Subgroups of exceptional algebraic groups which are irreducible on an adjoint or minimal module

Martin W. LiebeckGary M. SeitzDepartment of MathematicsDepartment of MathematicsImperial CollegeUniversity of OregonLondon SW7 2BZEugene, Oregon 97403EnglandUSA

1 Introduction

Let G be a simple algebraic group of exceptional type over an algebraically closed field K of characteristic p. The purpose of this paper is to determine all maximal closed subgroups of G which act irreducibly on either the adjoint G-module or one of the well-known "minimal" modules of dimension $56, 27, 26 - \delta_{p,3}$ or $7 - \delta_{p,2}$ for G of type E_7, E_6, F_4 or G_2 respectively. (The adjective "minimal" here refers to the minimality of the dimension.) This greatly extends [21, Theorem 4] for exceptional groups.

A typical application of this sort of result is the following. We are given a finite subgroup X of G and from given information one determines a subgroup Y < X and a subgroup $\overline{Y} < G$ of positive dimension such that Y and \overline{Y} leave invariant precisely the same subspaces of V. If W is any X-invariant subspace of V, we conclude that W is stabilized by $\langle X, \overline{Y} \rangle$, a group of positive dimension containing X. The maximal subgroups of positive dimension in G are known explicitly, so this yields information on the embedding of X in G, except when X acts irreducibly on V. Hence a list of irreducible subgroups is necessary for understanding the subgroups of G. Our result has already been applied in this way in [24].

In some small characteristics the adjoint module can be reducible for G (see [21, 1.10]): namely, it has a composition factor of codimension 1 for $(G, p) = (E_7, 2)$ or $(E_6, 3)$, and is also reducible for $(G, p) = (F_4, 2)$ or $(G_2, 3)$ (two composition factors of dimension 26, 26 or 7, 7 respectively).

We write V_{adj} for the nontrivial composition factor of the adjoint module for G, excluding $(G, p) = (F_4, 2)$ or $(G_2, 3)$. And write V_{min} for one of the irreducible modules for E_7 , E_6 , F_4 , G_2 of dimension 56, 27, $26 - \delta_{p,3}$, $7 - \delta_{p,2}$ and high weight λ_7 , λ_1 , λ_4 , λ_1 respectively; for $(G, p) = (F_4, 2)$ or $(G_2, 3)$, we include also $V_G(\lambda_1)$ or $V_G(\lambda_2)$ as possibilities for V_{min} , of dimension 26 or 7. The acting group on V_{adj} is of adjoint type, and on V_{min} is of simply connected type, and we take G to be the acting group.

If H is a finite subgroup of G, we say that H is *Lie primitive* if H normalizes no proper nontrivial connected subgroup of G, and we say that H has the same type as G if $F^*(H) = G'_{\sigma}$ for some Frobenius morphism σ of G.

Theorem 1 Let H be a proper closed subgroup of the exceptional algebraic group G. If dim H > 0, assume H is maximal among proper closed subgroups of G; and if H is finite, assume that it is a Lie primitive subgroup, and is not of the same type as G.

(i) If H has positive dimension, then H is reducible on V_{adj} .

(ii) If H is finite and is irreducible on V_{adj} , then H is as in Table 1.1 below.

(iii) If H has positive dimension and is irreducible on V_{min} , then H is as in Table 1.2 below.

(iv) If H is finite and is irreducible on V_{min} , then H is as in Table 1.3 below.

Each entry for H in Table 1.2 corresponds to exactly one conjugacy class of subgroups in Aut(G). In Tables 1.1, 1.3, for each entry there is at least one subgroup H which is irreducible on the relevant module (but we make no uniqueness assertion).

We remark that the proof shows that the same conclusion holds if we allow $G = \operatorname{Aut}(E_6) = E_6.2$ when $V = V_{adj}$.

The proof of Theorem 1 is given in Section 2 for positive dimensional subgroups H, and in Sections 3 and 4 for finite subgroups.

A consequence of the proof of Theorem 1 is the following result concerning irreducible subgroups of finite exceptional groups.

Corollary 2 Let σ be a Frobenius morphism of the exceptional algebraic group G, so that the fixed point group G_{σ} is a finite exceptional group of Lie type over \mathbb{F}_r $(r = p^a)$, and let M be a maximal subgroup of G_{σ} . Suppose M is irreducible on $V \in \{V_{adj}, V_{min}\}$. Then one of the following holds:

(i) M is of the same type as G (possibly twisted) over a subfield of \mathbb{F}_r ;

(ii) V = V_{min} and M = H_σ with H as in Table 1.2;
(iii) F*(M) is as in Table 1.1 (with V = V_{adj}) or in Table 1.3 (with V = V_{min}).

We justify the corollary in Section 5 at the end of the paper.

Notation For X a simple algebraic group over K and λ a dominant weight, we denote by $V_X(\lambda)$ (or just λ) the rational irreducible KX-module of high weight λ , and by $W_X(\lambda)$ the corresponding Weyl module. Also, if V_1, \ldots, V_k are X-modules then $V_1/\ldots/V_k$ denotes an X-module having the same composition factors as $V_1 \oplus \ldots \oplus V_k$.

Table 1.1: Lie primitive finite subgroups H irreducible on an adjoint module

G	V	$F^*(H)$ (H finite irreducible Lie prim.)
E_8	V_{248}	$2^{5+10}.L_5(2) \ (p \neq 2)^*, \ 5^3.L_3(5) \ (p \neq 5)^*,$
		$L_4(5) (p=2), Th (p=3), {}^2F_4(2)' (p=3)^{**}$
E_7	$V_{133-\delta_{p,2}}$	$U_3(8) (p \neq 2), \ M_{22} (p = 5), \ Ru (p = 5), \ HS (p = 5)$
E_6	$V_{78-\delta_{p,3}}$	$3^{3+3} L_3(3) \ (p \neq 3)^*, \ ^2F_4(2)' \ (p \neq 2), \ G_2(3) \ (p = 2),$
		$\Omega_7(3) (p=2), J_3 (p=2), Fi_{22} (p=2), M_{12} (p=5)$
F_4	$V_{52} \left(p \neq 2 \right)$	$3^3.L_3(3) (p eq 3)^*, \ {}^3\!D_4(2)$
G_2	$V_{14} (p \neq 3)$	$2^{3}.L_{3}(2) \ (p \neq 2)^{*}, \ U_{3}(3), \ L_{2}(13) \ (p \neq 3, 13),$
		$J_2 (p=2), \ J_1 (p=11)$

* For these local subgroups, H rather than $F^*(H)$ is listed; moreover, only the maximal versions are listed – some subgroups may also be irreducible.

** Here $H = {}^{2}F_{4}(2) = {}^{2}F_{4}(2)'.2$ and $V_{248} \downarrow {}^{2}F_{4}(2)' = V_{124} \oplus V_{124}'.$

G	V	H (max. irred. of	$ V \downarrow H^0$	Comment
		positive dim.)		
E_7	V_{56}	A ₇ .2	$\lambda_2\oplus\lambda_6$	
		$(A_1)^7.L_3(2)$	see 2.1	
		$(T_7).W(E_7)$	see 2.1	
		$A_2.2 (p > 5)$	$60 \oplus 06$	
		$(2^2 \times D_4).S_3 \ (p \neq 2)$	$(\lambda_2)^2$	
E_6	V_{27}	$(A_2)^3.S_3$	see 2.1	
		$(T_6).W(E_6)$	see 2.1	
		$C_4 (p \neq 2)$	λ_2	
		$G_2 (p \neq 2, 7)$	20	
		$A_2.2 (p \neq 2, 5)$	22	
F_4	$V_{26-\delta_{p,3}}$	$D_4.S_3 (p=2)$	λ_2	D_4 short if $V = V(\lambda_4)$,
				long if $V = V(\lambda_1)$
		$C_4 (p=2)$	λ_2	$V = V(\lambda_4)$
		$B_4 (p=2)$	λ_2	$V = V(\lambda_1)$
		$G_2 (p=7)$	20	
G_2	$V_{7-\delta_{p,2}}$	$A_2.2(p=2,3)$	$10 \oplus 01 (p=2)$	
			11 (p = 3)	A_2 short if $V = V(\lambda_1)$,
				long if $V = V(\lambda_2)$
		$A_1 (p \ge 7)$	6	

Table 1.2: maximal subgroups H of positive dimension irreducible on a minimal module

Table 1.3:	Lie primitive finite	subgroups H	<i>irreducible</i>	on a
	minimal	module		

G	V	$F^*(H)$ (H finite irreducible Lie prim.)		
E_7	V_{56}	$U_3(8) (p eq 2)$		
E_6	V_{27}	$3^{3+3} L_3(3) \ (p \neq 3)^*, \ L_2(8) \ (p \neq 2)^{**}, \ {}^2F_4(2)' \ (p \neq 2),$		
		$L_3(3) \ (p \neq 2, 13)^{***}, \ U_3(3) \ (p \neq 2, 7)^{***},$		
		$G_2(3) \ (p=2), \ \Omega_7(3) \ (p=2),$		
		$Fi_{22} (p=2), J_1 (p=11)$		
F_4	$V_{26-\delta_{p,3}}$	$\overline{3^3.L_3(3) \ (p \neq 3)^*, \ L_2(25) \ (p \neq 5), \ L_2(27) \ (p \neq 3, 7),}$		
		$L_{3}(3) (p \neq 3), \ ^{3}D_{4}(2) (p \neq 2), \ Alt_{9} (p = 2), \ Alt_{10} (p = 2),$		
		$L_4(3) (p=2), \ U_3(3) (p=7)$		
G_2	$V_{7-\delta_{p,2}}$	$2^{3}.L_{3}(2) (p \neq 2)^{*}, L_{2}(7) (p \neq 2), L_{2}(8) (p \neq 2),$		
		$L_2(13) \ (p \neq 13), \ U_3(3) \ (p \neq 3), \ J_1 \ (p = 11), \ J_2 \ (p = 2)$		

* As in Table 1.1, for these local subgroups, H rather than $F^*(H)$ is listed, and only the maximal versions are listed – some subgroups may also be irreducible. ** Here $H = L_2(8).3$ and $V \downarrow L_2(8) = V_9 \oplus V'_9 \oplus V''_9$.

*** We have left in the possibility that p = 3 for $F^*(H) = L_3(3)$ or $U_3(3)$. There exist irreducible such subgroups lying in a connected subgroup A_2 , but we have not determined whether there exist Lie primitive examples.

2 Proof of Theorem 1, I : positive-dimensional subgroups

Suppose that G is a simple algebraic group of exceptional type, and H is a maximal closed subgroup of positive dimension. The possibilities for H are given by [23, Corollary 2].

Observe that part (i) of the Theorem is trivial, as H stabilizes the subspace L(H) of the adjoint module L(G).

Now consider part (iii). Let $V = V_{min}$, one of the minimal modules for $G = E_7, E_6, F_4, G_2$, of dimension 56, 27, $26 - \delta_{p,3}, 7 - \delta_{p,2}$, respectively. Write also $V = V_d$, where $d = \dim V$. Suppose H acts irreducibly on V. Then H is not a parabolic subgroup.

According to [23, Corollary 2], the maximal subgroup H satisfies one of the following conditions:

(a) H is a subgroup of maximal rank; the possibilities are as follows:

G	H^0	H/H^0
G_2	$A_1 ilde{A}_1, A_2$	1, 2
$F_4 (p \neq 2)$	$B_4, D_4, A_1C_3, A_2 ilde{A}_2$	$1, S_3, 1, 2$
$F_4 \left(p = 2 \right)$	$B_4, C_4, D_4, ilde{D}_4, A_2 ilde{A}_2$	$1, 1, S_3, S_3, 2$
E_6	$A_1A_5, A_2^3, D_4T_2, T_6$	$1, S_3, S_3, W(E_6)$
E_7	$A_1D_6, A_7, A_2A_5, A_1^3D_4,$	$1, 2, 2, S_3,$
	A_1^7, E_6T_1, T_7	$L_3(2), 2, W(E_7)$

(where \tilde{A}_r, \tilde{D}_4 denote subgroups generated by short root groups).

(b) H is as in Table 1 of [23, Theorem 1]; the possibilities are:

G	H^0
G_2	$A_1 \ (p \ge 7)$
F_4	$A_1 \ (p \ge 13), \ G_2 \ (p = 7), \ A_1 G_2 \ (p \ne 2)$
E_6	$A_2 (p \neq 2, 3), \; G_2 (p \neq 7), \; A_2 G_2, \; C_4 (p \neq 2), \; F_4$
E_7	A_1 (2 classes, $p \ge 17, 19$ resp.), A_2 ($p \ge 5$), A_1A_1 ($p \ne 2, 3$),
	$A_1G_2 (p eq 2), \; A_1F_4, \; G_2C_3$

(c) $H = (2^2 \times D_4) \cdot S_3 < E_7$.

Lemma 2.1 Theorem 1(iii) holds if H is as in (a) above.

Proof Consider first $G = E_7$. The composition factors of the restriction of V to various maximal rank subgroups are given in [20, 2.3], from which it follows that $H^0 \neq A_1 D_6, A_2 A_5, A_1^3 D_4$ or $E_6 T_1$.

When $H = A_7.2$, we have $V \downarrow A_7 = \lambda_2 \oplus \lambda_6$, and the two summands are interchanged by the outer involution, hence $V \downarrow H$ is irreducible, as in Table 1.2.

Now consider $H^0 = A_1^7$. This is contained in a subsystem A_1D_6 , which has composition factors $1 \otimes \lambda_1/0 \otimes \lambda_5$ on V. Hence there is a subproduct A_1^3 which has a composition factor $1 \otimes 1 \otimes 1$ of dimension 8 in $1 \otimes \lambda_1$. The group $H/H^0 \cong L_3(2)$ permutes 7 such summands transitively, so $V \downarrow H$ is irreducible in this case too.

Now suppose $H^0 = T_7$, a maximal torus. The weights spaces of T_7 on V all have dimension 1 and are permuted transitively by $W(E_7)$. Hence $V \downarrow H$ is irreducible in this case as well.

Next let $G = E_6$. Here [20, 2.3] shows that $H^0 \neq A_1A_5$ or D_4T_2 . When $H^0 = T_6$, $V \downarrow H$ is irreducible as above. And when $H^0 = A_2^3$, [20, 2.3] shows that $V \downarrow A_2^3$ is the sum of three 9-dimensional irreducible summands, permuted transitively by $H/H^0 \cong S_3$, giving irreducibility here as well.

Now let $G = F_4$. When $p \neq 2$ it follows from [20, 2.3] that $V \downarrow H$ is reducible in all cases. So assume p = 2. Then L(G) has two *G*-composition factors λ_1/λ_4 , both of dimension 26. One of these is the ideal generated by short root elements, which affords $V_G(\lambda_4)$, and on which the subsystem group C_4 (generated by short root groups) has highest weight λ_2 . As $V_{C_4}(\lambda_2)$ has dimension 26, $V_G(\lambda_4) \downarrow C_4$ is irreducible. Likewise, so are $V_G(\lambda_1) \downarrow B_4$ and $V_G(\lambda_i) \downarrow D_4$ ($i = 1, 4, D_4$ short if i = 4, long if i = 1).

Finally, when $G = G_2$ and p = 2, the subsystem subgroup A_2 acts on $V = V_6$ as the sum of two 3-dimensional summands interchanged by an outer involution; and when p = 3, subsystem subgroups A_2 (long or short) act irreducibility on the 7-dimensional *G*-modules of high weight λ_2 or λ_1 , respectively.

Lemma 2.2 Theorem 1(iii) holds if H is as in (b) above.

Proof Let H be as in (b). The action of H^0 on V is given in [23, Table 10.2], from which we see that H is as in Table 1.2. The only case where $V \downarrow H^0$ is reducible is $H = A_2.2 < E_7$, where $V \downarrow H^0 = 60 \oplus 06$; here the outer involution in H interchanges the two irreducible summands, so $V \downarrow H$ is irreducible.

Lemma 2.3 Theorem 1(iii) holds if H is as in (c) above.

Proof This subgroup was constructed in [6, 2.15], and lifts to a subgroup $(Q_8 * D_4).S_3$ in simply connected E_7 . The connected component $H^0 = D_4$ lies in a subsystem A_7 of G, and hence $V \downarrow D_4 = (\lambda_2)^2$. It follows that $V \downarrow Q_8 * D_4 = V_2 \otimes \lambda_2$, where V_2 is an irreducible 2-dimensional Q_8 -module. In particular $V \downarrow H$ is irreducible, as in Table 1.2.

This completes the proof of Theorem 1(iii).

3 Proof of Theorem 1, II : finite subgroups not in Lie(p)

Let G be a simple algebraic group of exceptional type, and \hat{H} a finite Lie primitive subgroup of G. Suppose \hat{H} acts irreducibly on one of the G-modules V_{adj}, V_{min} defined in the Introduction. Write H for the image of \hat{H} in the adjoint group of type G.

For convenience we list the dimensions of the modules V_{adj} , V_{min} :

G	$\dim V_{adj}$	$\dim V_{min}$
E_8	248	—
E_7	$133 - \delta_{p,2}$	56
E_6	$78 - \delta_{p,3}$	27
F_4	$52 (p \neq 2)$	$26 - \delta_{p,3}$
G_2	$14 (p \neq 3)$	$7 - \delta_{p,2}$

Lemma 3.1 Theorem 1(ii, iv) holds if H is not almost simple.

Proof Suppose H is not almost simple. By assumption, H is Lie primitive. Hence, according to a result of Borovik (see [2]), one of the following holds:

(i) H is contained in one of the following finite local subgroups:

$$G = G_2: \quad H = 2^3 L_3(2) \ (p \neq 2)$$

$$G = F_4: \quad H = 3^3 L_3(3) \ (p \neq 3)$$

$$G = E_6: \quad H = 3^{3+3} L_3(3) \ (p \neq 3)$$

$$G = E_8: \quad H = 5^3 L_3(5) \ (p \neq 5) \ \text{or} \ 2^{5+10} L_5(2) \ (p \neq 2)$$

(ii)
$$H = (Alt_5 \times Alt_6) \cdot 2^2 < G = E_8 \ (p \neq 2, 3, 5) \cdot 2^2$$

Each of the subgroups listed in (i) acts irreducibly on $L(G) = V_{adj}$, by [3], while the subgroup in (ii) clearly does not.

Finally, the subgroups in (i) (with $G \neq E_8$) also act irreducibly on V_{min} , since in each case dim V_{min} is the minimal dimension of a faithful module for \hat{H} in characteristic p: this is clear in all cases except $G = E_6$, where $\hat{H} = 3^{1+3+3}.L_3(3)$. Here \hat{H} has a subgroup $3^3.L_3(3)$ lying in a subgroup F_4 , hence has a subgroup $3 \times 3^3.L_3(3)$ leaving invariant a 1-space of V; therefore $V \downarrow \hat{H}$ is an induced module and is irreducible.

In view of the previous lemma, assume from now on that H is almost simple, and let $H_0 = F^*(H)$, a non-abelian finite simple group. We next record some well known information concerning the action of G on the modules V_{adj}, V_{min} . Recall that by our definition, V_{adj} is not defined when $(G, p) = (F_4, 2)$ or $(G_2, 3)$.

Lemma 3.2 (i) G acts as an adjoint group on V_{adj} , and preserves a nondegenerate bilinear form.

(ii) G acts as a simply connected group on V_{min} , preserving bilinear forms as follows:

G	V	type of form
E_7	V_{56}	symplectic
E_6	V_{27}	not self-dual
F_4	$V_{26-\delta_{p,3}}$	orthogonal
G_2	$V_7, p \neq 2$	orthogonal
	$V_6, p=2$	symplectic

Lemma 3.3 Let $K = \mathbb{C}$, $V = V_{adj}$ or V_{min} , let $n = \dim V$ and let χ_n be the character of G on V. Let $t \in G$ be an element satisfying one of the following conditions:

(i) $t^2 \in Z(G);$

(ii) t has order 3; moreover, if G is adjoint of type E_6 , then t lifts to an element of order 3 in the simply connected group;

(iii) t has order 5 and is a rational element (i.e. G-conjugate to all its nontrivial powers).

Then the possibilities for $C_G(t)^0$ and the values of $\chi_n(t)$ are recorded in in Table 1 below.

n	G	order of t	$C_G(t)^0$	$\chi_n(t)$
248	E_8	2	$A_{1}E_{7}$	24
			D_8	-8
		3	A_8	-4
			A_2E_6	5
			D_7T_1	14
			E_7T_1	77
		5	A_4A_4	-2
			D_6T_2	23
133, 56	$E_7 ({\rm adj., s.c.})$	2, 2	A_1D_6	$5,\pm 8$
		2, 4	A_7	-7,0
		2, 4	E_6T_1	25,0
		3,3	A_6T_1	7, -7
			E_6T_1	52, -25
			A_5A_2	-2, 2
			$A_1 D_5 T_1$	7, 2
			D_6T_1	34, 20
		5, 5	$A_1 D_4 T_2$	8,6
78,27	E_6 (adj., s.c.)	2,2	A_5A_1	-2, 3
			D_5T_1	14, -5
		3,3	A_5T_1	15, 9
			$A_2 A_2 A_2$	-3,0
			D_4T_2	6,0
		5	A_3T_3	3, 2
52,26	$ F_4 $	2	C_3A_1	-4,2
			B_4	20, -6
		3	C_3T_1	7,8
			B_3T_1	7,-1
		_	A_2A_2	-2,-1
	~	5	B_2T_2	2,1
14,7	G_2	2	A_1A_1	-2,-1
		3	A_2	5, -2
			A_1T_1	-1,1

Table 1

Proof As in [22, 1.2], this can be read off from [5, 4].

Note that if H is a finite subgroup of G, then the Brauer character of H

on V is the restriction of χ_n to H (where as above $n = \dim V$).

Lemma 3.4 Suppose $H_0 \notin \text{Lie}(p)$. Then the possibilities for G, V, H_0 are among those listed in Table 2 below.

G	V	$H_0 (\not\in \operatorname{Lie}(p))$	<i>p</i>	Remarks
E_8	V_{248}	$PSp_4(5), L_4(5), Th$	2, 2, 3	
		${}^{2}F_{4}(2)'$	3	$V \downarrow H_0 = V_{124} \oplus V_{124}',$
				$H = H_0.2$
E_7	$V_{133}, p \neq 2$	$U_{3}(8)$		
		$J_2, Alt_9, Alt_{10}, Sp_6(2),$	3, 5, 5, 5, 5,	
		M_{22}, HS, Ru	5, 5, 5	
	V_{56}	$U_{3}(8)$		
		J_2	$p \neq 2, 3$	
		$L_2(27), L_2(29)$		$V\downarrow H_0=V_{28}\oplus V_{28}',$
				$H = H_0.2$
E_6	$V_{78-\delta_{p,3}}$	$Alt_9, \Omega_7(3), G_2(3), J_3,$	2, 2, 2, 2, 2,	
		Fi_{22}, M_{12}	2,5	
		$^{2}F_{4}(2)'$		
		$^{3}D_{4}(2)$	p eq 3	$V \downarrow H_0 = V_{26} \oplus V_{26}' \oplus V_{26}'',$
				$H = H_0.3$
	V_{27}	$G_2(3), \Omega_7(3), Fi_{22}, J_1$	2, 2, 2, 11	
		$L_2(27), U_3(3)$	$p \neq 2,7$	
		$L_{3}(3)$	$p \neq 2, 13$	
		$^{2}F_{4}(2)'$		
		$L_2(8)$		$V \downarrow H_0 = V_9 \oplus V_9' \oplus V_9'',$
		2		$H = H_0.3$
$ F_4 $	$V_{52}, p \neq 2$	$^{3}D_{4}(2)$		
	$V_{26}, p \neq 3$	$Alt_9, Alt_{10}, L_4(3), U_3(3)$	2, 2, 2, 7	
		$L_2(25), L_2(27), L_3(3), {}^{3}D_4(2)$		
	$V_{25}, p = 3$	$^{3}D_{4}(2), L_{2}(25)$		
G_2	$V_{14}, p \neq 3$	J_1, J_2	11, 2	
		$U_3(3), L_2(13)$		
	$V_7, p \neq 2$	J_1	11	
		$U_3(3), L_2(7), L_2(8), L_2(13)$		
	$V_6, p = 2$	$L_2(13), U_3(3), J_2$		

Table 2

Proof The absolutely irreducible characteristic p representations of quasisimple groups not in Lie(p) of dimension up to 250 are listed in [9], together with their Schur indicators. Those which have an irreducible such representation of dimension dim V_{min} or dim V_{adj} fixing an appropriate bilinear form,

and also lying in the appropriate exceptional algebraic group (see [22, Tables 10.1-10.4]), are listed in Table 2. In addition, it could be that $V \downarrow H_0$ is not irreducible, but is a direct sum of t > 1 irreducibles of equal dimension, where t divides $|\operatorname{Out}(H_0)|$. Such possibilities are also included in Table 2, except for those where t = 2, $p \neq 2$ and $H \setminus H_0$ contains an involution, say u, in which case $\chi_n(u) = 0$, which is impossible by Lemma 3.3.

Lemma 3.5 Theorem 1 holds when $H_0 \notin \text{Lie}(p)$.

Proof The proof is in two parts:

(i) we establish the existence of the irreducible examples in Tables 1.1 and 1.3, and

(ii) we show that the remaining entries in Table 2 above do not give irreducible subgroups.

Part (i) First consider $G = E_8$. From the construction given in [6, 5.1], a subgroup $L_4(5)$ of $E_8(p = 2)$ contains the local subgroup $5^3.L_3(5)$ seen in the proof of Lemma 3.1; this local subgroup is irreducible on V_{adj} by [3], hence so is $L_4(5)$. Also, a subgroup Th of $E_8(p = 3)$ must be irreducible on V_{adj} , since 248 is the smallest dimension of a nontrivial module for Th (see [9]). Finally, an irreducible subgroup ${}^2F_4(2)$ of $E_8(p = 3)$ is constructed by Ryba in [27].

Next consider $G = E_7$. The irreducibility of the subgroups M_{22} , HS, Ruon V_{133} (p = 5) is given by [13, 14]. And as for $U_3(8)$, the smallest degree of a nontrivial representation in any characteristic is 56 (see [10]), so it is irreducible on V_{56} . Now consider $H = U_3(8)$, and assume that $V_{133} \downarrow H$ is reducible. From [10] we see that $\chi_{133} \downarrow H = 2\chi_{56} + 21\chi_1$ or $\chi_{57} + \chi'_{57} + 19\chi_1$. If $p \neq 3$, then letting $u \in H$ be a 3*C*-element, we see that $\chi_{133}(u) = 25$, contrary to Lemma 3.3. Now let p = 3. If $t \in H$ is of order 4, then $\chi_{133}(t) = 21$ and $\chi_{133}(t^2) = 5$. Hence t^2 acts on V_{133} as diag $(-1^{(64)}, 1^{(69)})$, and t acts as diag $(i^{(32)}, -i^{(32)}, -1^{(24)}, 1^{(45)})$. This means that $C_G(t)$ has dimension 45; however there is no such semisimple element centralizer in E_7 , so this is a contradiction.

Now let $G = E_6$. First consider $V = V_{78-\delta_{p,3}}$. The smallest nontrivial representations in characteristic 2 of the simple groups $\Omega_7(3)$, Fi_{22} and J_3 have dimension 78 (see [9]), so these groups are irreducible on V_{78} . A glance at the 2-modular character table of $G_2(3)$ in [10] shows that $G_2(3)$ has no reducible Brauer character of degree 78 which is compatible with the values of χ_{78} in Lemma 3.3 which preserves an orthogonal form; hence $G_2(3)$ is irreducible on V_{78} (p = 2). Similarly, we see that ${}^2F_4(2)'$ is irreducible on V for $p \neq 2$. Finally, M_{12} is irreducible on V_{78} (p = 5) by [15].

Next consider $V = V_{27}$ (still with $G = E_6$). For p = 2, we have $3.G_2(3) < 3.\Omega_7(3) < 3.Fi_{22} < E_6$ (simply connected), and the smallest nontrivial 2modular representations of these groups have dimension 27 (see [10]), so these are irreducible on V. The smallest nontrivial representations of ${}^2F_4(2)'$ in characteristic $p \neq 2$ have dimensions 26, 27 (see [10]). Since ${}^2F_4(2)'$ does not lie in a 1-space stabilizer in G (the latter are either F_4 or contained in a parabolic), the subgroup ${}^2F_4(2)'$ is irreducible on V. Moreover, ${}^2F_4(2)'$ has a subgroup $L_3(3)$ (see [7]), and for $p \neq 2,3,13$ (i.e. for p not dividing $|L_3(3)|$), the irreducible degree 27 characters of ${}^2F_4(2)'$ remain irreducible on restriction to $L_3(3)$.

It remains to justify the examples $U_3(3), J_1$ and $L_2(8).3$ in Table 1.3. For these, observe first that for $p \neq 2, 7, E_6$ possesses a maximal connected subgroup G_2 which acts irreducibly on V_{27} with high weight 20 (see [29]). This module has codimension 1 in the symmetric square $S^2(V_7)$, where $V_7 = V_{G_2}(10)$, a 7-dimensional irreducible G_2 -module. It is well known (see [1] for example) that G_2 possesses subgroups $L_2(8)$ ($p \neq 2$), $U_3(3)$ ($p \neq 2, 3, 7$) and J_1 (p = 11) acting irreducibly on V_7 , and from the tables in [7, 10] for these groups, we see that $U_3(3), J_1$ also act irreducibly on V_{27} , while $V_{27} \downarrow L_2(8) = V_9 + V'_9 + V''_9$, a direct sum of 3 irreducible 9-dimensional submodules permuted transitively by an outer automorphism of order 3. The existence of $L_2(8).3 < G$ was originally established in an unpublished article by M. Aschbacher (29.18 of "The maximal subgroups of E_6 "), and has recently been constructed in a different way in [27]. This subgroup acts irreducibly on V_{27} , as required.

Next we consider $G = F_4$. The subgroup ${}^{3}D_4(2) (p \neq 2)$ is irreducible on V_{52} , as can be seen using the character tables [7, 10] together with Lemma 3.3. So consider now $V = V_{26-\delta_{p,3}}$.

The subgroups $L_4(3)$, ${}^{3}D_4(2)$ have smallest nontrivial character degree equal to $26 - \delta_{p,3}$ (see [10]), so these are irreducible on V.

Next we justify the Alt_9 , Alt_{10} examples with p = 2. Note that when p = 2, G has a maximal rank subgroup C_4 acting irreducibly on V_{26} with high weight 0100; this module is the nontrivial irreducible constituent of $\wedge^2 V_8$, where V_8 is the natural module for C_4 . If we embed Alt_9 and Alt_{10} irreducibly in C_4 via the usual permutation module, an easy calculation using the Alt_9 table in [10] shows that these subgroups are irreducible on

 $V_{26}.$

By [29], for p = 7, G has a maximal connected subgroup G_2 acting irreducibly on V_{26} with high weight 20. As above, $G_2 (p = 7)$ has a subgroup $U_3(3)$ acting irreducibly on $V_7 = V_{G_2}(10)$, and hence we see that this $U_3(3)$ is irreducible on V_{26} .

Next, use of the $L_3(3)$ character tables in [7, 10], together with Lemma 3.3, show that a subgroup $L_3(3)$ of $G(p \neq 3)$ acts irreducibly on V_{26} .

We have already seen that $E_6 (p \neq 2)$ has a subgroup ${}^2F_4(2)'$ which acts irreducibly on V_{27} . This contains a subgroup $L_2(25)$ (see [7]), and a glance at character tables shows that the Brauer character χ_{27} restricts to $L_2(25)$ as $1 + \chi_{26}$ if $p \neq 3$, and as $1 + 1 + \chi_{25}$ if p = 3, where χ_{25}, χ_{26} are irreducible. Hence $L_2(25)$ lies in a 1-space stabilizer in E_6 , which must be F_4 (the others are in parabolics, which do not act irreducibly on a 25- or 26-dimensional section in V_{27}).

It remains to justify the example $L_2(27)$ in Table 1.3. In [5, 6.5], a subgroup $L_2(27)$ of $F_4(\mathbb{C})$ is constructed which acts irreducibly on V_{26} . Now [28, Corollaire, p.546] shows that there is a subgroup $L_2(27)$ of $F_4(K)$ (Kalgebraically closed of characteristic p), in which semisimple elements have the same eigenvalues on V_{26} as for the embedding in $F_4(\mathbb{C})$. Now a glance at the tables for $L_2(27)$ in [10] shows that provided $p \neq 3,7$, this $L_2(27) <$ $F_4(K)$ acts irreducibly on V_{26} . When p = 7 this is not the case, as the 7-modular irreducible of degree 26 for $L_2(27)$ takes the value -2 on an involution, so cannot be the Brauer character of $V_{26} \downarrow L_2(27)$ by Lemma 3.3.

Finally, let $G = G_2$. The irreducible examples on $V_{7-\delta_{p,2}}$ are immediate from [1, Theorem 9], and those on V_{14} $(p \neq 3)$ using the character tables in [7, 10] together with Lemma 3.3.

Part (ii) We now show that the remaining entries in Table 2 above do not give irreducible subgroups. This amounts to eliminating the possibilities in the following table.

G	V	H_0
E_8	V_{248}	$PSp_4(5)$
E_7	V_{133}	$J_2, Alt_9, Alt_{10}, Sp_6(2)$
	V_{56}	$J_2, L_2(27), L_2(29)$
E_6	V_{78}	$Alt_9, {}^3\!D_4(2)$
	V_{27}	$L_2(27)$

Consider first $G = E_8$. Here $H_0 = PSp_4(5)$ and p = 2. Choose a transvection $u \in H_0$ (in class 5A of $PSp_4(5)$ in the notation of [7]). The

2-modular table for H_0 in [10] shows that $\chi_{248}(u)$ is irrational. However, $C_{H_0}(u)'$ contains u, hence $C_G(u)$ has no nontrivial central torus, and so $C_G(u) = A_4A_4$. This means that $\chi_{248}(u) = -2$ by Lemma 3.3, a contradiction.

Next consider $G = E_7$. For the V_{133} possibilities, a glance at the tables in [10] shows that H_0 possesses an involution t with $\chi_{133}(t) = 1, -3, -3$ or -27, which is impossible by Lemma 3.3. For V_{56} , observe from [10] that none of the groups $SL_2(27), GL_2(27), SL_2(29)$ or $GL_2(29)$ has an irreducible representation of degree 56, so $H_0 \neq L_2(27), L_2(29)$.

It remains to rule out $H_0 = J_2$ on V_{56} with $p \neq 2, 3$. We use the character tables for J_2 in [7, 10]. The acting group is $\hat{H} = 2.J_2 < \hat{E}_7$; suppose this is irreducible on V_{56} . A 2A involution in J_2 lifts to an involution $t_1 \in \hat{H}$, hence $C_G(t_1) = A_1 D_6$; and a 2B involution lifts to an element $t_2 \in \hat{H}$ of order 4, hence $C_G(t_2)^0 = A_7$ or $T_1 E_6$. Now consider the action on $L(G) = V_{133}$, and let $\chi = \chi_{133}$. By Lemma 3.3 we have $\chi(t_1) = 5$ and $\chi(t_2) = -7$ or 25. Also, if $u \in \hat{H}$ is an element of order 3 then $\chi(u) = 7, 52, -2$ or 34.

Suppose p = 5. We have

$$\chi \downarrow H_0 = m\chi_1 + a\chi_{14} + b\chi_{21} + c\chi_{41} + d\chi_{70} + e\chi_{85} + f\chi_{90}$$

where m, a, \ldots, f are non-negative integers. Evaluating at the elements $1, t_1, t_2$ we have

(1) m + 14a + 21b + 41c + 70d + 85e + 90f = 133(2) m - 2a + 5b + 9c - 10d + 5e + 10f = 5(3) m + 2a - 3b + c - 2d + 5e + 6f = -7 or 25

Subtracting (2) from (1) and also (3) from (2) gives the equations a + b + 2c + 5d + 5e + 5f = 8 and -a + 2b + 2c - 2d + f = 3 or -5, and adding these gives

(4)
$$3b + 4c + 3d + 5e + 6f = 11$$
 or 3.

If the right hand side of (4) is 3, then either b = 1 and c, d, e, f = 0 or d = 1and b, d, e, f = 0. In the first case a = 7, m = 14; taking u to be in the class 3A of H, this implies that $\chi(u) = 52$. This means that $\chi_{56}(u) = -25$ by Lemma 3.3. However, the 5-modular table for J_2 in [10] shows that $\chi_{56}(u) = 2$, so this is a contradiction. In the second case (d = 1), we have a = 3, m = 21, and so $\chi(u) = 43$, which is impossible.

Now suppose the right hand side of (4) is 11. If f = 1 then by (1), d = e = 0, so 3b + 4c = 5, which is impossible. Hence f = 0. If e = 1 then d = 0 and 3b + 4c = 6, hence b = 2, c = 0; then a = 1, but this forces

m to be negative by (1). Hence also e = 0, and 3b + 4c + 3d = 11. Then c = 2, b + d = 1, from which we get b = 1, d = 0, a = 3; this again gives m < 0 by (1). This completes the p = 5 case. The p = 7 and p = 0 cases are similar.

Now let $G = E_6$. If $H_0 = Alt_9$ (p = 2), and $h \in H_0$ is an element of order 5, then by [10], $\chi_{78}(h) = -2$. On the other hand, h is a rational element, so by Lemma 3.3, $\chi_{78}(h) = 3$, a contradiction. Also, H_0 cannot be ${}^{3}D_4(2)$, since in this case $V_{78} \downarrow H_0 = V_{26} \oplus V'_{26} \oplus V''_{26}$ with $H = H_0.3$, whereas by [7, 10], ${}^{3}D_4(2)$ has only one irreducible representation of degree 26. Finally, if $H_0 = L_2(27)$, irreducible on V_{27} , then by [10], H_0 has an involution t such that $\chi_{27}(t) = -1$, contrary to Lemma 3.3.

This completes the proof.

4 Proof of Theorem 1, III : finite subgroups in $\operatorname{Lie}(p)$

Continue to let G be a simple adjoint algebraic group over K of exceptional type, and H an almost simple finite subgroup, which normalizes no proper nontrivial connected subgroup of G, and is irreducible on $V = V_{adj}$ or V_{min} .

In this section we complete the proof of Theorem 1 by handling the case where $H_0 = F^*(H)$ is a simple group in Lie(p). Say $H_0 = H(q)$, a group of Lie type over \mathbb{F}_q , where $q = p^e$. Assume H_0 is not of the same type as G. We shall prove the following:

Proposition 4.1 Under the above assumptions, the only possibility is that $G = E_6, p = 3$ and $H_0 = A_2^{\epsilon}(3)$ or $G_2(3)$, as in Table 1.3.

We shall use the following result, taken from [21].

Lemma 4.2 (i) Assume $G \neq E_8$ and $H(q) = A_1(q)$, ${}^2B_2(q)$ or ${}^2G_2(q)$. Then $q \leq t(G) \cdot (2, p-1)$, where t(G) is as follows:

G	G_2	F_4	E_6	E_7
t(G)	12	68	124	388

(ii) Assume $H(q) \neq A_1(q)$, ${}^2B_2(q)$, ${}^2G_2(q)$. Then either $q \leq 9$, or $H(q) = A_2^{\epsilon}(16) \ (\epsilon = \pm)$.

(iii) $V_{adj} \downarrow H_0$ is reducible.

Proof Corollary 5 of [21] shows that if q violates the bounds in (i) or (ii), then H normalizes a proper nontrivial connected subgroup of G, contrary to assumption. The given values of t(G) were computed by R. Lawther, and are listed in [21, p.3411]. Finally, part (iii) follows from [21, Theorem 4].

We prove Proposition 4.1 in a series of lemmas.

Lemma 4.3 Suppose that $V \downarrow H_0$ is reducible. Then it is not the case that H_0 lies in a proper closed subgroup \overline{H} of positive dimension G such that H_0 and \overline{H} fix exactly the same subspaces of V.

Proof Suppose $H_0 < H$ as in the hypothesis. Let \mathcal{D} be the set of subspaces of V fixed by H_0 , and let Y be the stabilizer in G of \mathcal{D} . Then $\overline{H} \leq Y < G$, and Y is normalized by H. This contradicts our assumption of Lie primitivity for H.

Lemma 4.4 If $V = V_{adj}$ then $H_0 \neq A_1(q)$.

Proof Suppose for a contradiction that $H_0 = A_1(q)$ and H is irreducible on $V = V_{adj}$. By Lemma 4.2, H_0 is reducible on V, so $V \downarrow H_0 = \bigoplus_{i=1}^t W_i$, where t > 1, the W_i are irreducible H_0 -modules, all of dimension m, say, and $mt = \dim V$. Moreover, every irreducible $SL_2(q)$ -module over K extends to $GL_2(q)$, and hence t divides $|Aut(H_0) : PGL_2(q)| = \log_p q$.

If $G = E_7$ and $p \neq 2$, then dim $V = 133 = 7 \cdot 19$, hence $t \geq 7$ and $q \geq 3^7$, contrary to Lemma 4.2. And if p = 2 then dim V = 132, and since irreducible H_0 -modules have dimension a power of 2 we have dim $W_i = 4$ or 2 and $t \geq 33$, again contradicting Lemma 4.2.

Next consider $G = E_6$. If p = 3 then dim V = 77 and so $t \ge 7$, $q \ge 3^7$ contrary to 4.2. Now assume $p \ne 3$, so dim V = 78. Clearly t < 13 by 4.2, so 13 dim W_i , and it follows that $p \ge 13$; hence t = 2 by 4.2, and dim $W_i = 39$. The only possibility is that $q = p^2$ and $V \downarrow H_0 = (2 \otimes 12^{(p)}) \oplus (2^{(p)} \otimes 12)$. If $u \in H_0$ is an element of order 3, then u acts on each summand of V as diag $(1^{(13)}, \omega^{(13)}, (\omega^2)^{(13)})$, where ω is a cube root of 1 and superscripts denote the multiplicity of each eigenvalue. Moreover, u lifts to an element of order 3 in the simply connected group \hat{E}_6 . This is impossible, by Lemma 3.3.

If $G = F_4$, dim V = 52 and we see as before that t = 2, dim $W_i = 26$. But there is no irreducible $L_2(q)$ -module over K of dimension 26 (note that V(25) and $1 \otimes 12^{(p^i)}$ admit $SL_2(q)$).

If $G = G_2$, dim V = 14 and $q \ge 7^2$, again contradicting 4.2.

It remains to deal with the case where $G = E_8$. Here dim $V = 248 = 31 \cdot 8$. Now t is not divisible by 31, since otherwise involutions and elements of order 3 in H_0 would have trace on V equal to a multiple of 31, contrary to Lemma 3.3. Hence 31 divides dim W_i . It follows that $p \ge 31$ and either $W_i \cong V(30)$ with t = 8, or $W_i \cong V(30) \otimes V(1)^{(r)} \otimes V(1)^{(s)}$ with t = 2, where r, s are powers of p. An element $u \in H_0$ of order 3 has trace 1 on both of these modules, hence has trace 8 or 2 on V. This again contradicts Lemma 3.3.

Lemma 4.5 If $V = V_{min}$ then $H_0 \neq A_1(q)$.

Proof Suppose $H_0 = A_1(q)$ and $V = V_{min}$. Consider first $G = E_7, V = V_{56}$, a symplectic module. If H_0 is irreducible on V then up to a field twist, $V \downarrow H_0$ is one of the following modules:

55,
$$13 \otimes 1^{(r)} \otimes 1^{(s)}$$
, $6 \otimes 7^{(r)}$, $6 \otimes 1^{(r)} \otimes 1^{(s)} \otimes 1^{(t)}$.

where r, s, t are distinct powers of p. In all cases we calculate that an element of order 3 in H_0 has trace -1 on V, contrary to Lemma 3.3.

Hence $V \downarrow H_0$ is reducible. Then $V \downarrow H_0 = \bigoplus_{i=1}^{t} W_i$, where t > 1, the W_i are irreducible, all of dimension m, say, and mt = 56; moreover the W_i are permuted by a field automorphism of order t, so in particular, $q \ge p^t$. Note also that the W_i are each self-dual and hence nondegenerate symplectic modules.

If $t \ge 4$, then we easily see that one of the following holds: t = 4 with $q \ge 7^4$; t = 7 with $q = 3^7$; or t = 7 with $q = 2^7$ and (up to a field twist) $W_1 = 1 \otimes 1^{(r)} \otimes 1^{(s)}$ for some distinct powers r, s of 2. Hence the latter occurs, by Lemma 4.2. Take a Borel subgroup $B = RT\langle\phi\rangle$ of $H = L_2(2^7).7$, where $R = 2^7, T = 2^7 - 1$ and ϕ is a field automorphism of order 7. This lies in a parabolic subgroup P of G, and the presence of $T\langle\phi\rangle = (2^7 - 1).7$ forces P to be an A_6 -parabolic (since the corresponding Weyl group must have an element of order 7). Then T lies in a 1-dimensional torus in $A_6 = SL_7$ of the form $T_1 = \{\text{diag}(c, c^2, c^4, c^8, c^{16}, c^{32}, c^{-63}) : c \in K^*\}$. The composition factors of A_6 on V have high weights λ_i (i = 1, 2, 5, 6) (see [20, p.106]), from which one checks that distinct weights of T_1 on V remain distinct on restriction to T. In other words, T and T_1 fix exactly the same subspaces of V. It follows that $Y = \langle H_0, T_1 \rangle$ is a subgroup of positive dimension fixing exactly the same subspaces of V as H_0 . This is a contradiction by Lemma 4.3.

Thus we have t = 2. Here the H_0 -module W_1 is 27 or $6 \otimes 3^{(r)}$ (up to a field twist). In the first case we have $q \ge 29^2$, contrary to Lemma 4.2. Hence $W_1 = 6 \otimes 3^{(r)}$. Since $p \ge 7$, Lemma 4.2 gives $q = p^2$. Moreover, the preimage of H in \hat{E}_7 has no outer involutions, as these would have trace zero on V, contrary to Lemma 3.3. Thus the preimage of H is a group $SL_2(p^2).2$ possessing no outer involutions, where the outer elements induce field automorphisms. However, we claim that there is no such group: for suppose there is, and let τ be an outer element of order 4, squaring to the central involution in $SL_2(p^2)$. As τ induces a field automorphism, its centralizer contains $SL_2(p)$, which has an element t of order 4 squaring to the central involution. But then τt has order 2, contradicting the assumption that the group has no outer involutions. This completes the proof for $G = E_7$.

Now let $G = E_6, V = V_{27}$. If $V \downarrow H_0$ is irreducible, then up to a field twist $V = 26, 2 \otimes 8^{(r)}$ or $2 \otimes 2^{(r)} \otimes 2^{(s)}$. In each case an involution in H_0 has trace -1 on V, contrary to Lemma 3.3.

Thus $V \downarrow H_0 = \bigoplus_1^t W_i$, where the W_i are irreducible of dimension mand mt = 27, t > 1. If $t \ge 9$ then $q \ge 3^9$, which is not so by 4.2. Hence t = 3, and (up to a field twist) $W_1 = 8$ or $2 \otimes 2^{(r)}$. In the first case, an element of order p in H_0 acts on V with Jordan form J_9^3 ; however, there is no such p-element in E_6 , by [16, Table 5].

Hence we may assume $W_1 = 2 \otimes 2^{(r)}$ with t = 3. By Lemma 4.2 we have $q = 3^3$ or 5^3 , and

$$V \downarrow H_0 = (2 \otimes 2^{(p)}) \oplus (2^{(p)} \otimes 2^{(p^2)}) \oplus (2^{(p^2)} \otimes 2).$$

As before, take a Borel subgroup $B = RT\langle\phi\rangle$ of H, where |R| = q, |T| = (q-1)/2 and ϕ is a field automorphism of order 3. Then B lies in a parabolic P = QL of G, with R < Q and $T\langle\phi\rangle < L$. From the action of H_0 on V we see that $C_V(R)$ has dimension 3 and $T\langle\phi\rangle$ acts irreducibly on $C_V(R)$. Hence $C_V(R) = C_V(Q)$, and the Levi subgroup L must have a factor A_2 acting. The same considerations apply to actions on the dual V^* , so L has two A_2 factors and $L = A_2A_2T_2$ or $A_2A_2A_1T_1$. The action of ϕ implies that $T_o = [T, \phi] < A_2A_2$. By [20, 2.3], with a suitable labelling of the A_2 factors, we have

$$V \downarrow A_2 A_2 = (10 \otimes 01) \oplus (01 \otimes 00)^3 \oplus (00 \otimes 10)^3.$$

Now the actions on $C_V(Q)$ and $C_{V^*}(Q)$ show that T_o is contained in the 1-dimensional torus

$$T_1 = \{ (\operatorname{diag}(c, c^p, c^{-1-p}), \operatorname{diag}(c, c^p, c^{-1-p}) : c \in K^* \} < A_2 A_2,$$

where these actions are on the modules 10, 10 for the A_2 factors. Therefore, the distinct T_1 -weights on V are $0, \pm 1, \pm (p-1), \pm p, \pm (p+1), \pm (p+2), \pm (2p+1)$. When $p \geq 3$, no two distinct T_1 -weights are congruent modulo $|T_o| = (p^3 - 1)/(p - 1)$, and hence T_o and T_1 fix exactly the same subspaces of V. Then H_0 and $\langle H_0, T_1 \rangle$ fix the same subspaces of V, contrary to Lemma 4.3.

It remains only to treat the case where $G = F_4, V = V_{26-\delta_{p,3}}$. Here, $V \downarrow H_0$ is reducible, as $L_2(q)$ has no irreducible module over K of dimension $26-\delta_{p,3}$. In the usual way, Lemma 4.2 implies that t = 2 (and $V = V_{26}$). But then W_1 has high weight 12, so $p \ge 13$ and $q \ge 13^2$, contrary to Lemma 4.2.

Lemma 4.6 H_0 is not ${}^{2}B_2(q)$ or ${}^{2}G_2(q)$.

Proof Irreducible representations of ${}^{2}B_{2}(q)$ over K (in characteristic 2) have dimension a power of 2, so it is clear that $H_{0} \neq {}^{2}B_{2}(q)$.

Now suppose $H_0 = {}^2G_2(q)$ with $q = 3^{2e+1} > 3$. By [25], the irreducible KH_0 -modules of dimension 248 or less have dimension 7, 27, 49 or 189. The cases $V_{77} \downarrow H_0 = (V_7)^{11}$ and $V_{133} \downarrow H_0 = V_7^{19}$ have $q \ge 3^{11}$, contrary to Lemma 4.2. The only other possibility is that $G = E_6$ and $V = V_{27}$; moreover, $V \downarrow H_0$ has high weight 20, and is a submodule of codimension 1 in S^2V_7 , where V_7 is the irreducible 7-dimensional KH_0 -module of high weight 10. Let $t \in H_0$ be an involution. Then t acts on V_7 as diag $(-1^4, 1^3)$, hence on V as diag $(-1^{12}, 1^{15})$, and it follows that $C_G(t) = A_1A_5$. Also, $C_{H_0}(t) = \langle t \rangle \times L$ with $L \cong L_2(q)$. Applying a suitable Frobenius twist, we can take it that L embeds in A_1A_5 via one of the following projections:

$$egin{aligned} 0^2, \, 2/2^{(3^a)} & (a < 2e) \ 0^2, \, 2/0^3 \ 1^{(3^a)}, \, 2 \otimes 1^{(3^b)} & (b < 2e) \ 1^{(3^a)}, \, 2^{(3)} \otimes 1 \ 1^{(3^a)}, \, 1/1^{(3^b)}/1^{(3^c)} \end{aligned}$$

where a, b, c < 2e + 1. We can choose a connected subgroup $\overline{L} = A_1$ of A_1A_5 containing L, and with one of the above listed projections. By [20, 2.1], we have $L(G) \downarrow A_1A_5 = L(A_1A_5)/1 \otimes \lambda_3$. Hence we check that all the weights of \overline{L} on L(G) are less than q, and so by [21, 1.5], L and \overline{L} fix exactly the same subspaces of L(G). Then as usual, H_0 and $\langle H_0, \overline{L} \rangle$ fix the same subspaces of L(G), contradicting Lemma 4.3.

Lemma 4.7 (i) Either $H_0 = H(q)$ with $q \le 9$, or $H_0 = A_2^{\epsilon}(16)$.

(ii) If q > 2 then rank $(H_0) \leq \frac{1}{2}$ rank(G) (where rank (H_0) denotes the untwisted Lie rank of H_0).

Proof Part (i) follows from the previous three lemmas. By [18, Theorem 2], either the conclusion of part (ii) holds, or $G = E_8$ and $H_0 = {}^2A_5(5)$ or ${}^2D_5(3)$. In the latter cases [25] shows that there is no suitable irreducible for H_0 of dimension m dividing 248.

Write

$$V\downarrow H_0=igoplus_1^\iota W_i,$$

where $t \geq 1$, the W_i are irreducible, all of dimension m, and t divides $|\operatorname{Out}(H_0) : \operatorname{Inndiag}(H_0)|$.

Lemma 4.8 We have $t \leq 2$.

Proof If t = 5 or $t \ge 7$, the only possibility is that $H_0 = A_2^{\epsilon}(16)$ with t = 8. Then m = 7 or 31, but there are no irreducibles of this dimension for A_2 with p = 2.

Now suppose t = 3 or 6. Then by Lemma 4.7 and the fact that t divides $|Out(H_0)|$, one of the following holds:

(i) q = 8 and rank $(H_0) \leq \frac{1}{2}$ rank(G);

(ii) $H_0 = D_4^{\epsilon}(q)$, and moreover, q = 2 if $G \neq E_8$.

For t = 6 we have m = 13 or 22 (p = 2); and for t = 3 we have m = 9, 26 or 44 (p = 2). Using [25], it follows that either $H_0 = A_2^{\epsilon}(8)$ with m = 9, t = 3, or $H_0 = D_4^{\epsilon}(2)$ with m = 26, t = 3. In the latter case the irreducible 26-dimensional module for H_0 has high weight λ_2 , so is fixed by triality, and so this case is out.

Hence we have $H_0 = A_2^{\epsilon}(8)$, $G = E_6$, $V = V_{27}$, and t = 3. First consider $\epsilon = 1$, $H_0 = L_3(8)$. In this case

$$V \downarrow H_0 = (10 \otimes 10^{(2)}) \oplus (10^{(2)} \otimes 10^{(4)}) \oplus (10^{(4)} \otimes 10), \text{ or} \\ (10 \otimes 01^{(4)}) \oplus (10^{(2)} \otimes 01) \oplus (10^{(4)} \otimes 01^{(2)}),$$

or the dual of one of these. Let $x \in H_0$ be an element of order 73. This acts on the module 10 as diag $(\omega, \omega^8, \omega^{64})$ for some $\omega \in K^*$ of order 73. Hence we check that x acts on V with 27 distinct eigenvalues, and it follows that there is a 1-dimensional torus $T_1 < G$ containing x such that T_1 and x fix exactly the same subspaces of V. Then H_0 and $\langle H_0, T_1 \rangle$ fix the same subspaces, contrary to Lemma 4.3.

Now consider $\epsilon = -1$, $H_0 = U_3(8)$. In the simply connected group \hat{E}_6 , H_0 lifts to $\hat{H}_0 = U_3(8)$ or $SU_3(8)$. Then the preimage of H contains a subgroup ($\langle a \rangle \times L$).3, where $L = SU_2(8) \cong L_2(8)$ and the element a has order 3 or 9, respectively. As above, $V \downarrow H_0$ is the direct sum of three 9-dimensional modules, each of which is the tensor product of twists of 10 or 01. In particular, $V \downarrow L$ is completely reducible.

If |a| = 9 then the outer 3 acts on $C_G(a)'$, and hence $C_G(a)' = D_4$ or A_1^3 ; and if |a| = 3 then by Lemma 3.3, $C_G(a)' = A_5$, D_4 or A_2^3 . Thus in any case we have $L.3 < (A_1^3).3, (A_2^3).3, D_4.3$ or A_5 . By [20, 2.3], the nontrivial composition factors of D_4 on V are the 8-dimensional modules of high weight λ_i (i = 1, 3, 4); those of A_5 are of high weight λ_1, λ_4 ; while those of A_1^3 and A_2^3 are tensor products of two twists of natural 2- or 3-dimensional modules. Provided $C_G(a)' \neq A_2^3$, it follows that there is a connected subgroup A_1 of $C_G(a)'$ containing L having highest weight on V less than 8. By [21, 1.5] this A_1 fixes exactly the same subspaces of V as L. Hence H_0 and $\langle H_0, A_1 \rangle$ fix the same subspaces, contrary to Lemma 4.3 again.

Now assume $C_G(a)' = A_2^3$. If L embeds completely reducibly in a factor A_2 , we get a connected A_1 containing L fixing the same subspaces, as above. So assume L embeds in each A_2 indecomposably. Then the restriction of the 9-dimensional summands of $V \downarrow A_2^3$ to L is of the form $(1/0) \otimes (2/0)$ (or some twist of this), where 1/0, 2/0 denote 3-dimensional indecomposables for L with the indicated composition factors. However, it is clear that $(1/0) \otimes (2/0)$ is not completely reducible for L. Indeed, this tensor product has either a submodule or quotient module of the form $1/0 \otimes 0 \cong 1/0$, which is not completely reducible. Hence, $V \downarrow L$ is not completely reducible, a contradiction.

Finally, suppose t = 4. Then either q = 4 or $H_0 = A_2^{\epsilon}(16)$, and moreover rank $(H_0) \leq \frac{1}{2}$ rank(G). Also m = 13, 14, 62 or 33 (p = 2). A quick check using [25] shows that the only possibility is $H_0 = A_3^{\epsilon}(4)$ with m = 14, and the irreducible W_1 of high weight 101. But this is fixed by a graph automorphism of G, so the four W_i 's are not all non-isomorphic, which is impossible.

At this point, a check using [25] gives the following.

Lemma 4.9 The possibilities for H_0 , t and $V \downarrow H_0$ are as in Table 3 below (up to Frobenius twists).

Table	3
-------	---

H_0	q	t	$V \downarrow H_0$	Case no.
$A_2^{\epsilon}(q)$	3, 7, 9	1	$V_{27} \downarrow H_0 = 22$	(1)
	8,16	1	$V_{27} \downarrow H_0 = V_3 \otimes V_3' \otimes V_3''$	(2)
	7	2	$V_{56}\downarrow H_0=60\oplus 06$	(3)
	5	2	$V_{78}\downarrow H_0 = 32 \oplus 32$	(4)
$A_3^{\epsilon}(q)$	7	2	$V_{248}\downarrow H_0=302\oplus 203$	(5)
$A_7^{\epsilon}(q)$	2	2	$V_{56}\downarrow H_0=\lambda_2\oplus\lambda_6$	(6)
$B_2(q)$	3,9	1	$V_{25} \downarrow H_0 = 12$	(7)
	9	1	$V_{25}\downarrow H_0=10\otimes 10^{(3)}$	(8)
	9	1	$V_{56}\downarrow H_0=01\otimes 20^{(3)}$	(9)
	5	1	$V_{52}\downarrow H_0=13$	(10)
	7	1	$V_{56}\downarrow H_0=05$	(11)
$B_3(q)$	3, 5, 9	1	$V_{27} \downarrow H_0 = 200$	(12)
	9	1	$V_{56}\downarrow H_0 = 100\otimes 001^{(3)}$	(13)
	7	1	$V_{248}\downarrow H_0=021$	(14)
$B_4(q)$	2	1	$V_{26}\downarrow H_0=0100$	(15)
$C_3(q)$	5,7	1	$V_{56} \downarrow H_0 = 300$	(16)
$D_4^{\epsilon}(q)$	2	1	$V_{26} \downarrow H_0 = 0100$	(17)
$G_2(q)$	3, 5, 9	1	$V_{27} \downarrow H_0 = 20$	(18)
	7	1	$V_{26} \downarrow H_0 = 20$	(19)
	7	1	$V_{248} \downarrow H_0 = 12$	(20)

Lemma 4.10 *We have* t = 1*.*

Proof Consider the t = 2 cases in Table 3 above. In case (4), $H_0 = A_2^{\epsilon}(q)$, any extension $H_0.2$ splits, and so H possesses an involution u interchanging W_1 and W_2 , hence acting as diag $(-1^{39}, 1^{39})$, which has determinant -1, a contradiction.

Next consider (3). Here the outer involution in $A_2^{\epsilon}(7).2$ could (indeed, must) lift to an element of order 4 in the simply connected group $\hat{G} = \hat{E}_7$. Choose a subgroup $S = SL_2(7) < H_0$. The irreducible 60 for A_2 is the 6th symmetric power of the natural 3-dimensional module, so $60 \downarrow S = S^6(1\oplus 0)$, which we calculate to be $6\oplus 5\oplus 4\oplus 3\oplus 2\oplus 1\oplus 0$. Hence if $u \in S$ is a unipotent element of order 7, then u acts on V_{56} as $J_7^2, J_6^2, \ldots, J_1^2$ (where J_i denotes a Jordan block of size i). Referring to [16, Table 7], we see that u is in the class $A_4 + A_1$ of G, and hence lies in a connected subgroup $A = A_1$ in a subsystem subgroup A_4A_1 , embedded via the representations 4, 1. The nontrivial composition factors of A_1A_4 on L(G) are $1 \otimes \lambda_1$, $1 \otimes \lambda_4$ and $0 \otimes \lambda_i$. Hence we see that the composition factors of A on L(G) all have high weight less than 7. If U is a 1-dimensional unipotent subgroup of A containing u, it follows that u and U fix exactly the same subspaces of V_{56} . Hence H_0 and $\langle H_0, U \rangle$ fix the same subspaces, contrary to Lemma 4.3.

In case (5), $H_0 = A_3^{\epsilon}(7)$ with $V_{248} \downarrow H_0 = 203 \oplus 302$, the acting group has nontrivial centre (since -I acts faithfully on 203), which is a contradiction.

Finally, consider case (6): $H = A_7^{\epsilon}(2).2$ with $V_{56} \downarrow H_0 = \lambda_2 \oplus \lambda_6$. For $\epsilon = -1, H_0 = U_8(2)$, pick an element $t \in H_0$ of order 3 with $C_{H_0}(t) = \langle t \rangle \times SU_7(2)$. Then t acts on the natural 8-dimensional H_0 -module $V(\lambda_1)$ as diag $(\omega^{-1}, \omega^{(7)})$ (where ω is a cube root of 1), hence on $V(\lambda_2)$ as diag $(1^{(7)}, \omega^{-1}(21))$). Hence $\chi_{56}(t) = -7$, whence $C_G(t) = A_6T_1$ by Lemma 3.3. The subgroup $SU_7(2) = C_{H_0}(t)'$ lies in the factor A_6 , and the composition factors of this A_6 on V_{56} are of high weight λ_i (i = 1, 2, 5, 6). Hence $SU_7(2)$ and A_6 fix the same subspaces of V_{56} , and so H_0 and $\langle H_0, A_6 \rangle$ also fix the same subspaces, giving a contradiction by Lemma 4.3.

For $\epsilon = +1$, $H_0 = L_8(2)$, pick an element $u \in H_0$ of order 3 with $C_{H_0}(u) = \langle u \rangle \times SL_6(2)$. Then u acts on the natural 8-dimensional H_0 -module as diag $(\omega, \omega^{-1}, 1^{(6)})$, from which we calculate that $\chi_{56}(u) = 20$, hence $C_G(u) = D_6T_1$. So we have $C_{H_0}(u)' = SL_6(2) < D_6$. By [11], $H^1(SL_6(2), V(\lambda_2)) = 0$, so this $SL_6(2)$ is completely reducible on the natural 12-dimensional D_6 -module, and so we have $SL_6(2) < A_5 < D_6$. The composition factors of the A_5 on V_{56} are of high weight λ_i , so $SL_6(2)$ and A_5 fix the same subspaces of V_{56} , and now we complete the argument as before.

Lemma 4.11 Cases (10), (13), (14) of Table 3 do not occur.

Proof In cases (10) and (14), the acting group has centre containing -1, which is impossible. In case (13), the module $100 \otimes 001^{(3)}$ for $B_3(q)$ admits a non-degenerate symmetric bilinear form, so does not embed H_0 in E_7 .

Lemma 4.12 Cases (2), (8), (9), (11), (12), (16) of Table 3 do not occur.

Proof Let $t \in H_0$ be an involution. In case (2), t acts on V_{27} as (J_2^{13}, J_1) (where J_i denotes an $i \times i$ Jordan block); but there is no such involution in E_6 , by [16, Table 5]. In case (8) take t to act as diag $(-1^4, 1)$ on the 5-dimensional orthogonal module 10; then t acts on V_{25} as diag $(-1^8, 1^{17})$, contrary to Lemma 3.3. In case (9), take t to act as diag $(-1^2, 1^2)$ on the

4-dimensional sympletic module 01; then t acts as diag $(-1^4, 1^{10})$ on 20, hence as diag $(-1^{28}, 1^{28})$ on V_{56} , contrary to Lemma 3.3. Likewise, in case (11), we have $V_{56} \downarrow H_0 = 05 = S^5(01)$, the 5th symmetric power of 01, from which we see that t again acts on V_{56} as diag $(-1^{28}, 1^{28})$. In case (12) take t to act as diag $(-1^2, 1^5)$ on the 7-dimensional orthogonal module 100. Since $V_{27} \downarrow H_0 = 200$ is of codimension 1 in $S^2(100)$, we see that t acts on V_{27} as diag $(-1^{10}, 1^{17})$. But there is no such involution in E_6 by Lemma 3.3. Finally, in case (16) let u be an element of order 3 acting on the 6-dimensional symplectic module 100 as diag $(\omega, \omega^{-1}, 1^4)$ (where ω is a cube root of unity). As $V_{56} \downarrow H_0 = 300 = S^3(100)$, u acts on V_{56} as diag $(1^{(26)}, \omega^{(15)}, \omega^{-1(15)})$. But there is no such element in E_7 , by Lemma 3.3.

Lemma 4.13 Cases (15), (17) of Table 3 do not occur.

Proof Here $H_0 = B_4(2)$ or $D_4^{\epsilon}(2)$ in $G = F_4$ with p = 2. The group G has two irreducible restricted 26-dimensional modules, which we shall denote by $V_{26} = V(\lambda_4)$ and $V'_{26} = V(\lambda_1)$ (in other characteristics this is the 52-dimensional adjoint module).

Assume now that $H_0 \neq {}^{3}D_4(2)$. Then we can choose an element $u \in H_0$ of order 3 such that $C_{H_0}(u)' = Sp_6(2)$ or $\Omega_6^{\pm}(2)$. The 3-element centralizers in *G* are listed in Lemma 3.3, and the only possibility is that $C_G(u) = T_1B_3$ or T_1C_3 . Replacing H_0 by its image under a graph automorphism of *G* if necessary, we can take $C_G(u) = T_1C_3 < C_4$. Now $V_{26} \downarrow C_4 = V_{C_4}(\lambda_2)$, the irreducible constituent of $\wedge^2 V_8$ (where V_8 is the natural module for C_4). Moreover, T_1 acts on V_8 as {diag $(\alpha, \alpha^{-1}, 1^{(6)}) : \alpha \in K^*$ }, hence acts on V_{26} as {diag $(\alpha^{(6)}, \alpha^{-1(6)}, 1^{(14)}) : \alpha \in K^*$ }. On the other hand, $V'_{26} \downarrow C_4 = 2\lambda_1/\lambda_4/0^2$, on which T_1 acts as {diag $(\alpha^{(8)}, \alpha^{-1(8)}, \alpha^2, \alpha^{-2}, 1^{(8)}) : \alpha \in K^*$ }. Since H_0 contains $u \in T_1$, and H_0 has only one irreducible of dimension 26 (the nontrivial composition factor of the adjoint module) it follows that H_0 is irreducible on V_{26} , but reducible on V'_{26} .

First assume $C_{H_0}(u)' = Sp_6(2)$. One checks that $V'_{26} \downarrow C_3 = W \oplus \lambda_3^2 \oplus 0^2$, where W is uniserial of shape $0|2\lambda_1|0$ and we see that $Sp_6(2)$ and C_3 leave invariant the same subspaces of V'_{26} , contradicting Lemma 4.3. Now assume $C_{H_0}(u)' = D_4^{\epsilon}(2)$, so that $D_4^{\epsilon}(2)$ is contained in a subgroup D_3 of C_3 . Then $V'_{26} \downarrow D_3 = 2\lambda_2 \oplus \lambda_1^2 \oplus \lambda_3^2 \oplus 0^4$. This time $C_{H_0}(u)'$ and D_3 leave invariant the same subspaces of V'_{26} , again contradicting Lemma 4.3.

Now let $H_0 = {}^{3}D_4(2)$. Pick $u \in H_0$ of order 3 with $C_{H_0}(u) = \langle u \rangle \times L_2(8)$. Then u acts as $\{\text{diag}(\alpha^{(2)}, \alpha^{-1}{}^{(2)}, 1^{(4)})$ on the orthogonal module and hence as $\{\text{diag}(\alpha^{(9)}, \alpha^{-1}{}^{(9)}, 1^{(8)})$ on the irreducible module of dimension 26. So this time, $V'_{26} \downarrow H_0$ is irreducible. On the other hand, u and T_1 leave invariant the same subspaces of V_{26} , so Lemma 4.3 yields a contradiction.

The only alternative is that $C_G(u) = A_2 A_2$. We have

$$V_{26} \downarrow A_2 \tilde{A}_2 = (10 \otimes 10) \oplus (01 \otimes 01) \oplus (00 \otimes 11).$$

Hence we see that u acts on both V_{26} and V'_{26} as diag $(\omega^{(9)}, \omega^{-1}, 1^{(8)})$ (where ω is a cube root of 1). If H_0 is reducible on either module, its restriction has only 8-dimensional nontrivial composition factors, and u acts on each such as diag $(\omega^{(2)}, \omega^{-1}, 1^{(4)})$, which is incompatible with the above action of u on the 26-dimensional modules. Hence H_0 is irreducible on both V_{26} and V'_{26} (and these are isomorphic as H_0 -modules).

We can choose an element $v \in H_0$ of order 7 such that $C_{H_0}(v) = \langle v \rangle \times L_3(2)$ (see [7]). If $C_G(v) = T_1B_3$ or T_1C_3 then $v \in T_1$; but we showed above that T_1 acts differently on V_{26} and V'_{26} , so this is impossible. Hence $C_G(v) = T_2A_2$ or $T_1A_1A_2$, and applying a graph automorphism if necessary, we may take it that the A_2 factor is generated by long root groups. Then $C_{H_0}(v)' = L_3(2) < A_2$. However $V'_{26} \downarrow A_2$ has 11 as a composition factor, whereas $V_{26} \downarrow A_2$ has no such composition factor. This is a contradiction, as $L_3(2) < H_0$ acts isomorphically on V_{26} and V'_{26} .

Lemma 4.14 Cases (7), (20) of Table 3 do not occur.

Proof First consider case (7): $G = F_4$, $H_0 = B_2(q)$. Here $H_0 \ge B_2(3) \cong U_4(2)$ and so has a subgroup $2^4.A_5$ with the A_5 acting on the 2^4 as $\Omega_4^-(2)$. We shall show that in general, for $p \ne 2$, F_4 does not contain such a subgroup $2^4.A_5$. Suppose then that $2^4.A_5 < G = F_4$, and let E be the normal subgroup 2^4 . Then E is not fused in G (see [5, 3.4]), hence contains an involution e with $C_G(e) = B_4 = Spin_9$. Obviously $E < B_4$. Apart from e, the involutions in B_4 are those elements whose image in $SO_9 = B_4/\langle e \rangle$ is similar to either diag $(-1^4, 1^5)$ or diag $(-1^8, 1)$. The former have G-centralizer A_1C_3 , the latter B_4 .

Conjugating if necessary, we may assume that E consists of matrices whose image in SO_9 is diagonal with eigenvalues ± 1 . The orbits of A_5 on E have sizes 5, 10, so there are at least 5 B_4 -involutions in E. Choose a B_4 -involution $f \in E - \{e\}$ with image diag $(-1^8, 1)$. As $\langle e, f \rangle$ has only 3 involutions, E contains a further B_4 -involution, say g. Then the image of g in SO_9 has 8 eigenvalues -1, so the product fg has image with only 2 eigenvalues -1. But then fg is not an involution in B_4 , which is a contradiction. Now consider case (20): $G = E_8, H_0 = G_2(7), V_{248} \downarrow H_0 = 12$. Using the computer programme in [8], we find that the subdominant weights, weight space dimensions, and orbits sizes under W = W(G) for this representation of G_2 are as follows:

weight λ	12	40	21	02	30	11	20	01	10	00
$\dim V_{\lambda}$	1	1	2	2	3	4	6	6	8	8
$ W(\lambda) $	12	6	12	6	6	12	6	6	6	1

A Cartan subgroup of $G_2(7)$ has 3 involutions, namely $h_1(-1)$, $h_2(-1)$, $h_1(-1)h_2(-1)$, and these are all conjugate. Hence, evaluating the above weights on these involutions, we find that an involution in H_0 acts on V_{248} as diag $(-1^{124}, 1^{124})$. This contradicts Lemma 3.3.

Lemma 4.15 Cases (1), (18), (19) of Table 3 do not occur.

Proof Consider case (1): $G = E_6$, $H_0 = A_2^{\epsilon}(q)$ (q = 3, 7 or 9), $V_{27} \downarrow H_0 = 22$. Let $t \in H_0$ be an involution, and let $S < C_{H_0}(t)$ with $S \cong SL_2(q)$. Note that for A_2 we have $20 \otimes 02 = W(22)/W(11)/W(00)$ (see [20, 2.14]). Hence we calculate that t acts on V_{27} as diag $(-1^{12}, 1^{15})$, so $C_G(t) = A_1A_5$ by Lemma 3.3. Moreover, $S < A_1A_5$ and $V_{27} \downarrow A_1A_5 = (1 \otimes \lambda_1) \oplus (0 \otimes \lambda_4)$, while $L(G) \downarrow A_1A_5 = L(A_1A_5)/1 \otimes \lambda_3$ (see [20, 2.1, 2.3]). The restriction of $V = V_{A_2}(22)$ to S has composition factors $W(4)/W(3)^2/W(2)^3/W(1)^2/0$. It follows that if $q \ge 7$, then S embeds in a connected subgroup $\overline{S} = SL_2(K)$ of A_1A_5 such that the composition factors of \overline{S} on L(G) are all less than q. By [21, 1.5] this means that S and \overline{S} fix exactly the same subspaces of L(G), and now we see in the usual way that H normalizes a proper nontrivial connected subgroup of G, a contradiction.

This leaves q = 3: $H_0 = A_2^{\epsilon}(3) < E_6$ with $V_{27} \downarrow H_0 = 22$. Note that this possibility is in Table 1.3: we know that there is are irreducible subgroups $A_2^{\epsilon}(3)$ lying in a connected subgroup A_2 of G, but we have not determined whether or not there are such subgroups $A_2^{\epsilon}(3)$ which are Lie primitive.

Next consider cases (18),(19): $H_0 = G_2(q)$ (q = 3, 5, 7, 9) with $V_{27-\delta_{p,7}} \downarrow H_0 = 20$. Let $t \in H_0$ be an involution. As above we see that $C_G(t) = A_1A_5$. Also, for $q \geq 5$, $C_{H_0}(t)' = S_1S_2$ with $S_1 \cong S_2 \cong SL_2(q)$, and we see as before that one of the S_i 's lies in a connected SL_2 in A_1A_5 fixing the same subspaces of L(G).

This leaves q = 3. We complete the proof by showing that any $H_0 = G_2(3)$ in E_6 , such that $V_{27} \downarrow H_0 = 20$, is not Lie primitive. Take a long root subgroup $L = L_3(3) < H_0$. Then writing $V_7 = V_{G_2}(10)$, we have

 $V_7 \downarrow L = 10 + 01 + 00$. Since $V_{G_2}(20)$ is of codimension 1 in $S^2(10)$, we see that

$$V_{27} \downarrow L = T(11) + 20 + 02 + 10 + 01,$$

where T(11) is the tilting module 00/11/00. Thus L fixes a 1-space in V_{27} . The stabilizer of this 1-space in E_6 is either F_4 or contained in a D_5 -parabolic; however $V_{27} \downarrow D_5$ has a self-dual composition factor of dimension 10, which is not compatible with the above decomposition of $V_{27} \downarrow L$. Hence $L < F_4$.

Take an involution $t \in L$ and a subgroup $S = SL_2(3) < C_L(t)$. Restricting to S we have $V_{25} \downarrow S = 2^3 + 1^6 + 0^4$ (completely reducible). Hence $C_{F_4}(t) = A_1 C_3$, where t generated the center of each factor. Since $V_{25} \downarrow A_1 C_3 = (1 \otimes \lambda_1) \oplus (0 \otimes \lambda_2)$, it follows that the embedding of S in $A_1 C_3$ must be 0^2 , 1 + 1 + 1. Hence we see that there is a connected subgroup $A = A_1$ in C_3 containing S and fixing the same subspaces as S. Setting $X = \langle L, A \rangle$, we have $L < X < F_4$, and L, X fix the same subspaces of V_{25} . Referring to the list of maximal connected subgroups of F_4 in [23] and the restrictions of V_{25} to these, we conclude that L lies in a maximal rank subgroup A_2A_2 of F_4 , hence lies in a diagonal subgroup $B = A_2$ of a maximal rank subgroup A_2^3 of $G = E_6$. From [20, Table 8.3] we see that the composition factors of $L(G) \downarrow B$ are the irreducibles 00, 11, 10, 01, 20, 02, 21, 12; moreover, $L(G) \downarrow B$ is a direct sum of irreducibles together with the indecomposable 00/11/00, which remains indecomposable for L. It follows that L and B fix the same subspaces of $V_{77} = L(G)'$. Then H_0 and $\langle H_0, B \rangle$ fix the same subspaces, and moreover, H_0 is reducible on L(G)' (see [10]). This is a contradiction, by Lemma 4.3.

5 Proof of Corollary 2

Let σ be a Frobenius morphism of the exceptional algebraic group G, so that $G_{\sigma} = G(r)$ is a finite exceptional group over \mathbb{F}_r $(r = p^a)$. Let H be a maximal subgroup of G_{σ} which is irreducible on $V \in \{V_{adj}, V_{min}\}$, and assume that H is not of the same type as G.

Suppose first that $H = \bar{H}_{\sigma}$ with \bar{H} a maximal closed σ -stable subgroup of positive dimension in G. If \bar{H} is not of maximal rank, then [23, Theorem 1] shows that \bar{H} must be as in the lists (b),(c) before Lemma 2.1, and now Theorem 1 shows that \bar{H} must be as in Table 1.2 and hence conclusion (ii) of Corollary 2 holds. If \bar{H} is of maximal rank, the possibilities are given by [17], and again the result follows using Theorem 1. So assume from now on that H is not of the form \bar{H}_{σ} for such a subgroup \bar{H} .

Next observe that if G_{σ} is of type ${}^{2}G_{2}$ or ${}^{2}F_{4}$, then the conclusion is immediate from [12, 26]. (Indeed, under our assumption that H is not of the same type as G, no further maximal subgroups of ${}^{2}G_{2}(q)$ (q > 3) are irreducible, and for $G_{\sigma} = {}^{2}F_{4}(q)$ only the maximal subgroups with socles $L_{3}(3), L_{2}(25)$ and q = 2 occur, with $V = V_{26}$.) So assume G_{σ} is not of one of these types, so that either σ is a field morphism or $G = E_{6}$ and σ is a graph-field morphism.

Suppose first that $F^*(H)$ is not simple. Then H is determined by [19, Theorem 2], from which it follows that $F^*(H)$ is one of the local subgroups in Tables 1.1, 1.3.

Thus we may now assume that $F^*(H)$ is simple. Write $H_0 = F^*(H)$. If $H_0 \notin \text{Lie}(p)$ then the proofs of Lemmas 3.4 and 3.5 show that H_0 is as in Table 1.1 or 1.3.

Now assume $H_0 \in \text{Lie}(p)$, say $H_0 = H(q)$, a group of Lie type over \mathbb{F}_q $(q = p^b)$.

We next establish that the conclusion of Lemma 4.3 holds in our situation. Suppose $V \downarrow H_0$ is reducible and H_0 lies in a closed subgroup \bar{H} of positive dimension in G such that H_0 and \bar{H} fix the same subspaces of V. We apply the argument of the proof of [21, Theorem 6] (see p.3473 of [21]): if σ is a field morphism, let \mathcal{M} be the set of all H_0 -invariant subspaces of V, and define $Y = \bigcap_{W \in \mathcal{M}} G_W$. Then Y is $H\langle \sigma \rangle$ -stable (see the proof of [21, 1.12]) and contains \bar{H} . If Z is a maximal $H\langle \sigma \rangle$ -stable proper subgroup of G containing Y, then by maximality we have $H = Z_{\sigma}$, contrary to our assumption above. Finally, if $G = E_6$ and σ is a graph-field morphism, then σ interchanges the G-modules V and V^* , and moreover H_0 and \bar{H} fix the same subspaces of both V and V^* (as the latter are the annihilators of the former). Thus if we define \mathcal{M} to be the set of all H_0 -invariant subspaces of both V and V^* , the above argument yields the same contradiction.

We have now proved that the conclusion of Lemma 4.3 holds in our situation. At this point the proof given in Section 4 establishes the result (namely, that the conclusion of Proposition 4.1 holds). This completes the proof of Corollary 2.

References

- [1] M. Aschbacher, "Chevalley groups of type G_2 as the group of a trilinear form", J. Algebra 109 (1987), 193-259.
- [2] A.V. Borovik, "The structure of finite subgroups of simple algebraic groups" (Russian), Algebra i Logika 28 (1989), no. 3, 249-279; translation in Algebra and Logic 28 (1989), no. 3, 163-182 (1990).
- [3] A.V. Borovik, "Jordan subgroups and orthogonal decompositions" (Russian) *Algebra i Logika* 28 (1989), no. 4, 382–392; translation in *Algebra and Logic* 28 (1989), no. 4, 248–254 (1990).
- [4] A.M. Cohen and R.L. Griess, "On finite simple subgroups of the complex Lie group E₈", Proc. Symp. Pure Math. 47 (1987), 367-405.
- [5] A.M. Cohen and D.B. Wales, "Finite subgroups of $E_6(\mathbb{C})$ and $F_4(\mathbb{C})$ ", Proc. London Math. Soc. 74 (1997), 105-150.
- [6] A.M. Cohen, M.W. Liebeck, J. Saxl and G.M. Seitz, "The local maximal subgroups of exceptional groups of Lie type, finite and algebraic", *Proc. London Math. Soc.* 64 (1992), 21-48.
- [7] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of finite groups, Oxford University Press, 1985.
- [8] P.B. Gilkey and G.M. Seitz, "Some representations of exceptional Lie algebras", Geom. Dedicata 25 (1988), 407-416.
- [9] G. Hiss and G. Malle, "Low-dimensional representations of quasi-simple groups", LMS J. Comput. Math. 4 (2001), 22-63.
- [10] C. Jansen, K. Lux, R. Parker and R. Wilson, An atlas of Brauer characters, Oxford University Press, 1995.
- [11] W. Jones and B. Parshall, "On the 1-cohomology of finite groups of Lie type", *Proc. Conf. on Finite Groups* (eds. W. Scott and F. Gross), Academic Press, New York, 1976, pp. 313-328.
- [12] P.B. Kleidman, "The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, of the Ree groups ${}^2G_2(q)$, and of their automorphism groups", J. Algebra **117** (1988), 30–71.
- [13] P.B. Kleidman, U. Meierfrankenfeld and A.J.E. Ryba, "HS < E₇(5)", J. London Math. Soc. 60 (1999), 95-107.
- [14] P.B. Kleidman, U. Meierfrankenfeld and A.J.E. Ryba, "Ru $< E_7(5)$ ", Comm. Algebra 28 (2000), 3555-3583.

- [15] P.B. Kleidman and R.A. Wilson, " $J_3 < E_6(4)$ and $M_{12} < E_6(5)$ ", J. London Math. Soc. 42 (1990), 555-561.
- [16] R. Lawther, "Jordan block sizes of unipotent elements in exceptional algebraic groups", Comm. Algebra 23 (1995), 4125–4156; correction, ibid, 26 (1998), 2709.
- [17] M.W. Liebeck, J. Saxl and G.M. Seitz, "Subgroups of maximal rank in finite exceptional groups of Lie type", Proc. London Math. Soc. 65 (1992), 297-325.
- [18] M.W. Liebeck, J. Saxl and D.M. Testerman, "Subgroups of large rank in groups of Lie type", Proc. London Math. Soc. 72 (1996), 425-457.
- [19] M.W. Liebeck and G.M. Seitz, "Maximal subgroups of exceptional groups of Lie type, finite and algebraic", *Geom. Dedicata* 36 (1990), 353-387.
- [20] M.W. Liebeck and G.M. Seitz, "Reductive subgroups of exceptional algebraic groups", Mem. Amer. Math. Soc., Vol. 121, No. 580, 1996.
- [21] M.W. Liebeck and G.M. Seitz, "On the subgroup structure of exceptional groups of Lie type", Trans. Amer. Math. Soc. 350 (1998), 3409-3482.
- [22] M.W. Liebeck and G.M. Seitz, "On finite subgroups of exceptional algebraic groups", J. reine angew. Math. 515 (1999), 25-72.
- [23] M.W. Liebeck and G.M. Seitz, "The maximal subgroups of positive dimension in exceptional algebraic groups", Mem. Amer. Math. Soc., to appear.
- [24] M.W. Liebeck and G.M. Seitz, "Subgroups of large rank in exceptional groups of Lie type", to appear.
- [25] F. Lübeck, "Small degree representations of finite Chevalley groups in defining characteristic", LMS J. Comput. Math. 4 (2001), 22-63.
- [26] G. Malle, "The maximal subgroups of ${}^{2}F_{4}(q^{2})$ ", J. Algebra **139** (1991), 52–69.
- [27] A.J.E. Ryba, "Construction of some irreducible subgroups of E_8 and E_6 ", to appear.
- [28] J-P. Serre, "Exemples de plongements des groups $PSL_2(F_p)$ dans des groupes de Lie simples", *Invent. Math.* **124** (1996), 525-562.
- [29] D.M. Testerman, "A construction of certain maximal subgroups of the algebraic groups E₆ and F₄", J. Algebra 122 (1989), 299-322.