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Abstract

Let G be a finite group generated by a collection S of subsets of G. Define the
width of G with respect to S to be the minimal integer n such that G is equal to the
union of a product of n subsets in S, together with all subproducts. For example,
when S consists of a single subset, the width is just the diameter of the Cayley
graph of G with respect to this subset. This article contains a discussion of a
variety of problems concerning the width of simple groups, mainly in the following
cases: (1) the case where S consists of a single subset; (2) the case where S is
closed under conjugation. There are many examples of special interest. Particular
emphasis is given to recent results and problems concerning the “word width” of
simple groups – namely, the width in the case where S consists of all values in G of
a fixed word map. Also discussed are combinatorial interpretations of some width
problems, such as the estimation of diameters of orbital graphs.

1 Introduction

Let G be a finite group, and suppose S is a collection of subsets of G such that G
is generated by their union. Every element g ∈ G has an expression g = t1 . . . tk
where ti ∈ Ti ∈ S. Hence it is possible to write G as the union of a product
T1 · · ·Td := {t1 . . . td : ti ∈ Ti}, together with all subproducts Ti1 · · ·Tik (i1 < · · · <
ik), where each Ti ∈ S and repeats are allowed among the Ti. We define the width
of G with respect to S to be the minimal such positive integer d, and denote this
by width(G,S).

In this article, we consider the problem of finding, or bounding, the width of
finite groups in various cases of interest, mainly when G is a finite non-abelian
simple or almost simple group. We remind the reader that the finite non-abelian
simple groups are the alternating groups of degree at least 5, the simple groups of
Lie type over finite fields, and the 26 sporadic groups; and an almost simple group
is a group G such that S / G ≤ Aut(S) for some non-abelian simple group S. For
brevity in the text below, whenever we say a group G is simple, we mean that G
is a finite non-abelian simple group.

Examples Here are two contrasting examples of such width problems.

1. Let G = Sn, the symmetric group of degree n, and let S = {T}, where T is
the set of all transpositions. Then width(G,S) is the minimal value of d such
that Sn = T d∪T d−1∪ · · ·∪{1} (where T k := {t1 . . . tk : ti ∈ T}). Since every
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permutation can be expressed as a product of at most n − 1 transpositions,
and such an expression for an n-cycle requires precisely this number, the
width in this example is n− 1.

2. Again let G = Sn, but this time let S = {〈t1〉, . . . , 〈tk〉}, where t1, . . . , tk are
all the transpositions in G (and k =

(
n
2

)
). Here the width problem is more

subtle than in the previous example: width(G,S) is the minimal value of d
for which we can write Sn = 〈ti1〉 · · · 〈tid〉 (repeats allowed). Notice that the
right hand side has at most 2d elements while the left has n!, so the width d
must be at least the order of n log n. The question of whether the width in
this example does have this order of magnitude is not so easy; we shall give
the answer in Section 3.2 (see the proof of Theorem 3.9).

All the width questions we shall discuss in these lectures are of one of the two
types in the above examples:

(a) the case where S consists of a single generating subset S of G
(b) the case where S consists of a conjugacy class of subsets of G: that is,

S = {Ag : g ∈ G}

for some subset A of G.

In case (a), the width is just the diameter of the Cayley graph of G with respect
to S. We shall discuss recent developments on this topic for simple groups in the
next section. There are many interesting questions arising from case (b), and these
will be the focus of the remaining sections.

2 Width, Cayley graphs and orbital graphs

Let G be a finite group with a generating set S which is symmetric – that is,
closed under taking inverses – and does not contain the identity. The Cayley graph
Γ(G,S) is defined to be the graph with vertex set G and edges {g, gs} for all
g ∈ G, s ∈ S. It is connected and regular of valency |S|, and G acts regularly on
Γ(G,S) by left multiplication. Because of the transitive action of G, the diameter
of Γ(G,S), denoted by diam(G,S), is equal to the maximum distance between the
identity element and any g ∈ G, and so diam(G,S) = max{l(g) : g ∈ G}, where
l(g) is the length of the shortest expression for g as a product of elements of S. If
d = diam(G,S), then d is minimal such that G = Sd ∪ Sd−1 ∪ · · · ∪ {1}, and hence

diam(G,S) = width(G, {S}).

Also |G| ≤
∑d

r=0 |S|r < |S|d+1. Hence

diam(G,S) >
log |G|
log |S|

− 1. (1)
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Examples

1. Let G = Cn = 〈x〉, a cyclic group of order n, and let S = {x, x−1}. Then
Γ(G,S) is an n-gon. So diam(G,S) is [n2 ], whereas log |G|

log |S| is logn
log 2 .

2. Let G = Sn and S be the set of all transpositions. Here diam(G,S) is n− 1,
while log |G|

log |S| is roughly n
2 .

3. Let G = Sn and S = {(1 2), (1 2 · · ·n)±1}. In this case diam(G,S) is roughly
n2, while log |G|

log |S| is of the order of n log n. The same orders of magnitude
apply to a similar generating set for An consisting of a 3-cycle and an n- or
(n− 1)-cycle and their inverses.

4. Let G = SLn(q) and S be the set of transvections. Then diam(G,S) ≈ n

and log |G|
log |S| ≈

n
2 .

5. Let G = SLn(p) (p prime) and S = {x±1, y±1} where

x =


1 1

1
.
.
.

1

, y =


0 1
0 0 1

.
.

1
±1


Then log |G|

log |S| ∼ n
2 log p, and also diam(G,S) ∼ n2 log p.

All the above examples are elementary except the last, where the fact that diam(G,S) ≤
Cn2 log p for some constant C is a result of Kassabov and Riley [32].

2.1 Babai’s Conjecture

Define diam(G) to be the maximum of diam(G,S) over all generating sets S. The
main conjecture in the field is due to Babai, and appears as Conjecture 1.7 in [6]:

Babai’s Conjecture There is a constant c such that diam(G) < (log |G|)c for
any non-abelian finite simple group G.

It can be seen from Example 3 above that c must be at least 2 for the conjecture
to hold.

There have been spectacular recent developments on Babai’s conjecture, both
for groups of Lie type and for alternating groups. We shall discuss these separately.

2.1.1 Groups of Lie type

For a long time, even SL2(p) (p prime) was a mystery as far as proving Babai’s
conjecture was concerned. Probably the first small (symmetric) generating set one
thinks of for this group is

S = {
(

1 1
0 1

)±1

,

(
1 0
1 1

)±1

}.
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Babai’s conjecture asserts that diam(G,S) < (log p)c for these generators. Surely
this must be easy?

In fact it is not at all easy, and was proved by the following beautiful but indirect
method (see [51]). First observe that the matrices in S, when regarded as integer
matrices, generate SL2(Z). Now let Γ(p) denote the congruence subgroup which
is the kernel of the natural map from SL2(Z) → SL2(p). If H is the upper half
plane and X(p) denotes the Riemann surface Γ(p)\H, denote by λ1(X(p)) the
smallest eigenvalue for the Laplacian on X(p). A theorem of Selberg [61] gives
λ1(X(p)) ≥ 3

16 for all p, and this can be used to show that the Cayley graphs
{Γp = Γ(SL2(p), S) : p prime} have their second largest eigenvalues bounded away
from the valency, and hence that they form a family of expander graphs. This
means that there is an expansion constant c > 0, independent of p, such that for
every set A consisting of fewer that half the total number of vertices in Γp, we have
|δA| > c|A|, where δA is the boundary of A – that is, the set of vertices not in
A that are joined to some vertex in A. From the expansion property it is easy to
deduce that Γp has logarithmic diameter, so that diam(Γ(SL2(p), S) < c log p, a
strong form of Babai’s conjecture.

One can adopt essentially the same method for the generators

{
(

1 2
0 1

)±1

,

(
1 0
2 1

)±1

}

of SL2(p), since, while these do not generate SL2(Z), they do generate a subgroup
of finite index therein. But what if we replace the 2’s in these generators with 3’s?
Then the matrices generate a subgroup of infinite index in SL2(Z), and the above
method breaks down. This question became known as Lubotzky’s 1-2-3 problem,
and was not solved until the breakthrough achieved by Helfgott [23]:

Theorem 2.1 Babai’s conjecture holds for G = SL2(p). That is,

diam(SL2(p)) < (log p)c,

where c is an absolute constant.

Helfgott deduced this from his key proposition: for any generating set S of
G = SL2(p), either |S3| > |S|1+ε, or Sk = G, where ε > 0 and k do not depend on
p. (Later it was observed that one can take k = 3 here.) The heart of his proof is to
relate the growth of powers of subsets A of G with the growth of the corresponding
set of scalars B = tr(A) = {tr(x) : x ∈ A} in Fp under sums and products. By
doing this he could tap into the theory of additive combinatorics, using results such
as the following, taken from [10]: if B is a subset of Fp with pδ < |B| < p1−δ for
some δ > 0, then |B ·B|+ |B +B| > |B|1+ε, where ε > 0 depends only on δ.

Following Helfgott’s result, there was a tremendous surge of progress in this area.
Many new families of expanders were constructed in [9]. Helfgott himself extended
his result to SL3(p) in [24], and this has now been proved for all groups of Lie type
of bounded rank in [11, 58]. As a consequence, we have
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Theorem 2.2 If G = G(q) is a simple group of Lie type of rank r, then diam(G) <
(log |G|)c(r) where c(r) depends only on r.

Again, the theorem is proved via a growth statement: for any generating set S
of G(q), either |S3| > |S|1+ε, or S3 = G, where ε > 0 depends only on r. From
this one gets a strong version of the previous result which takes the size of the
generating set S into account:

Theorem 2.3 If G = G(q) is a simple group of Lie type of rank r, and S is a
generating set of G, then G = Sd for some d ≤ ( log |G|

log |S| )
c(r), where c(r) depends

only on r.

These results, and particularly their developments into the theory of expanders,
have many wonderful and surprising applications. For a survey of these develop-
ments and some of the applications, see [53].

Finally, let us remark that Babai’s conjecture remains open for groups of Lie
type of unbounded rank.

2.1.2 Alternating groups

For the alternating groups An, Babai’s conjecture is that there is a constant C such
that diam(An) < nC . Until very recently, the best bound for diam(An) was that
obtained by Babai and Seress in [5], where it was proved that

diam(An) < exp((1 + o(1)) · (n log n)1/2) = exp((1 + o(1)) · (log |An|)1/2).

Various other partial results appeared at regular intervals, such as that in [3], where
it was shown that if the generating set S contains a permutation of degree at most
0.33n, then diam(An, S) is polynomially bounded. But no real progress was made
on Babai’s conjecture until a recent breakthrough of Helfgott and Seress [25]:

Theorem 2.4 We have diam(An) ≤ exp(O((log n)4 log logn)), where the implied
constant is absolute.

This does not quite prove Babai’s conjecture, but it does prove that diam(An) is
“quasipolynomial” (where a quasipolynomial function f(n) is one for which log f(n)
is polynomial in log n), which represents a big step forward. The same paper also
gives a bound of the same magnitude for the diameter of any transitive subgroup
of Sn.

2.2 Orbital graphs

Here we discuss another class of graphs for which the diameter has an interpretation
in terms of width.

Denote by (G,X) a permutation group G on a finite set X. Suppose G is
transitive on X, and let X{2} denote the set of unordered pairs of elements of X.



Liebeck: Width questions for finite simple groups 6

For each orbit ∆ of G on X{2}, there is a corresponding orbital graph having vertex
set X and edge set ∆. These are precisely the non-empty graphs on X for which G
acts transitively on edges. A well known criterion of D.G. Higman (see [26, 1.12])
states that G is primitive on X if and only if all of its orbital graphs are connected.
For G primitive on X, define diam(G,X) to be the maximum of the diameters of
all the orbital graphs.

The diameters of orbital graphs of primitive groups have an interpretation in
terms of width. Indeed, let ∆ be an orbit of G on X{2} as above, and let {x, xg} ∈
∆, where g ∈ G. Notice that also {x, xg−1} ∈ ∆. Write H = Gx. For each i, the
set of vertices at distance i from x in the corresponding orbital graph is contained
in

{xg±1h1g
±1h2 · · · g±1hi : hi ∈ H}.

It follows that if we define w = width(G,S) where S = H ∪ {g, g−1}, then the
diameter of the orbital graph lies between w and [12w]. (Both extremes are possible:
for example the diameter is w when H = 1 and G is cyclic of prime order.)

For a positive integer d, denote by Cd the class of all finite primitive permuta-
tion groups (G,X) for which diam(G,X) ≤ d. In [42], the following problem is
addressed.

Problem 2.5 For each d, describe the class of finite primitive groups Cd.

The motivation in [42] is mainly model-theoretical and stems from the fact that
for groups of bounded orbital diameter, primitivity is implied by a first order ex-
pressible condition in the language of permutation groups (whereas for permutation
groups in general, primitivity is not a first order property). This means, for exam-
ple, that the primitivity condition extends to ultraproducts.

In [42], the above problem is solved “asymptotically”; as discussed in detail in
[42], this leads to the solution of a number of related model-theoretic problems,
such as the description of primitive infinite ultraproducts of finite permutation
groups, and of primitive ω-saturated pseudofinite permutation groups.

We present part of the main result of [42] in Theorem 2.6 below, which describes
the classes of simple groups in Cd. This time, unlike the previous section, there is
a satisfactory result for groups of unbounded rank.

In order to state the theorem we need to define some terminology. We say
that the primitive group (G,X) with G simple is a standard t-action if one of the
following holds:

(a) G = An and X = I{t}, the set of t-subsets of I = {1, ..., n}
(b) G = Cln(q), a classical group with natural module V = Vn(q) of dimension

n over Fq, and X is an orbit of subspaces of dimension or codimension t in
V ; the subspaces are arbitrary if G = PSLn(q), and otherwise are totally
singular, non-degenerate, or, if G is orthogonal and q is even, non-singular
1-spaces (in which case t = 1)

(c) G = Sp2m(q), q is even, and a point stabilizer in G is O±2m(q) (here we take
t = 1).
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If G(q) is a simple group of Lie type over Fq, then a subfield subgroup is a group
G(q0) embedded naturally in G(q), where Fq0 is a subfield of Fq. For convenience
in the statement below we define the rank of an alternating group An to be n.

We say that a class C of finite primitive permutation groups is bounded if C ⊆ Cd
for some d. All bounds implicit in the statement below are in terms of d, where
C ⊆ Cd.

Theorem 2.6 Let C be an infinite class of finite simple primitive permutation
groups, and suppose C is bounded.

(i) If C consists of simple groups of unbounded ranks, then the groups in C of
sufficiently large rank are alternating or classical groups in standard t-actions,
where t is bounded.

(ii) If C consists of simple groups G of bounded rank, then point stabilizers Gx
have unbounded orders; moreover, if G = G(q), of Lie type over Fq, and Gx
is a subfield subgroup G(q0), then |Fq : Fq0 | is bounded.

Conversely, any class of simple primitive groups satisfying the conclusions of (i) or
(ii) is bounded.

One of the most interesting parts of this result is the converse statement for part
(ii): if C is a class consisting of simple primitive permutation groups of Lie type of
bounded Lie rank with unbounded point stabilizers (and also satisfying the given
condition on subfields), then C is a bounded class. For example, if C consists of the
groups E8(q) (q varying) acting on the coset space E8(q)/H(q) for some maximal
subgroup H(q) arising from a maximal connected subgroup H(K) of the simple
algebraic group E8(K), where K = F̄q (for example H(K) = D8(K) or A1(K) –
see [47]), then the diameters of all the orbital graphs are bounded by an absolute
constant. In fact this now follows fom Theorem 2.3, but a direct proof using a
substantial amount of model theory can be found in [42].

It would be interesting to have a more explicit solution to Problem 2.5, for
example for some small values of d. Work is under way on this.

3 Conjugacy width

We now turn to a discussion of the width of simple groups G with respect to a
conjugacy class of subsets – that is, width(G,S) where S = {Ag : g ∈ G} for some
subset A of G which we take to be of size at least 2. The following lemma shows
that in this case no subproducts are required in the definition of width.

Lemma 3.1 If A ⊆ G with |A| ≥ 2, and S = {Ag : g ∈ G}, then

width(G,S) = min{n : G = Ag1 · · ·Agn , gi ∈ G}.

Proof This is clear if 1 ∈ A. If not, let a ∈ A, set B = a−1A, and observe that G
is a product of n conjugates of A if and only if it is a product of n conjugates of
B.
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Examples When G is simple there are many interesting cases to consider. Here
are some examples. In the first four, S consists of a single normal subset of G (i.e.
a subset closed under conjugation), so we are back in the Cayley graph case of the
previous section.

1. S = {I(G)}, where I(G) is the set of involutions in G: here width(G,S) is
the minimal n such that every element of G is a product of n involutions.

2. S = {C(G)}, where C(G) = {[x, y] : x, y ∈ G} is the set of commutators in
G: here width(G,S) is often called the commutator width of G.

3. S = {Pk(G)}, where k ≥ 2 and Pk(G) = {xk : x ∈ G} is the set of kth powers
in G.

4. (Generalizing Examples 2,3): S = {w(G)}, where w = w(x1, . . . , xk) is a fixed
word in the free group Fk of rank k and w(G) = {w(g1, . . . , gk) : gi ∈ G}.

5. G = Sn and S = {〈t1〉, . . . , 〈tk〉}, where t1, . . . tk are all the transpositions in
G (and k =

(
n
2

)
), as in Example 2 in Section 1.

6. S = the set of Sylow p-subgroups of G, where p is a prime dividing |G|.

Clearly if S = {Ag : g ∈ G} as above, then width(G,S) ≥ log |G|/ log |A|. In
[43] the following conjecture was posed.

Conjecture 3.2 There is an absolute constant c such that for any finite non-
abelian simple group G and any subset A ⊆ G with |A| ≥ 2 , we have

width(G,S) ≤ c log |G|
log |A|

,

where S = {Ag : g ∈ G}.

This conjecture has been proved in a number of special cases, as we shall describe
below, but it is open in general.

3.1 Normal subsets

In the case where S consists of a single normal subset of G, Conjecture 3.2 was
proved in [50]:

Theorem 3.3 There is an absolute constant k > 0 such that for any finite non-
abelian simple group G, and any non-identity normal subset S ⊆ G, we have G =
Sn for all n ≥ k log |G|/ log |S|.

In particular the diameter of the Cayley graph Γ(G,S) is at most k log |G|
log |S| , so this

proves Babai’s conjecture in this case in a strong form.
The covering number of a finite simple group G is the minimal positive integer

n such that Cn = G for all conjugacy classes C of G (see [2]). Theorem 3.3 implies
an upper bound for the covering number which is linear in the rank of G; further
such bounds can be found in [14, 39], and the precise covering number of PSLn(q)
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for n ≥ 3, q ≥ 4 is shown to be n in [40]. However Theorem 3.3 carries much more
information than these bounds, since it takes into account the size of the class.

Let us now examine the implications of Theorem 3.3 for Examples 1–4 above.

3.1.1 Involutions

As in Example 1 above, let S = I(G), the set of involutions in G. To get a feeling
for how big log |G|

log |S| is, consider G = PSL2m(q) with q odd, m even, and let t ∈ G
be the involution which is the image modulo scalars of the matrix diag(Im,−Im).
Then the size of the conjugacy class tG is roughly |GL2m(q) : GLm(q)×GLm(q)|,
which is approximately q4m

2
/q2m

2
, and so |tG| is of the order of |G|1/2. Therefore

log |G|/ log |S| is about 2 in this case. It can be shown that there is an absolute
constant c > 0 such that |I(G)| > c|G|1/2 for all finite simple groups G (see [49,
4.2,4.3]). Hence Theorem 3.3 implies the following.

Corollary 3.4 There is an absolute constant N such that every element of every
finite non-abelian simple group is a product of N involutions.

It would be quite interesting to know the minimal value of N . It is certainly more
than 2: groups in which every element is a product of two involutions are known as
strongly real groups, and the strongly real simple groups have been classified (see
[64, 59]).

3.1.2 Images of word maps

As in Example 4 above, let w = w(x1, . . . , xk) be a fixed non-identity word in the
free group Fk of rank k and for a group G define w(G) = {w(g1, . . . , gk) : gi ∈ G}.
Let us consider the implications of Theorem 3.3 in the case where G is simple and
S = w(G).

We need information about the size of the set w(G). This can be 1 for some
simple groups G – for example if w = xk1 and the exponent of G divides k. The
first question to consider is whether there could be a word w for which w(G) = {1}
for all (finite non-abelian) simple groups G. The answer is no: for suppose w is
a non-identity word such that w(SL2(p)) = {1} for all primes p. Let φp be the
natural map SL2(Z)→ SL2(p). Then

⋂
p Ker(φp) = 1, hence also w(SL2(Z)) = 1.

However SL2(Z) contains a free subgroup of rank 2, so this is impossible. Since
many simple groups of Lie type over Fp contain SL2(p), the assertion follows.

In fact a much stronger assertion about the nontriviality of w(G) for simple
groups G holds, as proved in [30]:

Theorem 3.5 Given any nontrivial word w, there is a constant Nw depending
only on w, such that w(G) 6= {1} for all simple groups G of order greater than Nw.

For simple groups of order greater than Nw, how large is w(G)? The following
gives a weak lower bound. Better bounds will be discussed in Section 4.
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Lemma 3.6 For any non-identity word w, there is a constant δw > 0 such that
|w(G)| > |G|δw for all simple groups G of order greater than Nw.

Proof Consider first G = An. Choose k = k(w) minimal such that w(Ak) 6= 1,
and let 1 6= a ∈ w(Ak). Take n to be large in terms of k. If r = [nk ], then G
contains a subgroup H ∼= (Ak)r. Let x ∈ H be the image under this isomorphism
of the element (a, . . . , a) ∈ Ark. Then x ∈ w(H) and x moves at least 3r points in
{1, . . . , n}. Now the conjugacy class xG is contained in w(G), and an elementary
calculation shows that |xG| is at least of the order of |G|1/2k, which gives the
conclusion in this case.

The case where G = Cln(q), a classical group of unbounded dimension n over
a finite field Fq, is similar, using a subgroup H of the form (Clk(q))r in the above
argument. And when G is a group of Lie type of bounded rank, the fact that any
nontrivial conjugacy class has size at least q gives the result.

As before, Theorem 3.3 implies the following consequence.

Corollary 3.7 Let w be a nontrivial word. Then there is a constant c = c(w) such
that for any simple group G of order greater than Nw, we have G = w(G)c (that
is, every element of G is a product of c elements of w(G)).

We shall discuss some recent vast improvements of this result in Section 4.

3.1.3 Remarks on the proof of Theorem 3.3

The proof in [50] is quite technical, but it may be instructive to illustrate two of
the main steps with the following example. Let G = PSLn(q) with n ≥ 3 and let
C = xG, where

x =
(
Jk

In−k

)
,

Jk being the k×k Jordan block matrix with 1’s on and directly above the diagonal
and 0’s elsewhere. Assume also that n is large compared to k. The centralizer of
x can be found in [48, 7.1], and it follows that |C| is roughly q(k−1)(2n−k). Hence
log |G|
log |C| is of the order of n

2(k−1) .
The first step in the proof is the elementary but useful observation thatIk−1

Jk
In−2k+1

(Jk
In−k

)
=
(
J2k−1

In−2k+1

)
.

Applying this repeatedly, we can obtain the matrix Jn as a product of approxi-
mately n

k−1 conjugates of x; in other words, Jn ∈ Cn/(k−1). Set y := Jn.
The second step is to apply some character theory of the group G. The following

observation essentially goes back to Frobenius, and applies to conjugacy classes in
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arbitrary finite groups: for g ∈ G, and an integer l ≥ 2, the number of ways of
writing g as a product of l conjugates of y is

|yG|l

|G|
∑

χ∈Irr(G)

χ(y)lχ(g−1)
χ(1)l−1

, (2)

where Irr(G) denotes the set of irreducible characters of G. At this point we apply
some basic facts about the irreducible characters χ of G = PSLn(q):

(a) |χ(y)| ≤ |CG(y)|1/2 = |CG(Jn)|1/2 ≤ qn/2;

(b) for χ 6= 1G, the degree χ(1) ≥ qn−1 − 1;

(c) |Irr(G)| < qn−1 + 3qn−2.

Indeed, (a) is trivial, (b) follows from [33] and (c) from [16, 3.6]. Let Σ denote the
sum in (2). The contribution to Σ of the trivial character χ = 1G is 1. Hence using
(a)–(c), we see that

|Σ| ≥ 1− (qn−1 + 3qn−2)qnl/2

(qn−1 − 1)l−2
.

Assuming that n ≥ 10, it follows that Σ 6= 0 provided l ≥ 7. Hence G = (yG)7

under this assumption. Since y = Jn ∈ Cn/(k−1), we therefore have

G = (yG)7 = C7n/(k−1).

The conclusion of Theorem 3.3 follows in this case.

3.1.4 Commutators

Applying Corollary 3.7 to the commutator word, it follows that every element of
every finite simple group is a product of a bounded number of commutators. In
fact a much stronger result is true:

Theorem 3.8 (The Ore Conjecture) Every element of every finite simple group
is a commutator.

This conjecture emerged from a 1951 paper of Ore [56], after which many partial
results were obtained, notably those of Thompson [63] for special linear groups, and
of Ellers and Gordeev [13] proving the result for groups of Lie type over sufficiently
large fields Fq (q ≥ 8 suffices). The proof was finally completed in [44]. This was
largely based on character theory, via an elementary classical result, again due
to Frobenius, that for an element g of a finite group G, the number of solutions
(x, y) ∈ G×G to the equation g = [x, y] is equal to

|G|
∑

χ∈Irr(G)

χ(g)
χ(1)

.
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Thus g is a commutator if and only if this sum is nonzero. The aim is to show that
for G simple, the term coming from the trivial character (namely 1) is greater than
the sum of moduli the remaining terms, in other words that∑

χ 6=1G

|χ(g)|
χ(1)

< 1. (3)

Here is a sketch of the proof from [44] of Theorem 3.8 for the family of symplectic
groups G = Sp2n(2). The argument proceeds by induction. The base cases for the
induction are Sp2n(2) with n ≤ 6, and these were handled computationally; of
course Sp2(2) and Sp4(2) are non-perfect, so Theorem 3.8 does not apply to them.

Let g ∈ G, and write g in block-diagonal form

g =


X1 0 · · · 0
0 X2 · · · 0

· · ·
0 0 · · · Xk

 ∈ Sp2n1(2)× · · · × Sp2nk
(2) < G,

where
∑
ni = n, this decomposition being as refined as possible. If each Xi is a

commutator in Sp2ni(2) then g is a commutator in G. Hence induction gives the
conclusion except when either

(1) k = 1, or
(2) one of the factors Sp2ni(2) is Sp2(2) or Sp4(2).

We call g unbreakable if (1) or (2) holds for every such block-diagonal decomposi-
tion of g. Thus to prove the theorem for this case it suffices to show that every
unbreakable element g of G = Sp2n(2) with n ≥ 7 is a commutator.

The first step is to prove that the unbreakable element g has small centralizer,
namely

|CG(g)| < 22n+15.

For example, if g is unipotent its unbreakability means that it can have few Jordan
blocks, and the possiblities for the centralizers of such elements are given by [48,
Chapter 7].

Next, a result of Guralnick and Tiep [21] shows that there is a collection W of
5 irreducible characters of G such that

(i) χ(1) ≥ 1
6(2n − 1)(2n − 2) for χ ∈ W, and

(ii) χ(1) ≥ 24n−7 for 1 6= χ ∈ Irr(G) \W.

Set
Σ1(g) =

∑
χ∈W

|χ(g)|
χ(1)

, Σ2(g) =
∑

16=χ∈Irr(G)\W

|χ(g)|
χ(1)

.

Letting k(G) denote the number of conjugacy classes of G, it follows from [16, 3.13]
that k(G) ≤ (15.2) · 2n. Also

∑
χ∈Irr(G) |χ(g)|2 = |CG(g)| by the orthogonailty

relations, from which the Cauchy-Schwartz inequality implies that∑
χ∈Irr(G)

|χ(g)| ≤ k(G)1/2|CG(g)|1/2.
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Plugging all this into the expression defining Σ2(g), we obtain

Σ2(g) <
√

15.2 · 2n/2 · |CG(g)|1/2

24n−7
<

√
15.2 · 2n/2 · 2n+7.5

24n−7
< 0.5.

Bounding Σ1(g) depends on some detailed analysis of the values χ(g) for the char-
acters χ ∈ W, from which one shows that Σ1(g) < 0.2.

Hence Σ1(g) + Σ2(g) < 0.7, which implies that (3) holds, and hence g is a
commutator, as required.

This example gives the flavour of the proof of Theorem 3.8, but it must be said
that other families of classical groups over small fields do not yield so easily as this.
Indeed the unitary groups presented too many technical obstacles for us to handle
them in this fashion, and we used a completely different method for these.

3.2 Bounded subsets

Conjecture 3.2 has been proved for bounded subsets in [43, Theorem 3]:

Theorem 3.9 There is an absolute constant c such that if G is a finite non-abelian
simple group, and A is any subset of G of size at least 2, then G is a product of N
conjugates of A for some N ≤ c log |G|.

We shall sketch a proof of this result for alternating groups, and refer the reader
to [43] for the rest of the proof. Suppose then that G = An.

First we claim that, in proving the conjecture for a subset A, we may assume
that 1 ∈ A. Indeed, let a ∈ A and B = a−1A. Then 1 ∈ B, and if G is a product
of N conjugates of B then it is also a product of N conjugates of A. Secondly, we
claim we may assume there exists x 6= 1 such that 1, x, x−1 ∈ A. Indeed, suppose
1 ∈ A and let x ∈ A be a non-identity element (whose existence follows from the
assumption |A| ≥ 2). Then 1, x, x2 ∈ A2, hence x−1, 1, x ∈ x−1A2. Assuming the
conjecture holds for sets containing x−1, 1, x we deduce that G is a product of say
N ≤ c log |G|/ log |A2| ≤ c log |G|/ log |A| conjugates of x−1A2, hence it is a product
of N conjugates of A2, so G is a product of 2N ≤ 2c log |G|/ log |A| conjugates of
A.

So assume that 1, x, x−1 ∈ A ⊆ G for some x 6= 1. It is easy to choose a 3-cycle
y ∈ An such that [x, y] 6= 1 has support of size at most 5. Let C = xAn , the
conjugacy class of x. Since [x, y] = x−1xy ∈ C−1C, we see that C−1C contains
either a 3-cycle, a 5-cycle or a double transposition. In all cases we deduce that
(C−1C)2 contains all double transpositions in An. Since x, x−1 ∈ A, some product
of 4 conjugates of A contains {1, t} for a double transposition t ∈ An.

At this point a straightforward argument shows that it is sufficient to establish
the result for the subset {1, τ} of Sn−2, where τ is a transpostion – in other words,
that Sn−2 is a product of cn log n conjugates of T := {1, τ} (this is Example 2 in
Section 1).

This is not as obvious as it might seem. The key to it is a lemma of Abert [1,
Lemma 4]: for positive integers a, b, we have Sab = ABA, where A is a conjugate
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of the natural subgroup (Sa)b and B is a conjugate of (Sb)a. For notational conve-
nience, replace n− 2 by n, and let 2l be the largest power of 2 that is less than or
equal to n. Then n

2 < 2l ≤ n. Repeated application of Abert’s lemma shows that
S2l is a product of 2l − 1 conjugates of (S2)2

l−1
, hence of (2l − 1)2l−1 conjugates

of T . Since it is routine to see that for n
2 < k ≤ n, Sn is a product of at most 8

conjugates of Sk, it follows that Sn is a product of at most (2l− 1)2l+2 conjugates
of T , and the conclusion follows.

3.3 Bounded rank

Conjecture 3.2 has also been proved for simple groups of Lie type of bounded rank,
in [18, Theorem 1.3]:

Theorem 3.10 Fix a positive integer r. There exists a constant c = c(r) such that
if G is a finite simple group of Lie type of rank r and A is a subset of G of size at
least 2, then G is a product of N conjugates of A for some N ≤ c log |G|/ log |A|.

It is possible to get some of the way towards this result quite quickly, as follows.
Firstly, as observed in the sketch proof of Theorem 3.9 above, we can assume that
1 ∈ A. Next, by a result in [22], for 1 6= x ∈ A, there are m ≤ 8(2r+ 1) conjugates
of x that generate G; call them xg1 , . . . , xgm . Write S = Ag1 · · ·Agm . Then S
generates G, so by the Product Theorem 2.3, G = Sd for some d ≤ ( log |G|

log |S| )
c(r), and

hence G is a product of ( log |G|
log |S| )

c1(r) conjugates of A.

Getting rid of the exponent c1(r) takes a lot more effort, and this is the main
content of [18]. Along the way, they prove an interesting growth result for conju-
gates ([18, 1.4]): for G and A as in the theorem above, either A3 = G or there
exists g ∈ G such that |AAg| > |A|1+ε, where ε > 0 depends only on the rank r.

3.4 Sylow subgroups

The width of simple groups with respect to a class of Sylow p-subgroups has only
been addressed in the case of groups of Lie type, where p is the natural character-
istic.

Theorem 3.11 If G is a simple group of Lie type over a field of characteristic p,
then G is a product of 5 Sylow p-subgroups.

This was first proved in [46] with a bound of 25 instead of 5; the improvement
to 5 was announced in [4]. The proof in [46] uses the BN -structure of G, and
shows that if U ∈ Sylp(G) is the unipotent radical of a Borel subgroup B, and V
is the unipotent radical of the opposite Borel, then G = UV UV · · ·V U (25 terms).
The reduction to 5 terms was achieved by using what has become known as the
“Gowers trick”, a very useful tool in the theory of width:
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Proposition 3.12 Let n > 2 be an integer and let G be a finite group and let k be
the minimal degree of a nontrivial complex character of G. Suppose that Ai ⊆ G,
i = 1, 2, . . . , n are such that |Ai|

|G| ≥ k
−(n−2)/n. Then G = A1 ·A2 · · ·An.

This can often be used when G is a group of Lie type, since these have relatively
large minimal nontrivial character degrees (see [33]).

This result has an application to the width of finite linear groups. The starting
point is an elegant result of Hrushovski and Pillay [27], proved using model theory
(and not using the classification of finite simple groups):

Theorem 3.13 Let p be a prime, n a positive integer, and suppose G is a subgroup
of GLn(p) that is generated by elements of order p. Then G = 〈x1〉〈x2〉 · · · 〈xk〉 for
some elements xi of order p, where k = k(n) depends only on n.

Note that the result is trivial if p is bounded in terms of n. It was generalized
as follows in [46]:

Theorem 3.14 There is a function f : N → N such that the following holds. Let
n be a positive integer, p a prime with p ≥ f(n), and F a field of characteristic p.
If G is a finite subgroup of GLn(F ) generated by elements of order p, then G is a
product of 5 of its Sylow p-subgroups.

Again this is proved without the classification, but using the marvellous theorem
of Larsen and Pink [34] as a substitute: if S is a finite simple subgroup of GLn(F ),
where F is a field of characteristic p, then either S is of Lie type in characteristic p,
or |S| is bounded in terms of n. Bounds for the function f(n) in the above theorem
are not addressed in [46], but using the classification Guralnick [19] showed that
f(n) = n + 3 works; this is best possible, as can be seen from the example of the
alternating group Ap < GLp−2(p) (via the action on the fully deleted permutation
module for Ap over Fp) – clearly Ap is not a product of a bounded number of its
Sylow p-subgroups.

4 Word maps

In this section we develop further the theory of word maps on simple groups,
introduced in Section 3.1.2. Let w = w(x1, . . . , xk) be a nontrivial word in the free
group Fk of rank k, and for a group G, denote also by w : Gk → G the word map
sending (g1, . . . , gk) → w(g1, . . . , gk) for gi ∈ G. Write w(G) for the image of this
map.

We shall focus on word maps on finite (non-abelian) simple groups G. Recall
from Theorem 3.5 that there is a constant Nw such that w(G) 6= {1} for simple
groups G with |G| > Nw.

Questions Here are a few natural questions one might ask about word maps:

1. How large is w(G)? Previously we saw in Lemma 3.6 that |w(G)| > |G|δw for
some δw > 0 depending only on w. Can one do better than this?
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2. What is the w-width of G, i.e. the width of G with respect to w(G)? We saw
in Corollary 3.7 that it is bounded above by a constant c(w). Is it possible
to improve this?

3. For g ∈ G, define Pw(g) to be the probability that w(g1, . . . , gk) = g for
gi ∈ G chosen uniformly at random; so

Pw(g) =
|w−1(g)|
|G|k

.

What can one say about the probability distribution Pw on G? Is it always
close to the uniform distribution? Or are there words w for which Pw is
highly non-uniform?

4. Regarding Question 3, consider for example G = SL2(p) with p prime. The
proportion of elements of order p in G is precisely 1

p , so one cannot design an
algorithm in computational group theory that is based on finding an element
of order p in G by random search. But can one find a fiendishly clever word
w for which

∑
g∈C Pw(g) >> 1

p , where C is the set of elements of order p?
Such a word would be very interesting computationally.

4.1 Size

Sometimes w(G) = G for all simple groups G – for example for the commutator
word w = [x1, x2], by the Ore Conjecture (Theorem 3.8); and sometimes w(G) 6= G
– for example for w = x2

1, or any power word w = xk1 for which hcf(k, |G|) 6= 1.
Nevertheless, the following result of Larsen and Shalev [36, 2.1 and 1.10] shows
that images of word maps on simple groups are always large:

Theorem 4.1 Let w be a nontrivial word and r a positive integer. There exist
positive constants N(w) and c(r) depending only on w and r respectively, such that
the following hold.

(i) If G is a simple group of Lie type of rank at most r, then |w(G)| > c(r)|G|
provided |G| > N(w).

(ii) If G is an alternating group An, then |w(G)| > n−4|G| provided n > N(w).

In fact a result stronger than (i) is proved in [36, 1.12]: one can take c(r) = cr−1

for some absolute constant c, provided G is not of type PSL or PSU .
There are some interesting tools used in the proof of the above theorem. For (i),

a crucial ingredient is a result of Borel [8], which states that if G = G(q) is of Lie
type over Fq, and Ḡ = G(F̄q) is the corresponding simple algebraic group over the
algebraic closure F̄q, then the word map w : Ḡk → Ḡ is dominant, which is to say
that it has dense image. Further arguments from algebraic geometry are used to
deduce part (i).

The proof of part (ii) involves a neat application of the celebrated result of
Vinogradov [65] that every sufficiently large odd integer is a sum of three primes.
So let n be large, and write n = p1 + p2 + p3 + 3 + δ with pi primes and δ ∈ {0, 1}.
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The group Li := PSL2(pi) has a 2-transitive action of degree pi + 1, so we can
embed L1 × L2 × L3 < An in a natural way. A by-product of the proof of part (i)
is that w(Li) contains an element xi of order pi−1

2 , and xi acts in the degree p1 + 1
representation as a product of two cycles of length pi−1

2 and two fixed points. Hence
x := x1x2x3 ∈ w(An) has 6 long cycles and 6 or 7 fixed points. Then |CAn(x)| is
of the order of n6, which shows that |w(An)| is at least of the order of n−6|An|.
Improving the exponent to −4 (in fact to −29/9 in [36, 1.10]) takes more work.

There are some related results that should be mentioned here, which show that
if one omits the condition that G is sufficiently large in terms of w in the above
theorem, then w(G) can be an arbitrary subset ofG subject to the obvious necessary
condition that it contains the identity and is invariant under Aut(G). Indeed, in
[52], Lubotzky proves:

Theorem 4.2 Let G be a finite non-abelian simple group, and let A be a subset
of G such that 1 ∈ A and A is invariant under Aut(G). Then there is a word
w = w(x1, x2) in the free group of rank 2 such that w(G) = A.

Explicit constructions of such words can be found in [31], and further results of
this type in [41].

4.2 Width

Recall that for a word w and a simple group G such that w(G) 6= 1, the w-width
of G is the width of G with respect to w(G). A rather crude bound for w-width
was given in Corollary 3.7. Can this be improved?

We pointed out at the beginning of the last section that this width is greater than
1 if w is a power word xk1. Hence the following remarkable result, the culmination
of several papers of Shalev together with Larsen and Tiep [35, 36, 38, 62], is the
best possible one of its kind.

Theorem 4.3 For any nontrivial word w there is a constant Nw such that w(G)2 =
G for all finite non-abelian simple groups G of order greater than Nw.

Thus the w-width of all sufficiently large simple groups is at most 2. The proof
that it is at most 3, originally a result in [62], was simplified for groups of Lie
type in [55] using the Gowers trick (Proposition 3.12). Here is their idea in the
bounded rank case. Proposition 3.12 with n = 3 implies that if G is a finite
group with minimal nontrivial character degree k, and A ⊆ G with |A| ≥ k−1/3|G|,
then G = A3. Letting G = G(q) be a simple group of Lie type of rank r over
Fq, we have k ≥ aqr for some positive absolute constant a by [33]. Fixing r, we
have |w(G)| > (aqr)−1/3|G| for sufficiently large q by Theorem 4.1(i), and hence
G = w(G)3, giving the claimed result for groups of bounded rank.

The problem of determining w-width was termed the “Waring problem” for
simple groups by Shalev, by analogy with the celebrated Waring problem in number
theory: this concerns the determination of the function g : N → N, where g(k) is



Liebeck: Width questions for finite simple groups 18

defined to be minimal such that every positive integer is the sum of g(k) kth powers.
(So g(k) could be thought of as the additive width of N with respect to the set of
kth powers.)

In direct analogy with Waring’s problem, let us consider the width of the power
word xk1 for simple groups G, where k ≥ 2. By Theorem 4.3, the width is 2 for
sufficiently large G. But this is not the case for all G – for example the word x30

1

is trivial on A5. For which values of k could the width be 2 for all simple groups
G? Clearly not when k is the exponent of a simple group. An obvious family of
positive integers that are not equal to the exponent of a simple group are those
which are divisible by at most two primes (by Burnside’s paqb theorem). For such
integers we have the following result from [20]:

Theorem 4.4 Let p, q be primes and a, b positive integers, and let N = paqb. Then
the word map (x, y)→ xNyN is surjective on all finite (non-abelian) simple groups.

4.3 Surjective and non-surjective words

If w has width 1 on G (i.e. w(G) = G), we call w a surjective word on G. Some
words are surjective on all groups: these are precisely the words w in the free group
Fk such that w ∈ xe1 · · ·xek

k F
′
k, where e1, . . . , ek are integers with highest common

factor 1 (see [60, 3.1.1]).
We have already observed that there are words that are non-surjective on finite

simple groups, such as power words xr1. On the other hand, there are various
special words that have been proved to be surjective on all finite simple groups:
these include the commutator word (Theorem 3.8) and the word xN1 x

N
2 forN = paqb

(Theorem 4.4).
Could it be that the only words that are non-surjective on large simple groups

are power words of the form w = vm (m ≥ 2)? An affirmative answer was stated
as a conjecture in [7, 7.14]. However it is not the case:

Theorem 4.5 Define the word

w = x2
1 [x−2

1 , x−1
2 ]2 ∈ F2.

Then the word map (x, y) → w(x, y) is non-surjective on PSL2(p2r+1) for all
non-negative integers r and all odd primes p 6= 5 such that p2 6≡ 1 mod 16 and
p2 6≡ 1 mod 5.

For example, w is non-surjective on PSL2(32r+1) for all r.
This result was proved in [29], as part of a non-surjectivity theorem for the family

of words of the form x2
1 [x−2

1 , x−1
2 ]k with 2k + 1 prime.

Here is a sketch of the proof of Theorem 4.5. Let G = SL2(K) with K a field.
The starting point is the observation, going back to Fricke and Klein (see [15])
that for any word w = w(x1, x2), there is a polynomial Pw(s, t, u) such that for all
x, y ∈ G,

Tr(w(x, y)) = Pw(Tr(x),Tr(y),Tr(xy)).
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We call Pw the trace polynomial of w. A proof of this fact, providing a constructive
method of computing Pw for a given word w, can be found in [57, 2.2]. The method
is based on the following identities for traces of 2× 2 matrices A,B of determinant
1:

(1) Tr(AB) = Tr(BA)
(2) Tr(A−1) = Tr(A)
(3) Tr(A2B) = Tr(A)Tr(AB)− Tr(B).

As an example, let us compute Pc for the commutator word c = [x1, x2]. First
observe that

Tr(x2y2) = Tr(x)Tr(xy2)− Tr(y2) ((by (3))
= Tr(x)(Tr(y)Tr(yx)− Tr(x))− Tr(y)2 + 2
= stu− s2 − t2 + 2,

where s = Tr(x), t = Tr(y), u = Tr(xy). Hence

Tr(x−1y−1xy) = Tr((x−1y−1)2yxxy)
= Tr(x−1y−1)Tr(xy)− Tr(yxxy) ((by (3))
= Tr(yx)Tr(xy)− Tr(x2y2) ((by (1),(2)).

It follows that Pc = s2 + t2 + u2 − stu− 2.
If one plays around with the polynomials Pw for various words w, they do not

appear to have any obvious (or non-obvious) nice behaviour. However, for the
magic word w = x2

1 [x−2
1 , x−1

2 ]2 in Theorem 4.5, the polynomial Pw turns out to
have a miraculous property. We compute that

Pw = s10 − 2s9tu− 10s8 + 2s8t2 + s8t2u2 + · · · − 6s2u2 − 2,

a polynomial with 29 terms, of degree 12. What is this miraculous property?

Claim Let p be a prime with p 6= 2, 5, p2 6≡ 1 mod 16 and p2 6≡ 1 mod 5, and let
F = Fp2r+1 . Then

Pw(s, t, u) 6= 0 for all s, t, u ∈ F.

It follows from this that for any x, y ∈ SL2(F ) we have Tr(w(x, y)) = Pw(s, t, u) 6=
0. Hence the image of w contains no matrices of trace 0, and it follows that w is
non-surjective on PSL2(F ), proving Theorem 4.5.

Proof of Claim The claim follows from the following amazing factorization.
Letting ζ be a primitive 5th root of unity, Pw factorizes over Z[ζ + ζ−1] as follows:

Pw(s, t, u) = (s2 − 2) ×
(s4 − s3tu+ s2t2 − 4s2 + 2 + ζ + ζ−1) ×
(s4 − s3tu+ s2t2 − 4s2 + 2 + ζ2 + ζ−2).

Let s, t, u ∈ F . If the first factor s2 − 2 is 0, then F has a square root of 2, which
is not the case by the assumption that p2 6≡ 1 mod 16. And if one of the other
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factors is 0, then ζ + ζ−1 ∈ F , which is also impossible since p2 6≡ 1 mod 5. Hence
Pw(s, t, u) 6= 0, proving the claim and the theorem.

One might ask how we came up with the magic word w in Theorem 4.5. The
answer is that we computed (by machine) the polynomials Pv for v in a list of
representatives of minimal length for certain automorphism classes of words in F2,
generated using [12]. We then tested whether these polynomials were surjective
on a selection of small fields. Nothing of interest came up until the length of the
representatives reached 14 (which is the length of the magic w). We noticed that
Pw was nonzero on the fields F3 and F27. The rest is history.... It is interesting
(to me) to note that although, as I have said, computation played a key role in
our discovery of the family of non-surjective words, the final proofs in [29] are
completely theoretical and make no use at all of machine computation.

In principle one can try to use the same method to look for non-surjective words
on higher rank groups. For example, for a word map w on G = SL3(K), the
trace of w(x, y) for x, y ∈ G can be expressed as a polynomial in the variables
Tr(x±1), Tr(y±1), Tr((xy)±1), Tr((x−1y)±1), Tr([x, y]) (see [28, 4.6]). Again, there
is an algorithm for computing these polynomials, so as above one can test for non-
surjectivity on small fields in the hope of coming up with promising words. No
such promising words have come up in tests so far, and indeed it may be that there
are no magic words to be found for higher ranks. In this direction we propose the
following conjecture:

Conjecture 4.6 Let w be a nontrivial word, and assume that w is not a proper
power (i.e. there is no word v such that w = vm with m ≥ 2). Then there is a
constant r = r(w) such that w is surjective on all simple groups of Lie type of rank
at least r and all alternating groups of degree at least r.

4.4 Probability

Recall that for a nontrivial word w ∈ Fk and a finite group G, we define the
probability distribution Pw on G by

Pw(g) =
|w−1(g)|
|G|k

(g ∈ G).

Let U be the uniform distribution on G (so U(g) = 1
|G| for all g ∈ G). For an

infinite family F of groups, we say that the word map w is almost uniform on F if
for groups G ∈ F we have

||Pw − U ||1 :=
∑
g∈G
|Pw(g)− U(g)| → 0 as |G| → ∞.

When F is the finite simple groups, various word maps have been shown to be
almost uniform: the commutator word [x1, x2] in [17]; and the words xa1x

b
2 in [37].

Does there exist a word map that is highly non-uniform on a family of simple
groups? Currently there is not much evidence for or against this. However as
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observed by Macpherson and Tent in [54, 4.10], one can say the following. For
a word w and a family G(q) of groups of a fixed Lie type, as q → ∞ the fibres
w−1(g) have cardinalities of the order of cqd with d a non-negative integer, where
the number of possibilites for c, d is bounded; the same applies to the cardinality
of w−1(C) for a conjugacy class C. It follows, for example, that for a word map
w = w(x1, . . . , xk) on the family PSL2(p) (p prime), as p → ∞ the probability
that w(g1, . . . , gk) has order p for random gi is of the order of 1

pc for c = 1, 2 or
3. In particular, it cannot be of an order of magnitude greater than 1

p , giving
a disappointingly negative answer to Question 4 stated at the beginning of this
section.
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