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1 Introduction

Let G be a semisimple algebraic group over an algebraically closed field K of
characteristic p ≥ 0. Following Serre, we define a subgroup Γ of G to be G-
irreducible if Γ is closed, and lies in no proper parabolic subgroup of G. When
G = SL(V ), this definition coincides with the usual notion of irreducibility on
V . The definition follows the philosophy, developed over the years by Serre, Tits
and others, of generalizing standard notions of representation theory (morphisms
Γ → SL(V )) to situations where the target group is an arbitrary semisimple
algebraic group. For an exposition, see for example Part II of the lecture notes
[8].

In this paper we study the collection of connected G-irreducible subgroups of
semisimple algebraic groups G. Our first theorem is a finiteness result, showing
that connected G-irreducible subgroups are “nearly maximal”.

Theorem 1 Let G be a connected semisimple algebraic group, and let A be a
connected G-irreducible subgroup of G. Then A is contained in only finitely many
subgroups of G.

Since connectedG-irreducible subgroups are necessarily semisimple (see Lemma 2.1),
the smallest possibility for such a subgroup is A1. The next result shows that
G-irreducible A1’s usually exist. In large characteristic this is hardly surprising,
as maximal A1’s usually exist; but in low characteristic maximal A1’s do not exist
(see [4]), and the result provides a supply of “nearly maximal” A1’s.

Theorem 2 Let G be a simple algebraic group over K. If G = An, assume that
p > n or p = 0. Then G has a G-irreducible subgroup of type A1.

In the excluded case G = An, 0 < p ≤ n, it is easy to see that an irreducible
subgroup A1 exists if and only if all prime factors of n+ 1 are at most p.

The second author acknowledges the support of the Swiss National Science Foundation
Grant MHV 21-65839

1



In a subsequent paper [6] we shall use the G-irreducible A1’s constructed in
the proof of Theorem 2 to exhibit examples of epimorphic subgroups of minimal
dimension in simple algebraic groups, as defined in [2]. (A closed subgroup H

of the connected algebraic group G is said to be epimorphic if any morphism of
G into an algebraic group is determined by its restriction to H. Theorem 1 of
[2] has a number of equivalent formulations of this definition: for example, H is
epimorphic if and only if, whenever V is a rational G-module and V ↓ H = X⊕Y ,
then X,Y are G-invariant.)

Our final theorem concerns the description of conjugacy classes of connected
G-irreducible subgroups of semisimple algebraic groups G. When G is simple, it
has only finitely many classes of maximal connected subgroups (see [4, Corollary
3]). This is in general not the case for connected G-irreducible subgroups (see
for example Corollary 4.5 below). However, Theorem 3 below shows that there
is a finite collection of conjugacy classes of closed connected subgroups such that
every G-irreducible subgroup is embedded in a specified way in a member of one
of these classes. For the precise statement we require the following definition.

Definition Let X,Y be connected linear algebraic groups over K.

(i) Suppose X is simple. We say X is a twisted diagonal subgroup of Y if
Y = Y1 . . . Yt, a commuting product of simple groups Yi of the same type as X,
and each projection X → Yi/Z(Yi) is nontrivial and involves a different Frobenius
twist.

(ii) More generally, if X is semisimple, say X = X1 . . . Xr with each Xi simple,
we say X is a twisted diagonal subgroup of Y if Y = Z1 . . . Zr, a commuting
product of semisimple subgroups Zi, and, writing X̄ = X/Z(X) = X̄1 . . . X̄r and
Ȳ = Y/Z(Y ) = Z̄1 . . . Z̄r, each X̄i is a twisted diagonal subgroup of Z̄i.

Theorem 3 Let G be a connected semisimple algebraic group of rank l. Then
there is a finite set C of conjugacy classes of connected semisimple subgroups of
G, of size depending only on l, with the following property. If X is any connected
G-irreducible subgroup of G, then there is a subgroup Y ∈ ⋃ C such that X is a
twisted diagonal subgroup of Y .

The above results concern connected G-irreducible subgroups. Examples of
non-connected G-irreducible subgroups X such that X0 is not G-irreducible are
easy to come by: for instance, X = NG(T ), the normalizer of a maximal torus
T is such an example, and there are many others for which CG(X0) contains a
nontrivial torus. However we have not found any examples for which CG(X0)
contains no nontrivial torus. It may be the case that if X is a non-connected G-
irreducible subgroup such that X0 is not G-irreducible, then CG(X0) necessarily
contains a nontrivial torus; this is easily seen to be true when G = An.

Notation For G a simple algebraic group over K and λ a dominant weight, we
denote by VG(λ) (or just λ) the rational irreducible KG-module of high weight
λ. When p > 0, the irreducible module λ twisted by a pr-power field morphism
of G is denoted by λ(pr). Finally, if V1, . . . , Vk are X-modules then V1/ . . . /Vk
denotes a G-module having the same composition factors as V1 ⊕ . . .⊕ Vk.
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2 Preliminaries

As above, let G be a semisimple connected algebraic group over the algebraically
closed field K of characteristic p. We begin with two elementary results concern-
ing G-irreducible subgroups.

Lemma 2.1 If X is a connected G-irreducible subgroup of G, then X is semisim-
ple, and CG(X) is finite.

Proof Suppose C = CG(X)0 6= 1. If C contains a nontrivial torus T , then
X ≤ CG(T ), which lies in a parabolic; otherwise, C is unipotent, so X ≤ NG(C)
which lies in a parabolic by [3]. In either case we have a contradiction, and so
CG(X)0 = 1, giving the result.

Lemma 2.2 Suppose G is classical, with natural module V = VG(λ1). Let X be
a semisimple connected closed subgroup of G. If X is G-irreducible then one of
the following holds:

(i) G = An and X is irreducible on V ;

(ii) G = Bn, Cn or Dn and V ↓ X = V1 ⊥ . . . ⊥ Vk with the Vi all non-
degenerate, irreducible and inequivalent as X-modules;

(iii) G = Dn, p = 2, X fixes a nonsingular vector v ∈ V , and X is a Gv-
irreducible subgroup of Gv = Bn−1.

Proof Part (i) is clear, so assume G = Sp(V ) or SO(V ). Let W be a minimal
nonzero X-invariant subspace of V . Then W is either non-degenerate or totally
isotropic. In the first case induction gives a non-degenerate decomposition as in
(ii); note that no two of the Vi are equivalent as X-modules, since otherwise, if say
V1 ↓ X ∼= V2 ↓ X via an isometry φ : V1 → V2, then X fixes the diagonal totally
singular subspace {v + iφ(v) : v ∈ V1} of V1 + V2 (where i2 = −1), hence lies
in a parabolic. Finally, if W is totally isotropic it can have no nonzero singular
vectors (as X does not lie in a parabolic), so we must have G = SO(V ) with
p = 2 and W = 〈v〉 nonsingular, yielding (iii).

The next result is fairly elementary for classical groups G, but rests on the
full weight of the memoirs [7, 4] for exceptional groups.

Proposition 2.3 ([4, Corollary 3]) If G is a simple algebraic group then G

has only finitely many conjugacy classes of maximal closed subgroups of positive
dimension. The number of conjugacy classes is bounded in terms of the rank of
G.

We shall also require a description of the maximal closed connected subgroups
of semisimple algebraic groups. Let G be a semisimple algebraic group, and write
G = G1 · · ·Gr, a commuting product of simple factors Gi. Define M(G) to be
the following set of connected subgroups of G:
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(1) for j ∈ {1, . . . , r}, subgroups (Πi 6=jGi) ·Mj , with Mj a maximal connected
proper subgroup of Gj , and

(2) for r ≥ 2 and distinct j, k ∈ {1, . . . , r} such that there is a surjective morphism
φ : Gj → Gk, subgroups of the form

Gj,k(φ) = (Πi 6=j,kGi) ·Dj,k,

where Dj,k = {(g, φ(g)) : g ∈ Gj}, a closed connected diagonal subgroup of GjGk.

Lemma 2.4 The collection M(G) comprises all the maximal closed connected
subgroups of the semisimple group G.

Proof It is clear that the members of M(G) are maximal closed connected
subgroups of G. Conversely, suppose that M is a maximal closed connected
subgroup of G. Factoring out Z(G), we may assume that Z(G) = 1. Let πi
be the projection map M → Gi. If some πi is not surjective, then M lies in
(
∏
j 6=iGj) · πi(M), which is contained in a member of M(G) under (1) of the

definition above. Otherwise, all πi are surjective and we easily see that M lies in
a member of M(G) under (2) above.

By Proposition 2.3, there are only finitely many G-classes of subgroups in
M(G) under (1) in the definition above. If the collection of subgroups under (2)
is non-empty, then it consists of finitely many G-classes if p = 0, and infinitely
many classes if p > 0, since in this case we can adjust the morphism φ by an
arbitrary field twist.

Write M1(G) for the collection of subgroups of G under (1), so that M1(G)
consists of finitely many G-classes of subgroups.

If H is a proper connected G-irreducible subgroup of G, then there is a se-
quence of subgroups

H = H0 < H1 < · · · < Hs = G

such that for each i, Hi is semisimple and Hi ∈M(Hi+1). Write M0(G) for the
collection of G-irreducible subgroups H for which there is such a sequence with
Hi ∈ M1(Hi+1) for all i. By Proposition 2.3 again, there are only finitely many
G-classes of subgroups in M0(G).

3 Proof of Theorem 1

Let G be a connected semisimple algebraic group, and let A be a connected G-
irreducible subgroup of G. We prove that A is contained in only finitely many
subgroups of G.

The proof proceeds by induction on dimG. The base case dimG = 3 is obvi-
ous. Clearly we may assume without loss that Z(G) = 1. Write G = G1 · · ·Gr,
a direct product of simple groups Gi, and let πi : G → Gi be the ith projection
map.

Lemma 3.1 If H is a subgroup of G containing A, then H is closed and H0 is
semisimple.
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Proof Observe that AH = 〈Ah : h ∈ H〉 is closed and connected, and hence
NH̄(AH) is also closed. This normalizer contains H, hence contains H̄. Thus
AH / H̄0. By Lemma 2.1, H̄0 is semisimple and CG(A)0 = 1. It follows that
AH = H̄0. Thus H̄0 ≤ H ≤ H̄. This means that H is a union of finitely many
cosets of H̄0, hence is closed, as required.

In view of this lemma, it suffices to show that the number of closed connected
overgroups of A in G is finite. Suppose this is false, so that A is contained in
infinitely many connected subgroups of G. We shall obtain a contradiction in a
series of lemmas.

By Lemma 2.1, CG(A) and NG(A)/A are finite. Recall the definitions in
Section 2 of the collections M(G) and M1(G) of maximal connected subgroups
of G.

Lemma 3.2 There exists M ∈ M(G) such that A lies in infinitely many G-
conjugates of M .

Proof First, if A ≤ M ∈ M(G), then M is semisimple by Lemma 2.1, and
by induction A has only finitely many overgroups in M . It follows that A lies in
infinitely many members of M(G).

We next claim that the overgroups of A inM(G) represent only finitely many
G-conjugacy classes of subgroups. For if not, there must exist j, l such that A
lies in subgroups Gj,l(φ) for morphisms φ involving infinitely many different field
twists. Since the high weights of composition factors of L(Gl) ↓ A are φ-twists of
those of L(Gj) ↓ A this implies that the highest weight of A on L(G) is arbitrarily
large, a contradiction. This proves the claim, and the lemma follows.

From now on, let M be the subgroup provided by Lemma 3.2.

Lemma 3.3 M contains infinitely many G-conjugates of A, no two of which are
M -conjugate.

Proof By the previous lemma, A lies in infinitely many conjugates of M ; say
A lies in distinct conjugates Mg for g ∈ C, where C is an infinite subset of G.
Let g, h ∈ C, so Ag

−1
and Ah

−1
lie in M ; if these subgroups are M -conjugate, say

Ag
−1

= Ah
−1m with m ∈ M , then h−1mg ∈ NG(A). Letting n1, . . . , nt be coset

representatives for A in NG(A), we have h−1mg = ani for some a ∈ A and some
i. Thus Mg = Mhani , so as a ∈Mh, we have Mg = Mhni .

To summarise: fix g ∈ C; then if h ∈ C is such that Ag
−1

and Ah
−1

are
M -conjugate, we have Mh = Mgn−1

i for some i, so there are only finitely many
such h. The lemma follows.

Lemma 3.4 We have M ∈M1(G).

Proof Suppose not. Then there exist distinct j, k ∈ {1, . . . , r} and a surjective
morphism φ : Gj → Gk, such that

M = Gj,k(φ) = G0 ·Dj,k,
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where G0 = Πi 6=j,kGi and Dj,k = {g · φ(g) : g ∈ Gj}.
We may take it that A ≤ M , so that each element of A is of the form

a = a0 · aj · φ(aj), where a0 ∈ G0, aj ∈ Gj . Since M contains infinitely many
G-conjugates of A, no two of them M -conjugate, it follows that M contains
infinitely many conjugates of the form Agk (gk ∈ Gk). If a ∈ A is as above, then
agk = a0 · aj · φ(aj)

gk , so it follows that φ(aj)
gk = φ(aj) for all aj ∈ πj(A). But

this means that gk ∈ CGk(πk(A)), which is finite, a contradiction.

Lemma 3.5 There exists M1 ∈ M1(M) such that M1 contains infinitely many
G-conjugates of A, no two of which are M -conjugate.

Proof By Lemma 3.3, M contains infinitely many G-conjugates of A, no two of
which are M -conjugate. Call these conjugates Agλ (λ ∈ Λ) where Λ is an infinite
index set. For each λ ∈ Λ, there exists Mλ ∈ M(M) containing Agλ . Then
infinitely many Mλ are in M1(M), since otherwise there exist j, k such that
Agλ ≤ Mj,k(φ) for morphisms φ involving infinitely many different field twists,
which is impossible as in the proof of Lemma 3.2.

Since there are only finitely many M -classes of subgroups inM1(M), infinitely
many of the Mλ lie in a single M -class of subgroups, with representative say M1.
Then M1 contains infinitely many G-conjugates Agλmλ (mλ ∈ M), no two of
which are M -conjugate.

Recall the definition ofM0(G) from Section 2. Choose N ∈M0(G), minimal
subject to containing infinitely many G-conjugates of A, no two of which are
N -conjugate.

Lemma 3.6 There are infinitely many distinct G-conjugates of A lying inM(N),
no two of which are N -conjugate.

Proof Say Agλ (λ ∈ Λ) are infinitely many conjugates of A lying in N , no two
of them N -conjugate. If the conclusion of the lemma is false, then for infinitely
many λ, there is a subgroup Nλ ∈M(N) such that Agλ ≤ Nλ. As in the previous
proof, infinitely many of these Nλ are inM1(N), of which there are only finitely
many N -classes, so infinitely many Nλ are N -conjugate to some N1 ∈ M1(N).
But then N1 contains infinitely many G-conjugates of A (namely Agλnλ for some
nλ ∈ N), no two of which are N -conjugate, contradicting the minimal choice of
N .

At this point we can obtain a contradiction. Write N = N1 · · ·Nk, a com-
muting product of simple factors Ni. By Lemma 3.6, there are infinitely many
distinct G-conjugates Agλ lying in M(N), no two of which are N -conjugate. As
M1(N) consists of only finitely many N -classes of subgoups, infinitely many of
the Agλ are in M(N)\M1(N). Hence there exist j, l such that infinitely many
Agλ are of the form Nj,l(φλ), where φλ is a surjective morphism Nj → Nl, and no
two of these subgroups are N -conjugate. Then the morphisms φλ must involve
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infinitely many different field twists, which is a contradiction as usual, as it im-
plies that the highest weight of A on L(G) (which is of course the highest weight
of each conjugate Agλ) is arbitrarily large.

This completes the proof of Theorem 1.

4 Proof of Theorem 2

Let G be a simple algebraic group over K in characteristic p, as in Theorem 2
(so that if G = An then p > n or p = 0). We aim to construct a G-irreducible
subgroup A ∼= A1.

Lemma 4.1 The conclusion of Theorem 2 holds if p = 0.

Proof Suppose p = 0. First consider the case where G is classical. The
irreducible representation of A1 of high weight r embeds A1 in Spr+1 if r is odd,
and in SOr+1 if r is even. Hence SLn, Sp2n and SO2n+1 all have irreducible
subgroups A1. As for the remaining case G = SO2n, an A1 embedded irreducibly
in a subgroup SO2n−1 is G-irreducible.

When G is of exceptional type, but not E6, it has a maximal subgroup A1

(see [7]), and this is obviously G-irreducible; and for G = E6, a maximal A1 in a
subgroup F4 is G-irreducible (its connected centralizer in G is trivial, so it cannot
lie in any Levi subgroup).

In view of Lemma 4.1, we assume from now on that p > 0.

Lemma 4.2 The conclusion of Theorem 2 holds if G is classical.

Proof Assume G is classical. If G = An = SLn+1 then p > n by hypothesis,
so G has a subgroup A1 acting irreducibly on the natural n + 1-dimensional G-
module (with high weight n); clearly this subgroup does not lie in a parabolic of
G.

Next, if G = Cn = Sp2n, then G has a subgroup (Sp2)n = (A1)n, and we
choose a subgroup A ∼= A1 of this via the embedding 1, 1(p), 1(p2), . . . , 1(pn−1);
then A fixes no nonzero totally isotropic subspace of the natural module, hence
lies in no parabolic of G. Similarly, if G = D2n = SO4n, then G has a sub-
group (SO4)n = (A1)2n, and we choose A ∼= A1 in this via the embedding
1, 1(p), . . . , 1(p2n−1).

Now let G = D2n+1 = SO4n+2. Then G has a subgroup SO6 × (SO4)n−1 ∼=
A3 × (A1)2(n−1), which contains a subgroup (A1)2n lying in no parabolic of G;
choose A ∼= A1 in this (A1)2n via the embedding 1, 1(p), . . . , 1(p2n−1) again.

Finally, for G = B2n = SO4n+1, choose A ∼= A1 in a subgroup (SO4)n =
(A1)2n via the above embedding, while for G = B2n+1 = SO4n+3 choose A in a
subgroup SO3 × (SO4)n ∼= (A1)2n+1. This completes the proof.
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Assume from now on that G is of exceptional type. We choose our subgroup
A ∼= A1 as follows. For G = E8, E7, F4 or G2, there is a maximal rank subgroup
(A1)l (where l = 8, 7, 4 or 2 respectively), and we choose

A < (A1)l, via embedding 1, 1(p2), 1(p4), . . . , 1(p2(l−1)).

For G = E6 with p > 2, there is a maximal rank subgroup (A2)3, and we choose

A < (A2)3, via embedding 2, 2(p2), 2(p4).

Finally, for G = E6 with p = 2, take a subgroup F4 of G, and a subgroup C4 of
that, generated by short root groups in F4; now take A < C4, embedded via the
irreducible symplectic 8-dimensional representation 1 ⊗ 1(2) ⊗ 1(4).

Lemma 4.3 (i) For G 6= E6, L(G)/L(Al1) restricts to A as follows:

G = E8: 14 distinct 4-fold tensor factors,

G = E7: 7 distinct 4-fold tensor factors,

G = F4: one 4-fold factor and 6 distinct 2-fold factors,

G = G2: 1⊗ 3(p2) (p 6= 2, 3); 1⊗ 1(9)/1⊗ 1(27) (p = 3); 1⊗ 1(4) ⊗ 1(8) (p = 2).

Moreover, L(Al1) restricts to A as 2/2(p2)/ . . . /2(p2(l−1)) if p 6= 2, and as 1(2)/1(8)/ . . . /1(22l−1)/0l

if p = 2.

In particular, the nontrivial composition factors of L(G) ↓ A are all distinct.

(ii) For G = E6 (p 6= 2), L(G)/L(A3
2) restricts to A as (2⊗2(p2)⊗2(p4))2; and

L(A3
2) restricts to A as 2/2(p2)/2(p4)/4/4(p2)/4(p4) if p 6= 3, and as 2/2(32)/2(34)/1⊗

1(3)/1(32) ⊗ 1(33)/1(34) ⊗ 1(35)/03 if p = 3.

(iii) For G = E6 (p = 2), letting V27 = VG(λ1), we have

V27 ↓ A = 1(2) ⊗ 1(4)/1(2) ⊗ 1(8)/1(4) ⊗ 1(8)/1(2)/1(2)/1(4)/1(4)/1(8)/1(8)/03.

Proof (i) For G = E8, the restriction of L(G) to a subsystem D4D4 is given
by [5, 2.1]: it is L(D4D4)/λ1 ⊗ λ1/λ3 ⊗ λ3/λ4 ⊗ λ4. Now consider the restriction
further to A8

1. This is embedded as SO4 · SO4 in each D4 factor, so the factor
λ1 ⊗ λ1 of L(G) ↓ D4D4 restricts to A8

1 as a sum of 4-fold tensor factors, each
of dimension 16. The normalizer NG(A8

1) acts as the 3-transitive permutation
group AGL3(2) on the 8 factors, and the smallest orbit of this on 4-sets has size
14. It follows that L(G) ↓ A8

1 has at least 14 distinct 4-fold tensor factors. Since
14 · 16 + dimA8

1 = dimG, these 14 modules comprise all the composition factors
of L(G)/L(A8

1) restricted to A8
1. Part (i) follows for G = E8. The other types

are handled similarly.

(ii) The restriction L(E6) ↓ (A2)3 is given by [5, 2.1], and (ii) follows easily.

(iii) We have V27 ↓ F4 = VF4(λ4)/0, and VF4(λ4) ↓ C4 = VC4(λ2). Hence
V27 ↓ C4 has the same composition factors as the wedge-square of the natural
8-dimensional C4-module, minus 1 trivial composition factor. Now calculate the
composition factors of the A1-module ∧2(1⊗1(2)⊗1(4)) to get the conclusion.

Lemma 4.4 The subgroup A is G-irreducible.
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Proof First assume G 6= E6. If A < P = QL, a parabolic subgroup with
unipotent radical Q and Levi subgroup L, then the composition factors of A on
L(Q) are the same as those on L(Qopp), the Lie algebra of the opposite unipotent
radical. By the last sentence of Lemma 4.3(i), it follows that all composition
factors of A on L(Q) must be trivial, whence from Lemma 4.3(i) we see that
dimQ ≤ l/2, which is impossible.

Now assume G = E6 with p 6= 2. If p 6= 3 then L(G) ↓ A has no trivial
composition factors, so A cannot lie in a parabolic. Now suppose p = 3. By
Lemma 4.3(ii), L(G) ↓ A has two isomorphic 27-dimensional composition factors.
If A < QL as above, then these factors must occur in L(Q) + L(Qopp), and the
only other possible composition factors in L(Q) + L(Qopp) are trivial. Hence
dimQ must be 27 or 28. There is no such unipotent radical in E6.

Finally, assume G = E6 with p = 2. Suppose A < P = QL, with the parabolic
P chosen minimally. By minimality, A must project irreducibly to any Ar factor
of L′; since the irreducible representations of A have dimension a power of 2, it
follows that the only possible such factors are A3 and A1. Consequently either
L′ = A3A1, or L′ lies in a subsystem D5. If L′ = A3A1, then A acts on the
natural modules for A3, A1 as 1⊗ 1(q), 1(q′) respectively, for some powers q, q′ of
2. The restriction V27 ↓ A3A1 is given by [5, 2.3], and it follows that V27 ↓ A has
a composition factor 1 ⊗ 1(q) ⊗ 1(q′) if q 6= q′, and has two composition factors
1⊗ 1(q) if q = q′. This conflicts with Lemma 4.3(iii). Therefore L′ 6= A3A1. The
remaining possibilities for L′ lie in a subsystem D5. The irreducible orthogonal
A1-modules of dimension 10 or less have dimensions 4 and 8, and do not extend
the trivial module (see [1, 3.9]). It follows that L′ ≤ D4. Observe that V27 ↓
D4 = λ1/λ3/λ4/0

3. Hence it is readily checked that no possible embedding of A
in D4 gives composition factors for V27 ↓ A consistent with Lemma 4.3(iii).

This completes the proof of Theorem 2.

By varying the field twists involved in the definitions of A above, we obtain
the following.

Corollary 4.5 Let G be a simple algebraic group in characteristic p > 0, and as-
sume that G 6= An. Then G has infinitely many conjugacy classes of G-irreducible
subgroups of type A1.

5 Proof of Theorem 3

Let G be a connected semisimple algebraic group of rank l. The proof proceeds by
induction on dimG. The base case dimG = 3 is trivial. Let X be a connected G-
irreducible subgroup of G. By Lemma 2.1, X is semisimple. Write G = G1 . . . Gr
and X = X1 . . . Xs, commuting products of simple factors Gi and Xi. Without
loss we can factor out the finite group Z(G), and hence assume that Z(G) = 1.

Suppose first that X projects onto every simple factor Gi of G. Say X1

projects onto the factors G1, . . . , Gt. Identifying the direct product G1 . . . Gt
with G1 × . . . × G1 (t factors), and replacing X by a suitable G-conjugate, we
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can take
X1 = {(xτ1 , . . . , xτt) : x ∈ G1},

where each τi = γiqi with γi a graph automorphism or 1, and qi a Frobenius
morphism or 1. For each k let Sk = {i : qi = qk}, and define a corresponding
subgroup GSk ≤

∏
i∈Sk Gi by

GSk = {
∏
i∈Sk

xγi : x ∈ G1}.

Then X1 is a twisted diagonal subgroup of G+
1 :=

∏
Sk
GSk . Repeating this

construction for each simple factor Xi of X, we obtain a subgroup G+
1 . . . G

+
s of

G containing X as a twisted diagonal subgroup. There are only finitely many
such subgroups G+

1 . . . G
+
s in G. Hence if we include the conjugacy classes of

these subgroups in our collection C, we have the conclusion of Theorem 3 in this
case.

Now suppose X does not project onto some factor, say G1, of G. Then there
exists a maximal connected subgroup M1 of G1 such that X ≤M1G2 · · ·Gr. By
Proposition 2.3, up to G1-conjugacy there are only finitely many possibilities for
M1. Since M1G2 . . . Gr is a semisimple group of dimension less than dimG, the
result now follows by induction.
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[3] A. Borel and J. Tits, Éléments unipotents et sousgroupes paraboliques de groupes
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