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Abstract. We prove that every finite non-abelian simple group acts as
the automorphism group of a chiral polyhedron, apart from the groups
PSL2(q), PSL3(q), PSU3(q) and A7.

1. Introduction

Polyhedra and their generalisations to higher ranks, polytopes, are cer-
tain ranked partially ordered sets generalising geometric objects that have
been studied since the Greeks (see [24, Chapter 1]). Those polytopes whose
automorphism group acts transitively on maximal flags are called regular.
They have maximum possible rotational and reflectional symmetries. Those
that are chiral have maximum rotational symmetries but no reflections. It
is already known which finite simple groups are automorphism groups of
abstract regular polyhedra (see below for more details). The main purpose
of this article is to determine which finite simple groups are automorphism
groups of chiral polyhedra.

In order to state the main results we require precise definitions of the
above terms. Following [24], an (abstract) polytope (P,≤) of rank n is
a partially ordered set with a rank function ranging from −1 to n and
satisfying the following properties. The elements of rank i are called the
i-faces of P. There exists a unique least face F−1 and a unique greatest
face Fn. The flags are the maximal totally ordered subsets of P and they
must all contain exactly n + 2 faces of pairwise distinct rank. Two flags Φ
and Ψ are called adjacent if they differ in exactly one face. They are called
i-adjacent if this face is an i-face. The poset P must be strongly connected,
that is, every pair of flags must be connected by a path of adjacent flags in
P. Finally we require that for any (i− 1)-face F and any (i+ 1)- face G of
P such that F ≤ G, there are exactly two i-faces between F and G. If the
rank of P is 3, we call P a polyhedron.

An automorphism of (P,≤) is a bijection of the faces of P that preserves
the order ≤. The set of all automorphisms of (P,≤) with composition forms
a group called the automorphism group of (P,≤) and denoted Γ(P). If Γ(P)
has a unique orbit on the flags of P, we say that P is regular. If Γ(P) has
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two orbits such that any two adjacent flags belong to distinct orbits, we say
that P is chiral.

As defined for instance in [24], a C-group is a group G generated by pair-
wise distinct involutions ρ0, . . . , ρn−1 which satisfy the following intersection
property:

∀J,K ⊆ {0, . . . , n− 1}, 〈ρj | j ∈ J〉 ∩ 〈ρk | k ∈ K〉 = 〈ρj | j ∈ J ∩K〉.

A C-group (G, {ρ0, . . . , ρn−1}) is a string C-group if its generators satisfy
the following relations:

(ρjρk)
2 = 1 ∀j, k ∈ {0, . . . n− 1} with | j − k |≥ 2.

In [24] it is shown that string C-groups and abstract regular polytopes are in
one-to-one correspondence. Every string C-group gives an abstract regular
polytope and, given an abstract regular polytope and one of its base flags,
one can construct a set of distinguished generators that, together with the
automorphism group of the polytope, give a string C-group. In particular,
the automorphism group of an abstract regular polyhedron is generated
by three involutions ρ0, ρ1, ρ2, two of which commute (namely, ρ0, ρ2). In
1980, it was asked in the Kourovka Notebook (Problem 7.30) which finite
simple groups have this property. This was solved by Nuzhin and others in
[25, 26, 27, 28, 23]: every non-abelian finite simple group can be generated
by three involutions, two of which commute, with the following exceptions:

PSL3(q), PSU3(q), PSL4(2n), PSU4(2n),
A6, A7, M11, M22, M23, McL.

The groups PSU4(3) and PSU5(2), although mentioned by Nuzhin as being
generated by three involutions, two of which commute, have recently been
discovered not to have such generating sets by Martin Macaj and Gareth
Jones (personal communication). Thus every finite simple group, apart from
the above exceptions, is the automorphism group of an abstract regular
polyhedron.

Similarly, in [29], it is shown that for a finite group G, the chiral polyhedra
having G as automorphism group are in bijective correspondence with pairs
x, t ∈ G satisfying the following conditions:

(i) G = 〈x, t〉;
(ii) t is an involution;
(iii) there is no involution α ∈ Aut(G) such that xα = x−1, tα = t.

Our main result classifies those finite simple groups G possessing such gen-
erators:

Theorem 1.1. Let G be a non-abelian finite simple group, not A7, PSL2(q),
PSL3(q) or PSU3(q). Then there exist x, t ∈ G such that the following hold:

(i) G = 〈x, t〉;
(ii) t is an involution;
(iii) there is no involution α ∈ Aut(G) such that xα = x−1, tα = t.
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As a consequence, for every nonabelian finite simple group G except A7,
PSL2(q), PSL3(q) or PSU3(q), there exists an abstract chiral polyhedron
having automorphism group G. This result was already known to be true
for the Suzuki groups [16, 13], the small Ree groups [14], the alternating
groups (see Section 5 for details) and some small sporadic groups [12].

We now discuss the exceptions in Theorem 1.1. The groups PSL2(q)
do not have pairs of elements x, t satisfying (i)–(iii) of the theorem; this
a consequence of a result of Macbeath [22], as observed by Singerman [31,
Theorem 3]. For the group A7, an exhaustive computer search shows that
no pair of elements x, t satisfying (i)–(iii) of Theorem 1.1 exists – see [12].

Thus it remains to consider the groups PSL3(q) and PSU3(q); it will be
shown that these also do not possess generators x, t satisfying conditions
(i)–(iii) in a forthcoming paper [19].

The rest of the paper is devoted to the proof of Theorem 1.1. This is
divided into four cases: namely, the case where G is of exceptional Lie type
(Section 3), the case where G is classical (Section 4), the case where G is
an alternating group (Section 5), and the case where G is a sporadic group
(Section 6).

Observe that chiral polyhedra (and regular polyhedra) may be seen also
as regular maps. In a recent paper [15], Gareth Jones has studied much
further the link between automorphism groups of edge-transitive maps and
finite simple groups.

2. Preliminaries

In this section we prove some lemmas needed for the proof of Theorem 1.1,
The first two lemmas are straightforward hence we omit their proofs.

Lemma 2.1. Let G be a finite group, and suppose x, t ∈ G satisfy xt = x−1.
Then the set {y ∈ G : xy = x−1} is contained in the coset CG(x)t.

Lemma 2.2. Let G be a finite group with a subgroup A. Suppose M is a
maximal subgroup of G containing A, such that any two G-conjugates of A
that are contained in M are M -conjugate. Then the number of G-conjugates
of M containing A is |NG(A) : NM (A)|.

For a finite group G and a positive integer r, denote by Ir(G) the set of
elements of order r in G, and let ir(G) = |Ir(G)|.

The next three lemmas provide upper and lower bounds for the numbers
of involutions i2(G) in groups of Lie type. Recall that a simple group of
Lie type over a finite field Fq can be written as (ḠF )′, the derived group of
the fixed point group of a Frobenius endomorphism F of the corresponding
simple adjoint algebraic group Ḡ over F̄q.

We use the notation Lεn(q) (where ε = ±) to denote PSLn(q) when ε = +,
and PSUn(q) when ε = −. Similarly, Eε6(q) denotes E6(q) when ε = + and
2E6(q) when ε = −.
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Lemma 2.3. Let G be a finite simple group of Lie type over Fq, and write
G = (ḠF )′ as above. Let r be the rank of Ḡ, and N the number of positive
roots in the root system of Ḡ. Define

MG =

{
1
2(N + r), if G is of type 2F4,

2G2 or 2B2,
N + r, otherwise.

Then i2(Aut(G)) < 2
(
qMG + qMG−1

)
. Moreover, i2(L2(q)) < q2.

Proof. The first assertion is [18, Prop. 1.3]. The second follows from the
well known fact that L2(q) has one class of involutions, of size q2 − 1 for q
even, and of size1

2q(q ± 1) for q odd. �

For the lower bounds we need the following elementary observation, which
is proved exactly as in the proof of [18, Lemma 1.2(i)].

Lemma 2.4. Suppose {a1, . . . , al} and b1, . . . , bm} are two sets of distinct
integers, all at least 2.

(i) For q ≥ 2 and ε = ±1,∏l
1(qai − ε)∏m
1 (qbi − ε)

>
1

2
q
∑
ai−

∑
bi .

(ii) For q ≥ 3, ∏l
1(qai − 1)∏m
1 (qbi + 1)

>
2

3
q
∑
ai−

∑
bi .

Lemma 2.5. Let G be a finite simple group of Lie type over Fq.
(i) If G is of classical type, then i2(G) > 1

4q
NG, where NG is defined as

follows:
G NG

Lεn(q) (ε = ±) [1
2n

2]
PSp2m(q), PΩ2m+1(q) m2 +m
PΩε

2m(q) (ε = ±) m2 − 1

(ii) If G is of exceptional type, then with one exception i2(G) > 1
2q
NG,

where NG is defined below; the exception is G = E7(q), in which case
i2(G) > 1

4q
NG.

G E8(q) E7(q) Eε6(q) F4(q) G2(q) 2F4(q) 2G2(q) 2B2(q) 3D4(q)
NG 128 70 40 28 8 14 4 3 16

Proof. An asymptotic version of this result is proved in [21, Props. 4.1, 4.3].
To verify the lemma we need to keep track of the constants in the proofs of
those results. To do this for (i), we record in Table 1 some lower bounds for
i2(G) given by the proof of [21, Prop. 4.1]. We then obtain the inequality
i2(G) > 1

4q
NG using Lemma 2.4. The proof of part (ii) is similar, using the

list of involution centralizers given in the proof of [21, Prop. 4.3]; note that
the exceptional bound for G = E7(q) arises because when q is odd we only
have a bound i2(G) ≥ |E7(q) : Aε7(q).2| in this case. �
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Table 1. Lower bounds for i2(G), G classical

G conditions i2(G) ≥
Lε2m(q) q odd |GLε2m(q) : GLm(q2).2| or

|GLε2m(q) : GLεm(q)2.2|
q even |GLε2m(q) : qm

2
GLεm(q)|

Lε2m+1(q) q odd |GLε2m+1(q) : GLεm+1(q)×GLεm(q)|
q even |GLε2m+1(q) : qm

2+2mGLεm(q)GLε1(q)|
PSp2m(q) q odd |Sp2m(q) : GLεm(q).2|

q even |Sp2m(q) : q(m2+m)/2Spm−1(q)| or

|Sp2m(q) : q(m2+3m−2)/2Spm−2(q)|
Ω2m+1(q) q odd |O2m+1(q) : Oεm+1(q)×Oδm(q)|
PΩε

2m(q) q odd,m odd |Oε2m(q) : Oδm+1(q)×Oνm−1(q)|
q odd,m even, ε = − |O−2m(q) : Oδm(q)×O−δm (q)|
q odd,m even, ε = + |O+

2m(q) : (Oδm(q))2.2|
q even |Ωε

2m(q) : q(m2−m+2)/2Spm−1(q)| or

|Ωε
2m(q) : q(m2+m−2)/2Spm−2(q)|

Note that the exponents MG and NG in Lemmas 2.3 and 2.5 are equal,
except in cases where G possesses an involutory graph automorphism (types
Lεn, PΩε

2m, E
ε
6).

3. Proof of Theorem 1.1 for G of exceptional type

Let G be a finite simple group of exceptional Lie type over Fq (i.e. of
type E8, E7, Eε6, F4, G2, 2F4, 2G2, 2B2 or 3D4). Assume that q > 2 when
G is of type G2 or 2F4, and q > 3 for type 2G2 (for the excluded groups,
G2(2)′ ∼= U3(3) and 2G2(3)′ ∼= L2(8) and these will be dealt with as classical
groups in the next section).

WriteG = (ḠF )′, the derived group of the fixed point group of a Frobenius
endomorphism F of the corresponding simple adjoint algebraic group Ḡ over
F̄q. Let d = |ḠF : G|, so that

d =

 (2, q − 1), if G = E7(q),
(3, q − ε), if G = Eε6(q),
1, otherwise.

By [17, Section 2], there is a cyclic maximal torus 〈x〉 of G of order as
given in Table 2. In the table, Φn(q) denotes the nth cyclotomic polynomial
evaluated at q. Morover, T = CḠF (x) is a maximal torus of ḠF of order
d|〈x〉|, and also CAut(G)(x) = T (see [30, 2.8(iii)]).

Let w0 be the longest element of the Weyl group W (Ḡ). Suppose that
w0 = −1 (i.e. Ḡ 6= E6). Then the involutions in NḠ(T ) that invert x are
conjugates of t0, a preimage in N(T ) of w0. Now CḠ(t0) has dimension
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equal to the number of positive roots in the root system of Ḡ. Hence we see
from the lists of possibilities for involution centralizers in G, in [10, Section
4.5] for q odd, and in [1] for q even, that CG(t0) is as given in Table 2.

Similarly, if Ḡ = E6, the involutions in Aut(G) inverting x are conjugate
to t0, a preimage in NG〈τ〉(T ) of w0τ = −1, where τ is an involutory graph
automorphism of G, and again CG(t0) is as in Table 2.

Table 2. Torus 〈x〉 and centralizer CG(t0), G exceptional

G |〈x〉| CG(t0)
E8(q) Φ30(q) D8(q), q odd

[q84].B4(q), q even

E7(q) 1
dΦ18(q)Φ2(q), q ≥ 3 Aε7(q).2, q ≡ ε mod 4

129, q = 2 [q42].B3(q), q even

Eε6(q) 1
dΦ9(q), ε = + C4(q), q odd
1
dΦ18(q), ε = − [q15].C3(q), q even

F4(q) Φ12(q), q ≥ 3 (A1(q)C3(q)).2, q odd
17, q = 2 [q18].A1(q)2, q even

G2(q) Φ6(q), q ≥ 4 (A1(q)A1(q)).2, q odd
13, q = 3 [q3].A1(q), q even

3D4(q) Φ12(q) (A1(q)A1(q3)).2, q odd
[q9].A1(q), q even

2F4(q) q2 +
√

2q3 + q +
√

2q + 1 [q9].A1(q)
2G2(q) q +

√
3q + 1 A1(q)× 2

2B2(q) q +
√

2q + 1 [q2]

Table 3. Maximal overgroups of 〈x〉, G exceptional

G |M(x)| Groups in M(x)
E8(q) 0 −

E7(q), q ≥ 3 1 2E6(q). q+1
d

E7(2) 1 2A7(2).2
Eε6(q) 1 Aε2(q3).3

F4(q), q ≥ 3 (2, q) 3D4(q).3
F4(2) 2 B4(2)

G2(q), q ≥ 5 1 SU3(q).2
G2(4) 2 SU3(4).2, L2(13).2
G2(3) 3 SL3(3).2, SL3(3).2, L2(13)

3D4(q), 2F4(q) 0 −
2G2(q), 2B2(q) 0 −
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Let Inv(x) be the set of involutions in Aut(G) that invert x. By Lemma
2.1 we have Inv(x) ⊆ Tt0. DefineM(x) to be the set of maximal subgroups
of G containing x such that M 6= NG(〈x〉). It is shown in the proof of [11,
Prop. 6.2] that the set M(x) is as given in Table 3.

Define

S =
⋃

α∈Inv(x)

I2(CG(α)) ∪
⋃

M∈M(x)

I2(M).

We claim that

(3.1) i2(G) > |S|.

Given (3.1), there exists an involution t ∈ G such that
(a) t lies in no maximal subgroup of G containing x, and
(b) t centralizes no involution that inverts x.

It then follows that x, t satisfy conditions (i)-(iii) of Theorem 1.1, completing
the proof of the theorem for exceptional groups.

So it remains to prove (3.1). By Lemma 2.1 we have |Inv(x)| ≤ |T |, and
also from the above discussion we know that CG(α) is conjugate to CG(t0)
for all α ∈ Inv(x). Hence

(3.2) |S| ≤ |T | i2(CG(t0)) +
∑

M∈M(x)

i2(M).

Using Lemma 2.3, we obtain the following upper bounds for i2(CG(t0)) and
for
∑

M∈M(x) i2(M):

G i2(CG(t0)) <
∑
i2(M) ≤

E8(q) 2q84(q20 + q19) 0
E7(q) 2q42(q12 + q11) 2(q + 1)(q42 + q41)
Eε6(q) 2q15(q12 + q11) 2(q15 + q12)
F4(q) q22 2(q20 + q19)
G2(q), q ≥ 5 q5 4(q5 + q4)
3D4(q) q11 0
2F4(q), q > 2 q11 0
2G2(q), q > 3 2q2 0

In all these cases we check that the consequent upper bound for |S| using
(3.2) is less than the lower bound for i2(G) given by Lemma 2.5, proving
(3.1).

This leaves the following groups to deal with: G = 2B2(q), G2(3), G2(4)
and 2F4(2)′. In the first case, we see using [32] that i2(CG(t0)) = q−1, while
i2(G) = (q − 1)(q2 + 1), so (3.1) holds. In the other cases we can use [9] to
obtain the precise values of i2(G), i2(CG(t0)) and

∑
i2(M), and again check

that (3.1) holds.
This completes the proof of Theorem 1.1 when G is an exceptional group

of Lie type.
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4. Proof of Theorem 1.1 for G classical

In this section we prove Theorem 1.1 in the case where G is classical.
Let G be a finite simple classical group over Fq, and exclude L2(q), L3(q)

and U3(q). So G is one of the groups

Lεn(q) (n ≥ 4), PSp2m(q) (m ≥ 2), PΩ2m+1(q) (q odd), PΩε
2m(q) (m ≥ 4).

Let V be the natural module for G. As in the previous section, write G =
(ḠF )′, where F is a Frobenius endomorphism of the corresponding simple
adjoint algebraic group Ḡ over F̄q. Define

d =

{
(n, q − ε), if G = Lεn(q)
(2, q − 1), if G = PSp2m(q), PΩ2m+1(q) or PΩε

2m(q).

For convenience we handle first the following groups G:

(4.1)
Lε4(2), Lε4(3), Lε4(4), , Lε4(5), Lε5(2), Lε6(2),
Sp4(2), PSp4(3), Sp4(4), Sp6(2), PSp6(3), Sp8(2),
Ω7(3), Ωε

8(2), PΩ+
8 (3), Ωε

10(2).

For these groups, generators x, t as in Theorem 1.1 can be found by a search
using Magma [4]. So suppose from now on that G is not one of the groups
in (4.1).

The proof follows along the same lines as the previous section. There is an
element x ∈ G of order given in Table 4; in all cases we take x to act either
irreducibly on the natural module V , or irreducibly on both summands of
an orthogonal decomposition V = Vi+V

⊥
i , where dimVi = i ≤ 2. Then T =

CḠF (x) is a maximal torus of order d|〈x〉| and also CAut(G)(T ) = T . Again,
the involutions in Aut(G) that invert x are conjugates of t0, a preimage in
N(T ) of −1 = w0 or w0τ (where τ is an involutory graph automorphism).
The possibilities for CG(t0) are also given in Table 4. (In the symplectic
and orthogonal cases, CG(t0) is either the given group, or the given group
quotiented by the scalars 〈−I〉.)

As in the previous section, define M(x) to be the set of maximal sub-
groups of G containing x such that M 6= NG(〈x〉). We claim that M(x) is
as in Table 5. When 〈x〉 is a Singer subgroup (i.e. the intersection with G of
a cyclic subgroup generated by a Singer cycle of PSL(V )), this follows from
the main theorem of [3]. This covers the cases where G = Ln(q), Un(q) with
n odd, PSp2m(q) and PΩ−2m(q). For the other cases we use [2, Thm. 3.1],
which classifies subgroups of classical groups of orders divisible by numbers
of the form Φd(q), where d > 1

2 dimV . Working through the possible sub-
groups, we find that the only ones containing x are those in Table 5. We
calculate the number of groups in M(x) using Lemma 2.2.

Again let Inv(x) be the set of involutions in Aut(G) that invert x, and
define

S =
⋃

α∈Inv(x)

I2(CG(α)) ∪
⋃

M∈M(x)

I2(M).
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Table 4. Torus 〈x〉 and centralizer CG(t0), G classical

G |〈x〉| CG(t0)

Ln(q), 1
d
qn−1
q−1 PSOεn(q), q or n odd

n ≥ 4 [qn−1]Spn−2(q), q and n even

Un(q), 1
d
qn+1
q+1 , n odd PSOn(q)

n ≥ 4 1
d(qn−1 + 1), n even PSOεn(q), q odd

[qn−1]Spn−2(q), q even

PSp2m(q), 1
d(qm + 1) GLεm(q).2, q ≡ ε mod 4

m ≥ 2 [q
1
2

(m2+3m−2)].Spm−2(q), q and m even

[q
1
2

(m2+m)].Spm−1(q), q even, m odd

PΩ2m+1(q), 1
d(qm + 1) (Oεm(q)×Oε′m+1(q)) ∩G

m ≥ 3, q odd

PΩ+
2m(q), 1

d(qm−1 + 1)(q + 1), m odd (Oεm(q))2.2 ∩G, q odd

m ≥ 4 1
d(qm−1 + 1), m even [q

1
2

(m2+m−2)].Spm−2(q), q and m even

[q
1
2

(m2−m)].Spm−1(q), q even, m odd

PΩ−2m(q), 1
d(qm + 1) (Oεm(q)×O−εm (q)) ∩G, q odd

m ≥ 4 [q
1
2

(m2+m−2)].Spm−2(q), q and m even

[q
1
2

(m2−m)].Spm−1(q), q even, m odd

We aim to show that i2(G) > |S|, which will complete the proof of Theorem
1.1 when G is classical.

As in (3.2) we have |S| ≤ |T | i2(CG(t0)) +
∑

M∈M(x) i2(M), and so it

suffices to prove that

(4.2) i2(G) > |T | i2(CG(t0)) +
∑

M∈M(x)

i2(M).

Lemma 2.3 gives the upper bounds for i2(CG(t0)) and for
∑

M∈M(x) i2(M)

in Table 6, where d(n) denotes the number of prime divisors of n. We can use
these bounds together with Lemma 2.3 to get an upper bound for the right
hand side of (4.2); and Lemma 2.5 gives a lower bound for i2(G). In this
way we check easily that (4.2) holds with the following possible exceptions
(recalling that we have already excluded the groups in (4.1)):

(1) G = Lε4(q), PSp4(q) or PΩε
8(q);

(2) G = Lε5(3), Lε6(3), Lε8(2), Sp6(4), PSp8(3), Sp8(4) or Ωε
12(2).

For the groups under (1), we show that (4.2) still holds, by improving the
lower bound on i2(G) from Lemma 2.5 and the upper bound on i2(CG(t0))
in Table 6; the improved bounds are in Table 7. For i2(G), these improve-
ments follow using the bounds in Table 1 together with Lemma 2.4; and for
i2(CG(t0)) they follow by direct calculation in CG(t0) (this is straightforward
for q odd, and done as in [21, 5.12] for q even).
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Table 5. Maximal overgroups of 〈x〉, G classical

G Groups in M(x) Number
Ln(q) (GLn

r
(qr).r) ∩G, 1 for each r

r prime, r|n
Un(q) (GUn

r
(qr).r) ∩G, 1 for each r

n odd, r prime, r|n
GUn−1(q), n even 1

PSp2m(q) Sp 2m
r

(qr).r, 1 for each r

r prime, r|m
O−2m(q), q even 1

PΩ2m+1(q) O−2m(q) ∩G 1

PΩ+
2m(q) (O−2m−2(q)×O−2 (q)) ∩G 1

(GUm(q).2) ∩G, m even 2
Ω7(q) (irred.), m = 4 d

PΩ−2m(q) (O−2m
r

(qr).r) ∩G, 1 for each r

r prime, r|m
(GUm(q).2) ∩G, m odd 1

Table 6. Upper bounds for i2(CG(t0)) and
∑
i2(M), G classical

G i2(CG(t0)) <
∑
i2(M) ≤

Lεn(q), n even qn−1i2(Spn−2(q)) 2(q + 1)2q
1
2

(n2−n−4)

Lεn(q), n odd i2(PSOn(q)) 2d(n) (q3 + 1)q
1
6

(n2+3n)

PSp2m(q), m even q
1
2

(m2+3m−2)i2(Spm−2(q)) i2(O−2m(q) + d(m) i2(Spm(q2).2)

PSp2m(q), m ≥ 3 odd q
1
2

(m2+m)i2(Spm−1(q)) i2(O−2m(q)) + d(m) i2(Sp2m/r(q
r)),

r largest prime divisor of m

PΩε
2m(q), m ≥ 6 even q

1
2

(m2+m−2)i2(Spm−2(q)) 2(q + 1)2q(m−1)2−1+

2(q + 1)2q
1
2

(m2−m+4)

PΩε
2m(q), m ≥ 5 odd q

1
2

(m2−m)i2(Spm−1(q)) as above

PΩ2m+1(q), m ≥ 3, q odd i2(Oεm(q)×Oε′m+1(q)) i2(O−2m(q))

Using the improved bounds in Table 7, it is straightforward to check that
(4.2) again holds for the groups in (1).

Finally, for the groups under (2) above, we again improve the bounds on
i2(G) and i2(CG(t0)) by direct calculation to show that (4.2) holds.

This completes the proof of Theorem 1.1 when G is a classical group.
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Table 7. Some improved bounds

G i2(G) > i2(CG(t0)) <

Lε4(q) 1
2q

7(q − 1) 2q4

PSp4(q) 1
2q

5(q − 1) 2q3

PΩε
8(q), q even 1

2q
16 q11

PΩε
8(q), q odd 1

8q
16 4q8

5. Proof of Theorem 1.1 for G an alternating group

The existence of a pair x, t in An satisfying (i)–(iii) of Theorem 1.1 for
every n ≥ 8 can be extracted from papers of Conder [5, 6], a more recent
paper by Conder et al. [7], and some easy Magma computations. Gareth
Jones recently gave the following pairs x, t in his plenary lecture at the
conference ”Symmetries and Covers of Discrete Objects” (Queenstown, New
Zealand, February 2016).

For even n ≥ 8, take

x = (2, 3, . . . , n) and t = (1, 2)(3, 4)

And for odd n ≥ 9, take

x = (1, 2, . . . , n) and t = (1, 2)(3, 6)

Elementary arguments show that 〈x, t〉 = An, and it is an easy exercise to
show that x, t also satisfy (iii) of Theorem 1.1.

6. Proof of Theorem 1.1 for G sporadic

In this section, we show that each of the 26 sporadic simple groups has at
least one pair x, t satisfying (i)–(iii) of Theorem 1.1. We shall use the fact
that such pairs give abstract chiral polyhedra, as explained in the preamble
to the theorem. When we give a pair x, y of generators of G, the correspond-
ing pair x, t := xy is the one satisfying conditions (i)–(iii) of Theorem 1.1.
We define the type of a chiral polyhedron to be {p, q}, where x, y have orders
p, q.

6.1. Mathieu groups. The groups Mi with i = 11, 12, 22 were fully in-
vestigated in [12]. They respectively have 66, 118 and 242 non-isomorphic
chiral polyhedra, hence they have that many pairs x, t satisfying (i)–(iii) of
Theorem 1.1.

The following generators of M23 give a chiral polyhedron of type {11, 15}:

x := (1, 14, 17, 21, 10, 5, 2, 16, 18, 12, 8)(3, 6, 19, 22, 15, 9, 20, 23, 4, 7, 11),

y := (1, 8, 6, 10, 21, 22, 19, 12, 11, 7, 4, 5, 3, 18, 9)(2, 23, 20, 16, 13)(14, 15, 17),

and t := xy. The pair x, t satisfies (i)–(iii) of Theorem 1.1.
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The following generators of M24 give a chiral polyhedron of type {23, 15}:
x := (1, 17, 23, 21, 2, 7, 3, 15, 4, 20, 10, 6, 16, 13, 19, 22, 11, 18, 5, 14, 9, 8, 12),

y := (1, 20, 2)(3, 7, 4, 17, 21, 5, 18, 24, 11, 22, 19, 9, 14, 23, 15)(8, 13, 16, 10, 12),

and t := xy. The pair x, t satisfies (i)–(iii) of Theorem 1.1.

6.2. Janko groups. The groups J1 and J2 were investigated in [12]. They
have respectively 1056 and 888 non-isomorphic chiral polyhedra.

A Magma search gave a chiral polyhedron of type {19, 8} for J3. We do
not give its generators here as these are permutations on 6516 points.

The group J4 has i2(J4) = 51, 747, 149, 311. It also has a unique class
of maximal subgroups containing elements of order 29. Take σ ∈ J4 of
order 29. The normalizer NJ4(〈σ〉) = C29 : C28 is maximal in J4. We have
i2(C29 : C28) = 29, and all the 29 involutions are conjugate in J4. There are
two conjugacy classes 2A and 2B of involutions in J4. Using the character
table in Atlas [9], we compute that the structure constant for the classes
2B, 2B, 29A is 1, and hence involutions in C29 : C28 are of type 2B.

Now, the centralizer of an involution of type 2B has structure 211 : (M22 :
2). This subgroup has exactly 280831 involutions. Since 29 · 280831 <<
i2(J4), there must exist at least one chiral polyhedron with automorphism
group J4.

6.3. Conway groups. A non-exhaustive computer search with Magma
gives a chiral polyhedron of type {23, 23} for Co3, one of type {14, 23}
for Co2 and one of type {3, 60} for Co1.

6.4. Fischer groups. The group Fi′24 has Out = 2. In Fi′24, take σ of order
29. We have NAut(Fi′24)(〈σ〉) = C29 : C28. This contains 29 involutions, all in

Fi′24. These involutions belong to class 2B, and their centralizer C in Fi24

satisfies i2(C) = 5741695. Therefore i2(C) · 29 << i2(Fi′24) and so Fi′24 is
the automorphism group of at least one chiral polyhedron.

The group Fi23 hasOut = 1, and for an element σ of order 23, NFi23(〈σ〉) =
C23 : C11. This latter group does not contain any involutions. Moreover,
there is obviously at least one involution that will, with σ, generate the
whole of Fi23.

Finally, a non-exhaustive computer search with Magma gives a chiral
polyhedron of type {11, 13} for Fi22.

6.5. The Monster and the Baby Monster. The MonsterM hasOut = 1
and a unique class of maximal subgroups of order divisible by 71, namely
subgroups L2(71). Moreover, NL2(71)(C71) = C71 : C35, a group of odd
order. Therefore, no element of order 71 in M is conjugate to its inverse.
Take x of order 71 in M . The x is contained in a unique subgroup L2(71)
of M . Therefore, picking t an involution of M not in the L2(71) containing
〈x〉, we have 〈t, x〉 = M . The pair x, t satisfies (i)–(iii) of Theorem 1.1.

The Baby Monster BM has Out = 1 and a unique class of maximal
subgroups containing elements of order 47. Take x an element of order 47
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in BM . We have NBM (〈x〉) = C47 : C23. Any involution t of BM will give
〈x, t〉 = BM . The pair x, t satisfies (i)–(iii) of Theorem 1.1.

6.6. The remaining sporadics. The Thompson group Th has Out = 1,
and for an element x of order 31, NTh(〈x〉) = C31 : C15. This latter group
does not contain any involutions. Moreover, there is obviously at least one
involution that will, with x, generate the whole of Th.

The Lyons group Ly has Out = 1 and a unique class of maximal subgroups
of order divisible by 37, namely groups C37 : C18. Moreover, Ly has a unique
conjugacy class of involutions, and these have centralizers 2 · A11. We have
i2(2 · A11) = 34650. Therefore i2(2 · A11) · 37 << i2(Ly) and Ly is the
automorphism group of at least one chiral polyhedron.

For the O’Nan group O′N , we refer to [8] where all possible types of chiral
polyhedra for O′N have been determined.

Finally, a non-exhaustive computer search with Magma gives a chiral
polyhedron of type {19, 20} for HN , one of type {5, 7} for He, one of type
{14, 29} for Ru, one of type {13, 24} for Suz, one of type {11, 15} for McL,
and one of type {11, 6} for HS.

This completes the proof of Theorem 1.1.

7. Concluding remarks

It would be interesting to prove similar results to Theorem 1.1 and also
that of Nuzhin described in the Introduction, for almost simple (rather than
just simple) groups. Some results in this vein are known. For instance
in [13], it is proved that every almost simple group G with socle Sz(q) is the
automorphism group of at least one abstract chiral polyhedron. And in [20],
it is shown that the only almost simple groups with socle L2(q) that are not
automorphism groups of abstract chiral polyhedra are L2(q), PGL(2, q), and
a group of the form L2(9).2.
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