−2) inX = PSL3(K), and let T1 < X be the 1-dimensional
torus {T1(c) : c ∈ K∗}. We calculate dimCL(T1) by finding dimCV (T1) for
each composition factor V of L ↓ X. This is easily done using the following
information on tensor products (see [23, 2.14]):

60 = 10⊗ 10(5), 10⊗ 01 = 11/00, 20⊗ 02 = 22/112/00,
30⊗ 03 = 33/22/112/002.

We find:
ab : 60 11 22 33

dimCV (ab)(T1) : 0 4 5 15
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It follows that dimCL(T1) = 58. Hence CG(T1) is a Levi subgroup of G = E8
of dimension 58. However, a simple check shows that there is no such Levi
subgroup.

Lemma 4.1.3 There is a unique conjugacy class of maximal subgroups X =
A2 in G = E7 (p = 5) with L(E7) ↓ X = 44/11, as in Lemma 4.1.1(ii).

Proof This is proved for p ≥ 7 in [31, 5.8], and we follow that proof closely,
indicating certain special considerations required for p = 5. First, assuming
the existence of a maximal subgroup X = A2 as in Lemma 4.1.1(ii), we
prove the uniqueness of L(X); and finally, we show the existence of such a
subgroup X.

The uniqueness part of the argument is exactly as in [31, p.82-89], where
it is argued that if α, β are fundamental roots for a maximal X as in
Lemma 4.1.1(ii), then after suitable conjugations, L(X) is generated by
root elements eα, fα, eβ , fβ as given in [31, p.89].

For the existence argument, the strategy is likewise as in [31, 5.8]. Let
eα, fα, eβ , fβ be as in [31, p.89], and let Y be their Lie algebra span in L(G).
The aim is to define suitable fundamental SL2 subgroups Jα, Jβ of G and
show that 〈Jα, Jβ〉 leaves Y invariant.

The argument in [31, p.89,90] shows that Y is a Lie algebra of type A2
having basis {eα, eβ , eα+β , hα, hβ , fα.fβ , fα+β}. Moreover we can choose SL2
subgroups Jα, Jβ such that L(Jγ) = 〈eγ , fγ〉 for γ ∈ {α, β}. Let tγ be the
central involution in Jγ . It is shown that CG(tγ) = A1D6. Also we construct
Jγ < A1A4 < CG(tγ), with projections corresponding to the representations
of high weights 1,4 on the natural modules for the factors A1, A4. Moreover,

L ↓ A1D6 = L(A1D6)⊕(1⊗λ5), and VD6(λ5) ↓ A4 = λ1⊕λ2⊕λ3⊕λ4⊕0
2.

It follows that

L ↓ Jγ =M ⊕ (1⊗ (0
2 ⊕ 42 ⊕ (∧24)2)),

where all composition factors in M have even weights. By Lemma 2.1.7, for
SL2 we have 1 ⊗ 4 = T (5), the indecomposable tilting module of the form
3|5|3; moreover ∧24, hence also 1⊗∧24, are tilting modules, from which we
see that

1⊗ ∧24 = T (5)⊕ T (7),

where T (7) = 1|7|1 (see Lemma 2.1.7). Thus

L ↓ Jγ =M ⊕ 1
2 ⊕ T (5)4 ⊕ T (7)2.
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Hence the homogeneous component of L ↓ Jγ corresponding to the irre-
ducible of high weight 1 is of the form 14, and the same is true of L ↓ L(Jγ).
So any subspace of this homogeneous component which is fixed by L(Jγ) is
also fixed by Jγ . In particular, if γ = α, then Jα leaves invariant 〈eβ , eα+β〉
and 〈fβ , fα+β〉. These spaces generate Y as a Lie algebra, so Jα leaves Y
invariant. Similarly, so does Jβ .

Set X = 〈Jα, Jβ〉. We now argue as in [31, p.90-91] that X = A2,
S = L(X), and L(G) ↓ X = 44⊕ 11.

Finally, observe that X is maximal among closed connected subgroups of
G, since if X ≤ Z < G with Z connected, then X fixes L(Z); the restriction
L(G) ↓ X = 44⊕ 11 clearly forces L(Z) = L(X), whence X = Z.

It remains to handle case (i) of Lemma 4.1.1. This takes a great deal
more effort than the previous cases.

For p > 5 the corresponding case is addressed in [31, 5.7]. However,
there is an error in the proof of [31, 5.7], so we present a new argument that
covers the case p > 5 as well as p = 5.

Proposition 4.1.4 Let X = A2, G = E7, and p ≥ 5. Assume that either

(i) p > 5 and L ↓ X = 223/03/30/114, or

(ii) p = 5 and L ↓ X = 223/03/30/117.

Then X is contained in a subsystem subgroup A7 in G, and CG(X) 6= 1.

The proof begins along the lines of [31, 5.7]. We present these details for
completeness.

Let TX be a maximal torus of X containing T . One checks that the
TX -weight spaces in the irreducible modules 11, 30, 03, 22 for weight 00 have
respective dimensions 2, 1, 1, 3 if p > 5 and 2, 1, 1, 1 if p = 5. Consequently,
CG(TX) has dimension 19. We have CG(TX) ≤ CG(T ) and from the la-
belling of T we see that CG(T ) = TA1A2A3. As CG(TX) is a maximal rank
subsystem subgroup of CG(T ), we conclude that CG(TX) = T4A3, T3A2A2,
or T2A2A

3
1.

Let V = VĜ(λ7), a 56-dimensional irreducible module for Ĝ, the simply

connected cover of G. Identifying X with its connected preimage in Ĝ, we
can consider X acting on V . Note that λ7 =

1
2(2346543) when expressed in

terms of fundamental roots. Subtracting roots and using the fact that the
T -labelling is 0002000, we find all T -weights on V , from which we determine
that V ↓ X = 112 ⊕ 302 ⊕ 032.
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Now CĜ(TX) acts on each weight space of TX on V and from the previous
paragraph we see that weight spaces for nonzero weights have dimension 2 or
6, whereas the 0-weight space has dimension 8. If CĜ(TX) = T3A2A2, we see
from [23, 2.3] that V ↓ A2A2 has a 9-dimensional direct summand which is
the tensor product of 3-dimensional modules for the A2 factors. This is not
consistent with the above information on weight spaces. Suppose CG(TX) =
T4A3. Here we use [23, p.106] to see that V ↓ A3 = 1004⊕0014⊕0102⊕00012.
Now A3 must act trivially on each weight space of dimension 2 and there
are six of these. This accounts for all fixed points of A3. However, there are
6 weight spaces with dimension 6, so A3 must have fixed points on some of
these spaces. This is inconsistent with the above expression for V ↓ A3.

It follows from the above paragraph that we must have CG(TX) =
T2A2A

3
1 = TXA2A

3
1. In particular, viewing TX < CG(T ) = TA1A2A3,

we have TX < TA3.

Let D be the subgroup generated by the root groups U±β for β in the
subsystem generated by the roots

0001000, 0000100, 0111000, 1000000, 0011110, 0000001, 0101110.

Then D = A7, and the given roots form a fundamental system for D. Let Y
be a subgroup A2 of D with embedding given by the adjoint representation.
Our ultimate aim is to show that X is G-conjugate to Y , which will establish
the proposition.

Let T̄ be a 1-dimensional torus in an SO3 subgroup of Y and let TY be
a maximal torus of Y containing T̄ . A check of the T̄ -weights on the usual
module for D (actually we must use a covering group of D) shows that T̄
determines the labelling 2020202 of the Dynkin diagram of D.

By [23, 2.1] we see that L ↓ D = L(D)⊕ VD(λ4). Using the T̄ -labels of
D we determine all weights on L(G) and find that these are precisely the
same as those of T . Thus by Lemma 2.2.8, T̄ determines the same labelled
Dynkin diagram as T , and we may conjugate X by an element of G to
conclude T = T̄ . We also note that [23, p. 102] shows that Y has precisely
the same composition factors on L, including multiplicities, as does X.

Now TX , TY < CG(T ) = TA1A2A3 and by the above we in fact have
TX , TY < TA3. Hence each of TX , TY has centralizer in TA3 isomorphic to
T2A1A1. Thus conjugating by an element of A3 we may assume TX = TY .

Let Π(X) = {α, β}, and let Tα, Tβ be corresponding 1-dimensional tori
in X (so in matrix form Tα, Tβ consist of matrices Tα(c) = diag(c, c

−1, 1),
Tβ(c) = diag(1, c, c

−1)). Then T consists of matrices T (c) = Tα(c
2)Tβ(c

2).
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We then have TX = TαTβ . Similarly, setting Π(Y ) = {γ, δ} we have
tori TX = TY = TγTδ. A direct calculation using the action of X,Y on
V shows that each of the tori Tα, Tβ , Tγ , Tδ have weight decomposition:
(±1)12, (±2)6, (±3)4, 012. Writing Tγ(c) = Tα(cr)Tβ(cs) and using the known
action of Tα, Tβ on V , we conclude that Tγ ∈ {Tα, Tβ , Tα+β}. Similarly, for
Tδ. Now NG(TX) induces S3 on {Tα, Tβ , Tα+β}, so conjugating, if necessary,
we may now assume that Tα = Tγ and Tβ = Tδ. Indeed, replacing Π(Y ) by
−Π(Y ), if necessary, we may assume that Tα(c) = Tγ(c) and Tβ(c) = Tδ(c)
for all 0 6= c ∈ K.

Define a further 1-dimensional torus R < X to consist of the matrices
R(c) = T (c)Tα(c

−1) = diag(c, c, c−2). Then R = CX(Jα), where Jα is the
fundamental SL2 in X corresponding to α. This torus plays a similar role
in Y .

We will need the labellings of the Dynkin diagram of G afforded by R
and Tα. For this we work with the embedding of Y in D. This embedding
is given via the adjoint representation of Y where we take as basis

{eγ+δ, eγ ,−eδ,−hγ , hδ, e−δ, e−γ ,−e−γ−δ}.

In this basis R has weights 3, 0, 3, 0, 0,−3, 0,−3 and Tα = Tγ has weights
1, 2,−1, 0, 0, 1,−2,−1 from which we determine the corresponding labellings
of the Dynkin diagram of D. Now D has semisimple rank 7 and it is an easy
matter to use use these labellings to determine the precise labellings of the
Dynkin diagram of G. We find that R, Tα determine labellings as follows

R : 0003(−3)3(−3)

Tα : 000(−1)3(−3)3.

From this we find that C = CG(R)
′ = A1D5, with Π(C) = {α5 + α6} ∪

{α1, α3, α4+α5, α2, α6+α7} (where Π(G) = {α1, . . . , α7}). Of course Jα < C
and from the above labelling of Tα we see that Tα centralizes the A1 factor
of C.

Using the Tα-labelling of the Dynkin diagram of G we see that Tα deter-
mines a labelling of the D5 Dynkin diagram where all labels are 0 except for
a 2 over the triality node. It follows that Jα < D5 and Jα acts as 2⊕2⊕2⊕0
on the natural 10-dimensional D5-module. In particular, CD5(Jα) = F is of
type A1 (one of the factors in an SO3 ⊗ SO3 subgroup).

The above analysis also applies to Jγ < CG(R). Now Jγ and Jα share the
torus Tα, so conjugating within D5 by an element centralizing Tα we may
assume that Jα = Jγ . Notice that the conjugation also centralizes R and



96 MARTIN W. LIEBECK AND GARY M. SEITZ

hence TX . A consideration of weights shows that Uα = Uγ and U−α = U−γ
So we may assume the corresponding root vectors are equal; that is eα = eγ
and fα = fγ .

We will require a precise expression for eα. We take the basis of L(Y )
given earlier. Choose signs so that [eγeδ] = eγ+δ. This determines the
embedding of L(Y ) into sl8. Next we choose an isogeny of SL8 to D for
which the differential sends the usual generating set of elementary matrix
units above and below the main diagonal to the corresponding elements eμ
and fμ, respectively, where μ is among the positive roots defining D.

In this way we get expressions for eα in terms of the usual basis for L(D).
We use signs for commutators among the root vectors of L(G) as given in
the E7 table of [13, p.416]. With this convention there are differences in
signs between Lie brackets of the usual generators of sl8 and those given in
[13] for the base of D. Taking this into account we obtain

eα = eγ = −e0001100 − 2e0111100 + e1111100 + e1011111 − e0101111.

At this point we proceed in a series of lemmas. We summarize notation as
follows. As above R < X is the 1-dimensional torus with CX(R) = RJα and
CG(R) = RD5A1. This last group is a Levi factor of a parabolic subgroup
P with unipotent radical Q, where L(Q) is the sum of all weight spaces of
R for positive weights. Further, Jα < D5 and CD5(Jα) = F , where on the
usual orthogonal module for D5, JαF acts as the sum of a trivial module
and 2⊗ 2.

Let L3 denote the R-weight space of L for weight 3. Note that L(Q) =
L3 ⊕ L(Q′). We have eβ , eδ ∈ L3. In the next few lemmas we analyse
the action of RJαFA1 on L3, ultimately showing that eβ and eδ must be
conjugate under RFA1 (see Lemma 4.1.10).

Lemma 4.1.5 L3 ↓ JαFA1 = (3⊗ 1⊗ 1)⊕ (1⊗ 3⊗ 1).

Proof To see this first note that L3 ↓ D5A1 is a spin module for D5
tensored with a natural module for the A1. Restricting the spin module to
JαF and using [23, 2.13] we have the assertion.

Let Y denote the summand 1⊗ 3⊗ 1 given in the last lemma. Also, let
Ŷ denote the sum of the Tα-weight spaces of L3 for weights 1,−1.

Lemma 4.1.6 (i) Y < Ŷ , dim Ŷ = 24 and dimY = 16.
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(ii) There is an F -invariant decomposition Y = Y + ⊕ Y − such that
Y + = [eα, Y

−].

(iii) There is an F -invariant decomposition Ŷ = Ŷ + ⊕ Ŷ − such that
Ŷ + = [eα, Ŷ

−].

Proof Part (i) is clear from Lemma 4.1.5. Then (ii) and (iii) follow by
decomposing Y and Ŷ with respect to Tα-weight spaces corresponding to
weights 1,−1, respectively.

Lemma 4.1.7 (i) For v ∈ Ŷ −, there is an expression

v = a1e0001000 + a2e0101000 + a3e0011000 + a4e0111000+
a5e1011000 + a6e1111000 + a7e0001110 + a8e0101110+
a9e0011110 + a10e0111110 + a11e1011110 + a12e1111110.

(ii) If also v ∈ Y , then

a1 = −a4, a7 = −a10, a2 = a3 + 2a5, a8 = a9 + 2a11.

Proof The first expression is obtained simply by listing all root vectors
which afford R-weight 3 and Tα-weight −1 and then writing v as a linear
combination of these root vectors.

For (ii) we take v ∈ Y and use the relation [[eαv]eα] = 0. Calculation
gives

[eαv] = (a4 + 2a1)e0112100 + (a6 − a1)e1112100 + (2a7 + a10)e0112210
+(a12 − a7)e1112210 − (a3 + 2a5)e1122100 − (a9 + 2a11)e1122210
+(a2 − a5)e1112111 + a4e1122111 + (a8 − a11)e1112221
+a10e1122221 − a3e0112111 − a9e0112221.

At this point a further calculation yields

0 = [[eαv]eα] = 2(a4 + a1)e1123211 − 2(a7 + a10)e1123321
+2(a3 − a2 + 2a5)e1223211 + 2(a8 − a9 − 2a11)e1223321,

which gives the assertion.

Lemma 4.1.8 Define φ : Ŷ − → L(Q)′ by φ(v) = [v, [eαv]]. Then

(i) φ(Ŷ −) = 〈e1123210, e1223210, e1123221, e1223221〉.

(ii) φ(Ŷ −) is an (FA1)-invariant subspace of L(Q)
′ on which A1 acts

trivially and F acts as 2⊕ 0.

(iii) φ(Y −) is 1-dimensional, affording a trivial module for FA1.
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Proof (i) This involves a direct calculation using the E7-structure con-
stants presented in [13, p.416]. We begin with v as in Lemma 4.1.7(i). We
then compute [eαv], obtaining the expression as in the proof of 4.1.7, and
then [[eαv]v]. We find that φ(v) is a linear combination of the indicated
vectors in (i), with coefficients as follows:

e1123210 : −a1(a9 + 2a11)− a3(a12 − a7) + a5(2a7 + a10)
+a7(a3 + 2a5) + a9(a6 − a1)− a11(a4 + 2a1)

e1223210 : −a2(a9 + 2a11)− a4(a12 − a7) + a6(2a7 + a10)
+a8(a3 + 2a5) + a10(a6 − a1)− a12(a4 + 2a1)

e1123221 : a1a10 − a3(a8 − a11)− a5a9 − a7a4 + a9(a2 − a5) + a11a3

e1223221 : a2a10 − a4(a8 − a11)− a6a9 − a8a4 + a10(a2 − a5) + a12a3.

By choosing appropriate ai, aj 6= 0 and taking all others equal to 0 we easily
check that φ(Ŷ −) is the 4-space indicated in (i).

For (ii) first note that that L(Q)′ affords the natural module for the
D5 factor of CG(R) = RD5A1 and the trivial module for A1. Hence F
acts on L(Q)′ as the sum of three adjoint modules and a trivial module.
Consequently, any F -invariant 4-space of L(Q)′ satisfies the conclusion of
(ii). So (ii) will follow if we can show that φ(Ŷ −) is FA1-invariant. If
x ∈ FA1, then we know that xeα = eα. So it is immediate from the
definition of φ and the fact that FA1 preserves the Lie bracket on L, that
φ(xv) = φ(v) for v ∈ Ŷ −.

Finally, consider φ(Y −). Since Y − is F -invariant, the above argument
shows that its image under φ is also F -invariant. For v ∈ Y − the conditions
in Lemma 4.1.7(ii) hold. Using these relations one checks that the above
coefficients of e1223210 and e1123221 are both 0. So from (ii) it follows that
φ(Y −) is either a 1-space or 0. To complete the proof we note that setting
a2 = a3 = a12 = 1 and all other ai = 0, the conditions of 4.1.7(ii) are
satisfied and φ(v) = −e1123210 + e1223221. Hence (iii) holds.

Lemma 4.1.9 Regarding φ(Y −) = K+, the map v → φ(v) is an FA1-
invariant quadratic form on Y −.

Proof In the penultimate paragraph of the proof of Lemma 4.1.8, we
verified that φ(xv) = φ(v) for x ∈ FA1, v ∈ Y −. So it will suffice to show
that φ is a quadratic form. For y ∈ Y − set y∗ = [eαy]. Then for v, w ∈ Y −
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and a, b ∈ K we have

φ(av + bw) = [(av + bw)(av + bw)∗] = [(av + bw)(av∗ + bw∗)]
= a2[vv∗] + b2[bb∗] + ab[vw∗] + ab[wv∗]
= a2φ(v) + b2φ(w) + ab(v, w),

where (v, w) = [vw∗] + [wv∗]. Notice that this last expression is symmetric
in v, w and is also bilinear. So this establishes the lemma.

We can now establish a key lemma.

Lemma 4.1.10 eβ and eδ are conjugate under the action of RFA1.

Proof We consider the action of RFA1 on the space Y
−. Observe that

eβ, eδ ∈ Y −. We have just seen that FA1 preserves the quadratic form φ
on this space and we know that R induces scalars. We next observe that
working within the root systems of our A2 subgroups X and Y we certainly
have φ(eδ) = φ(eβ) = 0. Hence, eδ, eβ are singular vectors with respect to
this quadratic form.

Now R does not preserve the form, but it does preserve the variety of
singular vectors, hence RFA1 acts on this variety. Let v = eβ (resp. eδ),
and suppose that C = CRFA1(v) has positive dimension. Then v centralizes
L(C). Also, JαR centralizes C and 〈L(JαR), v〉 = L(PX) (resp. L(PY )),
the Lie algebra of a maximal parabolic of X (resp. Y ). So L(PX) (resp.
L(PY )) has fixed points on L. On the other hand, L ↓ X = 223/03/30/114

(or 223/03/30/117 if p = 5), so that no composition factor has such a fixed
point. Similarly for L(PY ). This is a contradiction, showing that C

0 = 1.

The variety of singular vectors in Y − has dimension 7. It is also an
irreducible variety as SO8 acts transitively. It follows from the above that
RFA1 has an open dense orbit and both eβ , eδ lie in this orbit, so this
establishes the lemma.

Lemma 4.1.11 There is a proper subspace of L left invariant by both X
and Y .

Proof We will consider weight spaces in L for L(TX) = L(TY ). We have
seen that weights are the same for TX and TY , so there is no ambiguity in
this.

By Lemma 4.1.10 we can conjugate by an element of RFA1 to assume
that eβ = eδ. Hence we may assume that L(PX) = L(PY ), where as in the
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last lemma these are the Lie algebras of maximal parabolic subgroups of
X,Y respectively.

Of particular interest is the weight space for weight −03, the low weight
in an irreducible module of high weight 30. The only composition factors of
L ↓ X containing this weight are 30 and 22. Hence the −03 weight space,
say E, has dimension 4.

For the moment we work with X. If p > 5 then L has an X-submodule,
say L0(X), of the form 22 ⊕ 22 ⊕ 22 ⊕ 30 (see [23, 1.9]). And if p = 5
then W (22) = 22/11 and we see that there is a submodule, which we
again call L0(X), having a homogeneous submodule U of type 11 satisfying
L0(X)/U = 22⊕ 22⊕ 22⊕ 30.

In either case E ⊆ L0(X), and we can choose a basis v1, v3, v3, v4 of E
such that for p > 5 each vi belongs to one of the summands of L0(X), and
for p = 5 this is true in L0(X)/U .

Now take v to be any nonzero linear combination of the vi’s and con-
sider the subspace Sv(X) = 〈L(PX)v〉. Clearly Sv(X) is invariant under
L(PX) and lies in L0(X). Consider the projections of Sv(X) to the direct
summands in L0(X) or L0(X)/U . As L(PX) contains a Borel subalgebra
containing L(TX), each nonzero projection contains an invariant 1-space sta-
bilized by this Borel subalgebra. Such 1-spaces are uniquely determined in
the projection and afford the high weight of the summand, either 22 or 30.

It follows that there is a uniquely determined 1-space, say 〈v〉 < E, with
the property that for all v′ ∈ 〈v〉, Sv′(X) contains no weight vector of weight
22. This conclusion holds whether or not p = 5. Since L(PX) = L(PY ), we
are led to the same subspace 〈v〉 whether we are working with X or Y .

Note that both L ↓ X and L ↓ Y have a unique direct summand of
type 30. These summands are also direct summands of L0(X) and L0(Y ),
respectively, and each contains the weight vector v. From the representation
theory of L(X) and L(Y ) we see that Sv(X) and Sv(Y ) must equal the
irreducible summand 30. However, Sv(X) = Sv(Y ), so this establishes the
lemma.

At this point we can establish Proposition 4.1.4. Indeed, the proof of
Lemma 4.1.11 shows that the subspace constructed is S-invariant. Hence
Lemma 2.2.10(iii), implies that X = Y . Moreover, Y was chosen to lie in
a subsystem group of type A7. This subsystem group has nontrivial center,
so the proof is complete.
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This completes the proof of Theorem 4.1 for p = 5.

4.2 The case p = 3

Suppose that p = 3. Recall that L = L(G)′, which is equal to L(G) except
when G = E6, in which case L has dimension 77 (see Lemma 2.1.1).

Let X = A2 be maximal S-invariant in G with p = 3. Recall that
by Lemma 2.2.10(v), X is of adjoint type so that all composition factors of
L ↓ X have high weight ab with a ≡ b mod 3. Let nλ denote the multiplicity
of VX(λ) as a composition factor of L ↓ X.

Let Π(X) = {α, β} be a fundamental root system for X, and for γ ∈
Σ(X)+, the positive roots in the root system for X, let eγ be the corre-
sponding root vector in L(X) and fγ = e−γ .

Define I = L(X)′. As in the proof of Lemma 2.1.1, we have dim I = 7,
and as an X-module I affords the irreducible VX(11). Recall our def-
inition from Section 2.2 that A = CL(I). As before we let T1 denote
the 1-dimensional torus consisting of the images of the diagonal matrices
T1(c) = diag(c, c, c

−2).

We begin with a lemma giving the composition factors of various Weyl
modules for A2 (in characteristic 3).

Lemma 4.2.1 For X = A2, p = 3, the Weyl modules WX(ab) have the
following composition factors.

WX(11) = 11/00
WX(30) = 30/11
WX(22) = 22
WX(41) = 41/30/03/11/00
WX(33) = 33/41/14/30/03/11/002

WX(60) = 60/41/00
WX(52) = 52
WX(44) = 44/60/06/33/41/14/30/03/11/002

Proof The composition factors can be found using either the computer
program described in [13] or the Jantzen Sum Formula.

More precise information will be required for the structure of WX(41)
and WX(33).
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Lemma 4.2.2 Assume X = A2, with p = 3.

(i) WX(33) has simple socle with high weight 11.

(ii) WX(14) and WX(41) have simple socle with high weight 11.

(iii) WX(14) and WX(41) both embed in WX(33).

(iv) The maximal submodule of WX(33) itself has a unique maximal
submodule with simple quotient 00.

Proof The previous lemma gives the composition factors of all these Weyl
modules. We work within WX(33). If v is a maximal vector, then this Weyl
module is spanned by images of vectors of the form f cα+βf

b
βf
a
αv.

Weight spaces in the Weyl module WX(33) have the same dimension as
in the correspondng irreducible module in characteristic 0. In particular,
the weight spaces for weights 03, 30, 11 have dimensions 2, 2, 3 respectively.
It follows that bases for these weight spaces are as follows:

03 : fα+βfαv, fβf
2
αv

30 : f2βfαv, fα+βfβv

11 : f2α+βv, f
2
βf
2
αv, fα+βfβfαv.

The module Y = 〈Xfαv〉 is an image of the Weyl module of high weight
14. The irreducible module VX(14) has dominant weights 03, 30, 11 appear-
ing with respective multiplicities 1, 0, 1. It follows from the above that Y
must have composition factors of high weight 03, 30 and 11. Since the TX -
weight space of Y for weight 30 is spanned by w = f2βfαv, and since 30 is not
subdominant to an other weight in the maximal submodule of Y , we see that
〈Xw〉 spans an image of WX(30). Also, since we know fαw = fαf2βfαv =
fβfαfβfαv+ fα+βfβfαv = f

2
βf
2
αv+ fβfα+βfαv+ fα+βfβfα 6= 0, we conclude

that 〈Xw〉 =WX(30).

It follows from the above and symmetry (interchanging the roles of α and
β or applying a graph automorphism to all considerations) that the socle of
WX(33) cannot contain composition factors of high weights 41, 14, 30, 03.

We also claim that 00 is not present in the socle. Let T (11) = 00|11|00 be
the indecomposable tilting X-module of high weight 11. Then T (11)⊗ 22 is
a tilting module of high weight 33. SinceWX(33) is a subquotient of TX(33),
we see from the universal property of Weyl modules that WX(33) occurs as
a submodule of this tensor product. On the other hand, HomX(00, T (11)⊗
22) ∼= HomX(00 ⊗ T (11), 22) = HomX(T (11), 22) = 0. Hence, 00 does not
occur as a submodule of T (11)⊗22 and hence not as a submodule ofWX(33)
either. This proves (i).
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We now return to consideration of Y , aiming to prove (ii). We have
seen that 14, 30, 03, 11 all occur as composition factors of Y , which is an
image of WX(14). From (i) we see that the socle of Y is 11. So it suf-
fices to show that Y is isomorphic to WX(14), which will also establish
(iii). Assume this is not the case. Then Y is isomorphic to the quotient
of WX(14) by a trivial module. Let Y

′ = 〈Xfβv〉 denote the submod-
ule generated by a vector of weight 41. Then Y ′ is the image of Y under
the action of a graph automorphism of A2, so that Y

′ is the quotient of
WX(41) by a trivial module. Then WX(33)/(Y + Y

′) ∼= 33/002. However,
any extension of 33 by 00 factors through a Frobenius morphism and hence
dimExtX(00, 33) = dimExtX(00, 11) = 1. This implies that WX(33) has a
quotient 00, a contradiction to the universal property of Weyl modules.

Finally, consider (iv). We have seen that the composition factors 30,
03, 11, 00 all occur within the submodule generated by a weight vector
of weight 14 and similarly for 41. Now 00 occurs with multiplicity 2 in
WX(33). If there is a quotient of type 33/14, then there would also be
one of type 33/41. But then there would be a submodule with composition
factors 30/03/11/002, leading to a submodule 00 and contradicting (i). So
there are no such images and (iv) follows.

Corollary 4.2.3 We have the following co-socle series:

WX(41) = 41|(30 + 03 + 00)|11
WX(33) = 33|00|(41 + 14)|(30 + 03 + 00)|11.

Proof The composition factors are given by 4.2.1, from which can be
deduced those pairs of such composition factors between which there exists
a nontrivial extension. The conclusion follows from this information together
with the universal property of Weyl modules.

In the next lemma, T (11) denotes the indecomposable tilting module for
X of high weight 11. This is a uniserial module with series 00|11|00.

Lemma 4.2.4 (i) An X-module of shapeW (11)|11 is isomorphic toW (11)⊕
11.

(ii) A module of shape T (11)|11 is isomorphic to T (11)⊕ 11.

(iii) A module of shape W (11)|14 or W (11)|41 has a 00 submodule.

(iv) A module of shape T (11)|14 or T (11)|41 has a 00 submodule.
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Proof (i) Let v be a weight vector of weight 11 not contained in the given
11 submodule. Then the hypothesis implies that 〈Xv〉 is a cyclic module
isomorphic to W (11) which gives the conclusion.

(ii) Consider a module B = T (11)|11. Since T (11) has a submodule
W (11) we see from (i) that B has a trivial submodule. Working modulo
this trivial module and noting that dimExtX(11, 00) = 1 we see that B has
a 11 quotient. But then the kernel is isomorphic to T (11) and the required
decomposition is the sum of this T (11) and the given 11 submodule.

(iii) It will suffice to settle the case of J =W (11)|14. Consider the dual
module, J∗ = 41|(00|11). Let v ∈ J∗ be a maximal vector of weight 41 and
generate C = 〈Xv〉 to get a cyclic module which is an image of W (41). By
Lemma 4.2.2, 11 is the socle of W (41), so it follows from Lemma 4.2.1 that
the cyclic module C cannot contain the 11 submodule. Hence C must be
irreducible, so C = 41 and J∗ has a 00 quotient module. Taking duals we
have the assertion.

(iv) Let J be the module in question and consider J∗ = 41|T (11). Let
v ∈ J∗ be a weight vector of weight 41 and form the cyclic module F = 〈Xv〉,
which is an image of the Weyl module W (41). Since the socle of WX(41)
is 11, we see that F cannot contain 11 as composition factor (otherwise 00
would occur as a submodule). Then F = 41 or 41|00 and so J∗/F has
quotient 00. Hence, so does J∗ and taking duals we have the assertion.

The next lemma is the A2-analogue of Lemma 3.2.3.

Lemma 4.2.5 Suppose that V is an X-invariant submodule of L for which
the largest T -weight among composition factors is afforded by irreducibles
of high weight (ab)(p) and (ba)(p) for some a, b, and only by these irre-
ducibles. Then either A = CL(I) has VX(ab)

(p) as a composition factor,
or npa−2,pb+1 > 0, or npa+1,pb−2 > 0.

Proof Let v ∈ L be a maximal vector of weight (ab)(p). Then eα, eβ
annihilate v. If also fα, fβ annihilate v then v ∈ A, and so A has V (ab)(p)

as a composition factor. Otherwise, either w = fαv or w = fβv is nonzero
and has weight (ab)(p) − α or (ab)(p) − β, respectively. However, this is not
a weight of VX(ab)

(p) or VX(ba)
(p) and by our hypothesis on maximality of

T -weights we see that this weight cannot occur within a composition factor
of high weight other than that afforded by w. It follows w is fixed by UX
and so the universal property of Weyl modules implies that L ↓ X has a
composition factor of high weight equal to that of w. The conclusion follows,
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as this weight is pa− 2, pb+ 1 or pa+ 1, pb− 2.

As usual we shall use the Weight Compare Program to determine the list
of possible composition factors of L ↓ X. For this the following two lemmas
are useful.

Lemma 4.2.6 If the highest T -weight on L is at most 8, then n00 ≤ 2n30
and 2n00 ≤ n11 + n30.

Proof By hypothesis the composition factors of L ↓ X are among 22, 30,
03, 11 and 00. By Lemma 4.2.1 the relevant Weyl modules are

WX(22) = 22, WX(30) = 30|11, WX(11) = 11|00.

Thus the 22 composition factors form a non-degenerate subspace V0, and
V = V ⊥0 has no 22 composition factors. Let V1 = 〈Xv : v ∈ V 〉, where v is
a maximal vector of weight 30. Then as an X-module V1 = 30

n30/11b with
b ≤ n30. Using Lemma 2.1.5(ii) and (iii) we see that V1 is totally singular.
Now work in V2 = (V ∩ V ⊥1 )/V1. As an X-module, V2 = 11

n11−2b|00n00 .
Generating in V2 with maximal vectors of weight 11 gives a submodule
11n11−2b|00c of V2, where c ≤ n11 − 2b, and in V2 we have (00c)⊥/00c =
11n11−2b⊕00n00−2c. Therefore V2 has a submodule 00n00−c. Since CL(X) = 0
by Lemma 2.2.10(iv), this must be blocked by the submodule 11b of V1, and
so n00 − c ≤ b.

From the above we have established the following inequalities:

n00 − c ≤ b, c ≤ n11 − 2b, 2c ≤ n00, b ≤ n30.

Hence
n11 + n30 ≥ 3b+ c ≥ 3n00 − 2c ≥ 2n00,

and
n30 ≥ b ≥ n00 − c ≥ n00/2,

as required.

Lemma 4.2.7 Assume all composition factors ab of L ↓ X satisfy a+b ≤ 9
and ab 6= 17, 71. Then either n00 = 0, or n00 < n11 + n41 + n14 + n33.

Proof We shall show that only irreducibleX-modules ab, with a ≡ b mod 3
satisfying the hypothesis and for which ExtX(ab, 00) 6= 0 are 11, 41, 14 and
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33, and for each of these ExtX(ab, 00) is 1-dimensional. This will give the
conclusion. Lemmas 4.2.1 and 4.2.2, together with the universal property of
Weyl modules, cover all cases except 60, 06, 90, 09, 63, 36 and 44. In each of
these cases except 44, we see that the irreducible in question cannot extend
the trivial module, since otherwise so would the corresponding restricted
irreducible module 20, 02, 10, 01, 21, 12, and this is not the case (see [23,
1.9]). Finally, for the 44 case we have

ExtX(44, 00) = ExtX(33⊗ 11, 00) ∼= ExtX(33, 11),

which is 0 by Lemma 4.2.2(i).

Using the Weight Compare Program, together with the previous two
lemmas and the fact that n11 > 0 (as L(X) ≤ L(G)), we obtain the following
list of possibilities for the composition factors of L ↓ X. Denote by n3 the
number of T -weights on L which are divisible by p = 3.

Lemma 4.2.8 The possibilities for L ↓ X are:

G Case L ↓ X T -labelling n3
E6 (1) 33/41/14/302/032/112/002 022020 30

(2) 22/302/032/115/003 220002 30
(3) 41/14/302/032/113/002 200202 24
(4) 44/33/30/03/112/00 222022 24
(5) 90/09/44/332/11/00 202222 30

E7 (6) 41/14/222/302/032/113/004 0020020 43
(7) 44/60/06/33/41/14/30/03/112/003 2002020 43

E8 (8) 412/142/222/306/036/1110/004 00002000 80
(9) 52/25/33/41/14/302/032/113/004 00200020 86
(10) 63/36/71/17/44/332/41/14/302/032/ 00020020 86

112/003

(11) 90/09/71/17/44/60/06/334/41/14/ 00020020 86
302/032/112/00

(12) 63/36/443/332/302/032/116/003 00020020 86
(13) 90/09/71/17/44/336/41/14/30/03/112/005 00020020 86
(14) 90/09/443/60/06/334/302/032/116/00 00020020 86
(15) 90/09/443/336/30/03/116/005 00020020 86
(16) 33/413/143/307/037/119/0010 00200002 86
(17) 44/52/25/33/30/03/113/003 00020002 80
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Lemma 4.2.9 Cases (6) and (7) of Lemma 4.2.8 do not occur.

Proof Here G = E7 and we will make use of V = VĜ(λ7), the restricted

irreducible module of dimension 56. Let X̂ denote the connected preimage
of X in the simply connected group Ĝ. Since Z(Ĝ) has order 2, we have
X̂ ∼= X, an adjoint group. Note that expressed in terms of fundamental
roots, λ7 =

1
2(2346543).

In case (6) the T -labelling is 0020020, from which we find that the T -
weights on V are 82/64/ . . .. Recalling that all composition factors must
be representations of the adjoint group, we see that V ↓ X̂ = 222/002.
Then Lemma 4.2.1 shows that X̂ has fixed space on V of dimension 2 and
Lemma 2.2.13 yields a contradiction.

Now consider case (7) where the labelling is 2002020. Here we check that
V has T -weights 122/102/84/64/ . . .. The action is adjoint so V ↓ X̂ must
have composition factors 60, 06 or 332. The former pair yields T -weights
122/62/ . . ., while the latter yields T -weights 122/64/ . . .. In either case we
find that there must be two composition factors affording T -weight 10, so
that 41, 14 must occur. These composition factors contribute T -weights
102/84/62/ . . .. We therefore conclude that V ↓ X̂ = 60/06/41/14/002.
Note that 60 does not extend the trivial module (such an extension factors
through a Frobenius morphism, and 20 clearly does not extend the trivial
module). Using the fact that V is self-dual we easily argue from Lemma 4.2.1
that X̂ has fixed space of dimension 1 or 2 on V . Hence Lemma 2.2.13 again
yields a contradiction.

Lemma 4.2.10 Case (3) of Lemma 4.2.8 does not occur.

Proof Here G = E6 and we will make use of the irreducible Ĝ-module
V = VĜ(λ1) of dimension 27. Let X̂ denote the preimage of X in the simply

connected group Ĝ.

The T -labelling is 200202. As λ1 =
1
3(234654), it follows that T̂ has

weights 81/62/44/ . . . on V . Hence, the highest weight of X̂ on V is one of
22, 31, 13, 40, 04. If the first case occurs, then X̂ is irreducible on V and it
follows from [41, Theorem 1] that X̂ is contained in a uniquely determined
subgroup G2 of Ĝ. This contradicts the maximality of X.

In the remaining cases X̂ acts as a simply connected group on V , so
that Z = Z(L(X̂)) = Z(L(Ĝ)), inducing scalars on V . In particular, all
composition factors afford faithful action of Z. In each case the composition
factor for the largest weight affords T̂ -weights 81/61/41/ . . .. So there must
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be another composition factor affording T̂ -weight 6. The only possibilities
with Z acting nontrivially are 21 and 12. One of these must occur, with
T -weights 6/42/ . . .. This leaves a composition factor with largest T -weight
4 and this is not possible by dimension considerations, since dim V (31) =
dim(40) = 9, dimV (21) = 15.

Lemma 4.2.11 Case (8) of Lemma 4.2.8 does not occur.

Proof Here we have L ↓ X = 412/142/222/306/036/1110/004. Again let
T1 = {diag(c, c, c−2) : c ∈ K∗} < X. It is possible to explicitly compute both
the fixed points of T1 on L and also the T -weights on this fixed point space.
For purposes of this computation it is convenient to note that 20 ⊗ 02 =
22/11/002.

The result of the computation is that dimCL(T1) = 68 and that T has
non-negative weights 46, 218, 020 on CL(T1). Now CG(T1) is a Levi factor, so
the only possibility is CG(T1) = D6T2.

We now consider possible T -labellings of the Dynkin diagram of D6 that
are consistent with the weights indicated. We find that there is no possible
labelling and so this is a contradiction.

Lemma 4.2.12 Cases (2) and (5) of Lemma 4.2.8 do not occur.

Proof We shall establish that in each of these cases A 6= 0. Since n3 = 30
in these cases, this leads to a contradiction by Lemma 2.3.4.

In case (5) we have A 6= 0 by Lemma 4.2.5.

Now consider case (2). Here we have L ↓ X = 22/302/032/115/003. The
Weyl module WX(22) is irreducible so we can write L = 22 ⊥ J , where J
has the remaining composition factors.

Suppose that A = 0. Then if v is any vector of weight 30 we have
〈Xv〉 = 30/11. It follows that there is a submodule R = 302/112 with socle
112. Then working entirely in J we have R⊥/R = 11/003. There are two
possibilities for this self-dual module: 11 ⊕ 003 or T (11)⊕ 00.

In the first case, the preimage of 003 over R must yield a submodule 00
of L, which is a contradiction. Suppose the second case occurs. Here the
preimage, say F , of T (11) has a quotient T (11)|30.

We claim that such a module must be a direct sum T (11) ⊕ 30. For
consider the dual of such a module. This has submodule T (11) with quotient
03. Setting v to be a weight vector of weight 03, 〈Xv〉 is an image of the
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Weyl module WX(03) = 03/11. But T (11) is uniserial of shape 00|11|00, so
this forces 〈Xv〉 = VX(03). Taking duals again, we have the claim.

Two applications of the claim show that F has a submodule of the form
T (11)|112. Let v be a weight vector of weight 11 with v 6∈ 112. Then
〈Xv〉 ∼=WX(11), hence we again have a fixed point and a contradiction.

Lemma 4.2.13 Cases (10)− (15) of Lemma 4.2.8 do not occur.

Proof We first claim that in each of these cases A has a composition factor
which is one of 63, 36, 90, 09 or 33. In cases (14) and (15) this is immediate
from Lemma 4.2.5.

Next consider cases (10), (11) and (13). We prove the claim by the same
argument for each of these, so we give the argument just for case (10). Let
v, w be vectors of weights 63, 36 respectively. If there is no submodule 63 or
36, then 〈Xv,Xw〉 = (63+36)|R where either R has 44 as a composition or
both 71 and 17 occur as composition factors. Moreover R is totally singular
by Lemma 2.1.5. However, this is impossible as each of 71, 17, 44 appears in
L ↓ X with multiplicity 1.

Now consider case (12), where establishing the claim is somewhat more
complicated. First note that if L ↓ X contains a submodule where 33 is the
highest weight, then there is a submodule 33 by Lemma 4.2.5, since neither
41 nor 14 occur as composition factors of L. So assume there is no such
submodule.

Let R be the maximal submodule of S = 〈Xv〉, where v is a vector of
weight 63. Another application of Lemma 4.2.5 shows that 44 occurs as
a composition factor of R. Indeed, Z = 〈Xfαv〉 is a nontrivial image of
WX(44). First assume that 33 is also a composition factor of R. The weight
space of S for weight 33 is generated by fα+βfαv, fβf

2
αv, both of which lie

in Z. It follows that Z contains a submodule for which 33 is the highest
weight, contradicting the previous paragraph.

Now assume that 33 does not occur as a composition factor of R. By
2.1.5, R is singular and hence so is Z. Consider H = Z⊥/Z = (63 + 36) ⊥
(44/332/ . . .). In the second factor consider submodules generated by a
vector of weight 44. Each is an image of a Weyl module, and if any of
these images have 33 as a composition factor, then generating by a suitable
44 weight vector in the preimage we find that L has a submodule where
33 is the highest weight. This yields a contradiction as above. So we may
assume that all cyclic modules generated by 44 weight vectors of H yield
submodules with no 33 composition factor. It follows that L has an image
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of form 44/332/ . . . Within this quotient generate by a weight vector of
weight 44 and factor out the corresponding submodule. As 33 occurs with
multiplicity 1 in WX(44), we conclude that L has a quotient for which the
highest weight of a composition factor is 33. But L is self-dual, so there must
also be a submodule with the same property, which is again a contradiction.
This establishes the claim.

We have now established our claim that 63, 36, 90, 09 or 33 appears as a
composition factor of A.

By Lemma 2.3.4 we have A ≤ L(D), and since dimD = n3 = 86 in
each of cases (10)-(15), we have D = A2E6. The T -labelling of the Dynkin
diagram of G is 00020020 in each case, and the non-negative T -weights
divisible by p = 3 are 024, 620, 129, 182. It follows that the T -labelling of
D = A2E6 is

6 0, 0 0 0 6 0 0

By Lemma 2.3.6, R, the subalgebra of A generated by nilpotent elements,
projects faithfully to L(A2) ⊆ L(D). However, R has a vector of T -weight at
least 12, whereas because of the labelling 6 0 on the A2 factor of D, L(A2)
has no T -weight vectors of weight more than 6. This is a contradiction,
completing the proof.

Lemma 4.2.14 Cases (4) and (17) of Lemma 4.2.8 do not occur.

Proof Suppose first that A has a composition factor 33 in either of these
cases. By Lemma 2.3.4, A ⊆ L(D) where D = A32 or A8 (in case (4) or
(17) respectively). By our supposition we can choose an element e ∈ A of
T -weight 12. From the labelled diagram we see that the largest T -weight
of L(D) is 12, so the square of the projection of e in each factor L(Ak)
of L(D) is zero. We can then apply Lemma 2.3.9 to elements of 〈e〉 and
obtain a 1-dimensional unipotent subgroup of D which stabilizes each ad(e)-
invariant subspace of L(D)′. In particular, the subalgebra R of A generated
by all nilpotent elements is invariant under this unipotent group. But now
Lemma 2.3.5 gives a contradiction.

So assume now that A has no composition factor 33.

In case (4) we have L(G) ↓ X = 44/33/30/03/112/00. Let C = 〈Xv〉,
where v is a weight vector of weight 44. Then C is an image ofW (44), and we
let B be the image of the maximal submodule ofW (44). Lemma 2.1.5 shows
that B is a singular subspace. Since it appears with multiplicity 1 in L ↓ X,
33 does not appear as a composition factor of B and so 33 is a composition
factor of B⊥/B. In this quotient, the factor 44 is non-degenerate, so there
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is a module B′ > B such that 33 is the highest weight of B′. Applying
Lemma 4.2.5 to B′ we conclude that 41 or 14 must occur as a composition
factor of B′, a contradiction.

In case (17), L(G) ↓ X = 44/52/25/33/30/03/113/003 and the argument
is identical to that of the previous paragraph after an initial reduction. By
Lemma 4.2.1, neither 52 nor 25 occurs within the Weyl module of high
weight 44. Hence 44 does not extend either 52 or 25. Since the Weyl
modules W (52) and W (25) are irreducible we have L ↓ X = (52⊕ 25) ⊥ E
for some nondegenerate module E. Now apply the previous argument to E
to obtain a contradiction.

Lemma 4.2.15 Case (9) of Lemma 4.2.8 does not occur.

Proof Suppose first that A has 33 as a composition factor. By Lem-
mas 2.3.4 and 4.2.8 we have A ⊆ L(D) where D = A2E6. The non-negative
T -weights divisible by p are 032, 622, 125, from which we see that the T -
labelling of D can be taken as 60, 006000. However, by Lemma 2.3.6 the
projection of R to L(A2) is faithful, which is impossible as R has a vector
of T -weight 12.

Thus we may assume that A does not have 33 as a composition factor.
We have L ↓ X = 52/25/33/41/14/302/032/113/004. Since the Weyl mod-
ules for high weights 52 and 25 are irreducible we can write L = (52+25) ⊥
M for some module M . In the following we work entirely within M .

Let m ∈ M have weight 33 so that S = 〈Xm〉 is an image of WX(33).
Let R be the image of the maximal submodule. By Lemma 4.2.5 we see that
either 14 or 41 is a composition factor of R. But as R is a singular subspace
only one can occur and we will assume this to be 41.

By Lemma 4.2.2, 11 is the socle of WX(33), so if 11 occurs in S, then
S ∼=WX(33) contradicting the fact that 14 does not occur as a composition
factor. Hence 11 does not occur. Since 14 does not occur as a composition
factor of S, it follows from Lemmas 4.2.2 and 4.2.3 that S = 33/00/41.

Now R is a singular subspace and we set J = R⊥/R (the perp withinM).
Then J is a non-degenerate space of the form 33/302/032/113/002, and the
33 factor splits off as a non-degenerate subspace. Consider the submodule
generated by all weight vectors of weights 30 and 03 in the perpendicular
space to 33. This space has the form (302 + 032)/11e, and Lemma 2.1.5
shows that the subspace E = 11e is singular, so that e ≤ 1. Then working
in J , we have E⊥/E = 33 ⊥ (302 + 032) ⊥ (113−2e/002).

If the preimage over E of the last summand has a 00 submodule, then
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taking preimages over R we get a 00 submodule in L, a contradiction. Hence
there is no such 00 submodule. In particular, 002 cannot be a summand of
E⊥/E. It follows that either T (11) = 00/11/00 occurs as a summand or both
indecomposables 11/00 and 00/11 occur as summands. But both T (11)/11e

and (11/00)/113 yield 00 submodules, as is easily seen by generating by
suitable vectors of weight 11. This completes the proof.

We are left with two remaining cases of Lemma 4.2.8: (1) and (16).
These require substantially more argument than the other cases.

Lemma 4.2.16 Case (1) of Lemma 4.2.8 does not occur.

Proof Here we have L ↓ X = 33/41/14/303/032/112/002. Note that
Lemma 2.3.4 and the fact that dimD = 30 together imply that A = 0. Let
T1 denote the 1-dimensional torus of X for which T1(c) = diag(c, c, c

−2).
Then CX(T1) = T1Jα, where Jα = 〈Uα, U−α〉. It is straightforward to
compute the T1-weights on each of the composition factors of L ↓ X, and
we find that T1 has weights 9

4, 69, 316, 019,−316,−69,−94 on L. (Recall
that L has codimension 1 in L(G).) It follows that up to symmetry under
a graph automorphism, the T1-labelling of G is 300030. Hence CG(T1) =
A1A3T2. One can also determine the action of T on CL(T1) and we find
that T determines the labelling 2, 222 of the A1A3. Working in X we have
T (c) = T1(c)Tα(c), so this is also the labelling afforded by Tα. It follows
that the projection of Jα to the A3 factor has composition factors 3/1 on
the 4-dimensional module VA3(λ1).

Let L3 be the T1-weight space of L for weight 3. There exists a parabolic
subgroup P ofG such that CG(T1) is a Levi factor of P and L3 ∼= L(Q)/L(Q)′,
where Q = Ru(P ). We consider the action of A1A3 on L3, where we let
Π(A3) = {α3, α4, α2}. From [3] we see that L3 ↓ A1A3 = (1⊗010)⊕(0⊗001).

Conjugating by the reflection sα, if necessary, which interchanges L3 with
L−3, we can assume that Jα acts as either 3⊕1 or is indecomposable of shape
1|3 on the summand 100 of L3. We handle these possibilities separately in
two subcases.

Subcase 1. The projection of Jα induces 3⊕ 1 on VA3(λ1).

Here we find that L3 ↓ Jα = (1⊗∧2(3⊕ 1))⊕ (3⊕ 1). Now ∧2(3⊕ 1) =
02⊕ (3⊗1), so 1⊗∧2(3⊕1) = 12⊕5⊕3. It follows that the socle of L3 ↓ Jα
has 1 appearing with multiplicity 3.
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We consider the projection of Uα to A3. Regarding A3 as SL4 and using
a basis of the usual module corresponding to a basis of Tα-weight vectors of
weights 3, 1,−1,−3 we find that

Uα(c) = U4(c)U234(c
3)U6(c),

where here we recall that the A3 has fundamental roots α3, α4, α2 and
Uij...(c) denotes the root element Uαi+αj+...(c). In particular,

〈eα〉 = L(Uα) = 〈e4 + e6〉

(recall ei = eαi), and so eα is a nilpotent element of type A1A1 in L(G).

Let Y = 〈eβ , eα+β〉, the Lie algebra of the unipotent radical of the stan-
dard parabolic subgroup of X corresponding to T1Jα. Then Y is contained
in L3 and is a submodule of high weight 1 with eα+β a maximal vector.

A maximal vector for A1A3 on the 1 ⊗ 010 summand of L3 is given by
e011211 and this affords Tα-weight 5. It then follows from the Tα-labelling
of A1A3 and our expression for Uα that the root vectors {e010111, e001111}
form a basis for the Tα-weight 1 fixed points of Uα on this summand of L3.
In addition, e101100 is a weight 1 fixed vector in the other summand. Hence
there is an expression

eα+β = ae010111 + be101100 + ce001111.

The first two roots generate a subsystem of type A2 and the third root is
orthogonal to this subsystem. If ab 6= 0, then ae010111+be101100 is a nilpotent
element of type A2 and we have a contradiction, since eα+β is conjugate to
eα, of type A1A1. Hence ab = 0 and then c 6= 0.

Next carry out the same considerations for L−3, which affords the dual
module to L3 ↓ A1A3. Here e−5(= e−α5) affords a maximal vector for the
A1A3-submodule 1 ⊗ 010 and it follows that {e−001110, e−010110} is a basis
for the Tα-weight 1 fixed vectors of Uα in this submodule of L−3. Thus we
have an equation

e−β = xe−101000 + ye−010110 + ze−001110.

Reasoning as above we have xy = 0 and z 6= 0.

Working in L(X) we have

[eα+β , e−β ] = eα ∈ 〈e4 + e6〉.
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Consideration of the above expressions for eα+β , e−β shows that an e4 con-
tribution to the commutator can only occur from [e101100, e−101000]. Hence
b, x 6= 0. So at this point we have

eα+β = be101100 + ce001111

e−β = xe−101000 + ze−001110.

From the precise embedding Jα < A1A3 we find that sα = s
s4s2
3 s4s6

(where sα denotes the fundamental reflection in the Weyl group W (X) cor-
responding to α, and si = sαi ∈W (G)).

Applying this to the above equations yields expressions

e−α−β = ±(e−β)
sα = ±xe−101100 ± ze−001111

eβ = ±(eα+β)
sα = ±be101000 ± ce001110.

Now L(X)′ is generated as a Lie algebra by eβ , e−β , eα+β , e−α−β . From
the above expressions for these elements we see that they can all be gener-
ated by 4 pairs of opposite root vectors in L(G). It follows that L(X)′ is
centralized by a 2-dimensional torus in G, contradicting Lemma 2.2.10.

Subcase 2. The projection of Jα induces the indecomposable module 1|3
on VA3(λ1).

Here we proceed as above although the contradiction is easier. One can
realize the indecomposable representation 1|3 as the space of homogeneous
polynomials of degree 3 in the basis for the usual module for Jα. In this way
we can find explicit matrices for Jα (acting from the left) and obtain

Uα(c) = U4(2c)U3(c)U34(c
2)U234(c

3)U6(c).

Hence eα ∈ 〈e3+2e4+ e6〉, from which we see that eα is a nilpotent element
of type A2A1.

Now consider L−3 with maximal vector e−5. We then find that the
vectors e−101000, e−001110, e−010110, e−000111 form a basis for the Tα-weight 1
space in L−3. Looking for fixed points under the action of Uα we find that
e−β is a multiple of e0101100. Hence, e−β is of type A1, contradicting the fact
this it must be conjugate to eα.

The remaining case in this subsection is case (16), which is by far the
most troublesome and takes up the next 12 pages.
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Proposition 4.2.17 Case (16) of Lemma 4.2.8 does not occur.

Assume we are in case (16), so A2 = X < E8, p = 3 and

L(G) ↓ X = 33/413/143/307/037/119/0010.

We maintain the notation of previous cases. Let X have fundamental roots
α, β and regard X as the image of SL3 under the adjoint map.

As before let T1 < X be the torus for which T1(c) is the image of the
diagonal matrix diag(c, c, c−2), so that CX(T1) = T1Jα.

The proof proceeds in a series of lemmas.

Lemma 4.2.18 (i) CG(T1) = T1A7.

(ii) Tα determines the labelling 2002002 of the Dynkin diagram of A7.

(iii) Jα < A7 and has composition factors 3/1
3 on the usual 8-dimensional

module V = VA7(λ1).

(iv) We have

V ↓ Jα = 3⊕ 1
3, (3|1)⊕ 12, (1|3)⊕ 12 or T (3)⊕ 1,

where (3|1), (1|3) are indecomposable modules, and T (3) = 1|3|1 is the inde-
composable tilting module of high weight 3.

Proof We can determine the fixed points of T1 on each composition factor
of L ↓ X, and also the weights of Tα on these fixed point spaces, where Tα(c)
is the image of diag(c, c−1, 1). We find that CL(T1) has dimension 64, and
so CG(T1) is a Levi subgroup of this dimension. Part (i) follows.

From the action of Tα on CL(T1) we see that the Tα-labelling of the
A7 must be 2002002, giving (ii). Hence, Tα(c) acts on V = VA7(λ1) as
diag(c3, c, c, c, c−1, c−1, c−1, c−3), and (iii) follows. Since ExtA1(3, 1) is 1-
dimensional, (iv) is immediate from (iii).

Lemma 4.2.19 A = CL(I) does not have 33 as an X-composition factor.

Proof Suppose false. Since n3 = 86 in this case, Lemma 2.3.4 gives
A ≤ L(D) with D = A2E6. We check that the T -labelling of D is 60, 06000.
Then Lemma 2.3.6 shows that R, the subalgebra of A generated by nilpotent
elements, projects faithfully to the A2 factor. But by assumption, R has a
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vector of T -weight 12, whereas the T -labelling of the A2 factor is 60. This
is a contradiction.

In the rest of the proof we consider separately each of the possibilities
in Lemma 4.2.18(iv).

Lemma 4.2.20 It is not the case that V ↓ Jα = 3⊕ 13.

Proof Let v be a weight vector for weight 33 and S = 〈Xv〉, an image of the
Weyl module WX(33). Now L ↓ X has no submodule 33 by Lemma 4.2.19,
so Lemma 4.2.5 shows that S has a composition factor 41 or 14. Suppose
the latter holds, so that e−αv spans the 14 weight space.

Consider L9, the T1-weight space of L for weight 9. By [3] we see that this
weight space is irreducible under the action of A7 and affords the module
VA7(λ7), the dual of V . Now v affords T1-weight 9 and one checks that
the T1-weight space of VX(33) for weight 9 has dimension 2 and affords the
irreducible of high weight 3 for Jα. Similarly, the T1-weight space of VX(14)
for weight 9 has dimension 2 and affords the irreducible representation of
Jα having high weight 1.

Since 33 and 14 are the only X-composition factors of S having nonzero
T1-weight 9 space, the full T1-weight space of S for weight 9 has dimension
4, and by the above this weight space of S has shape 3/1 under the action
of Jα. Since e−αv 6= 0, we conclude L9 ∼= V ∗ has an indecomposable module
for Jα of type 3|1, contradicting our assumption that V ↓ Jα is completely
reducible. Hence 14 cannot occur as a composition factor of S. Then 41 must
occur and the above analysis applies to Jβ . But Jα and Jβ are conjugate in
X, so the complete reducibility hypothesis applies to this group as well and
we have a contradiction.

Lemma 4.2.21 It is not the case that V ↓ Jα = (3|1) ⊕ 12 or (1|3) ⊕ 12

(where (3|1), (1|3) indicate indecomposables).

Proof Suppose false and let v be a weight vector of weight 33, so that
S = 〈Xv〉 is an image of the Weyl module WX(33). By Lemma 4.2.5 we
can suppose that S has a composition factor 14 or 41. We assume the
former, noting that the other case is entirely similar and just involves a
change of notation. As in the previous lemma it follows that L9 ↓ Jα has
the indecomposable module 3|1 appearing. Indeed v is of Tα-weight 3 and
e−αv 6= 0. Recall that L9 affords V ∗, so that this implies V ↓ Jα = (1|3)⊕12.
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Suppose 41 also appears as a composition factor of S. Then e−βv 6= 0.
Now conjugate this by w0, the long word in the Weyl group W (X), to
conclude that eαw 6= 0, where w is a weight vector of weight −(33). It
follows that 3|1 occurs within L−9 ∼= V . But this is a contradiction. Hence
we take it that just 14 (and not 41) appears in S.

Since 41 does not appear as a composition factor of S it follows from
Lemma 4.2.1 and 4.2.2 that S = 33/00/14. Let R be the maximal submodule
of S, which by Lemma 2.1.5 is a singular subspace of L. We can write
R⊥/R = 33 ⊥ J where J has 14 and 41 each appearing with multiplicity
2. Choose two weight vectors for weights in {14, 41} (possibly both of the
same weight), and generate cyclic X-modules containing these vectors in the
usual way.

By 2.1.5 each is a singular space, and we form the sum of these cyclic
modules, say H. Arguments with perpendicular spaces show that either H
is itself singular (e.g. if both generating vectors were of the same weight) or
H/rad(H) = 14 ⊥ 41. In either case there is a submodule M of H such that
M has all composition factors of H for weights 30, 03, 11, 00. Indeed, M is
just the sum of the images of the maximal submodules of the summands.
Write M = 00x/11y/30j/03k. Note that y ≤ 2.

Sublemma We have y = 2.

Proof The proof requires slightly different arguments depending on whether
or not H is singular. By way of contradiction assume y ≤ 1.

First assume that H is singular. Then the preimage of H over R, say
H̄, is singular with composition factors 14l/413−l/30j/03k/00x+1/11y. Note
that x ≤ y as otherwise there would be a fixed point (the 00 composition
factors are blocked only by 11 composition factors and the 14 submodule of
the socle).

Write H̄⊥/H̄ = 33 ⊥ C. In C the largest dominant weights are 30 and
03 and as C is non-degenerate they occur with equal multiplicity. Con-
sider a cyclic X-submodule generated by a 30 weight vector. This has
the form 30 or 30/11, the latter being the Weyl module. If 30/11 occurs,
Lemma 2.1.5 shows the 11 submodule is singular and all 30, 03 weight vec-
tors are orthogonal to this 11. Let E denote the sum of all 11 submod-
ules obtained in this manner. Then E = 11e is a singular subspace and
E⊥/E = (30i + 03i) ⊥ (119−2y−2e/008−2x). Decompose the last summand
as

T (11)a + (11/00 + 00/11)b + 00c + 11d.
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The above decomposition gives:

(1) a+ 2b+ d = 9− 2y − 2e

(2) 2a+ 2b+ c = 8− 2x.

From the structure of H and Lemma 4.2.4 we have

(3) a+ b ≤ y − x.

From (2) and (3) we have c = 8 − 2x − 2(a + b) ≥ 8 − 2x − 2(y − x).
Adding this to (2) we have 2a + 2b + 2c ≥ 8 − 2x + 8 − 2x − 2(y − x) and
hence a+ b+ c ≥ 8− x− y.

We are now in position to establish the Sublemma in the case where H
is singular. In E⊥/E the 00 submodule occurs with multiplicity a + b + c.
The preimage of the sum of these trivials has 00 appearing with multiplicity
a + b + c + x + 1. The only composition factors in H̄ which can block a
trivial are 11, 41, 14 with combined multiplicity e+ y + 3. Since there is no
00 submodule we must have a+ b+ c+ x+ 1 ≤ e+ y + 3. Combining with
the above inequality yields 8− x− y ≤ e+ y − x+ 2 and hence 6 ≤ e+ 2y.
But we are assuming y ≤ 1, and from (1) we have e + y ≤ 4. This is a
contradiction.

Before proceeding with the next case we note a consequence of the pre-
vious case. If we form H so that the two generating vectors are of the
same weight 14 or 41, then we are necessarily in the singular case. So it
follows from the above case that each generator yields a submodule with 11
appearing as a composition factor.

Now consider the case where H/M = H/rad(H) = 41 ⊥ 14. Let M̄ be
the preimage of M over R so that M̄ = 00x+1/11y/30j/03k/14. Note that
by the previous paragraph we have y = 1.

Now consider M̄⊥/M̄ . We can split off non-degenerate spaces 33 and
41 + 14 (from the image of H). In the orthogonal complement we have
composition factors 14, 14, each with multiplicity 1 and we generate corre-
sponding cyclic modules. The sum of the images of the maximal submodules
is a singular subspace, and we suppose this sum has composition factor 00
appearing with multiplicity r and 11 with multiplicity s. Note that r, s ≤ 2.

Let J denote the preimage of this space over M̄ . Then J is a singular
space with composition factors 14/30j

′
/03k

′
/11y+s/001+x+r. We claim that

J has an image of type 00|14. To see this start with v ∈ R⊥ − R a weight
vector for weight 14 or 41. Then 〈Xv〉∩R = 0, as otherwise the intersection
would be a trivial module. Factoring out the maximal submodule of 〈Xv〉
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and repeating the procedure with other weight vectors of weights 14, 41, we
obtain the claim.

We now proceed as in the first case. In J⊥/J we can now split off the 33
factor and a non-degenerate space with composition factors 142, 412. Let C
be the orthogonal complement and take E, a, b, c, d, e as before. This time
we get equations

(1′) a+ 2b+ d = 9− 2y − 2s− 2e

(2′) 2a+ 2b+ c = 8− 2x− 2r.

From Lemma 4.2.4 and the remarks of the previous paragraph we get

(3′) a+ b ≤ y + s− (x+ r).

From (2′) and (3′) we have c = 8 − 2x − 2r − 2(a + b) ≥ 8 − 2x − 2r −
2(y + s− x− r) = 8− 2y − 2s. Adding this to (2′) we have 2a+ 2b+ 2c ≥
8−2x−2r+8−2y−2s, so that a+ b+ c ≥ 8−x−y− r− s. Now 00 occurs
as a submodule of E⊥/E with multiplicity a+ b+ c and the preimage over
M̄ of this fixed space has 00 appearing with multiplicity a+b+c+1+r+x.
Also, the composition factors which extend 00 are 14 and 11 with combined
multiplicity 1+e+y+s. Hence we must have a+b+c+1+r+x ≤ 1+e+y+s,
so that a+ b+ c ≤ e+y+ s−x− r. Combining with the previous inequality
we get 8−x− y− r− s ≤ e+ y+ s−x− r, which reduces to 8 ≤ e+2y+2s.
Now recall that y = 1. Also, (1′) shows that e + y + s ≤ 4. Since we have
already observed that s ≤ 2, this is a contradiction, completing the proof of
the Sublemma.

We are now in position to complete the proof of the Lemma 4.2.21. Work
in R⊥/R where composition factors 14 and 41 each occur with multiplicity
2. Let Y (14) denote the sum of the corresponding cyclic modules for vectors
of weight 14 and similarly for Y (41). The Sublemma and Lemmas 4.2.1 and
4.2.2 imply that Y (14) =WX(14)⊕WX(14) and Y (41) =WX(41)⊕WX(41).
Note that each of Y (14), Y (41) has socle 112.

We claim that these socles are disjoint. If the claim is false there is a vec-
tor v of weight 11 common to the socles of Y (14) and Y (41). We can choose
weight vectors v14 ∈ Y (14), v41 ∈ Y (41) of weights 14, 41, respectively, such
that v ∈ 〈Xv14〉 ∩ 〈Xv41〉. However, this contradicts the Sublemma. In-
deed, taking H to be the image of 〈Xv14〉 + 〈Xv41〉 modulo R we have a
configuration with y = 1. This establishes the claim.

We have now established that the socle of Y = Y (14) + Y (41) is 114
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and so Y is the direct sum of four Weyl modules. Let P be the maximal
submodule of one of the summands. Then all weight 14 and 41 vectors
appear in P⊥ and so all the other Weyl module summands are orthogonal
to P . Repeating this with each of the summands we conclude that the sum
of the maximal submodules is a singular subspace. Then Lemmas 4.2.1 and
4.2.2 show that this singular subspace has 30 and 03 each occuring with
multiplicity 4. But L is self-dual, so this implies 30 and 03 each occur with
multiplicity at least 8 in L. This is a contradiction.

By the previous two lemmas together with Lemma 4.2.18(iv), to com-
plete the proof of Proposition 4.2.17 it remains to handle the configuration
V ↓ Jα = T (3)⊕ 1. This is done in the next proposition.

Proposition 4.2.22 It is not the case that V ↓ Jα = T (3)⊕ 1.

The proof of this proposition takes a considerable amount of work, which
is carried out in the following lemmas. These require many calculations
within L(G) = L(E8), for which we need the table of E8-structure con-
stants N(γ, δ) (γ, δ ∈ Σ(G)+) given in the Appendix, Section 11. This table
was computed by the method described in [13]. For our calculations we
often need to know N(γ, δ) where γ or δ is a negative root; this can be
deduced using the relations N(γ,−δ) = N(γ − δ, δ) if γ, δ, γ − δ ∈ Σ(G)+

and N(γ,−δ) = N(δ − γ, γ) if γ, δ, δ − γ ∈ Σ(G)+.

We shall study in detail the embedding of L(X) in L(G). For the purpose
of proving Proposition 4.2.22 we shall be applying transformations from
the left. We choose our root system of G so that A7 = CG(T1)

′ is the
standard Levi subgroup generated by the root subgroups corresponding to
fundamental roots α1, α3, α4, α5, α6, α7, α8.

Then root vectors in L(A7) = sl8 for positive roots are taken as upper
triangular matrices. We begin with precise information on the embedding
of L(Jα) in L(A7). As always, we write eij... for eαi+αj+... and Uij...(c) for
Uαi+αj+...(c).

Lemma 4.2.23 We may assume that

(i) eα = e1 + e13 + e5 + e8 − e78 + e3456 + e456 − e4567.

(ii) fα = f1 + f5 + f8 − f13 + f78 + f456 − f3456 + f4567.

Proof We begin with a concrete realization of V ↓ Jα. Regard Jα ∼= SL2
as matrices corresponding to a 2-dimensional vector space with basis {x, y}.
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We then have the relations eαx = 0, eαy = x, fαx = y, fαy = 0. In addition,
Tα(c) affords the diagonal matrix (c, c

−1) with respect to this basis.

Since tensor products of tilting modules are again tilting modules, 1⊗ 2
is a tilting module of high weight 3. Dimension considerations imply that
this is the indecomposable tilting module T (3). Hence we can write V ↓
Jα = (1⊗ 2)⊕ 1.

Now VJα(2) can be realised as the space of homogeneous polynomials of
degree 2 in two variables u, v, so has basis u2, uv, v2 (we change from x, y
to u, v here to avoid notational confusion). Let {x′, y′} be the basis for the
direct summand of high weight 1 in V ↓ Jα. We then take the following as
basis for V :

x⊗ u2, y ⊗ u2, x⊗ uv, x′, y′, y ⊗ uv, x⊗ v2, y ⊗ v2.

It is straightforward to work out the matrices of eα and fα relative to this
basis, from which we obtain the expressions (i) and (ii).

Now T1Jα is a Levi factor of two parabolic subgroups of X whose corre-
sponding unipotent radicals have Lie algebras affording the natural module
for Jα and have bases {eα+β , eβ} and {e−β , e−α−β}, respectively. In each
case the first basis vector listed is a maximal vector.

From the known action of Jα on V one can see that Jα is centralized by
a 1-dimensional unipotent subgroup of A7. Indeed it is easily observed that
elements in this centralizer are products of two commuting root elements.
The next lemma gives this centralizer explicitly and is verified by a direct
check within sl8 and then translating to the A7 root system.

Lemma 4.2.24 For c ∈ K, set

S(c) = U−3(−1)U3(c)U−3(1)U−7(−1)U7(−c)U−7(1).

Then S(c) centralizes 〈eα, fα〉 = L(Jα).

Ultimately we shall show that S(c) centralizes the whole of L(X)′, con-
tradicting Lemma 2.2.10(iii).

Lemma 4.2.25 The T1-weights on L are 9
8, 628, 356, 064,−356,−628,−98.

The weight of T1 on a root vector eδ of L is 3 times the coefficient of α2 in
δ.
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Proof As T1 centralizes A7 a quick check shows that the T1-labelling of G
is 03000000. The lemma follows.

Lemma 4.2.26 Let L3, L−3 denote the T1-weight spaces of L corresponding
to weights 3,−3, respectively. Then

(i) {eα+β , eβ} < L3 and L3 affords ∧3V ∗ for A7 = CG(T1)′.

(ii) {e−β , e−α−β} < L−3 and L−3 affords ∧3V for A7.

Proof Working within X we easily verify that T1(c)v = c
3v for v ∈

{eα+β , eβ} and T1(c)v = c−3v for v ∈ {e−β , e−α−β}, giving the containments.
The previous lemma shows that L3 and L−3 have bases consisting of all root
vectors for roots having coefficient of α2 equal to 1 and −1, respectively.
Using [3] we see that these weight spaces affords irreducible modules for A7
of high weights λ4 and λ3 respectively, giving (i) and (ii).

For future reference we note that e11233321 and e−01000000 afford maximal
vectors for L3 ↓ A7 and L−3 ↓ A7, respectively.

We want to locate eα+β , e−β within L3, L−3, respectively. These are each
fixed by ad(eα) and are vectors having Tα-weight 1. We will obtain a basis
for such weight vectors of L3 and L−3. As a first step, in the next lemma
we present a basis for the Tα-weight 1 subspace in each module.

Lemma 4.2.27 The Tα-weight spaces of L−3 and L3 corresponding to weight
1 each have dimension 15. Bases for these subspaces are respectively given
by root vectors vi = e−δ, 1 ≤ i ≤ 15 and wi = eδ, 1 ≤ i ≤ 15, where δ is as
follows:

v1 : 11111000 v9 : 11221110 w1 : 11232210 w9 : 11122110

v2 : 11111100 v10 : 01011111 w2 : 11232110 w10 : 01122221

v3 : 11111110 v11 : 01111111 w3 : 11232100 w11 : 01122211

v4 : 11121000 v12 : 01121111 w4 : 11222210 w12 : 01122111

v5 : 11221000 v13 : 01122100 w5 : 11222110 w13 : 11221111

v6 : 11121100 v14 : 01122110 w6 : 11222100 w14 : 11121111

v7 : 11221100 v15 : 01122210 w7 : 11122100 w15 : 11111111

v8 : 11121110 w8 : 11122210

Proof The fact that the weight spaces have dimension 15 is a direct
check from Lemma 4.2.26 and the fact that the Tα-weights on V and V

∗ are
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each 3, 13,−13,−3. It is also immediate that Tα has high weight 5 on each
module.

As remarked above e−01000000 affords a maximal vector for L−3, while
e11233321 is a maximal vector for L3.

It follows from Lemma 4.2.25 that a basis for L−3 and L3 is obtained
by taking all root vectors for roots with coefficient of α2 equal to −1, 1,
respectively. These roots are obtained by starting from the maximal vector
and subtracting certain fundamental roots from the A7 root system. Since
the high weight of Tα on each module is 5, we obtain the weight space for
weight 1 by removing appropriate fundamental roots such that the total
Tα-weight is 4. We have seen that Tα determines labelling 2002002 of the
A7 diagram. It is then readily checked that the root vectors indicated form
bases for the weight 1 subspaces of Tα on L−3 and L3.

Lemma 4.2.28 We have e−β = ar1 + br2 + cr3 + dr4 + er5 + fr6, where
a, b, c, d, e, f ∈ K and r1, r2, r3, r4, r5, r6 are as follows:

r1 = v4 + v5
r2 = v2 − v3 − v10 − v11
r3 = v2 + v3 − v10 − v15
r4 = v6 + v7 − v8 − v9
r5 = v6 + v8 − v9 − v12
r6 = v1 − v6 − v9 + v13 − v14.

Proof From the previous lemma we have e−β =
∑15
1 aivi. We also know

that [eαe−β ] = 0 in L(X), and eα is given by Lemma 4.2.23. We calcu-
late [eαe−β ] using the E8 structure constants in the Appendix, Section 11.
Setting the result equal to 0 yields the conclusion.

A similar calculation yields

Lemma 4.2.29 We have eα+β = rz1 + sz2 + tz3 + uz4 + vz5 + wz6, where
r, s, t, u, v, w ∈ K and z1, z2, z3, z4, z5, z6 are as follows:

z1 = w2 + w3
z2 = w4 + w8 + w10 + w15
z3 = w4 − w8 + w10 − w11
z4 = w6 + w9 + w12
z5 = w5 + w6 − w7 − w9
z6 = w1 + w5 + w7 + w13 − w14.
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We next obtain some information on the coefficients in the above expres-
sions for e−β and eα+β .

Lemma 4.2.30 The following conditions hold:

(i) wf = 1

(ii) s = c = 0

(iii) uf = we.

Proof The previous lemmas give expressons for eα+β and e−β . On the
other hand, working in L(X) we have [eα+βe−β ] = eα, which is given in
Lemma 4.2.23. Using the structure constants in the Appendix, Section 11,
we calculate [eα+βe−β ]. Equating coefficients of the result to those of eα, we
obtain a number of equations.

First, equating the coefficients of e1 and e13 in [eα+βe−β ] with the cor-
responding terms in eα gives the equations

−cs+ ct− fu+ fw + ew − bs = 1,

ct− fu+ fw + ew − bs = 1.

Subtracting these yields cs = 0.

Next, equate coefficients of e8 and obtain

−ct+ fu− we+ wf + sb− sc = 1.

Since sc = 0 we can add this to the e13 equation to conclude that wf = 1,
which is (i).

Equating coefficients of the e678 and e134 terms we obtain sf = 0 and
cw = 0, respectively. Since (i) implies w, f 6= 0, we have s = 0 and c = 0,
giving (ii).

Finally, we use the e13 equation together with (i) and (ii) to conclude
that uf = we.

Lemma 4.2.31 We have eβ = rl1 + tl2 + ul3 + vl4 + wl5, where

l1 = e11221000 − e11121000
l2 = e11111110 + e01111111 − e01011111 + e11111100
l3 = e01121111 + e11221100 + e11121110
l4 = e11221100 − e11121110 + e11221110 − e11121100
l5 = e01122110 + e01122100 − e11221110 − e11121100 + e11111000.
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Proof Working in L(X) we have eβ = [fα, eα+β ]. The lemma then follows
from Lemmas 4.2.23 and 4.2.29 via direct computation using the fact that
s = 0 (see 4.2.30(ii)).

Lemma 4.2.32 We have u = e = 0.

Proof The previous lemma provides an expression for eβ , and working
within L(X) we have [eβ , eα+β ] = 0. A direct calculation of the coefficient
of eδ for δ = 22343210 shows that u

2 = 0, hence u = 0. Then (i) and (iii) of
Lemma 4.2.30 show that e = 0, as required.

At this point the expressions in Lemmas 4.2.28 and 4.2.29 read as follows:

e−β = ar1 + br2 + dr4 + fr6

eα+β = rz1 + tz3 + vz5 + wz6

Lemma 4.2.33 The coefficients a, b, d, f can each be expressed in terms of
the coefficients r, t, v, w.

Proof First note that Lemma 4.2.30(i) gives f = 1/w. For information on
a, b, d we return to the equation [eα+β , e−β ] = eα. Equating the coefficients of
e56 we obtain tf−aw = 0, so that a = tf/w = t/w2. Next equate coefficients
of e45 to obtain the equation −rf − bw = 0, whence b = −rf/w = −r/w2.
Finally, equating the coefficients of e4567 we obtain the equation

−ar − bt− fv + dw = −1.

Solving for d we have

d = w−1(−1 + ar + bt+ fv) = w−1(−1 + rt/w2 − rt/w2 + v/w)

so that d = (v − w)/w2, completing the proof.

At this point we focus attention on eβ . In view of Lemmas 4.2.31 and
4.2.32 we have

eβ = r(e11221000 − e11121000)+
t(e11111110 + e01111111 − e01011111 + e11111100)+
v(e11221100 − e11121110 + e11221110 − e11121100)+
w(e01122110 + e01122100 − e11221110 − e11121100 + e11111000).
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Lemma 4.2.34 Let δ ∈ Σ(G) be a root for which eδ is one of the root
vectors appearing in the above expression for eβ.

(i) If δ+α3 ∈ Σ(G) , then U−3(−1)U3(c)U−3(1)eδ = (1−c)eδ+c(eδ+α3).

(ii) If δ−α3 ∈ Σ(G), then U−3(−1)U3(c)U−3(1)eδ = (1+c)eδ−c(eδ−α3).

(iii) If δ + α7 ∈ Σ(G), then U−7(−1)U7(−c)U−7(1)eδ = (1 + c)eδ +
c(eδ+α7).

(iv) If δ − α7 ∈ Σ(G), then U−7(−1)U7(−c)U−7(1)eδ = (1 − c)eδ −
c(eδ−α7).

Proof This is a straightforward calculation using the E8 structure con-
stants in the Appendix in Section 11. In particular, we need the observation
that if δ is as in (i), (ii), (iii), or (iv), then N(α3, δ) = 1, N(−α3, δ) =
1, N(α7, δ) = −1, N(−α7, δ) = −1, respectively.

Lemma 4.2.35 S(c) fixes eβ for each c ∈ K∗.

Proof By Lemma 4.2.24 we have S(c) = S3(c)S7(c), where S3(c) =
U−3(−1)U3(c)U−3(1) and S7(c) = U−7(−1)U7(−c)U−7(1). Note that the
factors S3(c) and S7(c) commute. We apply S(c) to the above expression
for eβ . The following observations simplify the computation. Note that
the roots appearing in the term with coefficient r are only affected by the
S3(c) factor of S(c) and the roots appearing in this term differ by α3. Then
Lemma 4.2.34 immediately shows that the difference of these root vectors is
fixed by S3(c) so that this term in eβ is fixed.

Similar considerations apply to the difference of the second and third
root vectors appearing in the term with coefficient t and also the first and
fourth root vectors of this term (but now using S7(c)). So the terms with
coefficients r and t are both fixed.

The terms with coefficients v and w are a little more complicated. The
last root vector appearing in the w term is fixed by both S3(c) and S7(c).
The remaining ones appear, so we can focus on the remaining root vectors,
which appear in both the v and w terms of eβ . The computation is more
complicated as both factors of S(c) affect the terms, but here too we apply
Lemma 4.2.34 and find that the sum of the v and w terms is fixed by S(c).

We can now complete the proof of Proposition 4.2.22. We have just seen
that S(c) fixes eβ . An application of Lemma 4.2.33 then shows that S(c) fixes
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e−β as well. Also, Lemma 4.2.24 shows that S(c) fixes eα and fα. Hence,
for each c ∈ K∗, S(c) centralizes L(X)′. But then L(X)′ is centralized by a
1-dimensional unipotent group, contradicting Lemma 2.2.10(ii).

This proves Proposition 4.2.22, and completes our proof of Proposi-
tion 4.2.17.

The proof of Theorem 4.1 for p = 3 is now complete.

4.3 The case p = 2

Assume p = 2, and let X be a maximal S-invariant subgroup of G with
X = A2. As usual, X is adjoint and all composition factors of L(G) ↓ X
are of the form ab with a ≡ b mod 3. Recall that G is of adjoint type and
L = L(G)′. We begin with a preliminary lemma giving the structure of some
Weyl modules and Ext groups.

Lemma 4.3.1 Let X = A2 and p = 2.

(i) dimExtX(ab,K) ≤ 1, and equality holds if and only if ab is a field
twist of 30 or 03.

(ii) WX(30) = 30|00 and WX(22) = 22|(30 + 03)|00 (co-socle series).

(iii) We have

W (41) = 41/22/03/30,
W (60) = 60/41/03/00,
W (52) = 52/60/14/41/22/30/03/00,
W (33) = 33,
W (44) = 44/52/25/60/06/14/41/22/30/03/00.

Proof Part (i) follows from [35]. The remaining parts can be obtained
using the Sum Formula.

Let nab denote the multiplicity of the composition factor ab in L ↓ X.
Since CL(X) = 0 by Lemma 2.2.10(iv), Lemma 4.3.1 immediately gives

Lemma 4.3.2 We have n00 < 2(n30 + n60 + n12,0 + . . .).

Using this lemma and the Weight Compare Program we obtain the fol-
lowing lemma, where n4 denotes the number of T -weights on L(G) divisible
by 4.
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Lemma 4.3.3 The possibilities for L ↓ X are as follows:

G Case L ↓ X T -labelling n4
F4 (1) 41/14/22/30/03/11 0202 24
E6 (2) 223/302/032/112/002 002020 46

(3) 41/14/222/302/032/11 200202 38
(4) 44/52/25/22/11 222022 38

E7 (5) 223/304/034/114/004 0002000 69
(6) 41/14/224/304/034/11/002 0020020 69
(7) 44/52/25/60/06/41/14/22/30/03/11 2000202 69
(8) 33/41/14/222/30/03/112 2000202 69

E8 (9) 412/142/226/308/038/112/004 00002000 120
(10) 71/17/44/60/06/41/14/222/302/032/11 00200200 136
(11) 443/522/252/602/062/41/14/222/302/032/11/002 00200200 136
(12) 332/41/14/225/302/032/113/002 02000020 136
(13) 60/06/413/143/227/306/036/11/004 02000020 136
(14) 52/25/33/60/06/412/142/222/303/033/006 00200020 120
(15) 82/28/63/36/442/602/062/41/14/22/11 20002020 136
(16) 82/28/90/09/442/522/252/602/062/412/142/ 20002020 136

22/11
(17) 33/412/142/224/306/036/008 00200002 120
(18) 44/522/252/60/06/412/142/223/302/032/112/002 00020002 120
(19) 55/90/09/52/25/602/062/413/143/30/03/004 20020002 120
(20) 44/52/25/603/063/413/143/22/303/033/11/008 20000202 136
(21) 41/14/228/308/038/11/0014 20000020 136
(22) 227/307/037/117/0010 00200000 136

As usual, let A = CL(L(X)) and let R be the subalgebra of A generated
by nilpotent elements.

Lemma 4.3.4 Cases (14), (17) and (19) of Lemma 4.3.3 do not occur.

Proof In these cases L ↓ X has no composition factor 11, contradicting
the fact that L(X) must appear.

Lemma 4.3.5 Case (1) of Lemma 4.3.3 does not occur.

Proof Here G = F4, L(G) ↓ X = 41/14/22/30/03/11 and the T -labelling
of G is 0202. The short root elements of L(G) generate a 26-dimensional
ideal M , and as G-modules we have M ∼= VG(λ4) and L(G)/M ∼= VG(λ1)
(see Lemma 2.1.1). Write N = L(G)/M .
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The highest short root of G is 1232, which affords T -weight 8. It follows
that M ↓ X has 22 as a composition factor, and hence

M ↓ X = 22/30/03, N ↓ X = 41/14/11.

Now N has a submodule L(X) ∼= 11. Let α, β be fundamental roots for
X, with corresponding elements eα, eβ , fα, fβ ∈ L(X) in the usual nota-
tion. Then eα, eβ afford T -weight 2. The weight 2 subspace W of N is
4-dimensional, corresponding to the 4 long roots 0100, 1100, 0120, 1120 of
F4. Moreover, W admits the action of the subgroup A1A1 = 〈U±α1 , U±α3〉
acting as SO4. This group has two orbits on 1-spaces in W and singular
vectors are long root vectors in L(G) (modulo M). The 2-space 〈eα, eβ〉
in W must contain a singular vector, hence a long root vector modulo M .
Now Lemma 2.2.12 gives a contradiction since L(X)+M is S-invariant and
contains a long root element of G.

Lemma 4.3.6 Cases (2), (4), (11), (15) and (16) of Lemma 4.3.3 do not
occur.

Proof We begin with cases (2), (4), and (11). We first argue that in these
cases A has a submodule of high weight 22, 44, 44, respectively. By [35],
the only relevant irreducibles which extend 22 are 30, 03, and those which
extend 44 are 60,06. Hence the assertion is immediate in case (4). Cases (2)
and (11) are similar and we illustrate the argument in the latter case. Let v
be a weight vector for weight 44. Assuming that 44 does not occur in A we
see that 〈Xv〉 is an image of WX(44), and by Lemma 4.2.5 either 60 or 06
occurs as a composition factor. Also Lemma 2.1.5 shows that the maximal
submodule is singular. Now there is a 3-space of such weight vectors and
applying the above reasoning to all v in this space and adding the maximal
submodules we obtain a singular subspace containing composition factors
60a, 06b with a+ b ≥ 3. But then L has composition factors 60a+b, 06a+b, a
contradiction.

In case (2), D = T1D5, whereas Lemma 2.3.4 forces D to be semisimple.
In cases (4) G = E6 and D = A1A5, while in case (11) G = E8 with
D = A1E7. One finds that in both cases the A1 has label 4, while the other
factor has label 44044 and 0004000, respectively. From the above A contains
a T -weight vector of weight 16 and the labelling implies that this is a root
vector of the second factor and hence a root vector of L. This contradicts
Lemma 2.2.12.

Now consider cases (15) and (16). The labelling is the same in both case
and D = A1E7, where the first factor has label 4 and the second has label
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0040040. If either 82 or 28 appears as a composition factor of A, then as
above A contains a root element and we have the same contradiction as in
the previous paragraph. So assume this does not occur.

We give the argument for case (15), the other case being entirely similar.
Let v, v′ be weight vectors of weight 82 and 28, respectively so that J = 〈Xv〉
and J ′ = 〈Xv′〉 are images of the corresponding Weyl modules. We are
assuming that 82 and 28 are not composition factors of A, so from our
information on composition factors and Lemma 4.2.5 we conclude that 63
and 36 must occur as composition factors of J and J ′, respectively. Let
R be the maximal submodule of J . Then Lemma 2.1.5 implies that R is
singular and 63 is a composition factor of R. So 36 is a composition factor
of L/R⊥. Also, a consideration of composition factors shows that v′ ∈ R⊥

so that J ′ ≤ R⊥ and hence 36 is a composition factor of R⊥. But this is a
contradiction as 36 has multiplicity 1 as an X-composition factor of L.

Lemma 4.3.7 Cases (8), (9), (10), (12), (13) and (18) of Lemma 4.3.3 do
not occur.

Proof The torus T of X = A2 consists of elements T (c) = diag(c
2, 1, c−2)

with c ∈ K∗. Define another 1-dimensional torus T1 = {T1(c) : c ∈ K∗}
in X, where T1(c) = diag(c, c, c

−2). Observe that T < CX(T1) = T1A1.
Note that T (c) = T1(c)Tα(c) where Tα is the torus of A1 with Tα(c) =
diag(c, c−1, 1).

In each of the cases under consideration we shall calculate CG(T1) and
its T -labelling. For this we need to find the T -weights on CV (T1) for each
composition factor V of L ↓ X. This is routine, and the conclusions are as
follows:

V dimCV (T1) T -weights on CV (T1)

11 4 2, 02,−2
30 2 2,−2
41 0
33 16 6, 42, 23, 04,−23,−42, 6
52 4 6, 2,−2,−6
71 8 6, 42, 2,−2,−42,−6

In cases (8), (10), and (12) we find that CG(T1) has dimension 36, 44,
and 122, respectively. However, one checks that G has no Levi subgroup of
this dimension, so this is impossible.

In case (9) we have dimCG(T1) = 68. The only possibility is that
CG(T1) = D6T2. The non-negative T -weights here are 4

6, 218, 020. However
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an easy check shows that there is no possible T -labelling of D6 which is com-
patible with these weights. Similarly, in case (13) we have dimCG(T1) = 64
and the only possibility is that CG(T1) = A7T1. But here the non-negative
T -weights are 49, 213, 020 and again we see that there is no compatible la-
belling.

Finally, in case (18) we have dimCG(T1) = 54. A check of Levi subgroups
shows that the only possibility is CG(T1) = A2D5T1, and the non-negative
T -weights on this are 8, 64, 45, 210, 014. The T -labelling of A2D5 must be
02, 02022. Consider T < A1T1 < A2D5T1. Now T and Tα have the same
action on the A2 factor. Since T has labelling 02 on this factor, it follows that
Tα, and hence also the A1 subgroup of X containing it, project nontrivially
to the A2 factor. But this latter projection must be either a long root A1 or
an irreducible A1. In either case CA2(Tα) = CA2(T ) = T2. But this is not
consistent with the labellings of T .

Lemma 4.3.8 Cases (5) and (6) of Lemma 4.3.3 do not occur.

Proof Consider first case (5). Here T has labelling 0002000. We shall
calculate the composition factors of X on the 56-dimensional Ĝ-module
V56 = VĜ(λ7). We can identify X with its connected preimage in Ĝ and
consider X as acting on V56. Now

λ7 =
1

2
(2346543)

from which we calculate that the non-negative T -weights on V56 are 6
4, 46,

212, 012. Hence V56 ↓ X has composition factors ab with 2a + 2b = 6, and
since a ≡ b mod 3 it must be the case that ab = 30 or 03. As V56 is self-
dual it follows that X has composition factors 302/032. These take care of
T -weights 64, 44, 28, 04, leaving 42, 24, 08 to account for. The 42 can only be
accounted for by X-composition factors 112, and so we conclude that

V56 ↓ X = 30
2/032/112/004.

By [35], dimExtA2(30,K) = 1 and 11 does not extend the trivial module,
so it follows that X has a non-trivial fixed space on V56. This contradicts
Lemma 2.2.13.

Case (6) is similar. Here the T -labelling is 0020020 and the non-negative
T -weights on V56 are 8

2, 64, 48, 28, 012. Hence arguing as above we obtain

V56 ↓ X = 22
2/302/032/004,
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and so X has a non-trivial fixed space on V56 again.

Lemma 4.3.9 Cases (21) and (22) of Lemma 4.3.3 do not occur.

Proof In these cases we argue that X has a fixed point on L which will
contradict Lemma 2.2.10.

We begin with Case (21). Assume there is no fixed point. Here L ↓ X =
41/14/228/308/038/11/0014. Generating by weight vectors of weight 41 and
14 and using Lemma 2.1.5 we obtain a submodule J1 containing a singular
submodule, R1 such that J1/R1 = 41⊕ 14 and R1 = 22a/30b/03c.

Then J⊥1 /J1 = (41 ⊕ 14) ⊥ M1, where M1 has highest weight 22. Gen-
erating by weight vectors in M1 of weight 22 we obtain a module having
a singular submodule of shape 30x/03y/00d and quotient 228−2a. If d > 0,
then taking preimages of this space (and noting that 22 is the highest weight)
we see from the structure of W (22) that there is a fixed point, against our
assumption. Hence d = 0. Take preimages of the singular space to obtain a
singular space R2 = 22

a/30b+x/03c+y.

Repeat the argument in R⊥2 /R2 = (41⊕14) ⊥ 22
8−2a ⊥M2, whereM2 =

308−(b+c+x+y)/038−(b+c+x+y)/11/0014. Here we generate by weight vectors of
weight 30 and 03 and take preimages of the corresponding singular submod-
ule of the form 00r to obtain a singular space R3 = 22

a/30b+x/03c+y/00r.
Then R⊥3 /R3 = (41 ⊕ 41) ⊥ 22

8−2a ⊥ (308−(b+c+x+y) ⊕ (038−(b+c+x+y)) ⊥
11 ⊥ 0014−2r.

Take preimages of the submodule 0014−2r and obtain a submodule J =
22a/30b+x/03c+y/0014−r. We are assuming that this does not contain a
trivial submodule, so 14 − r ≤ a + b + c + x + y. By construction we have
r ≤ 2(8 − (b + c + x + y)), so combined with the previous inequality we
have 14 ≤ a + 16 − (b + c + x + y). So b + c + x + y ≤ 2 + a ≤ 4. Hence,
r ≥ 14− (a+ b+ c+ x+ y) ≥ 14− 2− 4 ≥ 8. But then R3 contains a trivial
submodule, a contradiction.

Finally, consider case (22). This is similar to the previous case, but much
simpler. Assume there does not exist a fixed point. Then from the structure
of W (22) we see that generating by weight vectors of weight 22 we obtain
a submodule J1 having singular submodule R1 = 30

a/03b. Then R⊥1 /R1 =
227 ⊥ M1, with M1 = 307−(a+b)/037−(a+b)/117/0010. Here a + b ≤ 7. Next
generate by weight vectors in M1 of weights 30 and 03. Each must be
irreducible, since otherwise a weight vector in the preimage would generate
the corresponding Weyl module which has a fixed point. It follows that
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M1 = (30
7 ⊕ 037) ⊥ 117 ⊕ 0010. But then the preimage of the fixed space of

M1 contains a fixed point. This is a contradiction.

The three remaining cases of Lemma 4.3.3 - cases (3), (7) and (20) - are
much less straightforward than the previous cases.

Lemma 4.3.10 Case (3) of Lemma 4.3.3 does not occur.

Proof Here G = E6 and L(G) ↓ X = 41/14/222/302/032/11. We have
T = {T (c) : c ∈ K∗}, where T (c) = diag(c2, 1, c−2), and T has labelling
200202 in G.

Define R(c) = diag(c, c, c−2) ∈ X, and let R be the 1-dimensional torus
in X consisting of all R(c) for c ∈ K∗. The R-weights on the X-composition
factors in L(G) are easily calculated, and are as follows:

λ R-weights on VX(λ)

11 32, 04,−32

30 34, 02,−32,−6
41 62, 34,−6,−92

Hence the non-negative R-weights on L(G) are 92, 69, 318, 020. In particular,
CG(R) has dimension 20. Since CG(R) is a Levi subgroup, a quick check
shows that the only possibility is CG(R) = A1A2A2R.

Let α, β be fundamental roots for X = A2, chosen so that CX(R)
′ = Jα,

the fundamental SL2 in X corresponding to the root α. Then Jα induces
an irreducible of high weight 2 on CVX(30)(R), and an indecomposable 0/2/0
on CVX(11)(R).

Now Jα ≤ CG(R)′ = A1A2A2. The non-negative T -weights on L(CG(R))
are 42, 25, 06, from which it follows that the embedding of Jα in A1A2A2 is
via representations with composition factors 1, 2/0, 2/0.

Let U be the unipotent radical of a parabolic subgroup UJαR of X,
chosen so that U < Q, where Q is the unipotent radical of a parabolic
subgroup QCG(R) of G. Then L(U) is a 2-dimensional subspace of the 18-
dimensional space V3 of vectors in L(Q) of R-weight 3. Moreover, CG(R)

′ =
A1A2A2 acts on V3 as a tensor product 1 ⊗ 10 ⊗ 10. Thus L(U) is an
irreducible Jα-submodule of high weight 1 in V3 ↓ Jα.

We next assert that the homogeneous component of the socle of V3 ↓ Jα
corresponding to the irreducible of high weight 1 is 12, the sum of two
irreducible 1’s. To see this first observe that as a Jα-module 1⊗(2/0) = 3+1.
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We also note that 1 ⊗ 2 ⊗ 2 is a tensor product of tilting modules and
has highest weight 5. Dimension considerations then show that this tensor
product is T (5) = 1|5|1. Therefore,

1⊗ (2/0)⊗ (2/0) = (3 + 1)⊗ (2/0) = (3⊗ (2/0)) + (3 + 1)
= (1⊗ 2⊗ (2/0)) + 3 + 1 = ((3 + 1)⊗ 2) + 3 + 1
= (1⊗ 2⊗ 2) + 32 + 1 = T (5) + 32 + 1
= (1|5|1) + 32 + 1.

This proves the assertion.

We take CG(R)
′ = A1A2A2 to have (ordered) fundamental root system

{α2}, {α1, α3}, {α5, α6}, respectively, (with the usual labelling of roots for
G = E6). The embedding of Jα in each factor A2 is either completely re-
ducible 2+0, or indecomposable 2|0 or indecomposable 0|2. These represen-
tations are the action of Jα on the module VA2(λ1). Choose a 1-dimensional
torus Tα < Jα such that Tα(c) = T (c)R(c)

−1 for c ∈ K∗, and let Uα < U
be a Tα-root group in Jα. Then on the Jα-modules 2 + 0, 2|0, 0|2 respec-
tively, Uα(c) acts as the following matrices (relative to a basis of vectors of
Tα-weights 2, 0− 2 in this order):




1 0 c2

0 1 0
0 0 1



 ,




1 0 c2

0 1 c

0 0 1



 ,




1 c c2

0 1 0
0 0 1



 .

Hence we may take it that one of the following holds, denoting Uαi+αj+...(c)
by Uij...(c):

(a) Uα(c) = U2(c)U3(c)U13(c
2)U5(c)U56(c

2) (embedding 1, 2|0, 0|2)

(b) Uα(c) = U2(c)U3(c)U13(c
2)U6(c)U56(c

2) (embedding 1, 2|0, 2|0)

(c) Uα(c) = U2(c)U3(c)U13(c
2)U56(c

2) (embedding 1, 2|0, 2 + 0)

(d) Uα(c) = U2(c)U13(c
2)U56(c

2) (embedding 1, 2 + 0, 2 + 0).

We shall work within L(Q). First choose notation so that L(Q) is spanned
by root vectors er with r ∈ Σ(G)+ having positive α4-coefficient. Then V3
is spanned by er with r having α4-coefficient 1. The highest such root is
111111, so e111111 is a maximal vector for the action of the Levi subgroup
CG(R)

′ on V3. This root affords R-weight 4. Hence we calculate that the
1-weight space for Tα in V3 is

V1,+ = 〈e111100, e010111, e011110, e001111, e101110〉.

We also consider the opposite unipotent radical L(Q)−, spanned by root
vectors e−r = fr with r ∈ Σ(G)+ having α4-coefficient 1. Here f000100 is a
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maximal vector, and the 1-weight space for Tα on V−3 is

V1,− = 〈f001110, f000111, f101100, f010110, f011100〉.

We now consider separately the possibilities (a)-(d) above for Uα(c).

Case (a) Here L(Uα) = 〈e010000 + e001000 + e000010〉. The roots in-
volved, namely α2, α3, α5, are mutually orthogonal, so the generator e010000+
e001000 + e000010 is a nilpotent element of L(G) of type 3A1.

We work with V1,+. Calculation shows that the fixed space of Uα on this
space is 〈x, y〉, where

x = e011110, y = e111100 + e010111 + e001111 + e101110.

Hence L(Uα+β) = 〈cx+ dy〉 for some c, d ∈ K. The roots involved in x, y lie
in a subsystem

A1A2A2 = 〈011110〉 × 〈111100, 001111〉 × 〈010111, 101110〉.

Hence cx + dy is a nilpotent element of type A1A2A2 if c, d 6= 0, of type
A2A2 if c = 0, and of type A1 if d = 0. In any case it is not of type 3A1,
which is a contradiction.

Case (b) Here L(Uα) = 〈e010000+ e001000+ e000001〉, again of type 3A1.
The fixed space of Uα on V1,+ is 〈v, w〉 where

v = e111100 + e010111 + e011110, w = e011110 + e001111,

and hence L(Uα+β) = 〈av + bw〉 for some a, b ∈ K. The roots involved in
v, w lie in a subsystem

A1A1A2 = 〈010111〉 × 〈011110〉 × 〈111100, 001111〉.

Hence we see that the fact that av + bw must be of type 3A1 forces b = 0,
so

L(Uα+β) = 〈v〉.

Now consider V1,−. The fixed space of Uα on V1,− is 〈t, u〉 where

t = f001110 + f010110, u = f001110 + f000111 + f101100.

It follows that L(U−β) = 〈a′t+b′u〉 for some a′, b′ ∈ K. Now [t, v] = e010000+
e001000+e000001 and [u, v] = e010000. Hence the fact that [L(Uα+β), L(U−β)] =
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L(Uα) forces b
′ = 0. But then L(U−β) = 〈t〉 which is not of type 3A1, a

contradiction.

Case (c) Here L(Uα) = 〈e010000+e001000〉, of type 2A1. The fixed space
of Uα on V1,+ is

〈e011110, e111100 + e010111 + e001111〉.

However, no vector in this 2-space can be of type 2A1.

Case (d) Here L(Uα) = 〈e010000〉. This contains a root element, giving
a contradiction by Lemma 2.2.12(ii).

Lemma 4.3.11 Case (7) of Lemma 4.3.3 does not occur.

Proof Here G = E7 and L ↓ X = 44/52/25/60/06/41/14/22/30/03/11.
The strategy is very similar to that of the proof of the previous lemma.
Let R be the 1-dimensional torus of X as in that proof. The non-negative
R-weights on L(G) are 125, 910, 615, 322, 029. We deduce that the R-labelling
of Π(G) is 0000303, and in particular CG(R)

′ = A1A4. The T -weights
on L(CG(R)) are 8, 6

2, 43, 25, 07 and so the T -labelling of A1A4 is 2, 2222.
Letting Jα be as in the previous proof, we see from this that the embedding
Jα < A1A4 is via representations with composition factors 1, 4/2/0. Let
V = VA4(λ1), so that V ↓ Jα = 4/2/0.

As before, letting U be the unipotent radical of a maximal parabolic
subgroup UJαR of X, we have L(U) ⊂ V3, the 3-weight space for R in L(Q)
(where Q is the unipotent radical of a parabolic QCG(R)). Here V3 is a
22-dimensional space with A1A4-action (1⊗ λ3)⊕ (1⊗ 0).

By Lemma 2.1.6, the Jα-modules with composition factors 4/2/0 are the
following, together with their duals:

(a) 2|0|4, (b) (0|2) + 4, (c) (0|4) + 2, (d) 4 + 2 + 0.

In cases (c) and (d) the module is a Frobenius 2-twist of a rational module
(in (c) it is ((0|2) + 1)(2), in (d) it is (2 + 1 + 0)(2)). It follows that if
V ↓ Jα is as in (c) or (d) then L(Uα) is spanned by a root element of L(G),
contradicting Lemma 2.2.12(ii).

Hence we may assume that V ↓ Jα is as in case (a) or (b). We calculate
the action of Uα(c) on V in each of these cases. In case (a), as a Jα-module
V is the space of homogeneous polynomials of degree 4 in two variables x, y,
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with Uα(c) sending x → x, y → cx + y, so relative to an ordered basis of
R-weight vectors of weights 4, 2, 0,−2,−4, Uα(c) acts as the matrix









1 c c2 c3 c4

1 0 c2 0
1 c 0
1 0
1









Ordering the roots of CG(R)
′ = A4A1 as α1, α3, α4, α2, α6, and performing

similar calculations for case (b), we obtain the following expressions for
Uα(c) in cases (a),(b):

(a) Uα(c) = U1(c)U4(c)U13(c
2)U34(c

2)U1342(c
4)U6(c)

(b) Uα(c) = U3(c)U34(c
2)U1342(c

4)U6(c).

Working first with positive root vectors for L(Q), and adopting notation
as in the previous proof, we see that maximal vectors in V3 are e1122110,
affording R-weight 7, and e0000011 affording R-weight 1. Hence

V1,+ = 〈e0111110, e1011110, e0000011, e1111100, e0112100〉.

Similarly,

V1,− = 〈f0111100, f1011100, f0000001, f0101110, f0011110〉.

Consider first case (a). Here L(Uα) = 〈e1000000+e0001000+e0000010〉. The
fixed space of Uα in V1,− is 〈f0111100, f0000001〉, which must contain L(U−β);
however it contains no vector of type 3A1, giving a contradiction.

Now consider (b). Here L(Uα) = 〈e0010000 + e0000010〉. The fixed space
of Uα on V1,− is 〈f1011100, f0000001, f0111100 + f0101110〉, and hence

L(U−β) = 〈af1011100 + bf0000001 + c(f0111100 + f0101110)〉.

The roots involved lie in a subsystem

A1A3 = 〈0111100〉 × 〈1011100, 0101110, 0000001〉.

Hence the fact that L(U−β) is of type 2A1 forces either c 6= 0, a = b = 0 or
c = 0, a 6= 0, b 6= 0.

Next, the fixed space of Uα on V1,+ is 〈e0111110, e1011110, e0000011〉 and
contains L(Uα+β). Now the fact that [L(Uα+β), L(U−β)] = L(Uα) forces

L(U−β) = 〈f0111100+f0101110〉, L(Uα+β) = 〈e0111110+ge1011110+he0000011〉,
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where gh = 0 (as eα+β has type A1A1).

Now Jα contains a Weyl group element sα inverting Tα. Since the
labelling of Tα in A1A4 is 2, 2222, we see that sα = w0(A1)w0(A4) =
sα6w0(A4). As w0(A4) sends α5 to 1122100, we see that

L(Uβ) = L(Uα+β)
sα = 〈e0111100 + ge1011100 + he0000001〉,

L(U−α−β) = L(U−β)
sα = 〈f0111110 + f0112100〉.

Now L(X) is generated by L(U±β), L(U±(α+β)). Since either g = 0 or h = 0
only six roots elements appear in the expressions for the generators, and
so, since G has rank 7, there is a 1-dimensional torus T1 centralizing all of
them, hence centralizing L(X). This contradicts Lemma 2.2.10(ii).

The final case (20) of Lemma 4.3.3 takes a great deal more effort than
all the other cases. We state it as a proposition, and prove it in a series of
lemmas.

Proposition 4.3.12 Case (20) of Lemma 4.3.3 does not occur.

Assume case (20) holds, so G = E8 and

L ↓ X = 44/52/25/603/063/413/143/22/303/033/11/008.

Fix notation for X with TX -root subgroups U±α, U±β , U±(α+β). For each
root δ we let eδ denote a generator of L(Uδ). Recall that the torus T
consists of matrices T (c) = diag(c2, 1, c−2) for 0 6= c ∈ K. Similarly let
T1(c) = diag(c, c, c

−2) and T1 the corresponding 1-dimensional torus of X.
As before we have CX(T1) = T1Jα and T (c) = T1(c)Tα(c).

The proof proceeds in a series of lemmas.

Lemma 4.3.13 (i) C = CG(T1)
′ = A1A6 is a Levi subgroup of a parabolic

subgroup of G conjugate to P3.

(ii) T1 determines the labelling 00300000 of the Dynkin diagram of G.

(iii) Tα determines the labelling 3 for the A1 factor and 220022 for the
A6 factor of CG(T1).

Proof To find CG(T1) we find the T1-weights on all composition factors
in L ↓ X, and also the Tα weights and their multiplicities on C = CG(T1).
We find that dimC = 52 and the non-negative Tα-weights on L(C) are
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8, 62, 47, 29, 014. As C is a Levi subgroup, the only possibility is C ′ = A1A6.
This gives (i) and (ii). Moreover, the Tα-weights indicated are only consis-
tent with labelling indicated in (iii).

At this point we choose a fundamental sytem for G such that P3 has Levi
subgroup C. Then the A1 factor corresponds to α1 while the A6 factor has
base {α2, α4, α5, α6, α7, α8}. In view of the ordering of fundamental roots
we let ω1 denote the fundamental dominant weight for the A1 factor and ωi
for i = 2, 4, 5, 6, 7, 8 denote the fundamental dominant weights for the A6
factor of C. Let W = VA1(1) and V = VA6(100000) be the natural modules
for the factors. Using projections we can consider both V,W as modules for
Jα.

Lemma 4.3.14 (i) The T1-weight spaces L3, L−3 of L(G) corresponding to
weights 3 and −3 are spanned by all root vectors with α3 coefficient 1 or −1
respectively.

(ii) L3, L−3 afford irreducible modules for C = A1A6 isomorphic to
VA1(1)⊗ VA6(000001) =W ⊗∧

2V ∗ and VA1(1)⊗ VA6(010000) =W ⊗∧
2V .

(iii) 〈eβ , eα+β〉 is a subspace of L3 affording a restricted irreducible Jα-
module with maximal vector eα+β.

(iv) 〈e−β , e−(α+β)〉 is a subspace of L−3 affording a restricted irreducible
Jα-module with maximal vector e−β.

Proof Parts (i) and (ii) follows directly from [3]. For (iii) and (iv) just note
that the subspaces indicated are the Lie algebras of the unipotent radicals
of parabolics of X with Levi factor Jα and have the correct T1-weights.

We next consider possible embeddings of Jα in A1A6.

Lemma 4.3.15 (i) Jα has composition factors 4/2/0
3 on V .

(ii) In its action on V , Jα has either an irreducible submodule or irre-
ducible quotient of high weight 2.

Proof First note that L(A6) has codimension 1 in V ⊗ V ∗ and that as an
expression in terms of A6-roots, λ1 =

1
7(654321). Also irreducible modules

for Jα are all self-dual, so the composition factors of Jα on V and V
∗ are

the same. It is now easy to see from the labelling in Lemma 4.3.13(iii) that
the composition factors of Jα on V are as indicated in (i).
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For (ii), let v ∈ L be a TX -weight vector of weight 44. Then v is a
maximal vector and hence E = 〈Xv〉 is an image of the corresponding Weyl
module. Of course v is annihilated by eα and eβ . Suppose fαv = 0 = fβv.
Then 44 appears as a composition factor of A. The non-negative T -weights
on L(D) are 16, 128, 817, 425, 034. The highest weight is 16 and this is also
the highest weight of 44 which occurs within A. As this weight appears
with multiplicity 1 it is afforded by a root vector of D (corresponding to
the high root) and hence A contains a root vector of L(G), contradicting
Lemma 2.2.12. Hence either fαv 6= 0 or fβv 6= 0. It follows that either 52
or 25 occurs as a weight of E and thus there is a composition factor of E
having this high weight.

Suppose that 52 appears as a composition factor of E. Writing 52 =
40⊗10⊗02 one checks that E−12 (the T1-weight space in E for weight −12)
affords an irreducible module of high weight 2 for Jα. Also, 44 and 52 are
the only composition factors of E with nonzero contribution to L−12. On
the other hand one checks that L−12 has trivial action of the A1 factor of C
and affords V for the A6 factor. So in this case 2 occurs as a submodule of
V ↓ Jα. If instead 25 appears as a composition factor of E, then we consider
L12, which affords V

∗, and get a submodule 2 of this, hence a quotient 2 of
V ↓ Jα. This establishes (iii).

Lemma 4.3.16 We may assume that V ↓ Jα is one of the following, where
each bracketed term represents an indecomposable module:

(i) (4|0|2)⊕ 02

(ii) (0|4|0|2)⊕ 0

(iii) (0|4|0)⊕ (0|2)

(iv) (0|4)⊕ (0|2)⊕ 0

(v) (4|0)⊕ (0|2)⊕ 0

(vi) 4⊕ (0|2)⊕ 02

(vii) (0|(2⊕ 4))⊕ 02.

Proof First note that conjugation by sα inverts Tα and interchanges the
roles of L3 and L−3. Hence the previous lemma shows that we may assume
that there is a submodule 2 in V ↓ Jα. We next claim that this submodule
is not a direct summand. For if there is such a direct summand, then the
representation of Jα on V can be factored through a Frobenius map and
hence its differential is zero, giving L(Jα) = L(A1). But then L(X) contains
a root element, contradicting Lemma 2.2.12(ii).
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With these observations the conclusion follows easily by factoring out the
submodule 2, considering possibilities for this quotient, and then looking at
possible preimages.

The Levi factor JαT1 is contained in two maximal parabolic subgroups of
X. On the two corresponding unipotent radicals Jα induces an irreducible
module of high weight 1, with maximal vectors eα+β and e−β , and T1 has
weights 3 and −3, respectively. Hence the Lie algebras of the unipotent
radicals are contained in L3, L−3, respectively.

We will determine these embeddings explicitly, so we will be interested
in Jα-modules of high weight 1 in L3, L−3. By Lemma 4.3.14, L3 and L−3
afford the modules W ⊗ ∧2V ∗ and W ⊗ ∧2V for C = A1A6.

As a first step we list the weight vectors of weights 1 ⊗ 0 and −1⊗ 2 in
these modules.

Lemma 4.3.17 In the following we list the roots for which the correspond-
ing root vectors in L3, L−3 have Tα-weight 1. The first set of roots given
corresponds to vectors of weight 1 ⊗ 0, and the second to vectors of weight
−1⊗ 2.

L3 : {11111110, 11121100, 11122100, 10111111, 11121000} (wt. 1⊗ 0)
{01122210, 01122110, 01121110, 01111111} (wt. − 1⊗ 2)

L−3 : {−01121000,−01121100,−01111110,−00111111,−01122100}
{−11110000,−11111000,−11111100,−10111110}

Proof Each of L3, L−3 affords an irreducible module for C and the mod-
ules have bases of root vectors for roots with coefficient of α3 equal to 1,−1,
respectively. It is then an easy matter to check that the root vectors cor-
responding to roots 11122221 and and −00100000 are maximal vectors for
the Borel subroup corresponding to positive roots. Moreover, from the la-
belling we see that these vectors afford Tα-weight 7. Hence to get roots of
Tα-weight 1 we must subtract roots from the root system of C with total
weight 6. From the labelled diagram one sees that the indicated roots are
the only ones possible.

At this point we are position to consider the various possibilities for
V ↓ Jα, obtaining a contradiction in each case. For each of the possibilities
indicated Lemma 4.3.16 we can determine the precise embedding of Jα in
C = A1A6. In each case we use a basis of V for which Tα has weights
4, 2, 0, 0, 0,−2,−4.
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Lemma 4.3.18 It is not the case that V ↓ Jα = (4|0|2)⊕ 02.

Proof Assume false. The indecomposable module 4|0|2 is just the Weyl
module for Jα of high weight 4, which can be realized as the dual of the
space of homogeneous polynomials of degree 4 in two variables. From here
it is easy to choose a suitable basis for V . As usual, writing Uij...(c) for the
root element Uαi+αj+...(c) of C and eij... for Eαi+αj+..., we find that

Uα(c) = U1(c)U4(c)U8(c)U45(c
2)U78(c

2)U245678(c
4)

so that
L(Uα) = 〈eα〉 = 〈e1 + e4 + e8〉.

In particular, eα is a nilpotent element of L(G) of type A1A1A1.

Next we consider the action of Uα(c) on the basis for L3 given in the
conclusion of Lemma 4.3.17. Using the E8 structure constants given in the
Appendix, Section 11, it is straightforward to calculate that

CL3(Uα) = 〈eδ, eγ〉

where δ = 10111111 and γ = 11121000. These are orthogonal roots and so
eα+β, which must lie in this centralizer, is a nilpotent element of type A1
or A1A1. This is a contradiction since eα and eα+β are conjugate under the
action of X.

Lemma 4.3.19 It is not the case that V ↓ Jα = (0|4|0|2)⊕ 0.

Proof Assume false. It is easy to argue from extension theory that there is
at most one nonsplit extension of the Weyl module 4|0|2 by the trivial mod-
ule. Next note that the irreducible module 3 is also the Weyl module W (3),
so that 1 ⊗ 3 is a tilting module, which necessarily is the indecomposable
tilting module T (4) of high weight 4. This is a uniserial module of shape
2|0|4|0|2, so the desired module occurs as the unique maximal submodule
of T (4). Using the tensor product expression T (4) = 1 ⊗ 3, we can easily
obtain a matrix expression for Uα(c) and we find that

Uα(c) = U1(c)U24(c
2)U45(c)U245(c

2)U8(c)U4567(c
2)U678(c

2)U5678(c
2).

Then
L(Uα) = 〈eα〉 = 〈e45 + e8 + e1〉,

so that eα is a nilpotent element of type A1A1A1.
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We next compute the fixed points of Uα on L3 using the basis given in
Lemma 4.3.17. From the precise action we see that this fixed space has
dimension 2 and is spanned by the vectors v = e11121100 + e11122100 and
w = e10111111+e11121000. The four root vectors involved in these expressions
lie in a subsystem of type A1A3 having base {e10111111}, {e11121000, e6, e5},
and any nonzero element of 〈v, w〉 is of type A1 or A1A1. As eα+β lies in
this space and is of type A1A1A1, we have a contradiction.

Lemma 4.3.20 It is not the case that V ↓ Jα = (0|(2⊕ 4))⊕ 02.

Proof Assume false, and proceed as in the previous cases. Note that the
first summand of V ↓ Jα is a submodule of codimension 1 in the module
(0|2)⊕(0|4), which can be regarded as the space of homogenous polynomials
of degree 2 in two variables, plus a Frobenius twist of this module. We can
then obtain a matrix expression for Uα and find that

Uα(c) = U1(c)U4(c)U24(c
2)U4567(c

2)U245678(c
2).

Hence,
L(Uα) = 〈eα〉 = 〈e1 + e4〉,

a space generated by a nilpotent element of type A1A1. The same consid-
erations show that L(U−α) = 〈e−1 + e−567〉.

We next compute the fixed points of Uα on L3 and L−3. This is a
straightforward computation using the structure constants in the Appendix,
Section 11, and we find that

eα+β = ae11121100 + be11122100 + ce11121000 + d(e11111110 + e01121110),

where the indicated root vectors span the fixed space of Uα on L3. The 5
roots in the expression for eα+β lie in a subsystem of type A1A4, where the
A1 has base e11111110 and the A4 has base {e11121000, e6, e5, e01121110}. Since
eα+β must have type A1A1 we can work within this subsystem, projecting
to sl5 and find that d 6= 0 but a = b = c = 0. Hence

eα+β = d(e11111110 + e01121110).

Similarly,
e−β = re−01111110 + se−00111111 + te−01122100.

Now [eα+β , e−β ] = eα which is a multiple of e1 + e4. It follows that r 6= 0.
Since e−β has type A1A1 exactly one of s, t is nonzero. In either case
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e−β is the sum of two root vectors. So is eβ = (eα+β)
sα . But then

L(X) = 〈eα, e−α, eβ , e−β〉 where each generator is the sum of two root vec-
tors and there is at least one opposite pair of roots represented, and these
have the same centralizer in TX . It follows that there is a 1-dimensional
torus centralizing L(X), contradicting Lemma 2.2.10(ii).

Lemma 4.3.21 V ↓ Jα 6= (0|4|0)⊕ (0|2).

Proof Here we can take the first summand to be a Frobenius twist of 1⊗1
(the tilting module of high weight 2) and the second summand as the space
of homogeneous polynomials of degree 2 in two variables. We then see that

Uα(c) = U1(c)U678(c
2)U4567(c

2)U2456(c
2)U245(c

2)U78(c
2)U4(c),

so that

L(Uα) = 〈eα〉 = 〈e1 + e4〉.

Computing fixed points of Uα on L−3 we find that

e−β = ae−01111110 + b(e−00111111 + e−01122100)+
+c(e−01121000 + e−01121100 + e−11111000 + e−11111100).

The roots involved in this expression lie in an A1A5 subsystem, where the
A1 factor has base 01111110 and the A5 factor has base

01121000, 00000100, 00001000, 11110000, 00111111.

Computing the matrix in sl6 that e−β projects to, and using the fact that
e−β is of type A1A1, we conclude that c = 0, whence a = 0 and we have

e−β = b(e−00111111 + e−01122100).

Next consider fixed points of Uα on L3 and find that

eα+β = r(e11121100+e11121000)+s(e11122100+e10111111)+t(e11111110+e01121110).

We get a contradiction from the relation [eα+β , e−β ] = eα, since the com-
mutator cannot contain the e4 component of eα.

Lemma 4.3.22 V ↓ Jα 6= (0|4)⊕ (0|2)⊕ 0.
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Proof Assume the contrary. Here the situation requires a bit more effort.
We proceed as in previous cases. The nontrivial summands can be regarded
as the space of homogeneous polynomials of degree 2 in two variables, and
a Frobenius twist of this module. Using this we can determine the matrix
expressions of Uα in C and we obtain

Uα(c) = U1(c)U4(c)U2456(c
2)U4567(c

2)U245678(c
4),

so that

L(Uα) = 〈eα〉 = 〈e1 + e4〉.

We next calculate the fixed points of Uα on L−3 and find

e−β = ae−01111110 + be−00111111 + c(e−01121000 + e−11111000).

The second and fourth roots span an A2 subsystem and the others are
orthogonal to these. It follows e−β is in an A1A1A2. On the other hand this
nilpotent element is conjugate to eα hence must have type A1A1. It follows
that either

e−β = c(e−01121000 + e−11111000)

or

e−β = ae−01111110 + be−00111111.

Next we calculate the Uα-fixed points on L3, and hence find

eα+β = re11121100 + se11122100 + te11121000 + w(e11111110 + e01121110).

Here the roots involved lie in a subsystem of type A1A4 with base equal to
{e11111110}∪{e111210000, e6, e5, e01121110}. Then considering a matrix expres-
sion for eα+β and using the fact that this element has type A1A1, we find
that w 6= 0, and this forces r = s = t = 0. Hence

eα+β = w(e11111110 + e01121110).

From the commutator [eα+β , e−β ] = eα and the known expression for eα we
see that the second expression for e−β above must hold, with a = b.

There is no contradiction at this point so we must proceed further in
the analysis. The next step is to use a reflection sα ∈ NJα(Tα). From the
embedding Jα < C = A1A6 we see that we can take

sα = s1s
s4s5s6s7s8
2 ss5s6s74 .



146 MARTIN W. LIEBECK AND GARY M. SEITZ

We have 〈e−α−β〉 = 〈(e−β)sα〉 and 〈eβ〉 = 〈e
sα
α+β〉. So at this point we can

write
〈e−β〉 = 〈e−01111110 + e−00111111〉,

〈eβ〉 = 〈e01111110 + e11110000〉,

〈eα+β〉 = 〈e11111110 + e01121110〉,

〈e−α−β〉 = 〈e−11111110 + e−10111111〉.

There are 8 root elements involved in these expressions, and two of these are
opposites. Since we are working in E8 it follows that there is a 1-dimensional
torus in G centralizing all of L(X), and this contradicts Lemma 2.2.10(ii).

Lemma 4.3.23 V ↓ Jα 6= (4|0)⊕ (0|2)⊕ 0.

Proof The argument here resembles that of the previous lemma. The
nontrivial summands can be regarded as the space of homogeneous polyno-
mials of degree 2 and the Frobenius twist of the dual of this module. Using
this we can determine the matrix expressions of Uα in C and we have

Uα(c) = U1(c)U4(c)U78(c
2)U4567(c

2)U245678(c
4),

so that
L(Uα) = 〈eα〉 = 〈e1 + e4〉.

We calculate the Uα-fixed points on L3 and deduce

eα+β = ae11121000 + be10111111 + c(e11111110 + e01121110).

Here the roots involved lie in a subsystem of type A1A1A2 with base equal
to {e11121000}∪{e11111110}∪{e10111111, e01121110}. Then considering a matrix
expression for eα+β and using the fact that this element is of type A1A1, we
find that either c 6= 0 and a = b = 0, or else c = 0 and a, b 6= 0. Hence either

eα+β = c(e11111110 + e01121110)

or
eα+β = ae11121000 + be10111111.

We next calculate the fixed points of Uα on L−3 and find

e−β = re−011111110 + se−01122100 + t(e−11111000 + e−011210000)
+w(e−11111100 + e−01121100).
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The roots in this expression lie in an A1A4 subsystem with base

{e−01111110} ∪ {e−01121000, e−6, e−5, e−11110000}.

First assume eα+β = c(e11111110+e01121110). Since [eα+βe−β ] = eα, we see
that r 6= 0. This forces t = w = 0 so that e−β is the sum of two root elements
as is eβ = (eα+β)

sα . Also, e−α is the sum of two root elements and clearly one
of these is e−1. As in the last case we have L(X) = 〈eα, e−α, eβ , e−β〉 and this
is centralized by a 1-dimensional torus of G, contradicting Lemma 2.2.10(ii).

Now assume eα+β = ae11121000 + be10111111. Here the commutator equa-
tion [eα+βe−β] = eα implies that t 6= 0, which forces r = w = 0. Hence,
e−β = se−01122100 + t(e−11111000 + e−011210000). Once again we use the re-
flection sα ∈ NJα(Tα). From the embedding Jα < C = A1A6 we again find
that

sα = s1s
s4s5s6s7s8
2 ss5s6s74 .

Hence eβ = (eα+β)
sα = xe01121000+ye00111111. It follows that the generators

of L(X) = 〈eα, e−α, eβ , e−β〉 involve 9 root vectors, but there are two pairs of
opposite roots involved. Consequently there is again a 1-dimensional torus
centralizing L(X), contradicting Lemma 2.2.10(ii).

Lemma 4.3.24 V ↓ Jα 6= 4⊕ (0|2)⊕ 02.

Proof As in other cases we note that the summand 0|2 can be regarded as
homogeneous polynomials of degree 2 and using this we obtain an expression
for elements of Uα:

Uα(c) = U1(c)U4(c)U4567(c
2)U245678(c

4),

so that
L(Uα) = 〈eα〉 = 〈e1 + e4〉

and eα is a nilpotent element of type A1A1. We next calculate fixed points
of Uα in L3 to get

eα+β = a(e01121110+e11111110)+be11121100+ce11122100+de10111111+ee11121000.

Observe that all roots in the above expression occur in a subsystem of type
A1A1A4 with base {e11111110}∪{e10111111}∪{e11121000, e6, e5, e01121110}. Now
eα+β is conjugate to eα so projecting eα+β to the A4 factor and considering
matrices we conclude that either a 6= 0 and b = c = d = e = 0, or else
a = 0, d 6= 0, and at least one of b, c, e is nonzero.
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Next we calculate fixed points on L−3, and deduce that

e−β = r(e−11111000 + e−01121000) + s(e−11111100 + e−01121100)+
te−01111110 + ue−00111111 + ve−01122100.

All roots in the above expression are contained in an A1A5 subsystem with
base {e−01111110} ∪ {e−01121000, e−6, e−5, e−11110000, e−00111111} and project-
ing e−β to the A5 factor we obtain restrictions on the coefficients by consid-
ering matrices and using the fact that e−β is of type A1A1.

First assume u 6= 0. This forces r = s = 0 and vt = 0. From the
commutator [eα+β , e−β ] = eα = e1 + e4 we conclude that a 6= 0 and thus

〈eα+β〉 = 〈e01121110 + e11111110〉

〈e−β〉 = 〈e−01111110 + xe−00111111〉,

where x 6= 0. At this stage we conjugate the above vectors by sα and find
that L(X) is generated by four nilpotent elements (namely, eα, e−α, eβ , e−β)
with each expressed in terms of 2 root vectors of E8 and an opposite pair
occurring. As in previous cases this implies that there is a 1-dimensional
torus centralizing L(X), which is a contradiction.

We now assume u = 0. Assume that in addition r 6= 0. Then the matrix
considerations force s = t = 0. Here the commutator [eα+β , e−β ] = eα =
e1 + e4 leads to expressions

〈e−β〉 = 〈e−01121000 + e−11111000 + xe−01122100〉,

〈eα+β〉 = 〈ye10111111 + e11121000 + ze11121100〉.

Conjugating by U−56(x) and then U6(z), both of which commute with Uα,
we can assume that x = 0 = z. At this point we can proceed just as in the
previous paragraph.

Hence we can now assume that u = r = 0. Suppose s 6= 0. Here the
matrix expession implies t = 0. Then the commutator identity [eα+β , e−β ] =
eα = e1 + e4 implies b 6= 0, but a = c = 0. So here we have

〈e−β〉 = 〈e−01121100 + e−11111100 + xe−01122100〉,

〈eα+β〉 = 〈e11121100 + ye11121000 + ze10111111〉.

Conjugating by U−5(x) and U−6(y) we can omit the terms with coefficients
x, y. At this point we conjugate get the usual contradiction.
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The final case is where r = u = s = 0. Then t, v 6= 0. The commutator
identity forces a 6= 0, so that

〈e−β〉 = 〈e−01111110 + xe−01122100〉,

〈eα+β〉 = 〈e11111110 + e01121110〉.

Once again we conjugate by sα and find that there exists a 1-dimensional
torus centralizing L(X), a final contradiction.

We have now excluded all the cases in Lemma 4.3.16, completing the
proof of Proposition 4.3.12.

Theorem 4.1 is now proved for all primes p.



5 Maximal subgroups of type B2

In this section we prove Theorem 1 in the case where the maximal subgroup
X is of type B2. Recall that G is an exceptional adjoint algebraic group,
and G1 is a group satisfying G ≤ G1 ≤ Aut(G). We consider only the small
characteristic cases required by Proposition 2.2.1.

Theorem 5.1 Suppose that X = B2 is maximal among proper closed con-
nected NG1(X)-invariant subgroups of G. Assume further that

(i) CG(X) = 1, and

(ii) p ≤ 5 if G = E8; p ≤ 3 if G = E7, E6; p = 2 if G = F4; and G 6= G2.

Then G = E8, p = 5, and G contains a single conjugacy class of maximal
subgroups B2.

Suppose X, p are as in the hypothesis of the theorem, with X = B2.
Write S = NG1(X). Lemmas 2.2.2, 2.2.10 and 2.2.11 imply that CS(X) = 1
and that S = X〈σ〉, where σ is a field morphism of G (possibly trivial), or
a graph-field morphism of G, the latter only if G = E6.

We shall prove the theorem in subsections, one for each value of p =
2, 3, 5. The case p = 2 is the most complicated and we save this for last.

Set notation as follows. Choose a root system of X with base Π(X) =
{α, β}, with α long and β short, and positive roots Σ+(X) = {α, β, α +
β, α + 2β}. Let TX be a maximal torus of X with corresponding root ele-
ments and root subgroups labelled by Σ(X). For γ ∈ Σ+(X), let eγ be the
corresponding root vector in L(X), and fγ = e−γ . As in Definition 2.2.4,
T is a 1-dimensional torus of X such that each of α, β affords weight 2 of
T . That is, T gives the labelling 22 of the Dynkin diagram of X. The
TX -weight ab affords T -weight 4a+ 3b.

5.1 The case p = 5

Assume p = 5. Then from the hypothesis of Theorem 5.1, we have G = E8.

By Lemma 2.2.6, T determines a labelling of the Dynkin diagram of
G by 0’s and 2’s. As usual, we can use the Weight Compare Program
to determine the composition factors of L(G) ↓ X corresponding to each
possible labelling.

The first step is to determine the possible extensions among those com-
position factors which occur, and this amounts to determining the structures

150
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of the relevant reducible Weyl modules.

Lemma 5.1.1 Excluding the T -labelling 22202022 of E8, the only reducible
Weyl modules for which the corresponding irreducible module appears as a
composition factor of L(G) ↓ X are as follows:

(i) W (20) = 20|00

(ii) W (22) = 22|20

(iii) W (06) = 06|22

(iv) W (32) = 32|22.

We see from this lemma that excluding the exceptional labelling, the
only composition factor that extends the trivial module is 20. Since X
has no fixed points on L(G) and since L(G) is self dual, it follows that
20 must have greater multiplicity than 00 when the latter multiplicity is
positive. This observation pares down the list of possibilities provided by the
Weight Compare Program to the following, which also covers the exceptional
labelling 22202022.

Lemma 5.1.2 L(G) ↓ X is one of the following:

(i) 222/30/12/202/022/00

(ii) 32/06/222/02

(iii) 2(10)/0(10)/52/16/02

(iv) 56/1(10)/0(10)/52/16/062/02.

We consider each of the above configurations separately.

Lemma 5.1.3 Case (i) of Lemma 5.1.2 does not hold.

Proof Suppose 5.1.2(i) holds. Let V = VX(10), the 5-dimensional orthog-
onal module, and let T1 denote a 1-dimensional torus of X such that for
c ∈ K∗, T1(c) induces diag(c, c−1, 1, 1, 1) on V . So CX(T1) = T1A1, where
A1 induces SO3.

Noting that 02 is the wedge-square of V , we calculate that T1(c) induces
(c(3), (c−1)(3), 1(4)) on 02 (where a superscript (n) indicates that this eigen-
value occurs with multiplicity n); also S2(V ) = 20/002, from which we see
that T1(c) induces (c

(3), (c−1)(3), c2, c−2, 1(5)) on 20.

We next note that 10 ⊗ 02 = 12/02/10, 10⊗ 20 = 30/12 and 20⊗ 02 =
22/12/202/00 (this can be seen using the program of [13]). From this and
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the above action of T1 on 10, 02, and 20 we conclude that T1 has fixed
point spaces on 02, 20, 12, 30, 22 of dimensions 4, 5, 11, 10, 16, respectively.
It follows that CL(G)(T1) has dimension 72, hence so has CG(T1). This
centralizer must be a Levi subgroup of G. However, there is no Levi subgroup
of this dimension.

Lemma 5.1.4 Case (iii) of Lemma 5.1.2 does not hold.

Proof In this case L(G) ↓ X is multiplicity free. In view of the fact
that L(G) is self-dual, it follows that L(G) ↓ X is completely reducible.
Therefore, A = CL(G)(L(X)) is an irreducible module for X of high weight
0(10). By Lemma 2.3.4 we have A ≤ L(D), where D = A4A4. The non-
negative T -weights on L(G) which are multiples of 5 and their multiplicities
are as follows: 012, 1010, 206, 302. Now T < A4A4 and it is easy to check that
up to possible graph automorphisms, the only possible labelling for each A4
is (10)(10)0(10).

Now A contains a nonzero weight vector v of T -weight 30, and conse-
quently 2.3.5 and 2.3.8 yield a contradiction.

Lemma 5.1.5 Case (iv) of Lemma 5.1.2 does not hold.

Proof We first claim that there does not exist an indecomposable L(X)-
module with socle 01 and quotient 00. By way of contradiction assume
V is such a module with socle W . Let T1 be a 1-dimensional torus in
X such that for c ∈ K∗, T1(c) acts diagonally as (c, c, c−1, c−1) on the 4-
dimensional symplectic module 01, and let L(T1) = 〈h〉. Then CX(h) = T1J ,
where J = SL2 is a fundamental SL2 corresponding to a short root. Also,
V =W⊕CV (h). Then J leaves CV (h) invariant, acting trivially. Let T ′1 be a
1-dimensional torus of J . From the action on 01 we see that T ′1 is a conjugate
of T1, so that 〈h′〉 = L(T ′1) is a conjugate of 〈h〉. Set CX(h

′) = T ′1J
′. It now

follows that CV (h) = CV (h
′), so this space is invariant under 〈J, J ′〉 = X.

This is a contradiction and establishes the claim.

Now assume 5.1.2(iv) holds. We next claim that there is an irreducible
submodule 0(10) in L ↓ X. All composition factors of L ↓ X appear with
multiplicity 1, with the exception of 06, and L(G) is self-dual. So if the
claim fails to hold, then there must be a singular submodule W ∼= 06. Then
W⊥/W is multiplicity free, so has a submodule 0(10). Repeated application
of the first claim implies that under the action of L(X) the preimage splits
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asW⊕Z, with Z the fixed point space of L(X). Hence Z is X-invariant and
affords 0(10). At this point the proof is completed as in Lemma 5.1.4.

It remains to handle case (ii) of Lemma 5.1.2. In this case maximal
subgroups arise:

Lemma 5.1.6 There is a unique conjugacy class of maximal B2’s in G =
E8 such that for X in the class, L(G) ↓ X = 32/06/222/02.

Proof For p ≥ 7, (6.7) of [31] shows the existence and conjugacy of a unique
class of maximal B2 in E8. A careful check shows that in the case p = 5
many of the same arguments apply. In particular, assuming such a group X
exists we find that its Lie algebra must be conjugate to J = 〈eα, eβ , fα, fβ〉
(Lie algebra span), with the vectors eα, eβ , fα, fβ as indicated on p.111 of
[31]. It is shown that J is a simple algebra of type B2, with α, β long and
short roots, respectively. In the following we argue that this Lie algebra is
indeed the Lie algebra of a corresponding group X = B2.

Just as on p.109 of [31] there is a subgroup Eα ∼= SL2 contained in a
subsystem subgroup A1A5 of G, with L(Eα) = 〈eα, fα〉. In this embedding
the usual 6-dimensional module V6 for A5 affords the module 3 ⊕ 1 for Eα.
Now L ↓ A1A5 can be decomposed explicitly into the sum of irreducible
modules (view A1A5 < A1E7 and use 2.1 and 8.6 of [23]). Aside from one
adjoint module for each factor, the remaining irreducibles have the form
M ⊗ N , where M is a natural or trivial module for the A1 factor and
N = V6, V

∗
6 ,∧

2V6,∧2V ∗6 ,∧
3V6 or a trivial module. Using this and standard

results on tilting modules (see Lemma 2.1.7 and its preamble), we see that
L(G) ↓ Eα is a tilting module with highest weight 6.

Now T (6) = 2|(1 ⊗ 1(5))|2 and T (5) = 3|1(5)|3. We claim that neither
of these has an irreducible 2-dimensional L(Eα)-submodule. This is clear in
the second case since there is no 2-dimensional composition factor. In the
first case there are such composition factors; however, if such a submodule
existed then the sum of all its images under Eα would be Eα-invariant and
homogeneous for L(Eα), contradicting the fact that T (6) is indecomposable.

At this point we can argue that each 2-dimensional L(Eα)-submodule of
L is invariant under Eα. In particular, Eα stabilizes the subspaces 〈eβ , eα+β〉
and 〈e−β , e−α−β〉. So Eα also stabilizes the Lie algebra span of these spaces,
which is J .

Next we carry out a similar analysis for a group Eβ < A4A2 < D5A2
with L(Eβ) = 〈eβ , fβ〉. In this embedding Eβ has irreducible and restricted
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action on the natural modules for both the A4 and A2 factors. Restricting
L to A4A2 and then to Eβ we find that L ↓ Eβ is a tilting module with
highest weight 8 and all weights even. Now T (8) = 0|3⊗ 1(5)|0 and T (6) =
2|1 ⊗ 1(5)|2. Then T (8) ↓ L(Eβ) has no composition factor of dimension 3
and the above argument shows that the only 3-dimensional submodule of
T (6) ↓ L(Eβ) in the socle 2.

It follows from the above remarks that any 3-dimensional irreducible
L(Eβ)-submodule of L is also Eβ-invariant. In particular, 〈eα, eα+β , eα+2β〉
and 〈e−α, e−α−β , e−α−2β〉 are both Eβ-invariant. So Eβ stabilizes the Lie
algebra they generate, namely J .

Now set Y = 〈Eα, Eβ〉. Then Y induces an irreducible subgroup on J
preserving the Lie algebra structure. From the adjoint action of J on L we
have CL(G)(J) = 0 and hence CY (J) is a finite group. It follows that Y is
of type B2 and this completes the argument.

5.2 The case p = 3

Here G = E6, E7 or E8. We proceed as in the case for p = 5. The torus
T determines a labelling of the Dynkin diagram of G, which in turn deter-
mines all weights of T on L(G) and (via the Weight Compare Program) the
possible composition factors of L(G) ↓ X. We first determine which of these
composition factors has its corresponding Weyl module being reducible.

We will say that a composition factor is acceptable if it appears in L(G) ↓
X for some labelling in which the adjoint module of X also appears (which
of course must be the case).

Lemma 5.2.1 The following are the only reducible Weyl modules of T -
weight at most 20 whose simple quotient is acceptable:

(i) W (12) = 12/02

(ii) W (30) = 30/12

(iii) W (04) = 04/20/10

(iv) W (40) = 40/04/20

(v) W (06) = 06|14|02 (uniserial)

(vi) W (16) = 16/24/04/10

(vii) W (14) = 14/30/12/02/00

(viii) W (32) = 32/14/12/30/02

(ix) W (50) = 50/04/10
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(x) W (24) = 24/40/04/20/10.

Proof The composition factors were obtained using a computer imple-
mentation of the Sum Formula. To complete the proof we must verify that
the W (06) is uniserial with the indicated series. If this is not the case then
there must exist an indecomposable module of the form I = 06|02. Let
v ∈ I be a maximal vector. Then eα, eβ , and fα all annihilate v. Moreover,
fβv = 0, as well, since 14 does not occur as a TX -weight of this module.
Hence v ∈ CI(L(X)), the latter being X-invariant. But then, L(X) annihi-
lates I, which is clearly false since it does not annihilate the socle.

Lemma 5.2.2 The irreducible X-module 60 does not extend the trivial mod-
ule.

Proof Assume false and assume V is an indecomposable module with
submoduleW = 00 such that V/W = 60. Then L(X) annihilates V/W . Let
v ∈ V have weight 60. If γ ∈ Σ(X) and eγ is a root vector of L(X) then eγv
has weight 60+γ. On the other hand, this must lie in the trivial module. As
γ cannot afford the weight −60, we conclude that v ∈ CV (L(X)), the latter
being X-invariant. Hence L(X) is trivial on V and so the representation
X → SL(V ) factors through a Frobenius morphism (see 1.2 of [23]). But
this is impossible as VX(02) does not extend the trivial module (see [23,
1.10]).

Recall that L = L(G)′ and A = CL(L(X)). By Lemma 2.1.1, L = L(G)
except when G = E6, in which case L has codimension 1 in L(G). Denote
by nab the multiplicity of the composition factor ab in L ↓ X.

Lemma 5.2.3 One of the following holds for X,G and L ↓ X.

(i) G = E6 and L ↓ X = 06/40/042/02

(ii) G = E8 and L ↓ X = 124/202/0210/104

(iii) G = E8 and L ↓ X = 06/32/142/04/20/023

(iv) G = E8 and L ↓ X = 06/32/142/30/12/023.

Proof As in previous cases we make use of the Weight Compare Program to
list the possibiities for the composition factors of L ↓ X. We can immediately
rule out all cases where there does not exist an adjoint module. Also, by
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Lemma 2.2.10 we can rule out any case where L ↓ X has a nonzero trivial
submodule.

First assume that the highest T -weight on L is at most 20. By Lemma 5.2.1,
the only irreducible in this range that can possibly extend the trivial mod-
ule is 14, and 00 occurs with multiplicity 1 in W (14). It follows that either
n00 = 0 or n00 < n14. Working through the possible configurations we see
that under the assumption, one of the cases (i)-(iv) occurs.

Now suppose that there is a T -weight greater than 20. Here we find that
G = E8 and one of the following occurs:

(a) L ↓ X = 062/143/30/023/00

(b) L ↓ X = 34/16/06/32/14/02

(c) L ↓ X = 60/162/06/322/20/02.

We must rule out these exceptional configurations. Suppose (a) holds.
Here we can use the fact that W (06) = 06|14|02 is uniserial to see that
there exists a 06 submodule, which must then occur as a submodule of A.
The labelling here is 00020020 so the non-negative T weights which are a
multiple of 6 are 024, 620, 129, 182. Then dim(D) = 86, so Lemma 2.3.4
implies D = A2E6. In view of the T -weights the labellings of these factors
must be 66, 0000600 and Lemma 2.3.6 yields a contradiction.

Cases (b) and (c) both occur for the T -labelling 00020202 where the
non-negative T -weights which are a multiple of 6 are 020, 618, 1211, 186, 241.
It follows that dim(D) = 92. If we show that A 6= 0, this will contradict
Lemma 2.3.4.

So it remains to establish that A 6= 0. In case (b), L ↓ X is multiplicity-
free. Now L and all composition factors of L ↓ X are self-dual. It follows
that each simple module is non-degenerate under the form on L, and hence
L ↓ X is completely reducible. Then 06 occurs as a submodule and hence
A 6= 0. Essentially the same argument works in case (c). The restriction
L ↓ X is not multiplicity-free, since both 16 and 32 occur with multiplicity
2; but neither of these extends 06 and we conclude that 06 occurs as a
submodule, hence A 6= 0.

Lemma 5.2.4 It is not the case that (i),(ii) or (iii) of Lemma 5.2.3 holds.

Proof Suppose 5.2.3(i) occurs. From Lemma 5.2.1, we conclude that there
is an irreducible X-submodule 06, and hence A 6= 0. The non-negative T -
weights on L(G) which are multiples of 6 are 010, 68, 124, 181. Hence the
group D has dimension 36, which contradicts 2.3.4.
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Now suppose 5.2.3(iii) holds. Let Y be a fundamental SL2 of X cor-
responding to a long root and let T1 be a maximal torus of Y . Then T1
has non-negative weights 1, 02 on 01 and 12, 0 on 10. We can then calculate
the T1-weights for the other composition factors of L ↓ X. Indeed, 02 is
the wedge-square of 10 and 20 has codimension 1 in the symmetric square
of 10. Using this and the Steinberg tensor product theorem one can easily
determine the T1-weights of all composition factors other than 14. Here we
must first determine the weights of 11 and this follows using the fact that
10⊗ 01 = 11/01.

From the above considerations we calculate the T1-fixed points on each
of the composition factors. They are each of dimension 4 with the exception
of the composition factor 14, where the fixed space has dimension 8. It
follows that CG(T1) has dimension 44, which is a contradiction since there
is no such Levi subgroup in E8.

Finally, consider 5.2.3(ii). This is actually the most complicated case,
but the detailed analysis is the same as that carried out in 6.6 of [31], where
it is shown that X is contained in an A4A4 subsystem group. Consequently,
X is centralized by an element of order 5 in the center of this subsystem
group and this contradicts Lemma 2.2.10(ii).

We complete this section with

Lemma 5.2.5 It is not the case that (iv) of Lemma 5.2.3 holds.

Proof Suppose 5.2.3(iv) holds. Assume first that 06 occurs as a compo-
sition factor of A. The non-negative T -weights which are multiples of 3 are
024, 620, 129, 182. Hence by Lemma 2.3.4, A ≤ L(D) where D is a reductive
maximal rank subgroup of dimension 86. It follows that D = A2E6. Next,
we compute the T -labelling of D and find that the A2 has labelling 60 (up
to a graph automorphism), while the E6 has labelling 000600.

There is a T -weight vector v ∈ A of weight 18. From the labelling of
A2E6 we see that v = ceγ + deμ, where γ is the root of highest height
in Σ(E6) and μ is the next highest root. Now Jα2 , the fundamental SL2
corresponding to α2, is transitive on nonzero vectors of this form. Hence v
is a root vector, contradicting Lemma 2.2.12(ii).

We may now assume 06 is not a composition factor of A. Let v ∈ L be
a weight vector of weight 06, so that 〈Xv〉 is an image of the Weyl module
W (06) = 06/14/02. Our assumption implies that L(X) does not annihilate
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v, but weight considerations imply that eαv = eβv = fαv = 0. It follows
that fβv 6= 0.

For c ∈ K∗, set Sβ(c) = hα(c2)hβ(c) and Sβ = 〈Sβ(c) : c ∈ K∗〉. One
checks that Sβ = CX(Jβ), where Jβ is the image of the fundamental SL2
generated by the root subgroups corresponding to short roots β and −β.
Calculating fixed points of Sβ on the various composition factors we find
that CG(Sβ) is a Levi factor of dimension 54, and hence CG(Sβ) = SβD5A2.

We next study the embedding of Jβ in D5A2. Let Tβ be a maximal
torus of Jβ . For each composition factor of L ↓ L(X), we can compute the
action of Jβ on the fixed points of Sβ . We conclude that Tβ has non-negative
weights 81, 64, 46, 210, 012 on the fixed space of Sβ . It follows that Tβ has
labels 02022 on the D5 factor and 22 on the A2 factor. Hence, the projection
of Jβ to the A2 factor corresponds to a subgroup acting irreducibly on the
natural module with high weight 2, while the projection to the D5 factor
corresponds to a subgroup acting on the natural module with composition
factors (1 ⊗ 1(3))2/02. It follows that the projection of Jβ leaves invariant
a nested singular 1-space and singular 5-space, where the quotient affords
1⊗1(3). From the extension theory we see that there is also a 4-dimensional
subspace affording 1 ⊗ 1(3) and there are two possibilities depending on
whether this subspace is singular or non-degenerate. In the former case the
projection is contained in a subsystem subgroup A4 of D5 in such a way
that if V denotes the usual 5-dimensional module, then V = 1⊗ 1(3)/0. In
the latter case the projection acts on the orthogonal module as a T (4) ⊥ 4,
and hence is contained in a subgroup of type SO6 ∙ SO4.

Let P = P6 denote the standard maximal parabolic subgroup of G with
Levi factor T1D5A2. Conjugating X, if necessary, we may assume this Levi
factor is CG(Sβ). We will label fundamental roots of D5 and A2 by the
corresponding fundamental roots of E8.

Case 1 First assume the projection of Jβ to the D5 factor of CG(Sβ) is
contained in an A4 subsystem subgroup of the D5. There is an element
s ∈ NX(Sβ) which inverts Sβ . Then s induces a graph automorphism on D5
interchanging the two classes of A4 subsystem subgroups. Conjugating by
an element of D5〈s〉, if necesssary, we may assume that the projection of Jβ
to D5 is contained in the A4 subgroup with base {α1, α3, α4, α5} ⊂ Π(E8).
This conjugation changes the Tβ-labelling of D5 and we will return to this
later. The weights of L ↓ X are all integral combinations of roots in Σ(X), so
these weights afford even weights of Sβ . In particular, α6 must afford either
2 or −2. Replacing the base {α, β} of Σ(X) by {−α,−β}, if necessary, we
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can suppose the former holds.

Let Q denote the unipotent radical of P . We can write L(Q) = W1 ⊕
W2 ⊕ W3 ⊕ W4, where Wi is the linear span of all root vectors of L(G)
for which the coefficient of α6 is precisely i. It follows from [3] that W3
affords the irreducible representation, VD5(λ5) (a maximal vector is given
by e23465321). So W3 is a spin module for D5, and setting V = VA4(λ5) we
have W3 ↓ A4 = V ⊕ ∧2V ∗ ⊕ E, where E is a trivial module.

Now v ∈W3 and v affords the largest Tβ-weight onW3, namely 6, so that
〈Jβv〉 is an image of the corresponding Weyl module, W (6) = 2(3)|1⊗ 1(3).
We have already seen that fβv 6= 0, so 〈Jβv〉 ∼=W (6). From this information
we check that the projection of Jβ must act on V as W (4)

∗ = 0|1 ⊗ 1(3).
Indeed, weight 6 for Tβ occurs only within the factor ∧2V ∗ and for other
embeddings the restriction of ∧2V ∗ contains ∧2(1 ⊗ 1(3)) = 2(3) ⊕ 2 as a
submodule.

Let Q− denote the opposite unipotent radical. Then L(Q−) = W−1 ⊕
W−2 ⊕W

−
3 ⊕W

−
4 . Here we study W

−
1 which affords the irreducible represen-

tation VD5(λ5) ⊗ VA2(λ7). Note that fα is a weight vector for Sβ of weight
−2, so that fα ∈ W

−
1 . We aim to locate fα, using the facts that fα is fixed

by Uβ and has Tβ-weight 2.

From the above we have the precise embedding of the projection of Jβ
in a Levi A4 of D5. Namely V = VA4(λ5) restricts as W (4)

∗, and hence
VA4(λ1) restricts as W (4). Take a basis of VA4(λ1) consisting of Tβ-weight
vectors for descending weights with base {α1, α3, α4, α5} and such that the
labelling of Tβ is 2222. Then

Tβ(c) = hα1(c
4)hα3(c

6)hα4(c
6)hα5(c

4)hα7(c
2)hα8(c

2)

and

Uβ(c) = U1(c)U5(c)U4(2c)U134(c
3)U345(c

3)U45(c
2)U8(2c)U7(c)U78(c

2).

The first observation from these expressions is that eβ = e1+e5+2e4+2e8+e7
and hence eβ is of type A2A2A1. It also follows that Tβ determines the
labelling 2(−6)222(−6)22 of the E8 diagram. Then a direct check shows
that the Tβ-weight space of W

−
1 for weight 2 has dimension 9 with basis

f00000111, f00001110, f00011100, f01111111, f11111110,

f11121100, f01121110, f01122100, f12232100.
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At this point we can compute the fixed points of Uβ on the above weight
space and find that the fixed space has dimension 3 and there is an expression

fα = af12232100 + b(f00000111 + f00001110 + f00011100)+
c(f01111111 + f0112111 + f01122100).

Hence fα lies in the Lie algebra of the subsystem subgroup of type A1A1A1A3
with base {f12232100}∪{f01121110}∪{f00001110}∪{f00000111, f01111000, f00011100}.
Using this we can easily identify the class of fα, depending on the coefficients
a, b, c.

We obtain additional information about fα as follows. For c ∈ K∗ let
Sα = hα(c)hβ(c) and set Sα = 〈Sα(c) : c ∈ K∗〉. Then CX(Sα) = Jα,
the fundamental SL2 corresponding to the long root α. From the decom-
position L ↓ X we find that CL(Sα) ↓ Jα = 6/(1 ⊗ 1(3))4/25/06. We find
CG(Sα) = T2A1A5 and where Tα yields labellings 2 and 20202 of the Dynk-
ing diagrams of A1 and A5, respectively. Then Jα acts on the usual module
for A5 with composition factors 1

(3)/12. Hence the precise action is one of
1(3) ⊕ 12, T (3),W (3) ⊕ 1, or W (3)∗ ⊕ 1. Taking into account the A1 factor
as well, we find that fα has type A

3
1, A

2
2A1, A2A

2
1, or A2A

2
1, respectively.

Combining this with the above, we have the following possibilities:

i) b 6= 0 6= c, a = 0 and fα = A2A21
ii) b 6= 0, a = c = 0 and fα = A31
iii) b = 0 = a, c 6= 0 and fα = A31.

All we require from this information is that a = 0 in each case. One can
find expressions for elements of U−β as was done earlier for Uβ . Using this
we find that

fβ = f1 + 2f3 + f5 + 2f7 + f8.

Now [fβfα] = ±fα+β and fα+β is an X-conjugate of eβ , so must be of type
A2A2A1. On the other hand, from the above expressions for fβ and fα we
find that

[fβfα] = cf11111110 + cf11121110 + cf11122100 − bf00111100

−cf01122110 + bf00011110 − cf01121111.

Conjugating this expression by U4(−c) we can delete the second term with-
out affecting other terms. Hence

n = cf11111110 + cf11122100 − bf00111100 − cf01122110 + bf00011110 − cf01121111
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is of type A2A2A1. If b = 0, this element lies in the Lie algebra of the subsys-
tem group of type A1A3 with base {f01122110}∪{f11111110, f01121111, f11122100},
whereas this Lie algebra contains no nilpotent element of type A2A2A1. So
assume b 6= 0. Now conjugate n by U2345(c/b) to obtain

n′ = cf11111110 + cf11122100 − bf00111100 + bf00011110 − cf01121111,

another nilpotent element of type A2A2A1. However this element lies in the
Lie algebra of a the subsystem subgroup of type A1A4 with base {f00011110}∪
{f00111100, f11111110, f01121111, f11122100}. Here also, it follows from the clas-
sification of nilpotent elements of A4 that this subalgebra cannot contain a
nilpotent element of type A2A2A1. This is a contradiction and completes
the argument for this case.

Case 2 The remaining case is the case where the projection of Jβ to the D5
factor of CG(Sβ) is contained in a subsystem subgroup J = D3A1A1 < D5
acting as SO6 ∙ SO4 on the orthogonal module. In this case the projection
of Jβ acts on the orthogonal module as T (4) ⊥ 4. Conjugating if necessary
we may take the subsystem group to have base {α5, α4, α2}, {α1, δ}, where
δ is the high root of Σ(D5). Consider the action of J = D3A1A1 on the
subspace W3 of L(Q). Here we again have W3 irreducible under the action
of D5, affording VD5(λ5). Then W3 ↓ J = (VD3(λ5) ⊗ E) ⊕ (VD3(λ2) ⊗ F ),
where E,F are 2-dimensional restricted usual modules for the A1 factors
with base δ, α1, respectively.

Using the fact that the projection of Jβ to the D3 factor acts as T (4) on
the orthogonal module, we see that this projection is indecomposable with
composition factors 3/1 on the 4-dimensional D3-modules. There is an ele-
ment of D5 acting on J , inducing a graph automorphism of D3, while inter-
changing the factors of the A1A1. Conjugating by this graph automorphism,
if necessary, we may assume that the projection of Jβ acts as 3|1 on VD3(λ5).
We recall from the above, that 〈Jβv〉 ∼=W (6) = 2(3)|1⊗ 1(3). It follows that
there must be a twist in the projection to the A1 factor with base α1 and
no twist on the other factor. We then have (VD3(λ5)⊗E) ↓ Jβ = (3|1)⊗ 3.

At this point we have the precise embedding of Jβ in D5A2 from which
we get the following expression for elements of Tβ and Uβ :

Tβ(c) = h1(c)hδ(c
3)h5(c

3)h2(c)h7(c
2)h8(c

2)

and

Uβ(c) = U1(c)Uδ(c
3)U5(c

3)U2(2c)U245(−c
2)U45(c)U8(2c)U7(c)U78(c

2).
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We first observe that eβ = e1+2e2+ e45+2e8+ e7 so that eβ is a unipotent
element of type A1A2A2. Next, from the expression for elements of Tβ we
see that Tβ determines the labelling (−2)(−2)(−2)(4)(−6)(8)(−2)(−2) of
the Dynkin diagram of G.

Now turn to Q− and again consider W−1 on which D5A2 acts irreducibly
as VD5(λ5) ⊗ VA2(λ7). We again aim to determine fα, a weight vector in
W−1 . This vector is fixed by Uβ has Tβ-weight 2, and 〈Jβfα〉 is the irreducible
module of high weight 2. A direct check shows that the Tβ-weight space of
W−1 for weight 2 has dimension 9 with basis

f00001100, f00011111, f01011110, f01111100, f00111110,

f10111100, f11121110, f01121111, f11221100.

We are now in position find the fixed points of Uβ on the above weight space.
A direct computation shows that this space has dimension 3 and that there
is an expression

fα = a(f01111100−f00111110)+b(f01111100+f10111100)+c(f00001100−f11221100).

Next we find an expression for elements of U−β , from which we see that

fβ = f1 + 2f2 + e24 + 2f7 + f8.

We then have

±fα+β = [fβfα] = 2bf01111110 − a(f11111100 + f01111111)+
(a− b)f10111110 + 2c(f00001110 + f11221110).

Now fα+β is X-conjugate to eβ , so it must be of type A1A2A2. This
forces a 6= 0. Indeed, otherwise, fα+β involves just 4 root vectors, hence
is centralized by a 4-dimensional torus, whereas this is not the case for
eβ . Conjugating by U8(2b/a) we can delete the first term of the expres-
sion without affecting the other terms. We can then view fα+β as an ele-
ment of the Lie algebra of the subsystem group of type A1A4 having base
{11111100} ∪ {00000111, 00001000, 01110000, 10111110}. Considering the
projection of fα+β to the A4 factor and working within the matrix algebra
sl5, we check that fα+β cannot have class A1A2A2, a contradiction.

5.3 The case p = 2

In this section we handle the case X = B2 with p = 2. When G = E8 this
is more complicated than the previous cases because the Weight Compare
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Program used in previous cases gives rise to hundreds of possible configu-
rations for L ↓ X. To deal with this situation we combine the techniques
used for B2 in odd characteristics with those used for A1 with p = 2. Cases
other than E8 are relatively easy and will be settled first. Following this we
develop machinery similar to what was used for A1 and apply this to the E8
configurations.

In view of Lemmas 2.2.2 and 2.2.11 we see that S is generated by X and
a field or graph-field morphism of G, the latter possible only for G = E6.

We begin with a lemma on extensions.

Lemma 5.3.1 ([34]) Ext1X(VX(λ),K) 6= 0 only if λ = (2
i, 0) for i ≥ 0 or

λ = (0, 2j) for j > 0. In the latter cases Ext1X(VX(λ),K) is 1-dimensional.

As in the A1 case for p = 2, we will make use of a certain ideal in L(X).
Let I = 〈eβ , fβ , eα+β , fα+β〉 (Lie algebra span).

Lemma 5.3.2 (i) I is an S-invariant abelian ideal of L, having basis eβ,
fβ, eα+β, fα+β .

(ii) CG(I) = 1.

Proof (i) It can be checked from commutator relations that I is an ideal
of L(X). Also, as p = 2, the commutator relations imply [e±β , e±(α+β)] = 0.
Setting [eβ , fβ ] = tβ, the fact that p = 2 implies that tβ ∈ Z(L(X)) = 0 (by
Lemma 2.2.10(v)). Similarly for tsαβ = tα+β . This gives (i).

Part (ii) follows from 2.2.10(iii).

For γ ∈ {α, β}, set Tγ = TX ∩ 〈Uγ , U−γ〉 and let Tγ(c) be the element
corresponding to the diagonal element (c, c−1) of SL2. Let tγ , lγ denote
Tγ(c) for c a cube root or fifth root of 1, respectively. The next lemma
determines the actions of these tori on the basic modules 10, 01. All other
irreducibles are tensor products of twists of these, so the action of the tori
and distinguished elements, in particular their fixed points, can be easily
determined. These are recorded in the following lemmas.

Lemma 5.3.3 There are bases for 10, 01 such that Tα(c) and Tβ(c) have
diagonal action as follows:

on 10: Tα(c)→ (c, c, c−1, c−1), Tβ(c)→ (c2, c−2, 1, 1)

on 01: Tα(c)→ (c, c−1, 1, 1), Tβ(c)→ (c, c, c−1, c−1).
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Lemma 5.3.4 The dimensions of the fixed point spaces of Tα, Tβ , tα, tβ , lα
on certain irreducible X-modules are given below:

V = 10 02 20 12 04 30 22 40 14 32 50 24

dimCV (Tα) = 0 2 0 0 2 0 4 0 0 0 0 0

dimCV (Tβ) = 2 0 2 4 0 4 0 2 0 12 4 4

dimCV (tα) = 0 2 0 4 2 8 4 0 4 24 8 4

dimCV (tβ) = 2 0 2 4 0 6 4 2 4 20 6 4

dimCV (lα) = 0 2 0 0 2 0 4 0 4 0 0 0

Lemma 5.3.5 The number of trivial composition factors X on L(G) is at
least the rank of G.

Proof Each nontrivial irreducible X-module is a tensor product of twists
of the fundamental modules 10, 01. The weights of 10 are {±β,±(α + β)}
and the weights of 01 are {±α,±(α+2β)}. As α, β are independent weights
of TX it is clear that TX cannot have fixed points on a nontrivial irreducible
X-module. Since TX acts trivially on L(TG), the result follows.

The arguments for F4, E6, E7 are easy and we settle these cases together
in the next lemma.

Lemma 5.3.6 G is not F4, E6 or E7.

Proof Suppose false. We begin by listing the labelled diagrams to con-
sider. For E6 we consider just one of each pair of labellings interchanged
by a graph automorphism. The Weight Compare Program lists possible
composition factors for each labelling. We have L(X) = 10/02/002, so as
L(X) ≤ L(G) we certainly need these composition factors to occur within
L(G) ↓ X. Also by Lemma 5.3.5 we must have at least rank(G) trivial com-
position factors. Subject to these restrictions, the possible labellings and
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corresponding composition factors of L(G) ↓ X are as follows:

G T -labelling L(G) ↓ X
F4 2002 20/025/104/0012

E6 222200 14/302/04/202/02/102/006

220002 20/026/108/0018

202002 204/025/106/0018

222002 30/122/20/023/102/006

220202 22/30/12/203/02/102/006

E7 2222000 42/24/142/40/302/043/20/02/10/009

2000020 20/028/1016/0033

2020020 22/30/123/205/023/102/0013

2220002 40/22/303/04/122/202/02/102/009

2000022 12/207/028/107/0029

0020022 302/124/024/103/009 or 30/04/125/025/10/009

We know from Lemma 2.2.10(iv) that X has no fixed points on L. Also
note that L = L(G) except for G = E7 where L has codimension 1 in L(G)
(see 2.1.1). This implies that there are at most as many trivial composition
factors on L as modules that extend the trivial module. We can do a bit
better for G = E6. Indeed, here L(G) is a self-dual module, and this implies
that there must exist strictly fewer trivial modules than modules that extend
the trivial. Now Lemma 5.3.1 indicates precisely which composition factors
can extend the trivial module and this quickly rules out each configuration
in the table.

For the rest of this section we assume G = E8. We will use a variation
of arguments used in the case of A1 with p = 2 (see Section 3.1).

Let TG be a maximal torus of G and let δ be the root of highest height
in Σ(G). As in Lemma 2.2.7, T determines a parabolic subgroup P of G
with Levi factor LP = CG(T ).

Let n denote the maximum possible T -weight of a vector in L(G), and
Wi the T -weight space of L(G) for weight n− i.

The following key result is a variation of Proposition 3.1.3.

Proposition 5.3.7 Suppose LP ∩ E7 has at most two orbits on each of
W2,W4 and W6, with representatives being root elements and sums of two
root elements for orthogonal roots. Then CG(I) 6= 1.
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We begin the proof of the proposition with two lemmas. For l ∈ L(X)
and v ∈ L(G) we will use the notation lv to denote [lv].

Lemma 5.3.8 Suppose fβfβeδ = 0 = fα+βfα+βeδ. Then fβfα+βeδ ∈
CL(G)(I). If, in addition, fβeδ = 0 (respectively fα+βeδ = 0), then fα+βeδ ∈
CL(G)(I) (respectively fβeδ ∈ CL(G)(I)).

Proof The lemma is a consequence of the commutativity of I. For the
first assertion, the hypothesis implies fβ(fβfα+βeδ) = fα+β(fβfβeδ) = 0
and similarly fα+β(fβfα+βeδ) = fβ(fα+βfα+βeδ) = 0. Also, eβ(fβfα+βeδ) =
(fβfα+β)(eβeδ) = 0 and eα+β(fβfα+βeδ) = (fβfα+β)(eα+βeδ) = 0, since eδ is
central in the Lie algebra of the maximal unipotent group of G corresponding
to positive roots. This establishes the first assertion and the others follow
in like manner.

Lemma 5.3.9 Suppose fβeδ = c1eγ+ c2eμ, where either c2 = 0 or c1 6= 0 6=
c2 and γ and μ are orthogonal roots. Then fβeδ ∈ CL(G)(〈eβ , fβ〉).

Proof This is just Lemma 3.1.4, except that we work there with T rather
than a maximal torus of 〈Uβ , U−β〉.

We now work towards the proof of Proposition 5.3.7. First observe that
fβeδ has T -weight n−2 and hence is in W2. So by hypothesis we can conju-
gateX by an element of LP∩E7 so that the hypothesis of Lemma 5.3.9 holds.
So we may suppose that we have this condition and hence Lemma 5.3.9 shows
that fβfβeδ = 0. This conjugation fixes T and the corresponding labelled
diagram, but may change TG. Since the conjugation is from LP ∩E7 which
centralizes eδ, δ remains the highest root in the new system.

Now consider fα+β . This is an element of L(G) of T -weight −4, so that
fα+βeδ ∈W4. So by hypothesis we can conjugate by an element l ∈ LP ∩E7
so that fα+βeδ is a root vector or the sum of two root vectors corresponding
to orthogonal roots. Notice that l centralizes eδ so by the first paragraph
f lβf

l
βeδ = 0. At this point we replace X by X

l. Otherwise we maintain the
previous notation.

Let Tβ = TX ∩ 〈Uβ , U−β〉. Hence, Tβ is the 1-dimensional torus of TX
centralizing 〈eα+β , fα+β〉. Then CX(Tβ)′ = Jα+β = 〈Uα+β , U−(α+β)〉. We
will work in D = 〈Uγ : eγ has T -weight a multiple of 4 〉.

We claim that CG(Tβ) ≤ D. For suppose Uγ ≤ CG(Tβ). Since X is
represented as an adjoint group on L(G) we can write γ ↓ TX = rα + sβ



MAXIMAL SUBGROUPS OF EXCEPTIONAL ALGEBRAIC GROUPS 167

for integers r, s. Now α(Tβ(c)) = c
−2 and β(Tβ(c)) = c

2. Consequently
γ(Tβ(c)) = c

−2r+2s. This must be trivial, so r = s and γ ↓ TX = r(α + β).
In particular, γ has T -weight 4r. The claim follows and implies Jα+β < D.

We now work through the proof of Lemma 3.1.4, using the fact that
fα+βeδ is a root vector or sum of two root vectors for orthogonal roots. In
this argument expressions for fα+β are all taken within L(D). Similarly,
towards the end of that proof there are arguments involving a certain class
2 unipotent group. We now take that group within D. The conclusion is
that fα+βfα+βeδ = 0.

At this point Lemma 5.3.8 implies that one of fβfα+βeδ, fα+βeδ, fβeδ,
or eδ is a nonzero element of CL(G)(I). The hypothesis of Proposition 5.3.7
asserts that in each case the element is a root vector or sum of two root vec-
tors corresponding to orthogonal roots. Therefore, the proof of Lemma 3.1.5
shows that CG(I) 6= 1, completing the proof of the proposition.

In the A1 case with p = 2 it was possible to produce general arguments
verifying the analog of hypothesis of Proposition 5.3.7. However, in that
case the hypothesis only concerned W2. For the case at hand we require
information on W2,W4, and W6. For this we use the Weight Compare Pro-
gram. This program allows us to reduce from all possible labelled diagrams
to only those that yield a potential restriction of L(G) to X. For the re-
sulting labellings we either verify the hypothesis of the Proposition or apply
other arguments.

Some of the labellings give rise to many possibilities for L(G) ↓ X. In
most situations it is possible to verify the hypothesis of Proposition 5.3.7
and thereby avoid further work.

We tabulate the possible labellings below into two groups. The first
and largest group consists of those configurations where Proposition 5.3.7
applies. For each of these we give below the labelling, together with the
3-tuple (dimW2, dimW4, dimW6):

20020000(4, 7, 10) 02200200(3, 3, 6) 20020200(2, 4, 4) 20220200(2, 2, 2) 02020020(3, 3, 3)
00002020(2, 10, 10) 02002020(2, 4, 6) 22000220(1, 4, 5) 02200220(1, 3, 3) 22200220(1, 3, 2)
22020002(4, 2, 3) 20002002(3, 6, 7) 02002002(3, 4, 6) 22002002(3, 3, 4) 00202002(3, 3, 6)
20202002(3, 3, 3) 02000202(2, 5, 10) 22000202(2, 4, 5) 02200202(2, 3, 3) 22200202(2, 3, 2)
20020202(2, 2, 4) 00220202(2, 2, 2) 22002202(2, 1, 3) 20202202(2, 1, 3) 22202202(2, 1, 2)
22000022(1, 5, 6) 00020022(1, 3, 6) 20020022(1, 3, 4) 22002022(1, 2, 3) 00202022(1, 2, 3)
20202022(1, 2, 3) 02202022(1, 2, 2) 22202022(1, 2, 2) 20200222(1, 1, 4) 20020222(1, 1, 2)
22020222(1, 1, 2) 00220222(1, 1, 2) 22220222(1, 1, 2) 20002222(1, 1, 1)

For each of the above labellings one can use Proposition 5.3.7 to obtain
a contradiction, and we will illustrate with some examples of how this is
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carried out. It is usually easy to see that there are at most two orbits with
representatives given by root elements or the sum of two root elements. In
the latter case we require for the hypothesis of the proposition that the
corresponding roots are orthogonal. Say these roots are γ and μ. It will
be clear from the labelling that these roots have coefficient of α8 equal to
1. If their sum were a root, then this sum must be the highest root and
in all cases it is clear from the situation that this is absurd. Suppose their
difference is a root. Then this difference must be a root in LP ∩ E7. Say
μ − γ = δ, so that μ = γ + δ. It then follows that 〈Uδ, U−δ〉 is transitive
on the nonzero elements of 〈eγ , eμ〉, so that nonzero elements in this 2-space
are all root elements. So the orthogonality condition is not an issue.

We now illustrate the method in a couple of examples.

Consider the labelling 02002002(3,4,6). For notational purposes we set Li,j,...
to be the semisimple factor of LP spanned by fundamental SL2’s correspond-
ing to fundamental roots αi, αj , . . . With this notation we find that W2 is
a 3-space affording the usual module for L6,7 = A2. The action on nonzero
vectors is transitive so all elements are root vectors. Similarly W4 affords
a natural module for L1,3,4 while W6 affords the orthogonal 6-dimensional
module for L1,3,4. In the former case we have transitivity on nonzero vecc-
tors, while in the latter case there are two orbits on 1-spaces and we obtain
the hypotheses of Proposition 5.3.7.

Probably the most complicated configuration is the labelling 00002020(2,10,10).
Here W2 is no problem as this affords the usual module for L6. But W4 af-
fords the wedge-square of the usual module for L1,2,3,4 and W6 affords the
tensor product of usual modules for L6×L1,2,3,4. Indeed, e01122221 is a maxi-
mal vector. In both these cases we find that there are two orbits on 1-spaces.
For W6 this follows using expressions for vectors in the tensor product to-
gether with transitive action of the factors. For W4 we apply the results of
[29] (working in an A4-parabolic of a group of type D5) to get the assertion
and also the fact that representatives can be taken as root vectors and sums
of two root vectors.

Using these techniques it is easy to deal with all the above labellings.
We now consider the second group of labellings. These are tabulated below:

00200000 00020000 00002000 20002000 00200200
02000020 00200020 02200020 00020020 20002020
20202220 20000002 02000002 22000002 00200002
00020002 20000022

A labelling determines the T -weights on L(G), but each of these may yield
several possibilities for the weights of TX and hence several possibilities for
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composition factors of L(G) ↓ X. The Weight Compare Program gives these
explicitly although we will not reproduce these here.

Nearly all the configurations can be ruled out from the following obser-
vations. First, as noted before, L(G) ↓ L(X) must contain all composition
factors of L(X) = 10/02/002. Also, by Lemma 5.3.5, X must have at least 8
trivial composition factors on L(G). Next note that for γ ∈ {α, β}, CG(Tγ)
is a Levi factor of G, while CG(tγ) and CG(lγ) are reductive groups of maxi-
mal rank which contain CG(Tγ). The dimensions of these centralizers can be
easily determined from Lemma 5.3.3 for a given set of composition factors
of L(G) ↓ X. After applying the above considerations we are left with the
following cases to consider:

Table 1

Case T -labelling L(G) ↓ X
(a) 00020000 302/043/124/209/0212/108/0024

(b) 00002000 124/206/0216/1016/0032

(c) 00200020 222/302/043/124/208/0210/104/0020

(d) 00020020 322/40/222/30/042/12/204/023/102/008

(e) 00020002 14/223/304/042/12/208/024/108/0016

(f) 00020002 14/223/303/043/122/208/025/106/0016

(g) 00020002 40/224/303/043/12/2010/025/106/0020

Lemma 5.3.10 X is not maximal in cases (c), (d), (f) and (g) of Table 1.

Proof These cases are relatively straightforward in that they just re-
quire a slight extension of methods already used. In each case we calculate
dimCG(Tβ) and dimCG(tβ). This centralizer is a Levi factor in the first
case and a reductive maximal rank subgroup in the second. The dimension
of the centralizer is determined from Lemma 5.3.3 and we find that there
is a unique possibility in each case. Clearly, CG(Tβ) ≤ CG(tβ). Indeed,
the smaller group is embedded as a Levi factor of the larger. However,
the specific information on centralizers shows that this is impossible, yield-
ing a contradiction. In the following table we present the information on
centralizers which provides the contradiction.

Case dimCG(Tβ) dimCG(tβ) CG(Tβ) CG(tβ)

(c) 68 80 D6T2 A8
(d) 54 80 D5A2T1 E6T2, A8
(f) 64 86 A7T1 A2E6
(g) 70 92 D6A1T1 D7T1
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Lemma 5.3.11 Case (a) in Table 1 does not occur.

Proof Here we have L(G) ↓ X = 302/043/124/209/0212/108/0024. Let
v ∈ L(G) be a weight vector for weight 04. This weight is not subdominant
to any other weight, so v is a maximal vector and hence 〈Xv〉 is an image
of the Weyl module W (04).

As v is a maximal vector, eαv = eβv = 0. Also fαv = 0, since 04 − α is
not a weight of L(G). Finally, fβv is a vector of weight 12. Now 12 does not
occur in the irreducible of high weight 04. We conclude that either fβv = 0,
in which case v ∈ CL(G)(L(X)), or 〈Xv〉 has a composition factor of high
weight 12.

Suppose the former does not occur for any choice of v. Then letting
v range over three independent vectors of weight 04, we conclude from
Lemma 2.1.5 that the sum of the images of the maximal submodules is
a singular subspace in which 12 appears with multiplicity 3. But then 12
must occur in L(X) as a composition factor with multiplicity at least 6, a
contradiction.

It follows that for some choice of v we have v ∈ CL(G)(L(X)). Consider
the T -weight space for T -weight 12. From the labelling we see that this is
a 5-space which affords a natural module for the A4 factor of CG(T ). In
particular, v is a root vector. But this contradicts Lemma 2.2.12.

Lemma 5.3.12 Case (e) of Table 1 does not occur.

Proof In case (e), Lemma 5.3.3 implies that dimCG(Tα) = 40, from which
it follows that CG(Tα) is either A5A1T2 or A4A3T1. All fixed points of Tα
arise from composition factors with high weights among 00, 02, 04, 22. We
calculate the T -weights on the fixed points of each of these modules:

on CTα(02) : T -weights 6,−6
on CTα(04) : T -weights 12,−12
on CTα(22) : T -weights 6, 6,−6,−6

From this information we can find all T -weights on CG(Tα). The non-
negative ones are as follows: 122, 610, 016.

Now T determines a labelled Dynkin diagram on CG(Tα)
′. Up to graph

automorphisms, the only possible labellings consistent with the above infor-
mation are: 60060, 6 for A5A1 and 6006, 606 for A4A3. In either case we
find that CG(TX) = CG(Tα, T ) = A2A1T5.
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Now let ωG, ωX denote representatives of the long words in the Weyl
groupsWG,WX , respectively. Since TX < TG, each of these elements inverts
TX , hence ωG ∙ ωX centralizes TX . As ωG induces an outer automorphism
of the A2 factor of CG(TX) = A2A1T5, this must also be true of ωX (since
ωG ∙ ωX induces an inner autormorphism of A2).

However, NX(TX) acts on CG(TX) and ωX is in the derived group ofWX .
As this Weyl group induces a group of automorphisms on the A2 factor, this
is a contradiction.

At this point we have settled all but case (b) in Table 1, which is more
complicated.

Proposition 5.3.13 Case (b) of Table 1 does not occur.

The rest of this section consists of the proof of this proposition. We
begin with the following lemmas.

Lemma 5.3.14 The Weyl modules WX(20) and WX(12) are uniserial with
composition series as follows:

WX(20) = 20|00|02|00|10

WX(12) = 12|02|00|20|00|02|00|10.

Proof First consider WX(20) and let v be a maximal vector. A considera-
tion of weights shows that the composition factors are as listed. The weight
space for weight 02 is spanned by fαv and this is a maximal vector within the
maximal submodule. Hence 〈Xfαv〉 is an image of the Weyl moduleWX(02)
which is well-known to be uniserial of shape 02|00|10|00. The weight space
for weight 10 is 1-dimensional and spanned by fαfβv, fβfαv, and fα+βv. On
the other hand fαfβv = fα0 = 0 and fβfαv = fαfβv + fα+βv. So it follows
that the weight space is spanned by fβfαv. Hence, this vector is contained in
〈Xfαv〉, so we conclude that 〈Xfαv〉 ∼=WX(02) or WX(02)/E with E ∼= 00.
On the other hand VX(20) extends the trivial module, so WX(20) has an
indecomposable image of form 20|00, and this forces the latter possibility.
Finally, we note that by [34] there is no nontrivial extension of VX(20) by
VX(02) and this forces WX(20) to be uniserial, as indicated.

Now consider WX(12) where we again use weights to check that the
composition factors are as listed. We use a similar argument. Let v be a
vector of weight 12, so that fβv spans the weight space of weight 20. Hence



172 MARTIN W. LIEBECK AND GARY M. SEITZ

〈Xfβv〉 is an image of WX(20). Next, note that the weight space of WX(12)
for weight 10 has dimension 3. It follows from the commutator relations
that a basis for this weight space is fα+2βv, fα+βfβv, f

2
βfαv. In particular,

this implies that fα+βfβv 6= 0, so that 10 occurs as a weight in 〈Xfβv〉. It
follows from the above paragraph that 〈Xfβv〉 ∼=WX(20).

Now consider WX(12)/〈Xfβv〉. This space has composition factors of
high weights 12, 02, 00. There is a unique simple quotient module, and by
[34] there is no nontrivial extension of VX(12) by the trivial module. It
follows that the quotient is uniserial of shape 12|02|00. Finally, we note that
by [34], VX(20) does not extend VX(02) or VX(12). It follows that WX(12)
is uniserial of the indicated shape.

Lemma 5.3.15 Assume (b) in Table 1 holds. Then L(G) ↓ X contains a
simple submodule of high weight 02.

Proof Suppose false. Let v be a weight vector of TX -weight 12. Then
〈Xv〉 is an image of WX(12) and we begin by determining the possibilities
for this module. Suppose that for some v, 〈Xv〉 is irreducible. Letting
I be the short ideal of L(X) as before, we find that I acts trivially on
VX(10) (indeed VX(10) ∼= I as X-modules and I is abelian) and hence on
VX(12) = VX(10) ⊗ VX(02). As in the proof of Lemma 5.3.11, v is a root
vector, so this contradicts Lemma 2.2.12. Hence 〈Xv〉 is not irreducible.

By Lemma 2.2.10, 〈Xv〉 contains no nonzero trivial submodule and by
our supposition there is no irreducible submodule of high weight 02.

Consider the sum W of all modules of the form 〈Xv〉. These are each
images of Weyl modules and by Lemma 2.1.5 the sum, say S, of the images
of the maximal submodules is a singular subspace such that W/S = (12)4.
Since the multiplicity of VX(12) in L ↓ X is 4, while the multiplicity of
VX(20) is 6, we conclude that VX(20) has multiplicity at most 3 in S. But
then Lemma 5.3.14 implies that v can be chosen so that 〈Xv〉 is an image
of the uniserial module of shape 12|02|00. But we have seen that there are
no trivial submodules, so the only possibility is that this image has the form
12|02, establishing the lemma.

Let Y = A1A1 = JαJα+2β < X be the group generated by all long root
subgroups of X with respect to TX . We will determine the embedding of
this subgroup in E8 and then the fixed points of its Lie algebra. We note
that L(A1A1) acts trivially on the submodule 02 produced in Lemma 5.3.15.
This will ultimately provide us with a contradiction.
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Lemma 5.3.16 There is a subsystem group D8 < E8 such that Y < D4D4 <
D8. The subgroup of SO16 corresponding to Y acts homogeneously on the
natural module as the sum of 4 copies of 1⊗ 1.

Proof We first note that Z = Z(L(Y )) 6= 0. Indeed, Z = 〈hα〉, so is
generated by a semisimple element inducing the scalar 1 on the irreducible
of high weight 10 and inducing zero on 02. All other irreducibles are tensor
products of twists of these, so this determines the action on all irreducibles
and it follows that CL(G)(Z) has dimension 120 and so CL(G)(Z) = D8.

Using Lemma 5.3.3 as in other cases we see that CG(Tα) is a Levi factor
of dimension 64 and hence CG(Tα) = A7Tα. Also, CG(Tα) ≤ CG(hα) = D8.
It follows that Tα has just two weights on the natural module V = V (λ1)
for the preimage of D8, both with multiplicity 8. So this shows that Jα is
homogeneous on V , and similarly for Jα+2β . Also hα is acts as a nonzero
scalar.

In the following we identify Y with its preimage in the cover of D8,
and then consider its action on the natural module V . It follows from the
previous paragraph that Y acts on V as the direct sum of 4 irreducibles
of the form 1 ⊗ 1. So V ↓ Y is the direct sum of 4 irreducibles, each of
dimension 4. It is easy to argue that there are two pairs of irreducibles, each
summing to a non-degenerate 8 space. Hence Y < D4D4 < D8 and we have
the assertion.

At this point we proceed with the proof of Proposition 5.3.13. We have
VX(10) ↓ Y = 1 ⊗ 1 and VX(01) ↓ Y = (1 ⊗ 0) ⊕ (0 ⊗ 1). All irreducible
X-modules are tensor products of twists of 10, 01, so we can determine all
composition factors of Y on L(G). The result is as follows:

L(G) ↓ Y = (3⊗1)4/(1⊗3)4/(1⊗1)16/(2⊗2)6/(2⊗0)16/(0⊗2)16/(0⊗0)32.

Now we also have L(G) ↓ D8 = L(D8) ⊕ E, where E is a spin module,
and L(D8) can be realized as ∧2V , where V is the usual orthogonal module
V (λ1) for a cover of D8. Therefore,

L(D8) ↓ Y = ∧
2 ((1⊗ 1)⊕ (1⊗ 1)⊕ (1⊗ 1)⊕ (1⊗ 1)).

We next study E ↓ Y . Arranging notation so that V ↓ D4D4 =
VD4(λ1)⊕ VD4(λ1), it follows from 2.1 of [23] that

E ↓ D4D4 = (VD4(λ3)⊗ VD4(λ3)) ⊕ (VD4(λ4)⊗ (VD4(λ4)).



174 MARTIN W. LIEBECK AND GARY M. SEITZ

Now consider the projection, say Y0, of Y to one of the D4 factors. Then
VD4(λ1) ↓ Y0 = (1 ⊗ 1) ⊕ (1 ⊗ 1). This can be taken as the sum of two
non-degenerate spaces with Y0 diagonal in SO4SO4, or as the sum of two
singular spaces with Y0 < A3. Conjugating by triality we can determine the
possibilities for VD4(λi) ↓ Y0 for i = 3, 4. Let 0|2|0 denote the indecompos-
able (tilting) module for one of the A1 factors, obtained by tensoring two
copies of the natural module. Also let 0|(2⊕2)|0 denote the wedge-square of
the module 1 ⊗ 1 for Y0, an indecomposable module. Then the possibilites
for VD4(λi) ↓ Y0 are as follows:

(i) (1⊗ 1)⊕ (1⊗ 1)

(ii) (0|2|0)⊕ (0|2|0) (one summand for each A1 factor of Y0)

(iii) ((0|(2⊕ 2)|0)⊕ (0⊗ 0)2 (arising from Y0 < A3 = D3).

Now consider those possible restrictions of L(G) ↓ Y which are compati-
ble with the known composition factors. We find that for j = 3, 4, (VD4(λj)⊗
VD4(λj)) is the tensor product of one factor of type (i) and one of type (ii)
or (iii). In either case all composition factors of this summand have the form
1⊗ 1, 1⊗ 3, or 3⊗ 1.

On the other hand, Lemma 5.3.15 implies that VX(02) occurs as an
irreducible submodule, and VX(02) ↓ Y = (2 ⊗ 0) ⊕ (0 ⊗ 2). In view of
the above considerations, this must occur within L(D8) ↓ Y , although from
the earlier expression we see that this is impossible. Indeed, L(D8) ↓ Y is a
direct sum of modules of the form ∧2(1⊗1) = 0|(2⊕2)|0 and (1⊗1)⊗(1⊗1) =
(0|2|0)⊗ (0|2|0). Restricting to one of the A1 factors we see that in neither
case does 2 occurs as a submodule. This is a contradiction, completing the
proof of Proposition 5.3.13.

We have now completed the proof of Theorem 5.1.



6 Maximal subgroups of type G2

In this section we prove Theorem 1 in the case where the subgroup X is of
type G2. As usual, we consider only the small characteristic cases required
by Proposition 2.2.1.

Theorem 6.1 Suppose that X = G2 is a maximal proper closed connected
NG1(X)-invariant subgroup of the exceptional group G, and assume further
that

(i) CG(X) = 1, and

(ii) p ≤ 5 if G = E8; p ≤ 3 if G = E7, E6; and p = 2 if G = F4.

Then G = E6, p = 2 or 3, and X is unique up to AutG-conjugacy, with

L(E6) ↓ X = 11/01
2/102/00, V27 ↓ X = 20, if p = 3

L(E6) ↓ X = 11⊕ 01, V27 ↓ X = 20/01/10/00 if p = 2

where V27 is the 27-dimensional module VG(λ1).

6.1 The case p = 5

LetX be as in the hypothesis of the theorem. Assume p = 5, so that G = E8.
In the usual way we use the Weight Compare Program to obtain a list of pos-
sible composition factors for L(G) ↓ X. We find that the only irreducibles
VX(λ) which can occur as composition factors are λ = 30, 11, 20, 10, 01, 00.
In all cases the Weyl module WX(λ) is irreducible (see [13]), so VX(λ) does
not extend the trivial X-module. Moreover, in all cases, L(G) ↓ X has at
least one trivial composition factor. It follows that CL(G)(X) 6= 0, contra-
dicting Lemma 2.2.10(iv).

6.2 The case p = 3

Assume p = 3, so that G = E6, E7 or E8. Recall that L = L(G)
′, which

is equal to L(G) except when G = E6, in which case L has codimension
1 in L(G). As in other sections we use the notation nab to indicate the
multiplicity of the irreducible module ab in L ↓ X. Write S = NG1(X).

The Weight Compare Program yields that the composition factors of
L ↓ X are among 30, 11, 20, 10, 01, 00. Of these, only 11 extends the trivial
module, and dim(Ext1X(11, 00)) = 1 (by [37]).

175
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Lemma 6.2.1 (i) Either n00 = 0 or n00 < n11.

(ii) n10 ≥ 2.

Proof (i) This follows from the paragraph preceding the lemma.

(ii) Observe first that L(G2) has a 7-dimensional ideal I generated by
all eβ with β a short root; as a G2-module I ∼= 10.

Next we assert that L(G2) is indecomposable as a G2-module, with com-
position factors 01/10: for if not, it is completely reducible for G2, hence
also for L(G2), and this implies that [eα, eβ ] = 0 for α a long root and β a
short root, which is not so. This proves the assertion.

Since L(X) ⊆ L it follows from the previous paragraph that I is a
singular subspace of L, and hence, as L is a self-dual X-module, it must
have at least two composition factors isomorphic to 10.

Of the list of possibilities for L ↓ X supplied by the Weight Compare
Program, only one satisfies Lemma 6.2.1, whence we have the following.

Lemma 6.2.2 We have G = E6 and L ↓ X = 11/012/102, with T -labelling
222022.

In the situation of Lemma 6.2.2, consider the action of X on the 27-
dimensional irreducible module V27 = VG(λ1). Now as a linear combination
of fundamental roots,

λ1 =
1

3
(435642),

and hence T has highest weight 12 on V27. Therefore V27 ↓ X has a compo-
sition factor ab, where 6a+10b = 12, hence a = 2, b = 0. The irreducible 20
has dimension 27 (see [13]), so we deduce that V27 ↓ X = 20.

At this point, the existence and uniqueness of the subgroup X of G =
E6 (p = 3) is provided by Testerman [41, Theorem 1(a)].

This completes the proof of Theorem 6.1 for p = 3.

6.3 The case p = 2

Assume now that p = 2. If G = F4, then Lemma 2.2.2 implies that S =
NG1(X) does not contain special isogenies and hence Lemma 2.2.3 shows
that we can regard S as acting on L(G). Hence in any case, S acts on L(G).
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Use of the Weight Compare Program as usual gives us a list of possibil-
ities for L ↓ X, and the composition factors are among the following:

00, 10, 01, 20, 11, 30, 02, 21, 40, 12, 50, 04, 14, 80, 22. (∗)

Lemma 6.3.1 (i) Among the irreducibles in (∗), only 10, 20, 40, 80 and 21
extend the trivial X-module, and for each of these the corresponding ext
group Ext1X(V (λ),K) is 1-dimensional.

(ii) We have the following Weyl module structures:

WX(10) = 10|00, WX(01) = 01, WX(20) = 20|00|(10 + 01).

Proof All this follows from [36].

From part (i) of the previous lemma we immediately deduce

Lemma 6.3.2 Either n00 = 0 or n00 < n10 + n20 + n40 + n80 + n21.

Combining this with the list already obtained from the Weight Compare
Program gives the following. Let n4 denote the number of T -weights on
L(G) which are divisible by 4.

Lemma 6.3.3 The possibilities for L ↓ X are:

G Case L ↓ X T−labelling n4
E6 (1) 11/01 222022 38

E7 (2) 203/014/108/0010 0002020 69
(3) 11/202/013/102/002 2002020 69
(4) 21/02/20/012 2202022 69

E8 (5) 22/50/12/02/30/01 22020022 136

Lemma 6.3.4 Case (2) of Lemma 6.3.3 does not occur.

Proof Here L ↓ X = 203/014/108/0010. By Lemmas 2.1.4 and 2.1.5,
the maximal vectors of weight 20 generate an X-submodule M having a
singular subspace Z, where M/Z = 203 and Z has a ≤ 3 trivial composition
factors and b ≤ 3 composition factors 10. In Z⊥/Z, generate with maximal
vectors of weight 01, then 10, then 00. We find that Z⊥/Z = 203 ⊕ 014 ⊕
(10(8−2b)/00c)⊕ 00(10−2a−2c). Taking the preimage of all trivial submodules
we obtain a submodule J = 10b/00(10−a−c). As a+c ≤ 5 we have 10−a−c >
b from which it follows that L ↓ X has a nonzero trivial submodule, contrary
to Lemma 2.2.10(iv).
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Lemma 6.3.5 Case (3) of Lemma 6.3.3 does not occur.

Proof Here the T -labelling is 2002020. We shall consider the action of X
on the 56-dimensional module VG(λ7). Now

λ7 =
1

2
(2346543)

from which we calculate that the non-negative T -weights on V56 are

122, 102, 84, 64, 46, 26, 08

The T -weights 12 arise from composition factors ab of V56 ↓ X with 6a +
10b = 12, hence a = 2, b = 0. Thus V56 ↓ X has composition factors
202. Now T has non-negative weights 12, 8, 4 on 20, so this leaves T -
weights 102, 82, 64, 44, 26, 08 to be accounted for by other composition fac-
tors. The T -weights 102 force composition factors 012, and as T has weights
10, 8, 6, 4, 22, 02 on 01, this leaves T -weights 62, 42, 22, 04. These lead to fur-
ther composition factors 102/004. We conclude that

V56 ↓ X = 20
2/012/102/004.

Now V56 is self-dual and the only modules appearing which extend the trivial
module are 20 and 10. It follows that CV56(X) 6= 0, which contradicts
Lemma 2.2.13(ii).

Lemma 6.3.6 Cases (4) and (5) of Lemma 6.3.3 do not occur.

Proof We first claim that in cases (4) and (5), A contains a submodule
02 or 22, respectively. In case (5) 22 is the highest weight so if v is a weight
vector of weight 22, then 〈Xv〉 is an image of the Weyl module W (22). On
the other hand, in this case L ↓ X is multiplicity-free and L is self-dual. So
〈Xv〉 must be irreducible. In case (4) the only composition factor present in
L ↓ X which extends 02 is 21, and this occurs with multiplicity 1. So there
is an X-submodule 02, establishing the claim.

From Lemma 6.3.3, n4 = 69, 136, respectively. Hence Lemma 2.3.4 gives
A ≤ L(D) and we must have D = A1D6 or A1E7. Assume case (4) holds.
Here the non-negative T -weights appearing in L(D) are 011, 410, 88, 126, 163, 202.
It follows that the T -labelling of the A1 factor is 8, while the the D6 fac-
tor has labels 404044. Now A contains a weight vector of T -weight 20 and
this must be in the subspace of L(D6) spanned by root vectors for the two
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highest roots. All elements in this space are root elements of L(G), so this
contradicts Lemma 2.2.12. Similarly, in Case (5) the non-negative T -weights
are 016, 414, 813, 1211, 168, 207, 243, 283, 32. Here the labelling of the A1 fac-
tor is 4 and the labelling of the E7 factor is 4400404. With v as above,
v has T -weight 32, so is a root vector of L(E7) and we obtain the same
contradiction.

It remains to consider case (1) of Lemma 6.3.3.

Lemma 6.3.7 The group G = E6 (p = 2) has exactly two conjugacy classes
of maximal connected subgroups X = G2 with L(G) ↓ X = 11⊕ 01. Writing
V27 = VG(λ1), V27 ↓ X is uniserial with co-socle series either 01|20|00|10 or
the dual of this.

Proof For the proof of existence, our starting point is the maximal sub-
groupM = G2(2) of E6(2) produced in [17]. Regard E6(2) as subgroup of G.
In [17, Section 8] it is shown that L(G) ↓M = 11⊕01 and V27 ↓M is unise-
rial with co-socle series 01|10|00|10, and that M has a subgroup N = L3(2)
such that N < A32 < G, where the A

3
2 is a subsystem subgroup of G and N

is diagonally embedded in A32.

The restriction V27 ↓ A32 is given by [23, 2.3], from which we see that

V27 ↓ N = (10⊗ 10)⊕ (01⊗ 01)⊕ (10⊗ 01).

We take N < A = A2, where A is diagonal in A
3
2 with the above action on

V27. As a module for A we see that 10 ⊗ 10 is the indecomposable tilting
module of high weight 20, so this is uniserial of shape 01|20|01, and also
indecomposable under the action of N . Likewise, 01 ⊗ 01 = 10|02|10, unis-
erial, and 10⊗ 01 = 11⊕ 00. It follows that N fixes a unique 6-dimensional
completely reducible subspace W = 10⊕ 01 of V27, which must therefore be
the subspace 10 for M = G2(2).

Now define
X = 〈M,A〉.

Then X fixes the 6-space W , so X < G. We claim that X = G2 and is
maximal in G. At the outset we note that X = X0. This follows from the
facts that A < X0 and that M is simple with M ∩A ≥ N .

Now X contains M = G2(2) and A = A2, and X acts on the 6-space
W . It follows that X induces an irreducible subgroup of SL6 on W . Hence,
L(X) has an X-invariant section of dimension at most 35. On the other
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hand, L(G) ↓ M = 11⊕ 01, forcing L(X) to have dimension 14. Moreover,
as M and hence X act irreducibly on L(X), we conclude that X is sim-
ple of dimension 14 with a 6-dimensional representation. Hence, X = G2.
Moreover, the irreducibility ofM on L(G)/L(X) implies that X is maximal.

We have now demonstrated the existence of a maximal G2 in G. We
must have L(G) ↓ X = 11 ⊕ 01, since the previous lemmas have ruled out
all other possibilities.

We next establish the uniqueness part of the statement of the lemma.
Let X̃ be an arbitrary maximal G2 in G satisfying L(G) ↓ X̃ = 11 ⊕ 01.
The analog of T then determines the same labelling of the Dynkin diagram
of G, namely 222022. Using this we find that V27 ↓ X̃ has composition
factors 20/01/10/00. Maximality implies that there is no fixed point on this
module or its dual. Replacing V27 by its dual, if necessary, we may assume
that X̃ fixes a unique 6-dimensional subspace W of V27, with W affording
10. There is a 3-element t ∈ X̃ with CX̃(t) = A2, and the only possibility
for CG(t) is A

3
2; moreover, CX̃(t) must be a diagonal A2 in A

3
2. As above we

see that CX̃(t) fixes a unique 6-space in V27, which must therefore be W ,

and X̃ = GW . Since CX̃(t) = A2 determines W , and this diagonal subgroup
A2 of A

3
2 is uniquely determined up to conjugacy in AutG, it follows that

X̃ is also determined up to conjugacy in AutG.

In the last paragraph we saw that if X is a maximal G2, then V27 ↓
X = 20/01/10/00. Taking X to contain M we see that this restriction must
be uniserial and it follows that V27 ↓ X = 01|20|00|10 or its dual. This
completes the proof.



7 Maximal subgroups X with rank(X) ≥ 3

In this section we complete the proof of Theorem 1 by handling the case
where the subgroup X has Lie rank at least 3. In view of Proposition 2.2.1
it is sufficient to prove the following.

Theorem 7.1 There is no maximal NG1(X)-invariant proper closed con-
nected subgroup X of the exceptional group G such that CG(X) = 1 and one
of the following holds:

(i) p = 2, X = B3 and G = E6, E7 or E8;

(ii) p = 2, X = A3, C3 or B4, and G = E8.

We proceed by way of contradiction, assuming such a group X exists.
We will obtain a contradiction in each case. Write S = NG1(X).

7.1 The case X = B3

In this section we consider case (i) of Theorem 7.1, in which X = B3, p = 2
and G = E6, E7 or E8. In view of Lemma 2.2.10 we see that S is generated
by X and a (possibly trivial) field or graph-field morphism of G, the latter
possible only for G = E6.

Set notation as follows. Choose a root system Σ(X) of X with base
Π(X) = {α, β, γ}, where α and β are long roots and γ a short root. Let
TX be a maximal torus of X with corresponding root elements and root
subgroups labelled by Σ(X). For δ ∈ Σ+(X), let eδ ∈ L(X) be the corre-
sponding root vector for TX , and fδ = e−δ. Recall that T is a 1-dimensional
torus of X defined in 2.2.4. Each of α, β, γ affords T -weight 2; that is, T
gives the labelling 222 of the Dynkin diagram of X.

As in the B2 case for p = 2 (see Section 5.3), we will make use of the
ideal generated by root elements for short roots. This ideal is the Lie algebra
span

I = 〈eγ , fγ , eβ+γ , fβ+γ , eα+β+γ , fα+β+γ〉.

Lemma 7.1.1 (i) I is an S-invariant abelian ideal with basis the given gen-
erators.

(ii) I affords the irreducible module VX(100) for X.

(iii) CG(I) = 1.

181
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Proof (i) Lemma 2.2.3 implies that I is S-invariant. It can be checked from
the commutator relations that I is an ideal of L(X). Also, the commutator
relations imply [e±δ, e±μ] = 0 for δ, μ distinct elements in {γ, β+γ, α+β+γ}.
Set [eγ , fγ ] = tγ . Then p = 2 implies that tγ ∈ Z(L(X)) = 0. Similarly for
t
sβ
γ = tα+β and t

sβsα
γ = tα+β+γ . This gives (i).

Part (ii) is clear. For (iii) first note that CX(I) = 1. As X is maxi-
mal among S-invariant connected subgroups of G, it follows that CG(I) is
finite. But then X centralizes CG(I), whereas we know that CG(X) = 1 by
hypothesis. This forces CG(I) = 1.

We shall require some information on Weyl modules for X.

Lemma 7.1.2 (i) W (100) = 100|000 (uniserial).

(ii) W (010) = 010|100|000 (uniserial).

(iii) L(B3) = (010 + 000)|100 (socle 100).

(iv) W (002) = 002/010/(100)2/000, and 002 does not extend 000.

(v) W (200) = 200|(010 + 000)|100.

(vi) W (300) does not have an image of the form 300|000.

(vii) W (110) is irreducible.

(viii) Ext1X(102, 000) has dimension 1.

Proof Part (i) is clear sinceW (100) has dimension 7. For (ii) we start with
L(B̃3), where B̃3 is the simply connected group. As above, there is a short
ideal, Ĩ. A maximal torus T̃3 is the direct sum of the 1-dimensional tori for
each of the fundamental roots, and the corresponding fundamental A1’s are
each SL2. Consequently, here t̃γ = [ẽγ , f̃γ ] ∈ Ĩ is nontrivial and generates
Z = Z(L(B̃3)). Moreover, t̃γ ∈ [B̃3, Ĩ]. Note that Z is the kernel of the
differential of the map B̃3 → B3. Commutators show that [B̃3, L(B̃3)] > Ĩ.
It now follows that as a B̃3-module, L(B̃3) is uniserial of form 010|100|000.
Since L(B̃3) is a cyclic high weight module of high weight 010 and dimension
21 it must be W (010).

As indicated above, Z is the kernel of the map L(B̃3) → L(B3). Hence
L(B3) has a submodule 010|100 of codimension 1. It follows from (ii) that
010 does not extend the trivial module and Z(L(B3)) = 0 (indeed, B3 ≥ B31
and Z(L(B31)) = 0 but contains a maximal toral subalgebra of L(B3)). So
(iii) holds.

(iv) The composition factors of W (002) follow from either the Sum For-
mula or by using the computer program in [13]. Now 1.3 of [23] implies that
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002 does not extend 000.

(v) There is an exceptional morphism B̃3 → C̃3, and this factors through
B3. Now L(C̃3) = WC3(200) = 200|(010 + 000). As a module for B3 the
weights are the same, so that WB3(200) has an image of the form 200|(010+
000). From weight and dimension considerations we see that the kernel of
this quotient is 100, proving (v).

(vi) Suppose a nonsplit extension 300|000 exists, afforded by an inde-
composable module V having trivial submodule W . We first claim that I
annihilates V . It annihilates V/W since I annihilates all irreducibles with
long support. Now consider D = A31, the subsystem group corresponding to
short roots. Then 100 ↓ D is a direct sum of 3 irreducibles, one for each A1
and these irreducibles have high weight 2. Now 300 ↓ D is a sum of tensor
products. For a given A1 factor, it follows from Lemma 2.1.6 that 6 = 2⊗ 4
does not extend 0. The other modules to consider are of the form 2 ⊗ 4
for A1 ×A1. But WA1×A1(2⊗ 4) is the tensor product of the corresponding
Weyl modules, 2|0 and 4|0|2, which are both uniserial. Hence, 2 ⊗ 4 does
not extend the trivial module. It follows that V splits under the action of
D and this gives the claim.

Our supposition and the claim imply that V cannot split over W under
the action of L(D3). However, (V/W ) ↓ D3 = 030 (viewing D3 = A3)
and the Sum Formula implies that WA3(030) = 030/010/200/002. Hence,
V ↓ D3 = 030 +W . Hence the extension does indeed split under the action
of D3 and hence L(D3), a contradiction.

Part (vii) follows immediately from [13], and (viii) follows from [10].

The following is immediate from 7.1.2(iii) and the fact that L(X) < L(G)
which is self-dual. Recall that L = L(G)′, of codimension 1 in L(G) for
G = E7, and equal to L(G) otherwise.

Lemma 7.1.3 (i) If G = E6 or E8, then L ↓ X contains composition
factors 010, 1002, 000.

(ii) If G = E7, then L ↓ X contains composition factors 010, 1002.

We will make use of a certain 1-dimensional torus T1 < X. Define
T1(c) = hα(c

2)hβ(c
2)hγ(c) and T1 = {T1(c) : c ∈ K∗}. Then T1 = CX(B2),

where B2 = 〈U±β , U±γ〉. Let t ∈ T1 be an element of order 3.

Lemma 7.1.4 (i) CG(T1) is a Levi factor of G.
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(ii) CG(T1) ≤ CG(t).

(iii) If G = E8, then CG(t) = A8, A2E6, D7T1 or E7T1.

(iv) If G = E8, then dimCL(G)(t) = 80, 86, 92 or 134.

Proof Part (i) is standard and (ii) is obvious. Part (iii) is given in [14,
4.7.1], and (iv) follows from (iii) and the fact that L(CG(t)) = CL(G)(t).

The next lemma gives the action of T1 on fundamental modules. For
this lemma we identify T1 with its preimage in B̃3, so that there is an action
on 001.

Lemma 7.1.5 There exist bases of the fundamental irreducible X-modules
such that T1(c) has the following diagonal action:

on 100 : (c2, c−2, 1, 1, 1, 1)

on 010 : (c2, c2, c2, c2, c−2, c−2, c−2, c−2, 16).

on 001 : (c, c, c, c, c−1, c−1, c−1, c−1).

Proof This is a straight forward computation, made easier by the fact
that T1 centralizes B2.

Lemma 7.1.6 The dimensions of the fixed point spaces of T1 and t on cer-
tain irreducible modules are given below

V 000 100 010 200 002 102 300 020 110

dimCV (T1) 1 4 6 4 0 8 16 6 24

dimCV (t) 1 4 6 4 0 8 18 6 24

Proof With the exception of the module 110, this is immediate from the
previous lemma combined with the Steinberg tensor product theorem. In the
last case we use the program of [13] to show that 100⊗010 = 110/002/1002,
and now the result follows from 7.1.5.

At this point we begin considerations of the cases G = E6, E7, E8. As
usual, the 1-dimensional torus T defined in 2.2.4 determines a labelling of
the Dynkin diagram of G by 0’s and 2’s, where a given label determines the
weight of T on the root vector for the corresponding fundamental root. From
here we get all weights of T on L(G) and the Weight Compare Program
then determines the possible composition factors of L(G) ↓ X which are
consistent with this labelling. We now consider the possibilities.
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Lemma 7.1.7 If nλ denotes the number of composition factors of high
weight λ in L ↓ X, then either n000 = 0 or n100 + n200 + n102 > n000.

Proof We know that L is self-dual, and CL(X) = 0 by Lemma 2.2.10.
Hence L ↓ X can have no nonzero trivial submodule or quotient. Among the
high weights considered in Lemma 7.1.2 only 100, 200 and 102 can extend
the trivial module, and in these cases the Ext group has dimension 1. So
this will yield the lemma provided there are no further high weights which
can occur as composition factors of L ↓ X. The Weight Compare Program
shows that this is indeed the case with two exceptions. The exceptions occur
only for G = E8 with the labellings 22020002, 22000202, and 22020022. The
program gives various possibilities for the composition factors. In the first
and third labellings, 100 does not occur and in the second labelling 010 does
not occur. So these labellings are not consistent with Lemma 7.1.3.

Lemma 7.1.8 Theorem 7.1 holds if G = E6.

Proof The only T -labellings of E6 that are consistent with Lemmas 7.1.3
and 7.1.7 are 222202, 220222, and 202022. For the first two of these cases we
make use of Ẽ6, the simply connected cover of G = E6. Let π : Ẽ6 → E6 be
the natural surjection. Let X̃ be the derived group of the preimage of X and
consider the restriction πX : X̃ → X. We claim that this is an isomorphism.
As p = 2, this is certainly the case at the level of groups, so it suffices to
show (see 4.3.4 of [38]) that the differential is surjective. However, the kernel
of dπ is trivial, so this is also the case for dπX .

It follows from the claim that X acts on both of the 27-dimensional
irreducible Ẽ6-modules V (λ1) and V (λ6). The high weights of these modules
can be represented as a rational combination of fundamental roots: λ1 =
1
3(435642), λ6 =

1
3(234654). In both the first and second cases we find that

the high weight restricted to T is non-integral. But this is impossible as the
restriction of these modules to X has composition factors that are integral
combinations of roots, hence integral upon restriction to T .

This leaves the third case. Here the labelling is 202022 from which it
follows that dim(D) = 46 and hence D = D5T1. This contradicts 2.3.4,
provided we can show that A 6= 0. There are three possibilities for the
composition factors of L(G) ↓ X:

(a) 0023/0102/1004/0002

(b) 0022/200/0102/1004/0004
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(c) 002/2002/0102/1004/0006.

Notice that in each case either there are at least two composition factors
of high weight λ for λ = 002 or 200. Choose independent weight vectors v, w
of the corresponding weight. Neither 200 or 002 is subdominant to another
dominant weight in L so these are maximal vectors and 〈Xv〉 and 〈Xw〉 are
both images of WX(λ). The sum of the images of the maximal submodules
is a singular space so it follows from the above that 010 can appear as a
composition factor in this sum with multiplicity at most 1. Therefore we
can rechoose v, if necessary, so that 010 does not appear as a composition
factor of 〈Xv〉.

The choice of v implies that v is annihilated by eα, eβ , fα, fβ , eγ , fγ . It
follows from the commutator relations that the subalgebra of L(X) gener-
ated by these elements contains I, the short ideal of L(X) (although they
do not generate L(X)′, as can be seen by considering the image in L(X)/I).
Hence v ∈ CL(I). Now v has T -weight 12, the largest weight in L, and it
follows from the labelling that the corresponding weight space has dimen-
sion 3 and there is an A2 subgroup acting transitively on nonzero vectors
of this space. Therefore v is a root vector. In the proof of 3.1.5 it was
shown that CL(v) = L(CG(u)) for u a root element of G. Hence u ∈ CG(I),
contradicting 7.1.1(iii).

Lemma 7.1.9 Theorem 7.1 holds if G = E7.

Proof We proceed as in the previous lemma. There are two T -labellings
of E7 which are consistent with Lemmas 7.1.3 and 7.1.7: 0002020, 2002020.

Suppose the labelling is 0002020. Here we consider π : Ẽ7 → E7 and let
X̃ denote the derived group of the preimage. Consider πX : X̃ → X. Let
T̃ correspond to T . Then T̃ has the same weights on L(Ẽ7) as T has on
L(E7). Also λ7 =

1
2(2346543), so the non-negative weights of T̃ on V (λ7)

are 102, 82, 66, . . .. It follows that V (λ7) ↓ X̃ = 0102/100a/001b/000c, where
a+ b = 4. If b 6= 0, then Z = Z(L(X̃)) = Z(L(Ẽ7)). But then Z induces the
group of scalars on V (λ7), whereas Z must be trivial on 010 (this appears
within the adjoint representation of X̃, where Z induces the identity). Hence
b = 0 and a dimension count shows that c = 4. Since V (λ7) is self-dual we
conclude as in Lemma 7.1.7 that X̃ has a nonzero fixed point on V (λ7).
This contradicts Lemma 2.2.13(ii).

Now suppose the labelling is 2002020. Here the Weight Compare Pro-
gram yields two possibilities for the composition factors of L(G) ↓ X, namely
110/2002/0103/1002/0003 and 110/002/200/0103/1002/000. In the first case
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Lemma 7.1.6 shows that dimCG(T1) = 61, whereas there is no Levi factor
of G with this dimension.

Consider the second case. Here there is a unique trivial composition
factor of L(G) ↓ X, so this must occur as L(G)/L(G)′. Hence there is no
trivial composition factor within L(G)′ and since this is the image of the
differential under the projection Ẽ7 → E7, we conclude that the preimage,
X̃ of X is simply connected and Z = Z(L(X̃)) = Z(L(Ẽ7)). Then Z induces
scalars on V (λ7), so all composition factors of X̃ on this module must be
faithful modules for the simply connected group X̃. The preimage T̃ of T
has the same labelling as T , and this implies that its non-negative weights on
V (λ7) are 12

2, 102, 84, 64, . . .. The irreducible X̃-modules whose high weight
affords T -weight 12 are 200, 002, and 101. Now 101 has dimension 48, so
there can be at most one of these in V (λ7) ↓ X̃. Therefore, either 200 or
002 must occur as a composition factor. In either case Z is trivial on this
factor, a contradiction.

Lemma 7.1.10 Theorem 7.1 holds if G = E8.

Proof We again consider the possible labelled Dynkin diagrams and corre-
sponding composition factors of X on L(G). There are just three labellings
yielding composition factors consistent with Lemmas 7.1.3 and 7.1.7, namely
20002002, 02002002, and 20000202. In the first case there is just one possi-
bility for composition factors consistent with the lemmas and in the third
case just three. However, the second case gives rise to many possibilities.

Most of the possibilities are settled with the aid of Lemmas 7.1.4 and
7.1.6. In the table below we list the possible composition factors of X on
L(G), and the corresponding dimensions of CG(T1) and CG(t).

Applying Lemma 7.1.4(iv) we see that only cases 5, 9, 10, 15, 22, 27 in
the table are possible So it remains to settle these configurations. In cases
9, 10, 15, 22 we have dimCG(T1) = 88, 78, 90, 128, respectively. On the
other hand CG(T1) is a Levi factor of G and one easily checks that there do
not exist Levi factors of any of these dimensions. This leaves cases 5 and
27.
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Case Comp. factors of L(G) ↓ X dimCG(T1) dimCG(t)

1 300/1102/002/200/0104/1002/0002 102 104

2 020/1023/0027/200/010/1002/0002 50 50

3 020/300/1022/0027/200/010/1004/0002 66 68

4 020/1023/0026/2002/010/1002/0004 56 56

5 020/3002/102/0027/200/010/1006/0002 82 86

6 020/300/1022/0026/2002/010/1004/0004 72 74

7 020/1023/0025/2003/010/1002/0006 62 62

8 020/3003/0027/200/010/1008/0002 98 104

9 020/3002/102/0026/2002/010/1006/0004 88 92

10 020/300/1022/0025/2003/010/1004/0006 78 80

11 020/1023/0024/2004/010/1002/0008 68 68

12 020/3003/0026/2002/010/1008/0004 104 110

13 020/3002/102/0025/2003/010/1006/0006 94 98

14 020/3003/0025/2003/010/1008/0006 110 116

15 020/300/1022/0023/2005/010/1004/00010 90 92

16 020/3002/102/0024/2004/010/1006/0008 100 104

17 020/300/1022/0024/2004/010/1004/0008 82 84

18 020/3003/0024/2004/010/1008/0008 116 122

19 020/3002/102/0023/2005/010/1006/00010 106 110

20 020/3003/0023/2005/010/1008/00010 122 128

21 020/3002/102/0022/2006/010/1006/00012 112 116

22 020/3003/0022/2006/010/1008/00012 128 134

23 020/3003/002/2007/010/1008/00014 134 140

24 110/0025/200/0107/1006/0004 98 98

25 110/0024/2002/0107/1006/0006 104 104

26 110/0023/2003/0107/1006/0008 110 110

27 110/0026/0107/1006/0002 92 92

Assume case 5 holds, where dimCG(T1) = 82 and dimCG(t) = 86. This
does not give a contradiction, as we could have CG(T1) = E6A1T1 and
CG(t) = E6A2. To settle this case we consider another torus. Let T

′
1(c) =

hα(c)hβ(c
2)hγ(c

3/2) and let T ′1 = {T
′
1(c) : c ∈ K

∗}. This torus is chosen so
as to centralize the A2 Levi factor 〈U±α, U±β〉 of X. Let t′ be an element of
order 3 in T ′1.

Using the fact that T ′1 centralizes A2, one checks that T
′
1(c) has the
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following eigenvalues on the irreducible X-modules 100, 010, 002:

on 100 : (c, c, c, c−1, c−1, c−1)
on 010 : (c2, c2, c2, c−2, c−2, c−2, 18)
on 002 : (c3, c, c, c, c−1, c−1, c−1, c−3)

From this, together with the Steinberg tensor product theorem it follows
that dimCG(T

′
1) = 36 and dimCG(t

′) = 86. Hence CG(t
′) = E6A2. Also

CG(T
′
1) = A2A1A4T

′
1 or A1A1D4T2. Of course CG(T

′
1) < CG(t

′) and this
rules out the latter case since E6A2 contains no such subsystem. Hence
CG(T

′
1) = A2A1A4T

′
1.

As noted earlier, CX(T
′
1) = Ā2T

′
1, where Ā2 = SL3. Hence Ā2 is con-

tained in the A2A4 subsystem group of CG(T
′
1). First assume that Ā2

projects trivially to the A4 factor. Then Ā2 is generated by root subgroups
of G hence X is determined up to conjugacy by [22, 2.1]. In particular Table
3 of Section 4 of [22] shows that CG(X) = B4, a contradiction.

Hence Ā2 projects nontrivially to the A4 factor. The only copy of A2 in
A4 is a Levi A2 which has nontrivial center not in the center of A4. But this
is impossible, as Z(Ā2) = 〈t′〉 and t′ ∈ CG(A4).

Now assume case 27 holds. Here we use a variation of the argument in
the last two paragraphs of the proof of 7.1.8. First note that from the list of
composition factors there is a 6-space, say L002, of vectors of weight 002. If
0 6= v ∈ L002, then 〈Xv〉 is an image of W (002). The sum of the images of
the maximal submodules is a singular subspace, so the composition factor
010 can occur in this sum with multiplicity at most 3. It follows that there is
a 3-space, E, of L002 centralized by fγ . Now eα, fα, eβ , fβ , eγ annihilate any
weight vector of weight 002 and these together with fγ generate a subalgebra
containing I. Hence E ≤ CL(I).

Now 002 has T -weight 12, and it follows from the labelling that the full
space of vectors of T -weight 12 has dimension 8 and affords an orthogonal
module for a D4 subsystem group and this space is 〈D4eδ〉, where δ =
24635321. Hence E contains a singular vector in this subspace, which must
then be a root vector. Consequently I centralizes a root vector of L so
the argument of 3.1.5 implies that I is centralized by a root element of G,
contradictiing 7.1.1(iii). This completes the proof of the lemma.

The proof of Theorem 7.1 is now complete for X = B3.
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7.2 The cases X = C3, B4

In this section we establish Theorem 7.1 when X = C3 or B4. Here we have
p = 2 and G = E8. As usual, by Lemma 2.2.10, S is generated by X and a
(possibly trivial) field or graph-field morphism of G.

As in previous cases the 1-dimensional torus T < X defined in 2.2.4
determines a labelling of the Dynkin diagram of G by 0’s and 2’s. In turn,
this determines the weights of T on L(G) and gives a finite number of pos-
sibilities for the composition factors of X on L(G). We then make use of
the Weight Compare Program to obtain the following lemma.

Lemma 7.2.1 One of the following holds:

(i) X = C3 and L(G) ↓ X = 202/2202/4002/0204/0004.

(ii) X = B4 and L(G) ↓ X = 00102/2000/01004/10004/00008.

We must settle the two cases in the above lemma. This is easy in the first
case. Indeed, if X = C3, then L(G) ↓ X does not contain the composition
factor 010 which occurs within L(X), so this is impossible.

So now assume X = B4. Take a base for the root system of X to be
Π(X) = {β1, β2, β3, β4}, with β4 a short root.

We shall require information on certain Weyl modules for X.

Lemma 7.2.2 Let X = B4. The following Weyl modules for X have the
indicated composition factors and are uniserial.

(i) W (1000) = 1000|0000.

(ii) W (0100) = 0100|0000|1000|0000.

(iii) W (0010) = 0010|0100|0000|1000|0000.

(iv) W (2000) = 2000|0000|0100|0000|1000.

Proof In this proof take X to be simply connected and let I denote the
ideal generated by short root elements. We first use either the program of
[13] or the Sum Formula to see that the composition factors are as indicated.
The main issue is verifying that module is uniserial with the indicated series.

Part (i) is clear asW (1000) can be realized as the 9-dimensional orthogo-
nal module. For (ii) consider L(X). We first compute that Z(L(X)) is gener-
ated by hβ4 . Also I is the Lie algebra of 4 commuting copies of B1, each sim-
ply connected, and we find that I affords the module W (1000) = 1000|0000,
with the trivial submodule generated by hβ4 . Now L(X)/I = 0100|0000
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and the trivial module can be obtained using the image of an element of
L(TX). As CL(TX)(I) = 〈hβ4〉 we conclude that L(X) must be uniserial with
the indicated composition series. However, dimL(X) = 36 = dimW (0100)
and L(X) is a cyclic module with generator of weight 0100. It follows that
L(X) ∼=W (0100) and (ii) follows.

(iii) Set W = W (0010) and consider W/IW . There is a maximal rank
subgroup D4 < X, and L(X) = I + L(D4). View the quotient as a module
for D4. It is well known that irreducible modules for X whose high weight
has short support remain irreducible upon restriction to D4 (see [30, 4.1]).

In particular, 0010 restricts to D4 as the irreducible module 0011, and
WD4(0011) is irreducible. It follows that this irreducible splits off in the
restriction (W/IW ) ↓ D4. But then W/IW splits as a module for L(D4),
hence for L(X), and hence for X. The only possibility is that W/IW is
irreducible. Now consider IW . Let v we a maximal vector of W of high
weight 0010.

We claim that IW = 〈Xf0011v〉. This follows from consideration of
certain commutators. For example, f1111 = [f1100f0011] so that f1111v =
f1100f0011v − f0011f1100v = f1100f0011v. In this way we see that Iv =
L(X)f0011v. On the other hand IW = 〈IXv〉 = 〈XIv〉 = 〈Xf0011v〉, as
claimed (for the last equality note that 〈Xf0011v〉 is X-invariant, hence
L(X)-invariant, hence I-invariant and so contains If0011v and all images
under X). It follows from the claim that IW is an image of the Weyl
module with high weight 0010 − (β3 + β4) = 0100. In view of the known
composition factors of W (0100), we see that IW ∼=W (0100), so (iii) follows
from (ii).

In case (iv) we make use of the isogeny B4 → C4, taking both groups
to be simply connected. Arguing as we did above for L(B4) we find that
L(C4) = WC4(2000) = 2000|0000|0100|0000, a uniserial module. Viewing
this as a module for B4 (via the isogeny) we conclude that WB4(2000) has a
uniserial image of the same shape. The kernel of this map must be irreducible
of high weight 1000.

Let W = WB4(2000) and let v be a maximal vector. Then w = f1000v
spans the weight space for weight 0100 which is the highest weight of the
maximal submodule of W . Let z ∈ W be a weight vector of weight 1000.
Using the computer program of [13] we see that this weight space is 1-
dimensional. We claim that z ∈ 〈B4w〉. Suppose that we have estab-
lished this claim. It then follows that 〈B4w〉 is an image of the Weyl
module containing 1000 as a submodule and having composition factors
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0100/0000/1000. Then (ii) implies that 〈B4w〉 is isomorphic to a factor
module WB4(0100)/U with U

∼= 0000. Hence 〈B4w〉 is uniserial, and this
gives (iv). So it remains to establish the claim. For this we note that
1000 = 2000− (β1 + β2 + β3 + β4). It follows that z is a linear combination
of terms of the form fδ1fδ2 ∙ ∙ ∙ fδrv where

∑
δi = β1 + β2 + β3 + β4. As

v has weight 2000, such a term is 0 unless δr involves β1, in which case
the commutator relations imply that fδrv = fδr−β1fβ1v = fδr−β1w. Hence
z ∈ L(B4)w ≤ 〈B4w〉, as required.

Lemma 7.2.3 Case (ii) of Lemma 7.2.1 does not occur.

Proof We begin by letting v be a TX -weight vector of L = L(G) of weight
2000. Since 2000 is not subdominant to any other weight in L, E1 = 〈Xv〉
is an image of WX(2000). Let S1 be the image of the maximal submodule,
so S1 is a singular subspace of L.

First assume A 6= 0 (where A = CL(L(X)′)). Since there is no trivial
submodule of L ↓ X, we see that 2000 must be the highest weight of A.
The Weight Compare Program gives all T -weights on L, from which we find
using Lemma 2.3.4 that A ≤ L(D) with D = D8, and T determines the
labelling 00400400 of the D8 diagram. Now 2000 affords T -weight 16, which
is the largest T -weight of D. It is clear from the labelling of the D8 diagram
that the T -weight space for weight 16 has dimension 3 and is spanned by the
root vectors corresponding to roots 12222211, 11222211, 01222211. There is
a subgroup of D8 acting as SL3 on this weight space, so it follows that A
contains a root vector of L, contradicting Lemma 2.2.12.

From now on we assume A = 0. It follows that fβiv 6= 0 for some
i. As v has weight 2000 the only possibility is that i = 1, showing that
0100 is a weight of E1. We conclude that 0100 appears as a composi-
tion factor of E1. Using Lemma 7.2.2 and the fact that there do not
exist trivial submodules, we see that there are just two possibilities: ei-
ther E1 = WB4(2000) = 2000|0000|0100|0000|1000 or E1 = 2000|0000|0100.
Consequently we write E1 = 2000|0000|0100|0000x|1000x, where x = 0 or 1.

We argue as in earlier cases. Write S⊥1 /S1 = 2000 ⊥W1, where the high-
est weight of W1 is 0010, which occurs with multiplicity 2. Generating with
maximal vectors of W1 having weight 0010 and using Lemma 7.2.2 we ob-
tain a submodule of W1 with composition factors 0010

2/0100a/1000b/0000c,
having a singular submodule S2/S1 with quotient 0010

2.

We can now repeat the argument. Working in S⊥2 /S2 we split off a non-
degenerate space 2000 ⊥ 00102 and in the orthogonal complement generate
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by high weight vectors of weight 0100 to get a space E3/S2 having compo-
sition factors 01002−2a/1000d/0000e and having a singular subspace S3/S2
with composition factors 1000d/0000e. We do this two more times, gener-
ating by high weight vectors first of weight 1000 and then 0000, obtaining
sections E4/S3 and E5/S4. In the following we record the structure of the
various sections:

E2/S1 = 0010
2/0100a/1000b/0000c, S2/S1 = 0100

a/1000b/0000c,

E3/S2 = 0100
2−2a/1000d/0000e, S3/S2 = 1000

d/0000e,

E4/S3 = 1000
4−2b−2d−2x/0000f , S4/S3 = 0000

f ,

E5/S4 = 0000
6−2c−2e−2f−2x.

Now E5 = 0100
1+a/1000b+d+x/00007−c−e−f−x. Since L ↓ X contains

no trivial submodule we must have 7 − c − e − f − x ≤ (1 + a) + (b +
d + x) and hence 6 ≤ a + b + c + d + e + f + 2x. In addition, S4 =
01001+a/1000b+d+x/00001+c+e+f+x and S4 is singular. This implies 1+ a ≤
2, b+ d+x ≤ 2, and 1+ c+ e+ f +x ≤ 4. Hence, a ≤ 1, b+ d+x ≤ 2, and
c+e+f +x ≤ 3. It follows that these must all be equalities. From a = 1 we
see that E3/S2 is trivial, forcing d = e = 0. Hence b+ x = 2, c+ f + x = 3.
The first of these forces E4/S3 to be trivial, so that f = 0 and hence c+x = 3.

There are now two cases depending on the value of x. First suppose
x = 1. Here b = 1 and c = 2 so that E2/S1 = 0010

2/0100/1000/00002. In
view of Lemma 7.2.2 we must have E2/S1 = W (0010) ⊕ 0010. But then,
taking a vector w ∈ E2 whose image generates the W (0010) summand, we
see that w is also a maximal vector in E2 and must generate a submodule
W (0010) of E2. This yields a trivial submodule of L ↓ X, a contradiction.

Now assume x = 0. This time we get b = 2 and c = 3. Then E2/S1 =
00102/0100/10002/00003. However, Lemma 7.2.2 implies that there is no
such module generated by two weight vectors of weight 0010. This is a final
contradiction.

This establishes Theorem 7.1 for X = C3, B4.

7.3 The case X = A3

The final case to consider is X = A3, where we again have p = 2 and
X = E8. As in previous sections we take T < TX , a maximal torus of X.
Take a base of the root system of X, say Π(X) = {α, β, γ}.



194 MARTIN W. LIEBECK AND GARY M. SEITZ

Once again we use the Weight Compare Program, discarding any config-
urations where the composition factors of L(X) do not occur among those
of L ↓ X. The possibilities are listed in the following lemma.

Lemma 7.3.1 One of the following holds:

(a) L(G) ↓ X = 0207/10114/00010.

(b) L(G) ↓ X = 202/4002/0042/2103/0123/0207/1012/0004.

(c) L(G) ↓ X = 2023/400/004/2103/0123/0203/1012/0008.

(d) L(G) ↓ X = 2102/0122/0206/1018/0004.

(e) L(G) ↓ X = 202/2103/0123/0204/1014/00010.

To settle these cases we make use of a certain torus T1 < X. For 0 6=
c ∈ K, let T1(c) = hα(c)hβ(c2)hγ(c3) and T1 = {T1(c) : c ∈ K∗}. A
consideration of matrices shows that CX(T1) = T1A2.

Lemma 7.3.2 The dimensions of the fixed point spaces of T1 on certain
irreducible X-modules are as follows.

V = 101 020 400 210 202

dimCV (T1) = 8 0 0 9 8

Proof The weights of T1 on the irreducible usual module 100 are im-
mediate from the definition. This immediately yields the weights of T1 on
the other irreducible modules 010 and 001. The irreducible module 101 has
codimension 1 in the adjoint module, where the fixed point space has di-
mension 9 (the dimension of of CX(T1) = T1A2). Also 210 = 100

(2) ⊗ 010,
from which we see that the fixed point space on this module has dimension
9. The remaining modules are twists of ones already considered.

Lemma 7.3.3 None of the cases (a) - (e) of Lemma 7.3.1 can occur.

Proof We calculate the dimension of CG(T1) in each case, using the
information provided in Lemma 7.3.2 and noting that the fixed point space
has the same dimension on a module and its dual. We find that these
dimensions are 122, 82, 102, 104, 104 in the respective cases (a)-(e). On the
other hand CG(T1) must be a Levi factor of G, and it is easy to check that
the only possibility occurs in case (b) with CG(T1) = E6A1T1. To settle
this case we consider another 1-dimensional torus. Indeed consider T ′1, a
1-dimensional torus in a fundamental A1 of X. Here T

′
1(c) has eigenvalues
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(c, c−1, 1, 1) on the natural module for SL4 and using this we easily compute
the fixed points on each irreducible in the decomposition given by 7.3.1(b).
We find that CG(T

′
1) has dimension 62. However, there is no Levi subgroup

of this dimension, so this is a contradiction.

At this point we have established Theorem 7.1, and hence the proof of
Theorem 1 is complete.



8 Proofs of Corollaries 2 and 3

Proof of Corollary 2 To obtain the corollary from Theorem 1 we need
only determine the maximal reductive subgroups of maximal rank in G, and
to a large extent this is settled in [19]. Let M be a maximal closed subgroup
of the exceptional algebraic group G such that M0 is reductive of maximal
rank. Note that if M0 is a maximal torus of G, then G 6= G2 or F4 because
of the containments NG2(T2) < NG2(A2) = A2.2 and NF4(T4) < NF4(D4) =
D4.S3.

Now assume that M0 is not a maximal torus. Then the root system Δ
of M0 is a non-empty subsystem of Σ(G). By maximality, M satisfies the
conditions of Lemmas 2.1 and 2.2 of [19]. Tables A and B in [19, p.302]
list all subsystems Δ which satisfy these conditions; then Lemmas 2.3 and
2.4 of [19] rule out various possibilities in Tables A,B. What remains is
the list in Table 10.3, together with two more possibilities, namely M0 =
D5T1 < E6 or B2B2 < F4 (p = 2). In the former case NE6(M0) lies in
a D5-parabolic, and the latter possibility is ruled out by observing that
NF4(B2B2) = (B2B2).2 < NF4(B4).

So at this point we have a list of possibilities for M0, including the case
where M0 is a maximal torus of G = E6, E7, E8. To obtain Corollary 2(i)
we must determine for which cases NG(M

0) is maximal. If this normalizer
is not maximal, then it is contained in either a proper parabolic subgroup
or in the normalizer of another subsystem group from the list. But an easy
check shows this does not occur. This establishes Corollary 2(i). Part (ii)
follows by inspection, deleting those subgroups in Table 10.3 for which M0

is non-maximal.

Remark If we wish to extend Corollary 2 to groups G1 containing a graph
morphism of G, then the following additions are needed to the lists of sub-
groups in Table 10.3:

G2, p = 3: add T2

F4, p = 2: add T4 and B2B2

E6: add D5T1.

Proof of Corollary 3 Here H is a simple algebraic group and we are
trying to show that there are only finitely many classes of maximal closed
subgroups of positive dimension. This follows immediately from Theorem 1
if the simple algebraic group H is of exceptional type, so assume that H is of

196
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classical type. For the purpose of proving the result we may assume that H
is a classical group acting faithfully on its natural module V , of dimension n
over the algebraically closed field K. By [25, Theorem 1], if M is a maximal
closed subgroup of positive dimension in H, then one of the following holds:

(i) M is one of the subgroups in the families C1, C2, C3, C4 defined in [25];

(ii) M0 is simple and acts irreducibly and tensor-indecomposably on V .

There are only finitely many conjugacy classes of subgroups in C1∪. . .∪C4. So
consider subgroupsM0 as in (ii). First observe that rank(M0) ≤ rank(H) <
n. Also, being tensor-indecomposable, V is a restricted module for M0 (see
2.1.3). Write V = V (λ), where λ is a restricted dominant weight for M0;
say λ =

∑
ciλi, where λi are fundamental dominant weights and ci integers

with 0 ≤ ci ≤ p− 1. The restriction of V to the A1 corresponding to the ith

fundamental root has a composition factor of high weight ci, dimension ci+1,
and hence ci ≤ n− 1 for all i. In particular, given n, there are only finitely
many possibilities for the simple group M0 (since rank(M0) < n), and for
each possible M0, only finitely many restricted n-dimensional irreducible
KM0-modules. Each such module gives rise to only a finite number of
conjugacy classes of subgroups in H. This completes the proof.



9 Restrictions of small G-modules to maximal
subgroups

In this section we address the issue of determining the precise actions of the
maximal subgroupsX, given in Table 1 of Theorem 1, on the adjoint modules
L = L(G)′, and also on the minimal modules V = VF4(λ1), VE6(λ1), VE7(λ7)
for G = F4, E6, E7, of dimensions 26 − δp,3, 27, 56 respectively. The conclu-
sions are recorded in Table 10.1 (for L ↓ X) and in Table 10.2 (for V ↓ X).

We begin with the analysis of L ↓ X.

9.1 Proof of the assertions in Table 10.1

Let G be an exceptional algebraic group, and assume that X < G is one
of the maximal subgroups given in Table 1 of Theorem 1. In each case
the composition factors of X on L are given either in [31, p.193] or in
4.1.3, 5.1.2(ii), or 6.1. We aim to decompose L into a direct sum of explicit
indecomposable modules for X.

We begin with two lemmas which will be applied in several instances.
The first is taken from [22, 1.6].

Lemma 9.1.1 (i) Let G2 < D4 be the usual embedding and let V be a
restricted irreducible 8-dimensional module for D4. If p 6= 2, then V ↓ G2 =
10⊕ 00, while if p = 2, then V ↓ G2 = T (10) = 00|10|00.

(ii) Let F4 < E6 be the usual embedding and let V be a restricted irre-
ducible 27-dimensional module for E6. If p 6= 3, then V ↓ F4 = 0001⊕0000,
while if p = 3, then V ↓ F4 = T (0001) = 0000|0001|0000.

We require some notation before stating the next result. Assume X is
a semisimple group and λ, γ, μ are dominant weights such that the tilting
module TX(λ) = μ|λ|μ and TX(γ) = μ|γ|μ, both uniserial. We use the
notation Δ(λ; γ) to denote an indecomposable module of shape μ|(λ⊕ γ)|μ
with socle and cosocle both of type μ, and which is obtained as a section
of T (λ) ⊕ T (γ), by taking a maximal submodule and then factoring out a
diagonal submodule of the socle.

Lemma 9.1.2 Let X be semisimple and let M be an indecomposable and
self-dual X-module with composition factors (μ)2/λ/γ. Assume that TX(λ) =
μ|λ|μ and TX(γ) = μ|γ|μ. Then M ∼= Δ(λ; γ) if either of the following con-
ditions holds:

198
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(i) each of the composition factors λ, μ, γ is a self-dual X-module;

(ii) M has socle and cosocle of type μ.

Proof (i) First note that our hypotheses imply that WX(λ) = λ|μ and
WX(γ) = γ|μ. Let v, w ∈M be weight vectors for weights λ, γ, respectively.
Then 〈Xv〉 ∼= W (λ) and 〈Xw〉 ∼= W (γ): for otherwise, there would be an
irreducible submodule of high weight λ or γ and our assumptions would
force this submodule to be non-degenerate, contradicting the fact that M is
indecomposable.

The information on composition factors implies that 〈Xv〉 ∼= W (λ) and
〈Xw〉 ∼= W (γ) have the same socle, say S. Then S ∼= μ is a singular
submodule and S⊥/S ∼= λ ⊕ γ. It is clear from the above that S⊥ =
〈Xv〉 + 〈Xw〉 and there is a surjection W (λ) ⊕W (γ) → S⊥. Let Z be the
kernel of this surjection.

The Weyl module structures imply that Ext1X(λ ⊕ γ, μ) has dimension
2 and Ext1X(μ, μ) = 0. It follows that Ext

1
X(S

⊥, μ) has dimension at most
2. On the other hand, consider T (λ) ⊕ T (μ). Each of the tilting module
summands is uniserial of length 3 with socle and simple quotient isomorphic
to μ. Hence, W (λ) ⊕W (μ) is a submodule of T (λ) ⊕ T (μ) with quotient
module μ⊕ μ and it follows that a 2-dimensional group of extensions of S⊥

by μ can be realized as (T (λ)⊕ T (μ))/Z.

It follows from the above paragraph that M ∼= E/Z, where E is a maxi-
mal submodule of (T (λ)⊕T (μ))/Z and we have designated such a self-dual
indecomposable module as Δ(λ; γ).

Part (ii) is similar, but easier. We are assuming the socle is of type μ so
starting with the second paragraph the above proof gives the assertion.

Lemma 9.1.3 If X = A1, then L ↓ X is as indicated in Table 10.1.

Proof Assume that X = A1. In each of the cases in Table 1 of Theorem
1, either p = 0 or p is a good prime with the highest X-weight on L at most
2p− 2. Hence, X is a good A1, in the sense of [32]. Therefore [32, Theorem
1.1(iii)] shows that L ↓ X is a tilting module. The precise decomposition
of L ↓ X into indecomposables follows from knowledge of the weights. An
example of how this is done is provided at the start of the next section.

Lemma 9.1.4 If X is simple, then L ↓ X is as indicated in Table 10.1.

Proof Assume that X is simple. By the last result we may assume X
has rank at least 2. In some cases the result has already been established.
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If G = F4, then X = G2 and p = 7. Here we see from [31, p.193] that
L ↓ X = 11 ⊕ 01. Next suppose G = E7. Here X = A2, and by [31, p.193]
and Theorem 4.1 we see that either L ↓ X = 44⊕11 or p = 7 and L ↓ X has
composition factors 44/112. In the latter case it follows from [27, Theorem
4], together with the fact that L is self-dual, that L ↓ X = T (44).

The cases G = E6, E8 require a little more work.

Case G = E6.

First assume X = F4 or C4 (p 6= 2). By [31, p.193], we have L ↓ X =
L(X)/WX(0001). Except for p = 2, 3, all the relevant Weyl modules are
irreducible and the assertion follows. When p = 3,WF4(0001) = 0001|0000.
However, in this case, L = L(G)′ has co-dimension 1 in L(G) so we still have
L ↓ F4 = 1000⊕ 0001.

Now assume p = 2 with X = F4. Here L ↓ X has composition factors
1000/00012 and, since L(X) = WX(1000) = 1000|0001, we must have L ↓
X = T (1000).

If X = A2, then p ≥ 5 and it follows from [31, p.193] and the irreducibil-
ity of the relevant Weyl modules that L ↓ X = 41⊕ 14⊕ 11, as required.

Now suppose X = G2, where the only restriction is p 6= 7. By [31,
p.193] and Theorem 6.1, either p 6= 3 and L ↓ X = 11⊕L(G2) or p = 3 and
L ↓ X = 11/012/102. In the latter case X is determined up to conjugacy and
[41, Proposition G.1] gives precise generators for X by giving the root groups
for the fundamental roots and their negatives. Using this one immediately
obtains expressions for eα and eβ , root elements of L(X) corresponding
to fundamental short and long roots, respectively. From the commutator
relations we compute e2α+β . The result is a linear combination of root
vectors in L(E6) corresponding to positive roots.

Let δ be the positive root in Σ(G) of highest height and set v = fδ. So
v is a weight vector of weight −11 for X. From information already ob-
tained we can compute eα+βeαv and e2α+βv and find that these are linearly
independent weight vectors of weight −01. From [13] we see that the −01
weight space of VG2(11) has dimension 1, whereas the dimension in the Weyl
module is 2. It follows that 〈Xv〉 has a composition factor of high weight
01. We also know that L(X) ∼= WG2(01) = 01|10. Since L is self-dual it
follows that L(X) < 〈Xv〉 and that L ↓ X = 10|01|11|01|10 and is uniserial.

Case G = E8

Here the only case to consider is X = B2 and p ≥ 5. By [31, p.193],
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L ↓ X = W (06)/W (32)/W (02). For p > 5 each of these Weyl modules is
irreducible, so L ↓ X = 06⊕ 32⊕L(B2). The situation is more complicated
for p = 5, where W (06) = 06|22 and W (32) = 32|22.

On p. 111 of [31] precise expressions are given for the elements fα, fβ of
L(X). Moreover, as indicated on p.112 of [31], if δ is the high root of Σ(G),
then v = eδ and w = eδ−α8 are maximal vectors affording TX -weights 06
and 32 respectively. From the expression for fβ we check that f

2
βv 6= 0, and

this affords a weight vector of weight 22. As p = 5, this is not a weight in
VX(06), so we conclude that 〈Xv〉 =W (06) = 06|22.

Now consider L(X)w. From the expressions for fα and fβ it is eas-
ily checked that fαfβw and fβfαw are linearly independent and both af-
ford weight vectors of weight 22. On the other hand the weight space of
VX(32) for this weight has dimension 1, so 〈Xw〉 must be the Weyl mod-
ule WX(32) = 32|22. The composition factors of L ↓ X are 06/32/222/02
and L is self-dual. It follows that L ↓ X = M ⊥ 02, where M has shape
22|(06⊕32)|22. It now follows from Lemma 9.1.2, thatM ∼= Δ(06; 32) which
gives the result here.

Lemma 9.1.5 If X is not simple, then L ↓ X is as indicated Table 10.1.

Proof We are assuming that X is not simple. In all but one case we can
write X = X1X2, a product of two simple groups. The exception occurs
for G = E8 with X = A1G2G2. With this one exception the composition
factors appearing in L ↓ X are given in [31, p.193]. We first determine the
precise action on L of certain of the simple factors. If Xi = A1, then we see
from the information provided and the prime restrictions given (if any), that
each composition factor of L ↓ Xi has high weight at most 2p − 2. Hence,
this is a good A1 in the sense of [32]. If p is a good prime for G, then it
follows from [32, Theorem 1.1(iii)] that L ↓ Xi is a tilting module. In fact,
we will show that this holds in all cases where Xi = A1 and p > 2.

Case A1G2 < F4

In this case p ≥ 3 and if p > 3 then the high weights of all composition
factors of L ↓ X correspond to irreducible Weyl modules. So here, L ↓ X is
completely reducible as given in Table 10.1. So now assume p = 3. We first
determine the action of the simple factors on L.

We have G2 < D4 < F4 and L ↓ D4 = L(D4) ⊕ V1 ⊕ V2 ⊕ V3, where
the modules Vi are the restricted irreducible 8-dimensional modules. On
each of these, G2 acts as 10 ⊕ 00. Also, L(D4) can be identified as ∧2V1,
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a direct summand of V1 ⊗ V1. Recall that the tensor product of tilting
modules is a tilting module and that direct summands of tilting modules
are again tilting modules. It follows that L(D4) ↓ G2 is a tilting module and
so L ↓ G2 = (T (01)⊕ 104) ⊥ 003.

Next we note that A1 = CF4(G2) < CF4(A2) = Â2, where A2, Â2 denote
subsystem subgroups generated by root groups for long roots and short
roots, respectively. The embedding A1 < Â2 corresponds to the fixed points
under a graph automorphism (arising from the graph automorphism of E6
which fixes F4). From [31, 1.8] we have L ↓ A2Â2 = L(A2Â2) ⊕ (10 ⊗
02)⊕ (01⊗ 20). As L is self-dual and Â2 is simply connected, we must have
T (11) = 10 ⊗ 01 as a direct summand of L(A2Â2). Also the module 20 is
a direct summand of 10 ⊗ 10, and 10 and 01 restrict to A1 as 2. It follows
that L ↓ A1 = T (4)7 ⊕ 2⊕ 07.

We can now establish the required restriction. First note that the A1
factor leaves invariant the fixed point space of G2, so from information on
composition factors we can write L ↓ X = M ⊥ (2 ⊗ 00), where M =
4 ⊗ 10/0 ⊗ 01/(0 ⊗ 10)2. The information of the previous two paragraphs
implies thatM is indecomposable. Also T (4⊗10) = (0⊗10)|(4⊗10)|(0⊗10)
and T (0⊗01) = (0⊗10)|(0⊗01)|(0⊗10). At this point Lemma 9.1.2 implies
that M ∼= Δ(4⊗ 10; 0⊗ 01), as required.

Case A2G2 < E6

Here the composition factors of L ↓ X are the union of those of W (11)⊗
W (10), W (11) ⊗ 00 and 00 ⊗W (01). If p > 3, then all the relevant Weyl
modules are irreducible and so L ↓ X is completely reducible as in Table
10.1. So it remains to consider the cases p = 2, 3.

We will use the following information about the factors of X. As above,
the G2 factor X2 is embedded in a subsystem subgroup of type D4 and
so a subsystem subgroup A2 < G2 corresponding to long roots is also a
subsystem subgroup of E6. Hence X1 is contained in the centralizer of this
A2, a subsystem group of type A2A2.

Assume p = 2. In this case we see from the composition factors, that
L ↓ A2 = 118 ⊥ 0014. It follows that L ↓ X = M ⊥ L(G2), where M
affords a self-dual representation of X which restricts to the A2 factor as
118. Working within Y = SL64 we see that CY (X1)

′ = SL8. It follows that
X2 acts onM as it does on 8 copies of the natural module for SL8. However,
G2 < D4 and L ↓ D4 contains copies of each of the 8-dimensional restricted
modules. So Lemma 9.1.1 implies M ↓ X = 11⊗ T (10), as required.
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Now assume p = 3. Here we start with L(E6) ↓ D4T2 = L(D4)⊕L(T2)⊕
V 21 ⊕ V

2
2 ⊕ V

2
3 , where the Vi are the restricted irreducible 8-dimensional

modules for D4. Lemma 9.1.1 implies Vi ↓ G2 = 10⊕ 00 and L(D4) can be
realized as the wedge-square of any of the Vi. So from previously mentioned
results on tilting modules it follows that L(E6) ↓ G2 = (107⊕T (01)) ⊥ 008,
and the last summand must be L(X2). As L has dimension one less than
L(E6) we have L ↓ X = M ⊥ (11 ⊗ 00), where M = (11 ⊗ 10)/(00 ⊗
01)/(00⊗ 10)2. From the embedding X1 < A2A2 we see that L ↓ X1 has a
direct summand of the form (10 ⊗ 01)6 = T (11)6. Using this, we see that
M is indecomposable and Lemma 9.1.2 implies M ∼= Δ(11⊗ 10; 00⊗ 01).

Case A1A2 < E8.

Here p ≥ 5. If p > 5, then the Weyl modules for all relevant composition
factors are irreducible, so L ↓ X is completely reducible as indicated in Table
10.1.

So assume p = 5. The subgroup A1A2 is constructed in 3.13 of [31]. The
A2 factor, X2, is a subgroup of a Levi A7, such that V ↓ X2 = 11, where V
is a natural module for A7. Now L ↓ A7 is the sum of an adjoint module
plus V,∧2V,∧3V, V ∗,∧2(V ∗),∧3(V ∗). As p = 5 each of these is an irreducible
summand of the tensor product of at most 3 copies of V and V ∗. Now V
restricts to an (irreducible) tilting module for X2 and tilting modules are
closed under the operations of tensor products and direct sums. It follows
that L ↓ X2 is a tilting module, so our information on composition factors
implies L ↓ X2 = T (22)3 ⊕ 305 ⊕ 035 ⊕ 115 ⊕ 003.

Let TX2 denote a maximal torus of X2. Using the information on compo-
sition factors we find that CL(TX2) has dimension 38 and soX1 ≤ CL(TX2) =
D4A2TX2 . Since theX1-composition factors have weight at most 6, it follows
that the projections of X1 to D4 and A2 correspond to restricted completely
reducible modules and from the action of D4A2 on L we see that L ↓ X2 is
also a tilting module and hence L ↓ X2 = T (6)8 ⊕ 420 ⊕ 220 ⊕ 08.

We can now obtain the decomposition. First note that X1 stabilizes
the X2 summands of form 30

5 and 035. Since we know that 4 ⊗ 30 and
4 ⊗ 03 occur as composition factors, we conclude that these both occur as
summands of L ↓ X. Similarly, each simple factor of X stabilizes the fixed
points of the other. The sum of the modules so far described has shape
305 ⊕ 035 ⊕ L(A1) ⊕ L(A2). The perpendicular space of this, say M , has
composition factors (6⊗11)/(2⊗22)/ (2⊗11)2. Generating by weight vectors
of weight 2⊗22 and 6⊗11 we get images of the Weyl modules WX(2⊗22) =
2⊗WX2(22) = 2⊗22|2⊗11 and WX(6⊗11) =WX1(6)⊗11 = 6⊗11|2⊗11.
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As L ↓ Xi is tilting for i = 1, 2 we conclude that M is indecomposable of
shape (2 ⊗ 11)|((2 ⊗ 22) ⊕ (6 ⊗ 11))|(2 ⊗ 11). Hence, Lemma 9.1.2 implies
M = Δ(2⊗ 22; 6⊗ 11), as required.

Case G2F4 < E8.

If p > 3, then all composition factors correspond to irreducible Weyl
modules, so L ↓ X is completely reducible as in Table 10.1. Now consider
p = 3. We first consider L ↓ F4. Let F4 < E6, with E6 a subsystem group,
and let V denote the irreducible 27-dimensional E6-module V (λ1). Then
Lemma 9.1.1(ii) implies that V ↓ F4 = TF4(0001). Now L ↓ E6 contains the
sum of three copies of V plus three copies of V ∗. Hence L ↓ F4 contains the
sum of 6 copies of TF4(0001). Also note that 0001 occurs with multiplicity
7 in L ↓ F4.

The G2 factor X1 arises from an embedding within a subsystem group
of type D4. From [31, 1.8] we have L ↓ D4 = L(D4) ⊕ J ⊕ CL(D4), where
J is the direct sum of 24 restricted 8-dimensional modules. In particular,
we see that CL(G2) has dimension 52, and hence L(F4) is a nondegenerate
summand of L. Now L(D4) can be realized as the wedge-square of an 8-
dimensional module. Hence, L ↓ G2 is a tilting module so that L ↓ G2 =
(T (01)⊕ 1025) ⊥ 0052.

We can now write L ↓ X = M ⊥ (00 ⊗ 1000), where M = (10 ⊗
0001)/(01 ⊗ 0000)/(10 ⊗ 0000)2. From information on L ↓ G2 and L ↓ F4
together with Lemma 9.1.2, it follows that M ∼= Δ(10⊗ 0001; 01⊗ 0000), as
required.

Now assume p = 2. As before consider F4 < E6. We have already
established that L(E6) ↓ F4 = T (1000). This and 9.1.1 give L ↓ F4 =
(T (1000)) ⊕ 00016) ⊥ 000014. As G2 centralizes F4, the decomposition
is stabilized by G2 and we have L ↓ X = M ⊥ (01 ⊗ 0000), where M =
(10⊗0001)/(00⊗1000)/(00⊗0001)2. We have G2 < D4 and 9.1.1 shows that
G2 acts on each of the 8-dimensional restricted representations as T (10) =
00|10|00. So it follows from [31, 1.8] that L ↓ G2 contains T (10)24 as a
direct summand. This together with the information on the restriction to
F4 implies that M is indecomposable, so that we obtain the result from
Lemma 9.1.2.

Case A1G2G2 < E8.

Here X lies in a subgroup F4G2 of G and X ∩ F4 = A1G2 is maximal
in the F4 factor. Moreover, p > 2 and the G2 factors are conjugate. When
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p > 3 we have the following restrictions:

L ↓ G2F4 = L(G2)⊕ L(F4)⊕ (10⊗ 0001)

L(F4) ↓ A1G2 = L(A1)⊕ L(G2)⊕ (4⊗ 10)

VF4(λ4) ↓ A1G2 = (2⊗ 10)⊗ (4⊗ 00)

where the last restriction is obtained from [23, 2.5] using the embedding
A1G2 < A2G2 < E6. At this point we compute L ↓ A1G2G2 and obtain the
result in Table 10.1.

Now assume p = 3. We will produce certain submodules of L ↓ X.
Consideration of the centralizer of one of the G2 factors leads to A1G2 <
F4, which acts on L(F4) as described in the first case of this lemma. In
particular there is a submodule Δ(4 ⊗ 10; 0 ⊗ 01). The other G2 factor
of X acts trivially on this submodule and it follows that L ↓ X contains
Δ(4⊗ 10; 0⊗ 01)⊗ 00 = Δ(4⊗ 10⊗ 00; 0⊗ 01⊗ 00) as a submodule. Now,
NG(X) contains an involution which interchanges the G2 factors. Hence,
Δ(4 ⊗ 00 ⊗ 10; 0 ⊗ 00 ⊗ 01) also occurs as a submodule. Next note that
L ↓ G2F4 contains a summand 10 ⊗ 0001, and the restriction of 0001 to
A1G2 contains 2 ⊗ 10 as a composition factor. Indeed, a check of Weyl
modules shows that this occurs as a direct summand and hence 2⊗ 10⊗ 10
occurs as a direct summand of L ↓ X. At this point we have accounted
for summands of total dimension 245 and G2G2 acts nontrivially on each
composition factor. Thus L(A1) is an additional direct summand and the
result follows.

Case A1F4 < E7.

Here we see as in other cases that if p > 3, then all composition fac-
tors of L ↓ X have corresponding Weyl modules irreducible and hence the
restriction is completely reducible as indicated in Table 10.1.

Assume p = 3. In this case WF4(0001) is reducible. We have the em-
bedding F4 < E6T1 and L ↓ E6T1 = L(E6T1) ⊕ V ⊕ V ∗, where V restricts
to E6 as the irreducible 27-dimensional module V (λ1). By Lemma 9.1.1,
V ↓ F4 = T (0001) = 0000|0001|0000. Also, L ↓ X1 = 227 ⊕ 052, and both
summands must be invariant under X2. The only possibility is L ↓ X =
(2⊗ T (0001))⊕ (0⊗ 1000).

Now assume p = 2. Here we have L ↓ F4 = 00014/1000/00002 and we
have seen earlier that L(E6) ↓ F4 = T (1000). Since F4 < E6 < E7 we have
L ↓ F4 = (T (1000)⊕00012) ⊥ 00002. So from the known composition factors
we have L ↓ X = M ⊥ (2 ⊗ 0000), where M = (2 ⊗ 0001)/(0 ⊗ 1000)/(0 ⊗
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0001)2. To apply Lemma 9.1.2 we must verify that M is indecomposable
and for this we discuss the action of X1 on L. There is a subgroup D4 < F4
which is a subsystem subgroup of E7. Then X1 < CE7(D4) = (A1)

3. Using
[31, 1.8] for L(E8) ↓ D4D4 and then restricting to E7 = CE8(A1) we find
that L ↓ (A1)3D4 contains the direct sum of three submodules, each of which
is the tensor product of natural modules for two of the three A1 factors with
a restricted 8-dimensional module for D4. It follows that L ↓ X1 contains a
direct summand of the form (T (2))24. This forces M to be indecomposable
and Lemma 9.1.2 implies M ∼= Δ(2⊗ 0001; 0⊗ 1000), as required.

Case G2C3 < E7.

If p > 3 then the composition factors of L ↓ X correspond to irreducible
Weyl modules, so the restriction is completely reducible as in Table 10.1. We
have embeddings G2 < D4, C3 < A5, where in each case the larger group is a
subsystem subgroup of E7. Also, D4 < A

3
1D4 and L ↓ A

3
1D4 = L(A

3
1D4)⊕V ,

where V restricts to D4 as the direct sum of 12 restricted 8-dimensional
representations.

Suppose p = 3. Noting that L(D4) can be realized as the wedge square of
a restricted 8-dimensional representation, we obtain from the above that L ↓
G2 = (T (01)⊕1013) ⊥ 0021 and C3 fixes the summands. Then L ↓ X =M ⊥
(00⊗ 200), where the second summand is L(C3). From the information on
composition factors, M = 10⊗010/01⊗000/(10⊗000)2. Next we note that
L ↓ A5 has a direct summand which is the sum of 3 copies of ∧2F and 3 copies
of its dual, where F is the usual 6-dimensional module. Hence this summand
restricts to C3 as T (010)

6, where T (010) = 000|010|000. Another copy of
T (010) appears in L(A5). At this point it follows thatM is indecomposable,
so Lemma 9.1.2 implies M ∼= Δ(10⊗ 010; 01⊗ 000).

Now assume p = 2. Here 9.1.1 implies that the restricted 8-dimensional
representations of D4 restrict to G2 as T (10) = 00|10|00, so L ↓ G2 contains
at least 12 copies of this tilting module. Also WG2(01) is irreducible, so
we can write L ↓ G2 = M ⊥ L(G2) where M ↓ G2 = 1014/0034. The
decomposition is preserved by C3, so in view of the known composition
factors, we have M ↓ X = (10⊗ 010)/(000⊗ 200)/(00× 010)2. Since L(C3)
is indecomposable, we have M indecomposable and Lemma 9.1.2 gives the
result.

Case A1G2 < E7.

Here p > 2. If p 6= 3, 7, then the composition factors involved all cor-
respond to irreducible Weyl modules, so L ↓ X is completely reducible as
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indicated in Table 10.1.

Assume p = 7. The construction in 3.12 of [31] shows that X2 = G2 is
contained in a Levi factor of type A6. From the action of this Levi factor
we see that L ↓ X2 is a tilting module and L ↓ X2 = (T (20)3)⊕ (105)⊕ 01.
Also, our information on composition factors implies L ↓ X1 = 47⊕228⊕014,
with each summand invariant under X2 and affording a tilting module. The
information on composition factors then implies that L ↓ X = (4 ⊗ 10) ⊕
(2⊗ T (20))⊕ (0⊗ 01), as required.

Now assume p = 3. We have L ↓ G2 = 203/106/01/003 and here all com-
position factors correspond to irreducible Weyl modules with the exception
of 01, which occurs within L(G2) = 01|10, an indecomposable module. As
L is self-dual we can write L ↓ G2 = 203 ⊥ (T (01)⊕ 104) ⊥ 003. Each sum-
mand is A1-invariant and from knowledge of composition factors we have
L ↓ X =M ⊥ (2⊗ 20) ⊥ (2⊗ 00), where M = (4⊗ 10)/(0⊗ 01)/(0⊗ 10)2.

To complete the argument in this case we claim that L ↓ A1 is a tilting
module. This will implyM is indecomposable so that Lemma 9.1.2 applies to
yield the result. Let TG2 be a maximal torus of G2. From the composition
factors we find that CG(TG2) has dimension 19 and so X1 < CG(TG2) =
A2A

3
1TG2 . Now CG(X1) = X2 = G2, so X1 must project nontrivially to each

of the simple summands. On the other hand, in view of the composition
factors, none of the projection factors involves a field twist. Now L ↓ A2A31
is a direct sum of L(A2A

3
1TG2) together with irreducibles each of which

restricts to A2A
3
1 as a tensor product of natural or dual modules for the

factors. Finally, L(A2A
3
1TG2) is non-degenerate and has L(A2TG2) as a self-

dual direct summand. Restricting to A2 this must have shape T (11)⊕ 00 =
(10⊗ 01)⊕ 00, so restricting to X1 = A1 we have the claim.

Case A1A1 < E7.

Here p ≥ 5. If p > 7 then as in other cases we see that the action of X
on L is completely reducible, as in Table 10.1.

Now suppose p = 7. From the construction of X given in 3.12 of [31] we
see that X1 < A1A2A3 and X2 < A4A2, where in each case the larger group
is the semisimple part of a Levi factor and where each projection corresponds
to an irreducible restricted representation of Xi. It follows from this, the
well-known actions of the Levi factors on L, and results on tilting modules,
that L ↓ Xi is a tilting module for each i = 1, 2.

The weights of maximal tori of X1, X2 are precisely those which occur for
larger primes. So the corresponding Weyl modules for X1 are all irreducible
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and we have L ↓ X1 = 65⊕410⊕215⊕03. Each summand is invariant under
the action of X2. Considering the action of X2 on each summand and using
the information on composition factors and the fact that each restriction
affords a tilting module for X2, we have

L ↓ X = (2⊗ T (8))⊕ (6⊗ 4)⊕ (4⊗ 6)⊕ (4⊗ 2)⊕ (0⊗ 2)⊕ (2⊗ 0).

Now assume p = 5. Here we have L ↓ X1 = T (6)5⊕ 410⊕ 210⊕ 03, while
L ↓ X2 = T (8)3⊕T (6)5⊕ 410⊕ 2. We note that each factor leaves invariant
the summand of form 410 for the other factor with the restriction affording
a tilting module. From information on composition factors we obtain non-
degenerate summands 4⊗ T (6) and T (6)⊗ 4. Also, X2 leaves invariant the
fixed space ofX1. So far we have L ↓ X =M⊕(4⊗T (6))⊕(T (6)⊗4)⊕(0⊗2).
Then M ↓ X1 = 210 and M affords a tilting module for X2. It follows that
M ↓ X = 2⊗ T (8), as required.

The completes the proofs of all the assertions in Table 10.1 concerning
L ↓ X.

We now turn our attention to Table 10.2.

9.2 Proof of the assertions in Table 10.2

Let G = F4, E6 or E7 and let V be one of the G-modules VF4(λ1), VE6(λ1)
or VE7(λ7), of dimension 26−δp,3, 27 or 56 respectively. We now analyse the
precise actions on V of the maximal subgroups X in Table 1 of Theorem
1. The composition factors can be read off from [23, 2.5], together with
Theorem 6.1. The information to be proved is recorded in Table 10.2.

Lemma 9.2.1 If G = F4 then V ↓ X is as in Table 10.2.

Proof First consider X = A1 (p ≥ 13). Embedding F4 in E6, we have
L(E6) ↓ F4 = L(F4)⊕V . From [23, 2.4,2.5] we see that the highest weight of
X on L(E6) is 22, which is less than 2p−2, and hence X is a good A1 in E6,
in the sense of [32]. Therefore [32, Theorem 1.1(iii)] implies that L(E6) ↓ X
is a tilting module. As a direct summand, V ↓ X is therefore also a tilting
module, as in Table 10.2.

If X = G2 (p = 7) then V ↓ X is the irreducible module 20, by [41,
Theorem 2].



MAXIMAL SUBGROUPS OF EXCEPTIONAL ALGEBRAIC GROUPS 209

Finally, consider X = A1G2 (p ≥ 3). This lies in a maximal subgroup
A2G2 of E6, so from [23, 2.5] we see that the composition factors of V ↓ X
are 2⊗ 10/4⊗ 00. These do not extend each other, so V ↓ X is completely
reducible as in Table 10.2.

Lemma 9.2.2 If G = E6 then V ↓ X is as in Table 10.2.

Proof Consider first X = A2 (p ≥ 5). Here, by [23, 2.5], V ↓ X has the
same composition factors as W (22), which is irreducible if p > 5 and has
composition factors 22/11 if p = 5. So it remains only to show that V ↓ X
is not 22⊕11 when p = 5, and this is remarked in the proof of [41, Theorem
(A.2)] (bottom of p.314).

Next let X = G2 (p 6= 7). If p > 2 then by [41], V ↓ X is the irreducible
20, while if p = 2, Lemma 6.3.7 gives the desired conclusion.

If X = C4 (p 6= 2) then V ↓ X is the irreducible 0100 (see [23, 2.5]),
while if X = F4 the conclusion follows from Lemma 9.1.1.

Finally, consider X = A2G2. Here V ↓ X has the same composition
factors as (10 ⊗ W (10))/(W (02) ⊗ 00). When p > 2 the relevant Weyl
modules are irreducible, so V ↓ X is completely reducible as in Table 10.2.
Now assume p = 2, so V ↓ X = (10⊗ 10)/(02⊗ 00)/(10⊗ 00)2. The factor
G2 of X lies in a subsystem D4, and V ↓ D4 = λ1 ⊕ λ3 ⊕ λ4 ⊕ 03. Hence
using Lemma 9.1.1 we have

V ↓ G2 = T (10)
3 ⊕ 003.

The factor A2 of X lies in a subsystem A2A2, where V ↓ A2A2 = (01⊗01)⊕
(10⊗ 00)3 ⊕ (00⊗ 10)3 (see [23, 2.3]). Hence

V ↓ A2 = T (02)⊕ 10
6.

Now the conclusion follows in the usual way from Lemma 9.1.2.

Lemma 9.2.3 If G = E7 then V ↓ X is as in Table 10.2.

Proof If X is in one of the two classes of maximal A1’s, we see that
V ↓ X is a tilting module exactly as in the first paragraph of the proof of
Lemma 9.2.1, noting that L(E8) ↓ E7 has V as a direct summand.

Next consider X = A2 (p ≥ 5). Here the proof of [23, 2.5] shows that
V ↓ X = W (60)/W (06) (recall this denotes a module having the same
composition factors as W (60)⊕W (06)). For p > 5 the Weyl module W (60)
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is irreducible while for p = 5 we have W (60) = 60|22. So assume now that
p = 5, V ↓ X = 60/06/222. Let J be a fundamental SL2 in X. As in
the proof of Lemma 4.1.3, J lies in a subsystem subgroup A1A4 of G (lying
in a subsystem A1D6), with projections corresponding to the irreducible
representations 1,4. Using [23, 2.3,2.6], we see that

V ↓ A1A4 = (1⊗ (λ1 ⊕ λ4 ⊕ 0
2))⊕ (0⊗ (λ1 ⊕ λ2 ⊕ λ3 ⊕ λ4 ⊕ 0

2),

from which it follows that

V ↓ J = T (5)2 ⊕ T (6)2 ⊕ 42 ⊕ 12 ⊕ 02.

In particular, as T (6) = 2|6|2, V ↓ J has no irreducible submodule of high
weight 6. If V ↓ X has a submodule 60, this would restrict to J as 6⊕5⊕1⊕0,
giving a submodule 6. Hence V ↓ X has no submodule 60 or 06, and so
V ↓ X is indecomposable of shape 22|(60 + 06)|22, as in Table 10.2.

Now letX = A1A1 (p ≥ 5). Here V ↓ X = (W (6)⊗3)/(4⊗1)/(2⊗W (5)).
If p > 5, V ↓ X is completely reducible as in Table 10.2, so suppose p = 5;
then W (6) = 6/2,W (5) = 5/3. Write A,B for the two factors A1 of X. By
[31, p.37], one of the factors, say A, lies in a subsystem A2A4 of G, with
irreducible projections 2, 4. Then using [23, 2.3] we find that

V ↓ A = T (6)4 ⊕ 42 ⊕ 22.

Likewise, B < A1A2A3, which yields

V ↓ B = T (5)3 ⊕ 34 ⊕ 15.

Using also the structure of V ↓ A, it now follows in the usual way from
Lemma 9.1.2 that V ↓ AB = Δ(6⊗ 3; 2⊗ 5)⊕ (4⊗ 1), as in Table 10.2.

Now considerX = A1G2 (p ≥ 3). Here V ↓ X = (1⊗W (01))/(W (3)⊗10)
(see [23, 2.5]). For p > 3 the relevant Weyl modules are irreducible, so
assume now that p = 3. Then V ↓ X = (3 ⊗ 10)/(1 ⊗ 01)/(1 ⊗ 10)2.
The G2 factor of X is contained in a subsystem A6 of E7, and V ↓ A6 =
λ1 ⊕ λ2 ⊕ λ5 ⊕ λ6 by [23, 2.3]. Now VA6(λ1) ↓ G2 = 10, and VA6(λ2) ↓ G2 =
∧2(10) = 10|01|10 = T (01). Hence

V ↓ G2 = T (01)
2 ⊕ 102.

We now study the restriction of V to the A1 factor of X. As in the proof
of 9.1.5, this A1 lies in a subsystem A

3
1A2 with irreducible restricted projec-

tions, from which we calculate that V ↓ A1 = T (3)7 ⊕ 17. Combining this
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with the above decomposition of V ↓ G2, and using Lemma 9.1.2, we obtain
the conclusion.

Next let X = A1F4, so V ↓ X = (1⊗W (λ4))/(W (3)⊗ 0) (see [23, 2.5]).
If p > 3 or p = 2 this is completely reducible as in Table 10.2. Now let p = 3.
The factor F4 of X lies in a subsystem E6, and V ↓ E6 = VE6(λ1)

2 ⊕ 02, so
Lemma 9.1.1 gives V ↓ F4 = T (0001)2 ⊕ 02. As for the A1 factor of X, we
argue as in the previous case that V ↓ A1 = T (3)⊕ 125. Now the conclusion
follows from Lemma 9.1.2.

Finally, consider X = G2C3. Here V ↓ X = (W (10) ⊗ 100)/(00 ⊗
W (001)). If p > 2 this is completely reducible as in Table 10.2, so assume
p = 2. The G2 factor of X lies in a subsystem D4 of E7, and V ↓ D4 =
λ21⊕λ

2
3⊕λ

2
4⊕0

8, whence V ↓ G2 = T (10)6⊕008. The C3 factor of X lies in a
subsystem A5 of E7, from which we similarly see that V ↓ C3 = 1006⊕T (001)
(note that the wedge-cube of the natural 6-dimensional A5-module restricts
to C3 as the indecomposable T (001) = 100|001|100 - the indecomposability
can easily be seen by restricting to the subgroup C1C2). Now the conclusion
follows in the usual way from Lemma 9.1.2.

This completes the proof of all the information in Tables 10.1 and 10.2.



10 The tables for Theorem 1 and Corollary 2

This section contains Tables 10.1-10.4 referred to in the remarks following
Theorem 1 and in Corollary 2. Before presenting the tables we make a few
remarks concerning how to read off information from them.

Notation We remind the reader of the notation used in the tables. We
identify a dominant weight λ with the irreducible module V (λ).

The notation T (λ;μ; ...) will be used only for X = A1 and denotes a
tilting module having the same composition factors as W (λ) ⊕W (μ) ⊕ ....
In situations to follow such tilting modules exist and we illustrate with an
example.

Assume X < G = E7 is the maximal A1 corresponding to the label
2222222. Then a check using root heights shows that the maximal torus T
has precisely the same weights as in the direct sum of Weyl modules

W (34)⊕W (26)⊕W (22)⊕W (18)⊕W (14)⊕W (10)⊕W (2).

So for p > 31 the restriction is just as above, but differs for smaller primes.
For instance, consider p = 23. The highest weight is 34, so one summand is
T (34) which is uniserial of shape 10|34|10. The highest weight not already
accounted for is 26, so T (26) = 18|26|18 is also a summand. We continue in
the way, but the remaining weights are all less than p, so the tilting modules
are each irreducible. So in this case

T (34; 26; 22; 18; 14; 10; 2) = T (34)⊕ T (26)⊕ 22⊕ 14⊕ 2.

Finally, assumeX is a semisimple group and λ, γ, μ are dominant weights
such that T (λ) = μ|λ|μ and T (γ) = μ|γ|μ. As in Section 9, we use the
notation Δ(λ; γ) to denote an indecomposable module of shape μ|(λ⊕ γ)|μ
with socle and cosocle both of type μ, and which is obtained as a section
of T (λ) ⊕ T (γ), by taking a maximal submodule and then factoring out a
diagonal submodule of the socle.

Table 10.1: In this table we record, for each maximal subgroup X of
G appearing in Table 1 of Theorem 1, the precise action of X on L(G)′,
the index t = |NG(X) : X|, and, in cases where X is simple, the labelled
diagram determined by the torus T in X defined in Definition 2.2.4.

Proofs of the decompositions of L(G)′ ↓ X are provided in Section 9.1.
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Table 10.2: Let V27 = VE6(λ1), an irreducible 27-dimensional E6-module,
let V56 = VE7(λ7), an irreducible 56-dimensional E7-module, and let V26−δp,3
= VF4(λ1), an irreducible F4-module of dimension 26−δp,3. In Table 10.2 we
record the precise actions of X on V = V26−δp,3 , V27 or V56 for each maximal
subgroup X of F4, E6 or E7 appearing in Table 1 of Theorem 1. Proofs are
in Section 9.2.

Tables 10.3, 10.4: Table 10.3 lists the maximal subgroups M in excep-
tional groups with M0 reductive of maximal rank; and Table 10.4 lists the
maximal connected subgroups of maximal rank. In the tables, the symbols
Ã1, Ã2 indicate that these subgroups correspond to subsystems having a
base consisting of short roots. Proofs are in Section 8.
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Table 10.1: actions of maximal subgroups of Table 1 on L(G)′

G X diagram t L(G)′ ↓ X

E8 A1 (p ≥ 23) 22202022 1 T (38; 34; 28; 26; 222; 18; 16; 14; 10; 6; 2)
A1 (p ≥ 29) 22202222 1 T (46; 38; 34; 28; 26; 22; 18; 14; 10; 2)
A1 (p ≥ 31) 22222222 1 T (58; 46; 38; 34; 26; 22; 14; 2)

B2 (p ≥ 5) 00020020 1 06⊕ 32⊕ 02, p > 5
Δ(06; 32)⊕ 02, p = 5

A1A2 2 (6⊗ 11)⊕ (2⊗ 22)⊕ (4⊗ 30)⊕ (4⊗ 03)⊕
(p ≥ 5) (2⊗ 00)⊕ (0⊗ 11), p > 5

Δ(2⊗ 22; 6⊗ 11)⊕ (4⊗ 30)⊕ (4⊗ 03)⊕
(2⊗ 00)⊕ (0⊗ 11), p = 5

A1G2G2 2 (2⊗ 10⊗ 10)⊕ (4⊗ 10⊗ 00)⊕ (4⊗ 00⊗ 10)⊕
(p ≥ 3) (2⊗ 00⊗ 00)⊕ (0⊗ 01⊗ 00)⊕ (0⊗ 00⊗ 01), p > 3

(2⊗ 10⊗ 10)⊕Δ(4⊗ 10⊗ 00; 0⊗ 01⊗ 00)⊕
Δ(4⊗ 00⊗ 10; 0⊗ 00⊗ 01)⊕ (2⊗ 00⊗ 00), p = 3

G2F4 1 (10⊗ 0001)⊕ (01⊗ 0000)⊕ (00⊗ 1000), p > 3
Δ(10⊗ 0001; 01⊗ 0000)⊕ (00⊕ 1000), p = 3
Δ(10⊗ 0001; 00⊗ 1000)⊕ (01⊗ 0000), p = 2

E7 A1 (p ≥ 17) 2220222 1 T (26; 22; 18; 16; 14; 102; 6; 2)
A1 (p ≥ 19) 2222222 1 T (34; 26; 22; 18; 14; 10; 2)

A2 (p ≥ 5) 2002020 2 44⊕ 11, p 6= 7
T (44), p = 7

A1A1 1 (2⊗ 8)⊕ (4⊗ 6)⊕ (6⊗ 4)⊕ (2⊗ 4)⊕ (4⊗ 2)⊕
(p ≥ 5) (2⊗ 0)⊕ (0⊗ 2), p > 7

(2⊗ T (8))⊕ (4⊗ 6)⊕ (6⊗ 4)⊕ (4⊗ 2)⊕
(2⊗ 0)⊕ (0⊗ 2), p = 7
(2⊗ T (8))⊕ (4⊗ T (6))⊕ (T (6)⊗ 4)⊕ (0⊗ 2), p = 5

A1G2 1 (4⊗ 10)⊕ (2⊗ 20)⊕ (2⊗ 00)⊕ (0⊗ 01), p > 3, p 6= 7
(p ≥ 3) (4⊗ 10)⊕ (2⊗ T (20))⊕ (0⊗ 01), p = 7

Δ(4⊗ 10; 0⊗ 01)⊕ (2⊗ 20)⊕ (2⊗ 00), p = 3

A1F4 1 (2⊗ 0001)⊕ (2⊗ 0000)⊕ (0⊗ 1000), p > 3
(2⊗ T (0001))⊕ (0⊗ 1000), p = 3
Δ(2⊗ 0001; 0⊗ 1000)⊕ (2⊗ 0000), p = 2

G2C3 1 (10⊗ 010)⊕ (01⊗ 000)⊕ (00⊗ 200), p > 3
Δ(10⊗ 010; 01⊗ 000)⊕ (00⊗ 200), p = 3
Δ(10⊗ 010; 00⊗ 200)⊕ (01⊗ 000), p = 2
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Table 10.1, continued

G X diagram t L(G)′ ↓ X

E6 A2 (p ≥ 5) 200202 2 41⊕ 14⊕ 11

G2 (p 6= 7) 222022 1 11⊕ 01, p 6= 3
10|01|11|01|10 (uniserial), p = 3

C4 (p 6= 2) 222022 1 2000⊕ 0001

F4 222222 1 0001⊕ 1000, p > 2
T (1000), p = 2

A2G2 2 (11⊗ 10)⊕ (11⊗ 00)⊕ (00⊗ 01), p > 3
Δ(11⊗ 10; 00⊗ 01)⊕ (11⊗ 00), p = 3
(11⊗ T (10))⊕ (00⊗ 01), p = 2

F4 A1 (p ≥ 13) 2222 1 T (22; 14; 10; 2)

G2 (p = 7) 2022 1 11⊕ 01

A1G2 (p ≥ 3) 1 (4⊗ 10)⊕ (2⊗ 00)⊕ (0⊗ 01), p > 3
Δ(4⊗ 10; 0⊗ 01)⊕ (2⊗ 00), p = 3

G2 A1 (p ≥ 7) 22 1 T (10; 2)
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Table 10.2: actions of maximal subgroups of F4, E6, E7 on
V = V26−δp,3, V27, V56

G X V ↓ X

F4 A1 (p ≥ 13) T (16; 8)

G2 (p = 7) 20

A1G2 (p ≥ 3) (2⊗ 10)⊕ (4⊗ 00)
E6 A2 (p ≥ 5) 22, p > 5

W (22) or W (22)∗, p = 5
(2 classes in G)

G2 (p 6= 7) 20, p > 2
01|20|00|10 (uniserial) or dual, p = 2
(2 classes in G)

C4 (p 6= 2) 0100

F4 0001⊕ 0000, p 6= 3
T (0001), p = 3

A2G2 (10⊗ 10)⊕ (02⊗ 00), p > 2
Δ(10⊗ 10; 02⊗ 00), p = 2

E7 A1 (p ≥ 17) T (21; 15; 11; 5)
A1 (p ≥ 19) T (27; 17; 9)

A2 (p ≥ 5) 60⊕ 06, p > 5
22|(60⊕ 06)|22, p = 5

A1A1 (p ≥ 5) (6⊗ 3)⊕ (4⊗ 1)⊕ (2⊗ 5), p > 5
Δ(6⊗ 3; 2⊗ 5)⊕ (4⊗ 1), p = 5

A1G2 (p ≥ 3) (3⊗ 10)⊕ (1⊗ 01), p > 3
Δ(3⊗ 10; 1⊗ 01), p = 3

A1F4 (1⊗ 0001)⊕ (3⊗ 0000), p 6= 3
Δ(1⊗ 0001; 3⊗ 0000), p = 3

G2C3 (10⊗ 100)⊕ (00⊗ 001), p > 2
Δ(10⊗ 100; 00⊗ 001), p = 2
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Table 10.3: maximal subgroups M with M0 reductive of maximal
rank

G M0 M/M0

G2 A1Ã1, A2, Ã2 (p = 3) 1, 2, 2

F4 (p 6= 2) B4, D4, A1C3, A2Ã2 1, S3, 1, 2

F4 (p = 2) B4, C4, D4, D̃4, A2Ã2 1, 1, S3, S3, 2

E6 A1A5, A
3
2, D4T2, T6 1, S3, S3, W (E6)

E7 A1D6, A7, A2A5, A
3
1D4, 1, 2, 2, S3,

A71, E6T1, T7 L3(2), 2, W (E7)

E8 D8, A1E7, A8, A2E6, 1, 1, 2, 2,
A24, D

2
4, A

4
2, A

8
1, T8 4, S3 × 2, GL2(3), AGL3(2), W (E8)

Table 10.4: maximal connected reductive subgroups M of
maximal rank

G M

G2 A1Ã1, A2, Ã2 (p = 3)

F4 (p 6= 2) B4, A1C3, A2Ã2
F4 (p = 2) B4, C4, A2Ã2

E6 A1A5, A
3
2

E7 A1D6, A7, A2A5

E8 D8, A1E7, A8, A2E6, A
2
4



11 Appendix: E8 structure constants

This section consists of a table of the structure constants N(α, β) for the E8
Lie algebra, defined by the equation eαeβ = eβeα+N(α, β)eα+β for positive
roots α, β. This is computed by the method described in [13], where the
corresponding tables for F4, E6 and E7 can be found.

In the table, the first column lists the roots α in the form c1 . . . c8 (repre-
senting

∑
ciαi), and the top row lists the roots β in vertical form (c1 . . . c8)

T .
The values taken by N(α, β) are 0,1 and −1, with −1 represented by the
symbol A in the table.
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