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Abstract

We determine all finite subgroups of simple algebraic groups that have irre-
ducible centralizers – that is, centralizers whose connected component does not
lie in a parabolic subgroup.

1 Introduction

Let G be a simple algebraic group over an algebraically closed field. Following Serre
[15], a subgroup of G is said to be G-irreducible (or just irreducible if the context
is clear) if it is not contained in a proper parabolic subgroup of G. Such subgroups
necessarily have finite centralizer in G (see [13, 2.1]). In this paper we address the
question of which finite subgroups can arise as such a centralizer. It turns out (see
Corollary 4 below) that they form a very restricted collection of soluble groups,
together with the alternating and symmetric groups Alt5 and Sym5.

The question is rather straightforward in the case where G is a classical group
(see Proposition 3 below). Our main result covers the case where G is of exceptional
type.

Theorem 1 Let G be a simple adjoint algebraic group of exceptional type in char-
acteristic p ≥ 0, and suppose F is a finite subgroup of G such that CG(F )0 is
G-irreducible. Then |F | is not divisible by p, and F , CG(F )0 are as in Tables 7− 12
in Section 5 at the end of the paper (one G-class of subgroups for each line of the
tables).

Remarks (1) The notation for the subgroups F and CG(F )0 is described at the
end of this section; the notation for elements of F is defined in Proposition 2.2.

(2) The theorem covers adjoint types of simple algebraic groups. For other types,
the possible finite subgroups F are just preimages of those in the conclusion.

(3) We also cover the case where G = AutE6 = E6.2 (see Table 10 and Section
3.3).

(4) A complete determination of all G-irreducible connected subgroups is carried
out in [16].

Every finite subgroup F in Theorem 1 is contained in a maximal such finite sub-
group. The list of maximal finite subgroups with irreducible centralizers is recorded
in the next result.
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Corollary 2 Let G be a simple adjoint algebraic group of exceptional type, and
suppose F is a finite subgroup of G which is maximal subject to the condition that
CG(F )0 is G-irreducible. Then F , CG(F )0 are as in Table 1.

For the classical groups we prove the following.

Proposition 3 Let G be a classical simple algebraic group in characteristic p ≥ 0
with natural module V , and suppose F is a finite subgroup of G such that CG(F )0

is G-irreducible. Then p 6= 2 and F is an elementary abelian 2-group. Moreover,
G 6= SLn and the following hold.

(i) If G = Sp2n, then

CG(F )0 =
∏
i

Sp2ni =
∏
i

Sp(Wi),

where
∑
ni = n and Wi are the distinct weight spaces of F on V .

(ii) If G = SOn, then

CG(F )0 =
∏
i

SOni =
∏
i

SO(Wi),

where ni ≥ 3 for all i,
∑
ni = n or n− 1, and Wi are weight spaces of F .

Remark In Section 4 we prove a version of this result covering finite subgroups of
AutG for G of classical type.

Corollary 4 Let G be a simple adjoint algebraic group, and let D be a proper con-
nected G-irreducible subgroup. Then the finite group CG(D) is either elementary
abelian or isomorphic to a subgroup of one of the following groups:

21+4
− , G12, Sym4 × 2, SL2(3), 32.Dih8, Sym5.

Notation Throughout the paper we use the following notation for various finite
groups:

Zn, or just n cyclic group of order n
ps (p prime) elementary abelian group of order ps

Altn, Symn alternating and symmetric groups
Dih2n dihedral group of order 2n
4 ◦Dih8 order 16 central product with centre Z4

21+4
− extra-special group of order 32 of minus type
Frob20 Frobenius group of order 20
G12 dicyclic group 〈x, y | x6 = 1, xy = x−1, y2 = x3〉 of order 12

In the tables in Section 5, and also in the text, we shall sometimes use Ā1 to
denote a subgroup A1 of a simple algebraic group G that is generated by long root
subgroups; we use the notation Ā2 similarly. Also, Br denotes a natural subgroup
of type SO2r+1 in a group of type Dn.

We use the following notation when describing modules for a semisimple algebraic
group G. We let L(G) denote the Lie algebra of G. If λ is a dominant weight, then
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Table 1: Maximal finite subgroups F with irreducible centralizer

G F p CG(F )0

E8 24 p 6= 2 A8
1

Q8 p 6= 2 B3
2

21+4
− p 6= 2 B5

1

Dih6 p 6= 2, 3 B4

G12 p 6= 2, 3 Ā1A1A3

Sym4 × 2 p 6= 2, 3 Ā1A1A1

SL2(3) p 6= 2, 3 Ā1A2

32.Dih8 p 6= 2, 3 A2
1

Sym5 p 6= 2, 3, 5 A1

Q8 p = 3 Ā1D4

Dih8 × 2 p = 3 Ā2
1B

2
1B2

3 p = 2 A8

32 p = 2 A4
2

5 p = 2 A2
4

Frob20 p = 3 B2

E7 23 p 6= 2 A7
1

Q8 p 6= 2 Ā1B
4
1

Dih6 p 6= 2, 3 A1A3

Alt4 p 6= 2, 3 A2

Sym4 p 6= 2, 3 Ā1A1

22 p = 3 D4

Dih8 p = 3 Ā1B
2
1B2

3 p = 2 A2A5

E6 2 p 6= 2 A1A5

Dih6 p 6= 2, 3 A1A1

3 p = 2 A3
2

F4 23 p 6= 2 A4
1

Q8 p 6= 2 B3
1

Sym4 p 6= 2, 3 A1

3 p = 2 A2A2

Dih8 p = 3 B1B2

G2 Dih6 p 6= 2, 3 A1

2 p = 3 A1A1

3 p = 2 A2
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Table 2: Centralizers of graph automorphisms in simple algebraic groups

G order of t CG(t)0

A2n 2 Bn (p 6= 2)
A2n−1 2 Cn

Dn (p 6= 2)
Dn 2 Bn−1

BkBn−k−1 (1 ≤ k ≤ n− 2, p 6= 2)
D4 3 G2

A2 (p 6= 3)
E6 2 F4

C4 (p 6= 2)

VG(λ) (or simply λ) denotes the rational irreducible G-module with high weight λ.
When G is simple the fundamental dominant weights λi are ordered with respect
to the labelling of the Dynkin diagrams as in [3, p. 250]. If V1, . . . , Vk are G-
modules, then V1/ . . . /Vk denotes a module having the same composition factors as
V1 + · · · + Vk. Finally, when H is a subgroup of G and V is a G-module we use
V ↓ H for the restriction of V to H.

2 Preliminaries

In this section we collect some preliminary results required in the proof of Theorem 1.

Proposition 2.1 Let G be a simple adjoint algebraic group in characteristic p. Sup-
pose t ∈ AutG \G is such that t has prime order and CG(t)0 is G-irreducible. Then
t, CG(t)0 are given in Table 2.

If G = D4 and t has order 3 with CG(t) = A2, there is an involutory graph
automorphism of G that inverts t and acts as a graph automorphism on CG(t).

Proof. The first part follows from [8, Tables 4.3.3, 4.7.1] for p 6= 2, from [1, §8]
for G = Dn, p = 2, and from [1, 19.9] for G = An, E6, p = 2. The last part follows
from [9, 2.3.3].

Proposition 2.2 Let G be a simple adjoint algebraic group of exceptional type in
characteristic p, and let x ∈ G be a nonidentity element such that CG(x)0 is G-
irreducible. Then x and CG(x) are as in Table 3; we label x according to its order,
which is not divisible by p.

Proof. First observe that if p divides the order of x then CG(x)0 is G-reducible
by [2, 2.5]. Hence x is a semisimple element and CG(x)0 is a semisimple subgroup
of maximal rank. It follows from [14, 4.5] that this implies the order of x is equal to
one of the coefficients in the expression for the highest root in the root system of G;
these are at most 6 for G = E8, and at most 4 for the other types. The classes and
centralizers of elements of these orders can be found in [5, 3.1, 4.1] and [6, 3.1].

We shall need a similar result for the group AutE6 = E6.2.
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Table 3: Elements of exceptional groups with irreducible centralizers

G x CG(x)

E8 2A A1E7

2B D8

3A A8

3B A2E6

4A A1A7

4B A3D5

5A A2
4

6A A1A2A5

E7 2A A1D6

2B A7.2
3A A2A5

4A A1A
2
3.2

E6 2A A1A5

3A A3
2.3

F4 2A B4

2B A1C3

3A A2A2

4A A1A3

G2 2A A1A1

3A A2

Table 4: Elements with irreducible centralizers in G = AutE6

x CG′(x)

2B F4

2C C4 (p 6= 2)
4A A1A3 (p 6= 2)
6A A2A2 (p 6= 3)

Proposition 2.3 Let G = AutE6 and let x ∈ G \ G′ be such that CG(x)0 is G′-
irreducible. Then x and CG′(x) are as in Table 4.

Proof. If x is an involution then the result follows from Proposition 2.1.
Suppose now that 1 6= x2 ∈ G′. Then x2 has order 2 or 3 and CG′(x2) = A1A5

or A3
2.3, respectively, by Proposition 2.2. In the former case x acts as a graph

automorphism on the A5 factor and CG′(x) = A1C3 or A1A3 by [8, Table 4.3.1].
Here A1C3 is not possible since this lies in a subgroup F4 and hence centralizes an
involution in G \G′.

In the case where CG′(x2) = A3
2.3, the element x2 is of order 3 in CG′(x3). By

Proposition 2.2, the latter group must be F4 and CF4(x2) = A2A2.

We also require information on normalizers of certain maximal rank subgroups.
The following proposition can be deduced from [4, Tables 7–11] and direct calculation
in the Weyl groups of exceptional algebraic groups; many of the results can be found
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Table 5: Normalizers of maximal rank subgroups of G

G M NG(M)/M

E8 A8 2
A2E6 2
A1A7 2
A2

4 4
D2

4 Sym3 × 2
A4

1D4 Sym4

A4
2 GL2(3)

A8
1 AGL3(2)

E7 A2A5 2
A7

1 GL3(2)

E6 A3
2 Sym3 × 2

F4 A2A2 2
D4 Sym3

G2 A2 2

in [12, Chapter 11].

Proposition 2.4 Let G be a simple algebraic group of exceptional type. Then Table
5 gives the groups NG(M)/M (or NAutG(M)/M for G of type E6) for the given
maximal rank subgroups M of G.

Next we have a result about the Spin group Spinn in characteristic p 6= 2. Recall
that the centre of Spinn is 22 if n is divisible by 4 and is Z2 if n is odd. In the
former case the quotients of Spinn by the three central subgroups of order two are
SOn and the two half-spin groups HSpinn.

Proposition 2.5 Let G be HSpinn (where 4|n) or Spinn (n odd), in characteristic
p 6= 2. Let 〈t〉 = Z(G) (so that G/〈t〉 = PSOn) and suppose F is a finite 2-subgroup
of G containing t such that CG(F )0 is G-irreducible. Then the preimage of F/〈t〉 in
SOn is elementary abelian. Moreover, an element e ∈ F has order 2 if and only if
its preimage in SOn has −1-eigenspace of dimension divisible by 4.

Proof. If the preimage contains an element e of order greater than 2, then
CSOn(e) has a nontrivial normal torus, and hence CG(F )0 cannot be irreducible.
The assertion in the last sentence is well known.

In the following statement, by a pure subgroup of G we mean a subgroup all of
whose nonidentity elements are G-conjugate.

Proposition 2.6 Let G = E8 in characteristic p.

(i) If p 6= 2 then G has two conjugacy classes of subgroups E ∼= 22 such that
CG(E)0 is G-irreducible, and one class of pure subgroups E ∼= 23; these are as
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follows:
E elements CG(E)0

22 2B3 D2
4

2A2, 2B A2
1D6

23 2B7 A8
1

Further, G has no pure subgroup 24.

(ii) If p 6= 3 then G has one class of subgroups E ∼= 32 such that CG(E)0 is
G-irreducible. For this class, CG(E) = A4

2.

Proof. Part (i) follows from [5, 3.7, 3.8]. For (ii), let E = 〈x, y〉 < G with
E ∼= 32 and CG(E)0 irreducible. Then CG(x) 6= A8, so Proposition 2.2 implies that
CG(x) = A2E6, and also that CA2E6(y)0 = A4

2, as required.

The next result is taken from [13, Lemma 2.2].

Proposition 2.7 Suppose G is a classical simple algebraic group in characteristic
p 6= 2, with natural module V . Let X be a semisimple connected subgroup of G. If
X is G-irreducible then either

(i) G = An and X is irreducible on V , or

(ii) G = Bn, Cn or Dn and V ↓ X = V1 ⊥ . . . ⊥ Vk with the Vi all nondegenerate,
irreducible and inequivalent as X-modules.

3 Proof of Theorem 1

3.1 The case G = E8

We now embark on the proof of Theorem 1 for the case G = E8. Let F be a finite
subgroup of G such that CG(F )0 is G-irreducible. Then CG(F )0 is semisimple (see
[13, 2.1]). Moreover CG(E)0 is irreducible for all nontrivial subgroups E of F . Also
F is a {2, 3, 5}-group by Proposition 2.2.

Lemma 3.1 If F is an elementary abelian 2-group, then F is as in Table 7.

Proof. Suppose F ∼= 2k. If k ≤ 2, or if k = 3 and F is pure, the conclusion
follows from Proposition 2.6(i).

Now assume that k = 3 and F is not pure. By considering the 22 subgroups
of F , all of which must be as in (i) of Proposition 2.6, we see that one of these,
say 〈e1, e2〉, is 2B-pure, so that CG(e1, e2)

0 = D2
4. We have CG(e1)/〈e1〉 ∼= PSO16,

and consider the preimage of F/〈e1〉 in SO16. This preimage is elementary abelian
by Proposition 2.5, so can be diagonalized, and we can take e2 = (−18, 18). Let e3
be a further element of F that is in class 2A. Then the −1-eigenspace of e3 has
dimension 4 or 12, and so the fact that CG(F )0 is G-irreducible means that we can
take e3 = (−14, 14, 18), so that CSO16(F )0 = SO4SO4SO8, and so CG(E)0 = A4

1D4

as in Table 7.

Next suppose k ≥ 4. Then F is not pure by Proposition 2.6(i), so F contains
a subgroup 〈e1, e2, e3〉 ∼= 23 as in the previous paragraph. Arguing as above, we
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can take a further element e4 of F to be (18,−14, 14), so that CG(e1, . . . , e4)
0 = A8

1.
There is no possible further diagonal involution in F such that CG(F )0 is irreducible,
so k = 4.

In view of the previous lemma, we assume from now on that F is not an ele-
mentary abelian 2-group. Hence if F is a 2-group, it has exponent 4 by Proposition
2.2.

Lemma 3.2 Suppose F is a 2-group, and has no element in the class 4B. Then
one of the following holds:

(i) F ∼= Z4, generated by an element in class 4A, and CG(F )0 = A1A7;

(ii) F ∼= Q8 with elements 2A, 4A6, and CG(F )0 = A1D4.

In both cases F is as in Table 7.

Proof. Let e ∈ F have order 4. By hypothesis, e is in class 4A, so CG(e) = A1A7.
There is nothing to prove if F ∼= Z4, so assume |F | > 4 and pick f ∈ NF (〈e〉)\〈e〉. If
f ∈ A1A7 then CG(e, f) has a normal torus, so ef = e−1 and f induces an involutory
graph automorphism on A7 (see Proposition 2.4). Hence CA7(f)0 = C4 or D4 by
Proposition 2.1. The subgroup C4 lies in a Levi subgroup E6 of CG(A1) = E7 (see
the proof of [7, 2.15]), so the irreducibility of CG(F )0 implies that CA7(f)0 = D4,
hence CG(e, f)0 = A1D4. Also 〈e, f〉 ∼= Q8, as shown in the proof of [7, 2.15].
Finally, if NF (〈e, f〉) > 〈e, f〉 then some element of order 4 in 〈e, f〉 has centralizer
in F of order greater than 4, which we have seen to be impossible above. Hence
F = 〈e, f〉.

Lemma 3.3 Suppose F is a 2-group and has an element e in the class 4B. If
CF (e) 6= 〈e〉, then F is as in Table 7 (one of the entries 4× 2, Dih8 × 2, 4 ◦Dih8,
Q8 × 2, 21+4

− ).

Proof. Assume that CF (e) 6= 〈e〉. Then CF (e) contains a group of order 8 in
which e is central, and hence there is an involution e1 ∈ CF (e)\〈e〉. Diagonalizing
the preimage of CF (e2)/〈e2〉 in SO16 (as in the proof of Lemma 3.1), we can take

e = (−16, 110), e1 = (16,−14, 16),

so that 〈e, e1〉 ∼= Z4 × Z2 and CG(e, e1)
0 = A2

1A
2
3, as in the 4× 2 entry in Table 7.

Write E0 = 〈e, e1〉. If there exists f ∈ (F ∩ A2
1A

2
3)\E0, then CG(e, e1, f) has a

nontrivial normal torus, which is a contradiction. Hence F ∩ CG(E0)
0 = E0.

Suppose CF (e) 6= E0. If there is no involution in CF (e)\E0, then CF (e) contains
a subgroup Z4 × Z4, which is impossible. So let e2 be an involution in CF (e)\E0.
As e2 does not centralize e1, we can take

e2 = (16,−1, 13,−13, 13).

Then CG(e, e1, e2)
0 = A3B

3
1 (where each B1 corresponds to a natural subgroup SO3

in SO16), and 〈e, e1, e2〉 = 〈e〉 ◦ 〈e1, e2〉 ∼= 4 ◦ Dih8, as in Table 7. If F 6= E1 :=
〈e, e1, e2〉, then there is an element e3 ∈ NF (E1)\E1, and adjusting by an element
of E1 we can take

e3 = (−13, 13,−1, 19).
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Then CG(E1, e3)
0 = B5

1 and 〈E1, e3〉 ∼= 21+4
− , as in Table 7. Finally, there are no

possible further elements of F such that CG(F )0 is irreducible.

Now suppose CF (e) = E0 and F 6= E0. Pick f ∈ NF (E0)\E0. Then f centralizes
e2, so we can diagonalize in the usual way; adjusting by an element of E0 and
using the fact that CG(E0, f) has no nontrivial normal torus, we can take f ∈
{e4, e5, e6, e7}, where

e4 = (−13, 13, 14,−1, 15), e5 = (−13, 13, 14,−13, 13),
e6 = (−13, 13,−1, 13, 16), e7 = (−1, 15, 14,−13, 13).

Let E2 = 〈E0, f〉.
If f = e4 then CG(E2)

0 = B2
1Ā

2
1B2 and E2 = 〈e, e4〉 × 〈e1〉 ∼= Dih8 × Z2, as in

Table 7. There are no possible further elements of F in this case.

If f = e5 then CG(E2)
0 = Ā2

1B
4
1 and E2 = 〈e, e5〉 × 〈e1〉 ∼= Q8 × Z2, as in Table

7. Any further element of F would centralize e2, and hence would violate the fact
that CF (e) = E0.

Finally, if f = e6 or e7, then E2 is D8-conjugate to 〈e, e1, e2〉 or 〈e, e1, e4〉, cases
considered previously.

Lemma 3.4 If F is a 2-group, then it is as in Table 7.

Proof. Suppose F is a 2-group. In view of the previous two lemmas, we can
assume that F contains an element e in the class 4B, and that CF (e) = 〈e〉 – and
indeed that F has no subgroup Z4 × Z2. We can also assume that F 6= 〈e〉. Hence
there exists f ∈ F such that ef = e−1. As usual we can diagonalize 〈e, f〉, and hence
take e = (−16, 110) and f ∈ {f1, f2, f3, f4, f5}, where

f1 = (−13, 13,−1, 19), f2 = (−13, 13,−13, 17),
f3 = (−13, 13,−15, 15), f4 = (−1, 15,−13, 17),
f5 = (−1, 15,−15, 15).

Moreover, the fact that F has no subgroup Z4 × Z2 implies that F = 〈e, f〉.
It is easily seen that the possibilities for F and CG(F )0 are as follows:

F CG(F )0

〈e, f1〉 ∼= Dih8 B2
1B4

〈e, f2〉 ∼= Q8 B3
1B3

〈e, f3〉 ∼= Dih8 B2
1B

2
2

〈e, f4〉 ∼= Dih8 B1B2B3

〈e, f5〉 ∼= Q8 B3
2

All these possibilities are in Table 7.

Lemma 3.5 If F is a 3-group, then F = 3 or 32 is as in Table 7.

Proof. Suppose F is a 3-group. It has exponent 3, by Proposition 2.2. If F = 3
or 32, it is as in Table 7 by Propositions 2.2 and 2.6(ii), so assume |F | > 9.

If F has an element e with CG(e) = A8, then there is an element f ∈ CF (e)\〈e〉,
and CA8(f) is reducible in A8, a contradiction. Hence all nonidentity elements of F
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have centralizer A2E6 (see Proposition 2.2). In particular, they have trace 5 on the
adjoint module L(G) (see [5, 3.1]).

Let V be a normal subgroup of F with V ∼= 32. Then CG(V ) = A4
2 by Proposition

2.6(ii). If f ∈ F \ V , then f acts as a 3-cycle on the four A2 factors, so CG(V, f)0 =
Ā2A2. On the other hand, since every nonidentity element has trace 5 on L(G), we
have

dimCL(G)(V, f) =
1

27
(248 + 26 · 5) = 14.

This is a contradiction, showing that |F | > 9 is impossible.

From now on, we assume that F is not a 2-group or a 3-group. Let J = Fit(F ),
the Fitting subgroup of F .

Lemma 3.6 Suppose J is a nontrivial 2-group. Then F is as in Table 7.

Proof. By Lemma 3.4, J and CG(J)0 are as in Table 7. Also CF (J) ≤ J , so F
contains an element x of order r = 3 or 5 acting nontrivially on J and as a graph
automorphism of CG(J)0. By inspection of Table 7, the possibilities for J with these
properties are as follows:

J CG(J)0 r

22 D2
4 3

23 A4
1D4 3
A8

1 3, 5
24 A8

1 3, 5
Q8 A1D4 3

B3
2 3

B3
1B3 3

4 ◦Dih8 A3B
3
1 3

Q8 × 2 A2
1B

4
1 3

21+4
− B5

1 3, 5

For the last five cases, where CG(J)0 .Br
1 (or Br

2), CG(J, x)0 has a factor B1 (or B2)
which is a diagonal subgroup of this, and so CG(J, x)0 is a reducible subgroup ofD8 in
these cases, by Proposition 2.7. Also if CG(J)0 = A8

1, then NG(A8
1)/A

8
1
∼= AGL3(2)

by Proposition 2.4, so r = 3 and x acts as a product of two 3-cycles on the eight
A1 factors. We claim that again CG(J, x)0 is reducible. To see this, regard A8

1 as a
subgroup of D8 corresponding to SO4

4 in SO16. Observe that CJ(x)0 = Ā2
1A

2
1 where

each of the last two A1 factors is diagonal in Ā3
1. There are two possible actions of

the subgroup A2
1 < Ā6

1 < D6 on the 12-dimensional natural module, namely (1, 1)3

or (2, 0) + (1, 1) + (0, 2) + (0, 0)2. In both cases the subgroup A2
1 is D6-reducible by

Proposition 2.7 and hence CJ(x)0 is D8-reducible.

This leaves the following possibilities remaining, all with r = 3:

J CG(J)0

22 D2
4

23 A4
1D4

Q8 A1D4

Suppose J = 22, CG(J)0 = D2
4. Then x induces a triality automorphism on both

D4 factors (see Proposition 2.4). So by Proposition 2.1, CG(J, x)0 = G2G2, A2A2
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or A2G2. In the first case G2G2 < D7 < D8, so is reducible. Hence if F = 〈J, x〉 we
have the possibilities

F = 〈J, x〉 ∼= Alt4, CG(F )0 = A2A2 or A2G2,

both in Table 7. Now assume F 6= 〈J, x〉. Then F = 〈J, x, t〉 ∼= Sym4, where t is
an involution inverting x (since Fit(F ) ∼= 22). If CG(J, x)0 = A2A2 then t acts as
a graph automorphism on each A2 factor (see Proposition 2.1), and so CG(F )0 =
A1A1; and if CG(J, x)0 = A2G2 then t acts as a graph autormorphism on the
A2 factor and centralizes the G2 factor, so CG(F )0 = A1G2. Hence we have the
possibilities

F = 〈J, x, t〉 ∼= Sym4, CG(F )0 = A1A1 or A1G2,

both in Table 7.

Next suppose J = 23, CG(J)0 = A4
1D4. Then x acts as a 3-cycle on the A1 factors

and as a triality on D4, so CG(J, x)0 = Ā1A1G2 or Ā1A1A2 (where Ā1 denotes a
fundamental SL2 generated by a root group and its opposite). The first subgroup
is reducible as it is contained in a subgroup D7 of D8. So if F = 〈J, x〉, we have

F = 〈J, x〉 ∼= 2×Alt4, CG(F )0 = Ā1A1A2,

as in Table 7. Now assume F 6= 〈J, x〉, and let 〈v〉 = Z(〈J, x〉). As F/J is isomorphic
to a subgroup of GL3(2) with no nontrivial normal 2-subgroup, we have F/J ∼= Dih6
and F = 〈J, x, t〉 where xt = x−1 and t2 = 1 or v. Such an element t centralizes
both A1 factors of CG(J, x)0, and induces a graph automorphism on the A2 factor,
so CG(F )0 = Ā1A1A1. This is contained in the above centralizer G2A2 of an Alt4
subgroup, and Ā1A1 centralizes an involution in G2. Hence in fact t2 = 1 and we
have

F = 〈J, x, t〉 ∼= 2× Sym4, CG(F )0 = Ā1A1A1,

as in Table 7.

Finally, suppose J = Q8, CG(J)0 = A1D4 < A1A7. Then x induces triality on
the D4 factor (see [7, 2.15]), so CG(J, x)0 = A1G2 or A1A2. The first subgroup is
reducible in A1A7, so if F = 〈J, x〉, we have

F = 〈J, x〉 = Q8.3 ∼= SL2(3), CG(F )0 = Ā1A2,

as in Table 7. If F 6= 〈J, x〉 then F has an element t inducing a graph automorphism
on the A2 factor, so CG(J, x, t)0 = A1A1, which is reducible in A1A7. This completes
the proof.

Lemma 3.7 If |J |3 = 3, then F is as in Table 7.

Proof. Assume |J |3 = 3, and let x ∈ J be of order 3.

Suppose first that |F |3 = 3 also. As F has no element of order 15 we have
|F |5 = 1, so F/〈x〉 is a 2-group. The case where |F | = 3 is in Table 7, so assume
|F | > 3.

Suppose CG(x) = A2E6. If t is an involution in CF (x), then CG(x, t) = A2A1A5;
moreover CF (x) has no element of order 4 (as F has no element of order 12), and
no subgroup V ∼= 22 (as CG(x, V ) would have a normal torus). Hence CF (x) has
order 3 or 6, and so |F | is 6 or 12.
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If |F | = 6, then either F ∼= Z6, CG(F ) = A1A2A5, or F = 〈x, t〉 ∼= Dih6 with t
inducing graph automorphisms on both factors of CG(x) = A2E6 (see Proposition
2.4), in which case CG(F )0 = A1F4 or A1C4. All these possibilities are in Table 7.

If |F | = 12, then F = 〈y, u〉 where y has order 6, yu = y−1 and u2 = 1 or y3.
Then u induces a graph automorphism on the A2, A5 factors of CG(y) = A1A2A5, so
CG(F )0 = Ā1A1C3 or Ā1A1A3. The subgroup Ā1A1C3 is contained in A1F4 and in
A1C4, while the subgroup Ā1A1A3 is contained in neither. Hence u is an involution
in the first case, and has order 4 in the second. This gives the possibilities

F = 〈y, u〉 ∼= Dih12 or G12, CG(F )0 = Ā1A1C3 or Ā1A1A3 (resp.),

both in Table 7.

Next suppose that CG(x) = A8. Then CF (x) = 〈x〉, so F = 〈x, t〉 ∼= Dih6 where
t induces a graph automorphism on A8, giving CG(F )0 = B4. This completes the
case where |F |3 = 3.

Finally, suppose |F |3 = 32, and let 〈x, y〉 be a Sylow 3-subgroup of F . Again,
|F |5 = 1. If F = 〈x, y〉 then CG(F )0 = A4

2 by Proposition 2.6(ii), as in Table 7.
Otherwise, as CF (J) ≤ J there must be a subgroup V ∼= 22 of J such that y acts
nontrivially on V . But then CG(x, V )0 = CA2E6(V )0 is reducible, a contradiction.

Lemma 3.8 If |J |3 = 32, then F is as in Table 7.

Proof. Let V ∼= 32 be a Sylow 3-subgroup of J (also of F , by Lemma 3.5).
By Propositions 2.6(ii) and 2.4, CG(V ) = A4

2 and NG(A4
2)/A

4
2
∼= GL2(3). There is

no involution in CF (V ), so J = Fit(F ) = V and F/J is a nontrivial 2-subgroup of
GL2(3).

Suppose first that |F/J | = 2. There are two classes of involutions in GL2(3), with

representatives i = −I and t =

(
−1 0
0 1

)
. Then i induces a graph automorphism

on each A2 factor of CG(V ), so CG(V, i)0 = A4
1; and t fixes two A2 factors, inducing

a graph automorphism on one of them, so CG(V, t)0 = A1Ā2A2. Both these groups
F = 32.2 are in Table 7.

If F/J ∼= 22, we can take F = 〈V, i, t〉 and so CG(F )0 = A2
1A1, as in Table 7.

Next suppose F/J ∼= Z4. There is one class of elements of order 4 in GL2(3),

with representative u =

(
0 1
−1 0

)
; this swaps two pairs of A2 factors, and squares

to i. Hence CG(F )0 = CG(V, u)0 = A2
1, as in Table 7.

If F/J ∼= Dih8, we can take F = 〈V, u, t〉, and again CG(F )0 = A2
1.

Now suppose F/J ∼= Q8. Then F/J acts transitively on the four A2 factors,
and contains i, so CG(F )0 = A1, a diagonal subgroup of A4

1 < A4
2. We claim that

CG(F )0 is reducible. To see this, observe that A4
1 centralizes the involution i; this

involution corresponds to w0, the longest element of the Weyl group of G, and so
CG(i) = D8. Now it is easy to check that CG(F )0 = A1 is reducible in this D8.
Indeed, A4

1 acts as (1, 1, 1, 1) on the natural module for D8 and hence a diagonal
subgroup A1 acts as 4 + 23 + 02. Thus F/J ∼= Q8 is impossible, and we have now
covered all possibilities for F/J .

Lemma 3.9 If |J |5 ≥ 5, then F is as in Table 7.
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Proof. Suppose |J |5 ≥ 5, and let x ∈ J have order 5. As CG(x) = A2
4 by

Proposition 2.2, there is no element of order 5 in CF (x) \ 〈x〉, and so 〈x〉 is a Sylow
5-subgroup of F .

As F has no element of order 10 or 15, we have CF (x) = 〈x〉, and |F | = 10 or
20. By Proposition 2.4, NG(A2

4)/A
2
4 = 〈t〉 ∼= Z4, where t interchanges the two A4

factors and t2 induces a graph automorphism on both. Hence F is either Dih10 or
Frob20, and CG(F )0 = B2B2 or B2, respectively, as in Table 7.

Lemmas 3.6 – 3.9 cover all cases where the Fitting subgroup J is nontrivial.

Lemma 3.10 Suppose J = Fit(F ) = 1. Then F = Alt5 or Sym5 is as in Table 7.

Proof. In this case S := soc(F ) is a direct product of nonabelian simple groups.
As 52 does not divide |F |, in fact S is simple. Proposition 1.2 of [10] shows that
S ∼= Alt5 or Alt6.

Suppose S ∼= Alt5. Then S has subgroups D ∼= Dih10 and A ∼= Alt4, and by
what we have already proved, these subgroups are in Table 7. Hence the involutions
in S are in the class 2B (since those in A are in this class). If the elements of order
3 in S are in class 3A (with centralizer A8), then from [5, 3.1] we see that the traces
of the elements in S of orders 2, 3, 5 on L(G) are −8,−4,−2 respectively, and hence

dimCL(G)(S) =
1

60
(248− 8 · 15− 4 · 20− 2 · 24) = 0,

which is a contradiction. It follows that the elements of order 3 in S are in the class
3B, with centralizer A2E6 and trace 5, so that

dimCL(G)(S) =
1

60
(248− 8 · 15 + 5 · 20− 2 · 24) = 3.

Since CG(D)0 = B2B2 < A4A4, it follows that CG(S)0 = A1, embedded diagonally
and irreducibly in A4A4. Also CG(A1) = Sym5 by [10, 1.5]. Hence F = Alt5 or
Sym5 and CG(F )0 = A1, as in Table 7.

Finally, suppose S ∼= Alt6 and choose a subgroup T < S with T ∼= Alt5. By
the above, CG(T )0 = A1 and so CG(S)0 must also be A1. But as observed before,
CG(A1) = Sym5, a contradiction.

We have now established that F and CG(F )0 must be as in Table 7. To complete
the proof of Theorem 1, we need to establish that all these examples exist. This is
proved in the following lemma.

Lemma 3.11 Let F and CG(F )0 be as in Table 7. Then CG(F )0 is G-irreducible.

Proof. Any subgroup containing aG-irreducible subgroup is itselfG-irreducible.
Thus we need only consider the subgroups CG(F )0 for which F is maximal. These
subgroups are given in Table 1; let X be such a subgroup CG(F )0.

Firstly, if X has maximal rank then X is clearly G-irreducible. For the subgroups
not of maximal rank we use the fact that a subgroup with no trivial composition
factors on L(G) is necessarily G-irreducible (since the Lie algebra of the centre of
a Levi subgroup gives a trivial composition factor). It thus remains to show X has
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no trivial composition factors on L(E8). We find the composition factors of X on
L(G) by restriction from a maximal rank overgroup Y , as given in the last column of
Table 7. The restrictions L(G) ↓ Y are given in [12, Lemma 11.2, 11.3] for all of the
maximal rank overgroups Y except for A1A7, A

4
1D4 and A4

2. The latter subgroups
are contained in A1E7, D

2
4 and A2E6, respectively, and it is straightforward to

compute their composition factors on L(G).

We finish the proof with two examples of how to calculate the composition factors
of L(G) ↓ X from those of a maximal rank overgroup Y . The others all follow
similarly and in each case there are no trivial composition factors.

For the first example, let X = B3
2 so p 6= 2 and X is contained in the maximal

rank overgroup D8. From [12, Lemma 11.2],

L(G) ↓ D8 = V (λ2) + V (λ7),

the sum of the exterior square of the natural module for D8 and a spin module.
To find the restriction of the spin module VD8(λ7) to X we consider the chain of
subgroups X < B2D5 < B2B5 < D8. By [12, Lemma 11.15(ii)], VD8(λ7) ↓ B2B5 =
01 ⊗ λ5. Also, VB5(λ5) ↓ D5 = λ4 + λ5 and VD5(λi) ↓ B2

2 = 01 ⊗ 01 for i = 4, 5.
Therefore,

L(G) ↓ X =
∧2

(10⊗ 00⊗ 00 + 00⊗ 10⊗ 00 + 00⊗ 00⊗ 10 + 0) + (01⊗ 01⊗ 01)2

and this has no trivial composition factors.

For the second example, let X = A1D4. Here p = 3 and X is contained in a
maximal rank subgroup A1A7. Then using the restriction L(G) ↓ A1E7 given in [12,
Lemma 11.2] we find

L(G) ↓ A1A7 = 2⊗ 0 + 1⊗ λ2 + 1⊗ λ6 + 0⊗ (λ1 + λ7) + 0⊗ λ4.

It is sufficient to show there are no trivial composition factors for D4 acting on
VA7(λ) for λ = λ1 + λ7 and λ4. By weight considerations, the first module restricts
to D4 as V (2λ1) + V (λ2) and the second as V (2λ3) + V (2λ4). Hence L(G) ↓ X has
no trivial composition factors.

This completes the proof of Theorem 1 for G = E8.

3.2 The case G = E7

In this section we prove Theorem 1 for G = E7, of adjoint type. Let F be a finite
subgroup of G such that CG(F )0 is G-irreducible. As before, CG(F )0 is semisimple
and CG(E)0 is G-irreducible for all nontrivial subgroups E of F . Also F is a {2, 3}-
group by Proposition 2.2.

Lemma 3.12 If F is an elementary abelian 2-group, then F is as in Table 8.

Proof. We may suppose that |F | > 2. If F has an element e in the class 2B,
then any further element f ∈ F\〈e〉 must lie in CG(e)\CG(e)0 = A7.2\A7, and hence
F = 〈e, f〉 ∼= 22; moreover CG(F )0 = D4, as in the proof of Lemma 3.2. Hence F is
as in Table 8.

So now suppose that F is 2A-pure. Let 1 6= e ∈ F and e1 ∈ F\〈e〉. Then
CG(e) = A1D6, and diagonalizing in SO12 as in Lemma 3.1, we can take e1 =
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(−14, 18). Hence CG(e, e1)
0 = A3

1D4. If there is an element e2 ∈ E\〈e, e1〉, then we
can take e2 = (14,−14, 14), and so CG(e, e1, e2)

0 = A7
1. Both these possibilities are

in Table 7, and there are no further possible elements in F .

Lemma 3.13 If F is a 2-group containing an element of order 4, then F is as in
Table 8.

Proof. Let e ∈ F of order 4. By Proposition 2.2 we have CG(e)0 = A1A
2
3.

Suppose F 6= 〈e〉, so there exists f ∈ F such that ef = e−1. Now CG(e2) = A1D6,
and diagonalizing in SO12 as in Lemma 3.1, we may take e = (−16, 16) and f ∈
{f1, f2}, where

f1 = (−1, 15,−13, 13), f2 = (−13, 13,−13, 13).

If f = f1 then CG(e, f)0 = Ā1B
2
1B2 and 〈e, f〉 ∼= Dih8; and if f = f2 then

CG(e, f)0 = Ā1B
4
1 and 〈e, f〉 ∼= Q8. Both possibilities are in Table 8. Finally,

there are no possible further elements of F , as can be seen by diagonalizing in the
usual way.

In view of the previous two lemmas we assume from this point that F contains
an element x of order 3. Let J be the Fitting subgroup of F . Note that F does
not contain an element of order 6 by Proposition 2.2. Therefore J is a 2-group or a
3-group.

Lemma 3.14 If J is a 3-group then F and CG(F )0 are as given in Table 8.

Proof. Suppose |J | = 3. If |F | = 3 then by Proposition 2.2 we have CG(F ) =
A2A5. Otherwise F ∼= Dih6 and CG(F )0 = A1C3 or A1A3.

Finally, |J | > 3 is impossible because the centralizer of an element of order 3 in
A2A5 is not A2A5-irreducible.

We may now assume that J is a 2-group. By Lemmas 3.12 and 3.13, J is as in
Table 8 and the action of x shows that the only possibilities are J ∼= 22, 23 or Q8.

Lemma 3.15 If J ∼= 22 then F and CG(F )0 are as given in Table 8.

Proof. Suppose CG(J)0 = A3
1D4. By Proposition 2.4, NG(A3

1D4)/A
3
1D4

∼=
Sym3 acting simultaneously on both theA3

1 and theD4 factors. Therefore CG(J, x)0 =
A1A2 or A1G2 with 〈J, x〉 ∼= Alt4. The subgroup A1G2 is A1D6-reducible by Propo-
sition 2.7, and therefore does not appear in Table 8. If F 6= 〈J, x〉 then we must
have F ∼= Sym4 with CG(F )0 = A1A1.

Now suppose CG(J)0 = D4 < A7. By [7, Lemma 2.15], we have NG(D4)/(D4 ×
CG(D4)) ∼= Sym3. Therefore CG(J, x)0 = A2 or G2. The subgroup G2 is A7-
reducible and therefore does not appear in Table 8. If F 6= 〈J, x〉 then F ∼= Sym4

with CG(F )0 = A1.

Lemma 3.16 There are no possible subgroups F with J ∼= 23 or Q8.

Proof. Suppose J ∼= 23 so CG(J)0 = A7
1. By Proposition 2.4 we have

NG(A7
1)/A

7
1
∼= GL3(2). The element x ∈ F therefore acts as a product of two
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disjoint 3-cycles on the seven A1 factors. But the centralizer CG(J, x)0 is then
A1D6-reducible by an argument in the first paragraph of the proof of Lemma 3.6.

Finally, if J ∼= Q8 and CG(J)0 = A1B
4
1 , then CG(J, x)0 = A1B1B1 which is

clearly A1D6-reducible.

The proof of Theorem 1 for G = E7 is now complete, apart from showing that
all the subgroups CG(F )0 in Table 8 are G-irreducible. This is proved in similar
fashion to Lemma 3.11.

3.3 The case G = AutE6

Let G = AutE6 = E6.2, and let F be a finite subgroup of G such that CG′(F )0 is
G′-irreducible.

Lemma 3.17 If F has an element x of order 4, then F = 〈x〉 and CG′(F )0 = A1A3.

Proof. By Proposition 2.3, CG(x)0 = A1A3. By Proposition 2.7, A1A3 contains
no proper A1A5-irreducible connected subgroups and therefore F = 〈x〉 as claimed.

We now assume that F has no element of order 4.

Lemma 3.18 If F is an elementary abelian 2-group then it appears in Table 10.

Proof. If |F | = 2 then F and CG(F )0 are as in Table 10 by Proposition
2.2. Now suppose F = 〈t, u〉 ∼= 22. Then CG(t)0 = A1A5, F4 or C4 and therefore
CG(F )0 = A1A3, A1C3, B4 or C2

2 . The A1A3 case is ruled out by Lemma 3.17.
The B4 and C2

2 subgroups are both contained in D5-parabolic subgroups. Therefore
CG(F )0 = A1C3. Finally, if F has a further involution v then CG(F )0 = A2

1C2,
which by Proposition 2.7 is A1A5-reducible.

We now let J be the Fitting subgroup of F . Since F is a {2, 3}-group, J is
nontrivial.

Lemma 3.19 If J is not a 2-group or a 3-group, then F is as in Table 10.

Proof. Under the assumptions of the lemma, J has an element x of order 6.
Then CG(x)0 = A2A2 by Proposition 2.3. If F 6= 〈x〉 then there exists an element
t ∈ F \ J inverting x with t2 ∈ J . Since F has no element of order 4 we have
t2 = 1 and 〈J, t〉 ∼= Dih12. The element t induces a graph automorphism on both
A2 factors and so CG(J, t)0 = A1A1. Since the two factors are non-conjugate, there
is no element swapping them and hence F = 〈J, t〉.

Lemma 3.20 If J is a 2-group then F = J .

Proof. The possibillities for the 2-group J are in Table 10, from which we see
that no element of order 3 can act as a graph automorphism on CG(J)0.

Lemma 3.21 If J is a 3-group then F is as in in Table 10.
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Proof. Suppose J = 〈x〉 ∼= Z3. If F = J then CG(F )0 = A3
2 by Proposition 2.2.

Otherwise, F = 〈J, t〉 ∼= Dih6 where t is an involution in NG(A3
2)/A

3
2
∼= 2 × S3 by

Proposition 2.4. This gives two possibilities for t. If t is the central involution then
t induces a graph automorphism on each factor A2 and CG(J, t)0 = A3

1. If t is not
central then CG(J, t)0 = A1A1.

Now suppose |J | > 3 and let x, y ∈ J with 〈x, y〉 ∼= 32. Then CG(x) = A3
2.3 and

y cyclically permutes the three A2 factors, so CG(x, y)0 is a diagonal subgroup A2.
However, the elements in class 3A have trace −3 on L(G) and so

dimCL(G)(S) =
1

9
(78− 8 · 3) = 6,

a contradiction.

Finally, we need to prove that all the subgroups CG(F )0 in Table 10 are G′-
irreducible.

Lemma 3.22 Let F and CG(F )0 be as in Table 9. Then CG(F )0 is G′-irreducible.

Proof. This is proved in a similar fashion to Lemma 3.11 for most of the
subgroups. Specifically, all of the subgroups have no trivial composition factors on
L(G) except for A1A5, Ā1C3 and Ā1A3 when p = 3, all of which have exactly one
trivial composition factor. There are no Levi subgroups of G′ containing a subgroup
of type A1A5 or A1C3. Hence both are G′-irreducible.

Now consider X = A1A3. Assume X is G′-reducible and choose a minimal
parabolic subgroup P containing X. By [11, Theorem 1], X is contained in a
Levi subgroup L of P and by minimality X is L-irreducible. Hence L = D5T1 or
A1A3T2, where Ti denotes a central torus of rank i. The second possibility is ruled
out since X has only one trivial composition factor on L(G). So X is an irreducible
subgroup of L′ = D5. The A1 factor of X is generated by root groups of D5 and
so CD5(A1)

0 = A1A3. Thus CD5(X)0 contains a subgroup A1, contradicting the
L-irreducibility of X. Hence X is G′-irreducible, as required.

This completes the proof of Theorem 1 for G = AutE6.

3.4 The case G = F4

Let G = F4, and let F be a finite subgroup of G such that CG(F )0 is G-irreducible.

Lemma 3.23 If F is an elementary abelian 2-group, then F and CG(F )0 are given
in Table 11.

Proof. If F ∼= Z2 then CG(F ) = B4 or A1C3 by Proposition 2.2. Now suppose
F = 〈t, u〉 ∼= 22. Then u ∈ CG(t) = B4 or A1C3. Therefore CG(F )0 = D4 or A2

1B2.
Now suppose |F | > 4. A 22 subgroup of F must contain a 2A involution, say t,
with centralizer B4. Then B4/〈t〉 ∼= SO9 and the image of F in SO9 is elementary
abelian by Proposition 2.5. Since CG(F )0 is G-irreducible, it follows that the image
is 〈u, v〉 ∼= 22 with u = (−18, 1) and v = (−14, 15). Therefore CSO9(F )0 = SO4SO4,
and so CG(F )0 = A4

1.
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Lemma 3.24 If F is a 2-group containing an element x of order 4, then F and
CG(F )0 are given in Table 11.

Proof. By Proposition 2.2, CG(x) = A1A3. Now suppose |F | > 4. Since
A1A3 is not contained in A1C3 it follows that CG(x2) = B4. Therefore F/〈x2〉 is
elementary abelian in SO9. Diagonalizing as before we may assume x = (13,−16).
Since CG(F )0 is G-irreducible, it must be the case that |F/〈x2〉| = 4 and a further
involution in F is either u1 = (−16, 13) or u2 = (15,−14). In the first case the order
of xu1 is 4 and hence F ∼= Q8 with CG(F )0 = B3

1 . In the second case the order of
xu2 is 2 and hence F ∼= Dih8 with CG(F )0 = B1B2.

Now let J be the Fitting subgroup of F . Since F has no element of order 6 it
follows that J is either a 2-group or a 3-group.

Lemma 3.25 If J is a 2-group then F and CG(F )0 are given in Table 11.

Proof. By the previous two lemmas we may assume that F is not a 2-group,
hence contains an element x of order 3. The only possibilities for J are 22, 23 or
Q8, with CG(J)0 = D4, A

4
1 or B3

1 , respectively. The last two cases are ruled out
since any proper diagonal connected subgroup of A4

1 or B3
1 such that each projection

involves no nontrivial field automorphisms is not B4-irreducible by Proposition 2.7.

Hence J ∼= 22 and CG(J)0 = D4. If F = 〈J, x〉 ∼= Alt4, then CG(F )0 = A2 or
G2; and G2 is not possible since it is contained in a Levi subgroup of type B3. And
if F 6= 〈J, x〉 then F ∼= Sym4 and CG(F )0 = A1.

Lemma 3.26 If J is a 3-group then F and CG(F )0 are given in Table 11.

Proof. Let J = 〈x〉, so CG(x) = A2A2. Proposition 2.4 givesNG(A2A2)/A2A2 =
〈t〉 ∼= Z2, where t acts as a graph automorphism on each factor. Therefore F =
〈x, t〉 ∼= Dih6 with CG(F )0 = A1A1.

As before, the fact that all the subgroups CG(F )0 in Table 11 are G-irreducible
is proved in similar fashion to Lemma 3.11; in particular they all have no trivial
composition factors on L(G).

This completes the proof of Theorem 1 for G = F4.

3.5 The case G = G2

Lemma 3.27 Let F be a finite subgroup of G = G2 such that CG(F )0 is G-
irreducible. Then F and CG(F )0 are as in Table 12.

Proof. By Proposition 2.2, nonidentity elements of F have order 2 or 3. If
F is a 2-group then F contains an involution t with CG(t) = A1A1; the centralizer
of an involution in A1A1 is reducible and therefore F = 〈t〉. Similarly, if F is
a 3-group then F = 〈u〉 ∼= 3 and CG(F ) = A2. The only remaining possibility is
F = 〈t, u〉 ∼= Dih6. Since NG(A2)/A2

∼= 2, such an example exists and CG(F )0 = A1.

This completes the proof of Theorem 1.
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4 Proof of Proposition 3

In this section we prove the following generalisation of Proposition 3.

Proposition 4.1 Let G be a classical simple adjoint algebraic group in characteris-
tic p ≥ 0 with natural module V , and let H = AutG. Suppose F is a finite subgroup
of H such that CG(F )0 is G-irreducible. Then F is an elementary abelian 2-group
(or a group of order 3 or 6 in the case where G = D4), and one of the following
holds.

(i) G = PSLn, F ∩G = 1, |F | = 2 and

if n is even, then CG(F )0 = PSpn or PSOn (p 6= 2);

if n is odd, then p 6= 2 and CG(F )0 = PSOn.

(ii) G = H = PSp2n, p 6= 2, and taking preimages in Sp2n,

CSp2n(F )0 =
∏
i

Sp2ni =
∏
i

Sp(Wi),

where
∑
ni = n and Wi are the distinct weight spaces of F on V .

(iii) G = PSOn (n 6= 8), H = POn, p 6= 2, and taking preimages in On,

COn(F )0 =
∏
i

SOni =
∏
i

SO(Wi),

where ni ≥ 3 for all i,
∑
ni = n or n− 1, and Wi are weight spaces of F .

(iv) G = PSO2n (n 6= 4), p = 2, F ∩G = 1, |F | = 2 and CG(F )0 = SO2n−1.

(v) G = D4 = PSO8, H = D4.Sym3, and F , CG(F )0 are as in Table 6.

Proof. First suppose G = PSLn. If F ∩G 6= 1 then CG(F ∩G)0 is reducible, so
F∩G = 1. Hence |F | = 2 and now the conclusion in part (i) follows from Proposition
2.1. Similarly, if G = Dn = PSO2n with n 6= 4 and p = 2 (so that H = G.2), then
F ∩G = 1, |F | = 2 and CG(F )0 = Bn−1 by Proposition 2.1, as in (iv).

Now suppose G = PSp2n. Then H = G and the centralizer in G of any element
of order greater than 2 is reducible. Hence F is an elementary abelian 2-group and
p 6= 2. The preimage F̂ of F in Spn must also be elementary abelian, and if we
let Wi (1 ≤ i ≤ k) be the weight spaces of F̂ on V , then V = W1 ⊥ · · · ⊥ Wk and
CSp2n(F̂ ) =

∏
Sp(Wi), as in conclusion (ii).

A similar proof applies when G = PSOn with n 6= 8 and p 6= 2, giving (iii).

It remains to handle G = D4 = PSO8. Here H = G.Sym3. If F ≤ PO8 = G.2
then the above proof shows that F = 2 or 22 is as in Table 6. Now suppose 3 divides
|F |, so that F contains an element x of order 3 inducing a triality automorphism on
G. By Proposition 2.1, CG(x) = G2 or A2, with p 6= 3 in the latter case.

If there is an element y ∈ CF (x) \ 〈x〉, then y ∈ G2 or A2 has irreducible
centralizer, which forces y to be an involution in G2. So in this case F = 〈x, y〉 ∼= Z6

and CG(F ) = CG2(y) = Ā1A1, as in Table 6. This subgroup has composition factors
of dimensions 1, 3 and 4 on V , so is G-irreducible.
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Table 6: G = AutD4: finite subgroups F with irreducible centralizer

F F ∩G0 CG(F )0

2 2 A4
1 (p 6= 2)

1 B3

1 B1B2 (p 6= 2)
22 2 A2

1B1 (p 6= 2)
3 1 G2

1 A2 (p 6= 3)
6 2 Ā1A1 (p 6= 2)

Dih6 1 G2

A1 (p 6= 2, 3)

We may now suppose that CF (x) = 〈x〉 and F 6= 〈x〉. This implies that F =
〈x, t〉 ∼= Dih6. If CG(x) = G2 then t must centralize G2, so that CG(F ) = G2. And
if CG(x) = A2 then t induces a graph automorphism on A2 (see Proposition 2.1), so
CG(F ) = A1 and p 6= 2, as in Table 6. This completes the proof.

5 Tables of results

This section consists of the tables referred to in Theorem 1.
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Table 7: G = E8: finite subgroups F with irreducible centralizer

F CG(F )0 elements of F maximal rank
overgp. of CG(F )0
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32.2 A4
1 2B9, 3B8 A4

2
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2

32.4 A2
1 2B9, 3B8, 4B18 A4

2

32.22 A2
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2

32.Dih8 A2
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Table 8: G = E7 (adjoint): finite subgroups F with irreducible centralizer

F CG(F )0 elements of F maximal rank
overgp. of CG(F )0

2 A1D6 2A
A7 2B

22 A3
1D4 2A3

D4 2B3 A7

23 A7
1 2A7

4 A1A
2
3 2A, 4A2

Dih8 Ā1B
2
1B2 2A5, 4A2 A1D6

Q8 Ā1B
4
1 2A, 4A6 A1D6

3 A2A5 3A
Dih6 A1C3 2A3, 3A2 A2A5

A1A3 2B3, 3A2 A2A5

Alt4 A1A2 2A3, 3A8 A3
1D4

A2 2B3, 3A8 A7

Sym4 A1A1 2A9, 3A8, 4A6 A3
1D4

Table 9: G = E6: finite subgroups F with irreducible centralizer

F CG(F )0 elements of F maximal rank
overgp. of CG(F )0

2 A1A5 2A
3 A3

2 3A2

Dih6 A1A1 2A3, 3A2 A3
2

Table 10: G = AutE6: finite subgroups F with irreducible centralizer

F F ∩G0 CG(F )0 elements of F maximal rank
overgp. of CG(F )0

2 2 A1A5 2A
1 F4 2B
1 C4 2C

4 2 Ā1A3 2A, 4A2 A1A5

22 2 Ā1C3 2A, 2B, 2C A1A5

3 3 A3
2 3A2

Dih6 Dih6 A1A1 2A3, 3A2 A3
2

Dih12 Dih6 A1A1 2A3, 2B, 2C3, 3A2, 6A2 A3
2
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Table 11: G = F4: finite subgroups F with irreducible centralizer

F CG(F )0 elements of F maximal rank
overgp. of CG(F )0

2 B4 2A
A1C3 2B

22 A2
1C2 2A, 2B2

D4 2A3

23 A4
1 2A3, 2B4

4 A1A3 2A, 4A2

Dih8 B1B2 2A3, 2B2, 4A2 D4

Q8 B3
1 2A, 4A6 B4

3 A2A2 3A2

Dih6 A1A1 2B3, 3A2 A2A2

Alt4 A2 2A3, 3A8 D4

Sym4 A1 2A3, 2B6, 3A8, 4A6 D4

Table 12: G = G2: finite subgroups F with irreducible centralizer

F CG(F )0 elements of F maximal rank
overgp. of CG(F )0

2 A1A1 2A
3 A2 3A2

Dih6 A1 2A3, 3A2 A2

23



Surveys and Monographs, 40.3. American Mathematical Society, Providence,
RI, 1998.

[9] P.B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal
groups PΩ+

8 (q) and of their automorphism groups, J. Algbera 110 (1987), 173–
242.

[10] M.W. Liebeck and G.M. Seitz, Maximal subgroups of exceptional groups of Lie
type, finite and algebraic, Geom. Ded. 36 (1990), 353–387.

[11] M.W. Liebeck and G.M. Seitz, Reductive subgroups of exceptional algebraic
groups, Mem. Amer. Math. Soc. 121 (1996), no. 580.

[12] M.W. Liebeck and G.M. Seitz, Unipotent and nilpotent classes in simple alge-
braic groups and Lie algebras, Mathematical Surveys and Monographs, Vol.180,
American Math. Soc., Providence, RI, 2012.

[13] M.W. Liebeck and D.M. Testerman, Irreducible subgroups of algebraic groups,
Quarterly J. Math 55 (2004), 47–55.

[14] R.V. Moody and J. Patera, Characters of elements of finite order in Lie groups,
SIAM J. Algebra Discrete Math. 5 (1984), 359–383.
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