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1 Introduction

Let G be a simple algebraic group of exceptional type over an algebraically
closed field K of characteristic p. The purpose of this paper is to determine
all maximal closed subgroups of G which act irreducibly on either the ad-
joint G-module or one of the well-known “minimal” modules of dimension
56, 27, 26− δp,3 or 7− δp,2 for G of type E7, E6, F4 or G2 respectively. (The
adjective “minimal” here refers to the minimality of the dimension.) This
greatly extends [21, Theorem 4] for exceptional groups.

A typical application of this sort of result is the following. We are given
a finite subgroup X of G and from given information one determines a
subgroup Y < X and a subgroup Ȳ < G of positive dimension such that
Y and Ȳ leave invariant precisely the same subspaces of V . If W is any
X-invariant subspace of V , we conclude that W is stabilized by 〈X, Ȳ 〉,
a group of positive dimension containing X. The maximal subgroups of
positive dimension in G are known explicitly, so this yields information on
the embedding of X in G, except when X acts irreducibly on V . Hence a
list of irreducible subgroups is necessary for understanding the subgroups of
G. Our result has already been applied in this way in [24].

In some small characteristics the adjoint module can be reducible for
G (see [21, 1.10]): namely, it has a composition factor of codimension 1
for (G, p) = (E7, 2) or (E6, 3), and is also reducible for (G, p) = (F4, 2) or
(G2, 3) (two composition factors of dimension 26, 26 or 7, 7 respectively).

We write Vadj for the nontrivial composition factor of the adjoint module
for G, excluding (G, p) = (F4, 2) or (G2, 3). And write Vmin for one of the
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irreducible modules for E7, E6, F4, G2 of dimension 56, 27, 26− δp,3, 7− δp,2
and high weight λ7, λ1, λ4, λ1 respectively; for (G, p) = (F4, 2) or (G2, 3),
we include also VG(λ1) or VG(λ2) as possibilities for Vmin, of dimension 26
or 7. The acting group on Vadj is of adjoint type, and on Vmin is of simply
connected type, and we take G to be the acting group.

If H is a finite subgroup of G, we say that H is Lie primitive if H
normalizes no proper nontrivial connected subgroup of G, and we say that
H has the same type as G if F ∗(H) = G′σ for some Frobenius morphism σ

of G.

Theorem 1 Let H be a proper closed subgroup of the exceptional algebraic
group G. If dimH > 0, assume H is maximal among proper closed subgroups
of G; and if H is finite, assume that it is a Lie primitive subgroup, and is
not of the same type as G.

(i) If H has positive dimension, then H is reducible on Vadj.

(ii) If H is finite and is irreducible on Vadj , then H is as in Table 1.1
below.

(iii) If H has positive dimension and is irreducible on Vmin, then H is
as in Table 1.2 below.

(iv) If H is finite and is irreducible on Vmin, then H is as in Table 1.3
below.

Each entry for H in Table 1.2 corresponds to exactly one conjugacy class
of subgroups in Aut(G). In Tables 1.1, 1.3, for each entry there is at least
one subgroup H which is irreducible on the relevant module (but we make
no uniqueness assertion).

We remark that the proof shows that the same conclusion holds if we
allow G = Aut(E6) = E6.2 when V = Vadj .

The proof of Theorem 1 is given in Section 2 for positive dimensional
subgroups H, and in Sections 3 and 4 for finite subgroups.

A consequence of the proof of Theorem 1 is the following result concern-
ing irreducible subgroups of finite exceptional groups.

Corollary 2 Let σ be a Frobenius morphism of the exceptional algebraic
group G, so that the fixed point group Gσ is a finite exceptional group of Lie
type over Fr (r = pa), and let M be a maximal subgroup of Gσ. Suppose M
is irreducible on V ∈ {Vadj , Vmin}. Then one of the following holds:

(i) M is of the same type as G (possibly twisted) over a subfield of Fr;
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(ii) V = Vmin and M = Hσ with H as in Table 1.2;

(iii) F ∗(M) is as in Table 1.1 (with V = Vadj) or in Table 1.3 (with
V = Vmin).

We justify the corollary in Section 5 at the end of the paper.

Notation For X a simple algebraic group over K and λ a dominant weight,
we denote by VX(λ) (or just λ) the rational irreducible KX-module of high
weight λ, and by WX(λ) the corresponding Weyl module. Also, if V1, . . . , Vk
are X-modules then V1/ . . . /Vk denotes an X-module having the same com-
position factors as V1 ⊕ . . .⊕ Vk.
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Table 1.1: Lie primitive finite subgroups H irreducible on an
adjoint module

G V F ∗(H) (H finite irreducible Lie prim.)

E8 V248 25+10.L5(2) (p 6= 2)∗, 53.L3(5) (p 6= 5)∗,
L4(5) (p = 2), Th (p = 3), 2F4(2)′ (p = 3)∗∗

E7 V133−δp,2 U3(8) (p 6= 2), M22 (p = 5), Ru (p = 5), HS (p = 5)

E6 V78−δp,3 33+3.L3(3) (p 6= 3)∗, 2F4(2)′ (p 6= 2), G2(3) (p = 2),
Ω7(3) (p = 2), J3 (p = 2), F i22 (p = 2), M12 (p = 5)

F4 V52 (p 6= 2) 33.L3(3) (p 6= 3)∗, 3D4(2)

G2 V14 (p 6= 3) 23.L3(2) (p 6= 2)∗, U3(3), L2(13) (p 6= 3, 13),
J2 (p = 2), J1 (p = 11)

∗ For these local subgroups, H rather than F ∗(H) is listed; moreover, only the

maximal versions are listed – some subgroups may also be irreducible.
∗∗ Here H = 2F4(2) = 2F4(2)′.2 and V248 ↓ 2F4(2)′ = V124 ⊕ V ′124.

Table 1.2: maximal subgroups H of positive dimension
irreducible on a minimal module

G V H (max. irred. of V ↓ H0 Comment
positive dim.)

E7 V56 A7.2 λ2 ⊕ λ6

(A1)7.L3(2) see 2.1
(T7).W (E7) see 2.1
A2.2 (p > 5) 60⊕ 06
(22 ×D4).S3 (p 6= 2) (λ2)2

E6 V27 (A2)3.S3 see 2.1
(T6).W (E6) see 2.1
C4 (p 6= 2) λ2

G2 (p 6= 2, 7) 20
A2.2 (p 6= 2, 5) 22

F4 V26−δp,3 D4.S3 (p = 2) λ2 D4 short if V = V (λ4),
long if V = V (λ1)

C4 (p = 2) λ2 V = V (λ4)
B4 (p = 2) λ2 V = V (λ1)
G2 (p = 7) 20

G2 V7−δp,2 A2.2 (p = 2, 3) 10⊕ 01 (p = 2)
11 (p = 3) A2 short if V = V (λ1),

long if V = V (λ2)
A1 (p ≥ 7) 6
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Table 1.3: Lie primitive finite subgroups H irreducible on a
minimal module

G V F ∗(H) (H finite irreducible Lie prim.)

E7 V56 U3(8) (p 6= 2)

E6 V27 33+3.L3(3) (p 6= 3)∗, L2(8) (p 6= 2)∗∗, 2F4(2)′ (p 6= 2),
L3(3) (p 6= 2, 13)∗∗∗, U3(3) (p 6= 2, 7)∗∗∗,

G2(3) (p = 2), Ω7(3) (p = 2),
F i22 (p = 2), J1 (p = 11)

F4 V26−δp,3 33.L3(3) (p 6= 3)∗, L2(25) (p 6= 5), L2(27) (p 6= 3, 7),
L3(3) (p 6= 3), 3D4(2) (p 6= 2), Alt9 (p = 2), Alt10 (p = 2),

L4(3) (p = 2), U3(3) (p = 7)

G2 V7−δp,2 23.L3(2) (p 6= 2)∗, L2(7) (p 6= 2), L2(8) (p 6= 2),
L2(13) (p 6= 13), U3(3) (p 6= 3), J1 (p = 11), J2 (p = 2)

∗ As in Table 1.1, for these local subgroups, H rather than F ∗(H) is listed, and

only the maximal versions are listed – some subgroups may also be irreducible.
∗∗ Here H = L2(8).3 and V ↓ L2(8) = V9 ⊕ V ′9 ⊕ V ′′9 .
∗∗∗ We have left in the possibility that p = 3 for F ∗(H) = L3(3) or U3(3). There

exist irreducible such subgroups lying in a connected subgroup A2, but we have not

determined whether there exist Lie primitive examples.

2 Proof of Theorem 1, I : positive-dimensional
subgroups

Suppose that G is a simple algebraic group of exceptional type, and H is a
maximal closed subgroup of positive dimension. The possibilities for H are
given by [23, Corollary 2].

Observe that part (i) of the Theorem is trivial, as H stabilizes the sub-
space L(H) of the adjoint module L(G).

Now consider part (iii). Let V = Vmin, one of the minimal modules for
G = E7, E6, F4, G2, of dimension 56, 27, 26−δp,3, 7−δp,2, respectively. Write
also V = Vd, where d = dimV . Suppose H acts irreducibly on V . Then H

is not a parabolic subgroup.

According to [23, Corollary 2], the maximal subgroup H satisfies one of
the following conditions:
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(a) H is a subgroup of maximal rank; the possibilities are as follows:

G H0 H/H0

G2 A1Ã1, A2 1, 2

F4 (p 6= 2) B4, D4, A1C3, A2Ã2 1, S3, 1, 2

F4 (p = 2) B4, C4, D4, D̃4, A2Ã2 1, 1, S3, S3, 2
E6 A1A5, A

3
2, D4T2, T6 1, S3, S3, W (E6)

E7 A1D6, A7, A2A5, A
3
1D4, 1, 2, 2, S3,

A7
1, E6T1, T7 L3(2), 2, W (E7)

(where Ãr, D̃4 denote subgroups generated by short root groups).

(b) H is as in Table 1 of [23, Theorem 1]; the possibilities are:

G H0

G2 A1 (p ≥ 7)
F4 A1 (p ≥ 13), G2 (p = 7), A1G2 (p 6= 2)
E6 A2 (p 6= 2, 3), G2 (p 6= 7), A2G2, C4 (p 6= 2), F4

E7 A1 (2 classes, p ≥ 17, 19 resp.), A2 (p ≥ 5), A1A1 (p 6= 2, 3),
A1G2 (p 6= 2), A1F4, G2C3

(c) H = (22 ×D4).S3 < E7.

Lemma 2.1 Theorem 1(iii) holds if H is as in (a) above.

Proof Consider first G = E7. The composition factors of the restriction
of V to various maximal rank subgroups are given in [20, 2.3], from which
it follows that H0 6= A1D6, A2A5, A

3
1D4 or E6T1.

When H = A7.2, we have V ↓ A7 = λ2 ⊕ λ6, and the two summands
are interchanged by the outer involution, hence V ↓ H is irreducible, as in
Table 1.2.

Now consider H0 = A7
1. This is contained in a subsystem A1D6, which

has composition factors 1 ⊗ λ1/0 ⊗ λ5 on V . Hence there is a subproduct
A3

1 which has a composition factor 1 ⊗ 1⊗ 1 of dimension 8 in 1 ⊗ λ1. The
group H/H0 ∼= L3(2) permutes 7 such summands transitively, so V ↓ H is
irreducible in this case too.

Now suppose H0 = T7, a maximal torus. The weights spaces of T7 on V
all have dimension 1 and are permuted transitively by W (E7). Hence V ↓ H
is irreducible in this case as well.
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Next let G = E6. Here [20, 2.3] shows that H0 6= A1A5 or D4T2. When
H0 = T6, V ↓ H is irreducible as above. And when H0 = A3

2, [20, 2.3]
shows that V ↓ A3

2 is the sum of three 9-dimensional irreducible summands,
permuted transitively by H/H0 ∼= S3, giving irreducibility here as well.

Now let G = F4. When p 6= 2 it follows from [20, 2.3] that V ↓ H is
reducible in all cases. So assume p = 2. Then L(G) has two G-composition
factors λ1/λ4, both of dimension 26. One of these is the ideal generated
by short root elements, which affords VG(λ4), and on which the subsystem
group C4 (generated by short root groups) has highest weight λ2. As VC4(λ2)
has dimension 26, VG(λ4) ↓ C4 is irreducible. Likewise, so are VG(λ1) ↓ B4

and VG(λi) ↓ D4 (i = 1, 4, D4 short if i = 4, long if i = 1).

Finally, when G = G2 and p = 2, the subsystem subgroup A2 acts on
V = V6 as the sum of two 3-dimensional summands interchanged by an
outer involution; and when p = 3, subsystem subgroups A2 (long or short)
act irreducibility on the 7-dimensional G-modules of high weight λ2 or λ1,
respectively.

Lemma 2.2 Theorem 1(iii) holds if H is as in (b) above.

Proof Let H be as in (b). The action of H0 on V is given in [23, Table
10.2], from which we see that H is as in Table 1.2. The only case where
V ↓ H0 is reducible is H = A2.2 < E7, where V ↓ H0 = 60 ⊕ 06; here the
outer involution in H interchanges the two irreducible summands, so V ↓ H
is irreducible.

Lemma 2.3 Theorem 1(iii) holds if H is as in (c) above.

Proof This subgroup was constructed in [6, 2.15], and lifts to a subgroup
(Q8 ∗D4).S3 in simply connected E7. The connected component H0 = D4

lies in a subsystem A7 of G, and hence V ↓ D4 = (λ2)2. It follows that
V ↓ Q8 ∗D4 = V2⊗λ2, where V2 is an irreducible 2-dimensional Q8-module.
In particular V ↓ H is irreducible, as in Table 1.2.

This completes the proof of Theorem 1(iii).
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3 Proof of Theorem 1, II : finite subgroups not in
Lie(p)

Let G be a simple algebraic group of exceptional type, and Ĥ a finite Lie
primitive subgroup of G. Suppose Ĥ acts irreducibly on one of the G-
modules Vadj , Vmin defined in the Introduction. Write H for the image of Ĥ
in the adjoint group of type G.

For convenience we list the dimensions of the modules Vadj , Vmin:

G dimVadj dimVmin
E8 248 −
E7 133− δp,2 56
E6 78− δp,3 27
F4 52 (p 6= 2) 26− δp,3
G2 14 (p 6= 3) 7− δp,2

Lemma 3.1 Theorem 1(ii, iv) holds if H is not almost simple.

Proof Suppose H is not almost simple. By assumption, H is Lie primitive.
Hence, according to a result of Borovik (see [2]), one of the following holds:

(i) H is contained in one of the following finite local subgroups:

G = G2 : H = 23.L3(2) (p 6= 2)
G = F4 : H = 33.L3(3) (p 6= 3)
G = E6 : H = 33+3.L3(3) (p 6= 3)
G = E8 : H = 53.L3(5) (p 6= 5) or 25+10.L5(2) (p 6= 2)

(ii) H = (Alt5 ×Alt6).22 < G = E8 (p 6= 2, 3, 5).

Each of the subgroups listed in (i) acts irreducibly on L(G) = Vadj , by [3],
while the subgroup in (ii) clearly does not.

Finally, the subgroups in (i) (with G 6= E8) also act irreducibly on Vmin,
since in each case dim Vmin is the minimal dimension of a faithful module
for Ĥ in characteristic p: this is clear in all cases except G = E6, where
Ĥ = 31+3+3.L3(3). Here Ĥ has a subgroup 33.L3(3) lying in a subgroup F4,
hence has a subgroup 3×33.L3(3) leaving invariant a 1-space of V ; therefore
V ↓ Ĥ is an induced module and is irreducible.

In view of the previous lemma, assume from now on that H is almost
simple, and let H0 = F ∗(H), a non-abelian finite simple group.
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We next record some well known information concerning the action of G
on the modules Vadj , Vmin. Recall that by our definition, Vadj is not defined
when (G, p) = (F4, 2) or (G2, 3).

Lemma 3.2 (i) G acts as an adjoint group on Vadj, and preserves a non-
degenerate bilinear form.

(ii) G acts as a simply connected group on Vmin, preserving bilinear forms
as follows:

G V type of form

E7 V56 symplectic
E6 V27 not self-dual
F4 V26−δp,3 orthogonal
G2 V7, p 6= 2 orthogonal

V6, p = 2 symplectic

Lemma 3.3 Let K = C, V = Vadj or Vmin, let n = dimV and let χn be the
character of G on V . Let t ∈ G be an element satisfying one of the following
conditions:

(i) t2 ∈ Z(G);

(ii) t has order 3; moreover, if G is adjoint of type E6, then t lifts to an
element of order 3 in the simply connected group;

(iii) t has order 5 and is a rational element (i.e. G-conjugate to all its
nontrivial powers).

Then the possibilities for CG(t)0 and the values of χn(t) are recorded in in
Table 1 below.
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Table 1

n G order of t CG(t)0 χn(t)

248 E8 2 A1E7 24
D8 −8

3 A8 −4
A2E6 5
D7T1 14
E7T1 77

5 A4A4 −2
D6T2 23

133, 56 E7 (adj., s.c.) 2, 2 A1D6 5,±8
2, 4 A7 −7, 0
2, 4 E6T1 25, 0
3, 3 A6T1 7,−7

E6T1 52,−25
A5A2 −2, 2
A1D5T1 7, 2
D6T1 34, 20

5, 5 A1D4T2 8, 6

78, 27 E6 (adj., s.c.) 2, 2 A5A1 −2, 3
D5T1 14,−5

3, 3 A5T1 15, 9
A2A2A2 −3, 0
D4T2 6, 0

5 A3T3 3, 2

52, 26 F4 2 C3A1 −4, 2
B4 20,−6

3 C3T1 7, 8
B3T1 7,−1
A2A2 −2,−1

5 B2T2 2, 1

14, 7 G2 2 A1A1 −2,−1
3 A2 5,−2

A1T1 −1, 1

Proof As in [22, 1.2], this can be read off from [5, 4].

Note that if H is a finite subgroup of G, then the Brauer character of H
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on V is the restriction of χn to H (where as above n = dimV ).

Lemma 3.4 Suppose H0 6∈ Lie(p). Then the possibilities for G,V,H0 are
among those listed in Table 2 below.

Table 2

G V H0 ( 6∈ Lie(p)) p Remarks
E8 V248 PSp4(5), L4(5), Th 2, 2, 3

2F4(2)′ 3 V ↓ H0 = V124 ⊕ V ′124,
H = H0.2

E7 V133, p 6= 2 U3(8)
J2, Alt9, Alt10, Sp6(2), 3, 5, 5, 5,
M22, HS, Ru 5, 5, 5

V56 U3(8)
J2 p 6= 2, 3
L2(27), L2(29) V ↓ H0 = V28 ⊕ V ′28,

H = H0.2
E6 V78−δp,3 Alt9, Ω7(3), G2(3), J3, 2, 2, 2, 2,

F i22, M12 2, 5
2F4(2)′
3D4(2) p 6= 3 V ↓ H0 = V26 ⊕ V ′26 ⊕ V ′′26,

H = H0.3
V27 G2(3), Ω7(3), F i22, J1 2, 2, 2, 11

L2(27), U3(3) p 6= 2, 7
L3(3) p 6= 2, 13
2F4(2)′

L2(8) V ↓ H0 = V9 ⊕ V ′9 ⊕ V ′′9 ,
H = H0.3

F4 V52, p 6= 2 3D4(2)
V26, p 6= 3 Alt9, Alt10, L4(3), U3(3) 2, 2, 2, 7

L2(25), L2(27), L3(3), 3D4(2)
V25, p = 3 3D4(2), L2(25)

G2 V14, p 6= 3 J1, J2 11, 2
U3(3), L2(13)

V7, p 6= 2 J1 11
U3(3), L2(7), L2(8), L2(13)

V6, p = 2 L2(13), U3(3), J2

Proof The absolutely irreducible characteristic p representations of qua-
sisimple groups not in Lie(p) of dimension up to 250 are listed in [9], together
with their Schur indicators. Those which have an irreducible such represen-
tation of dimension dim Vmin or dimVadj fixing an appropriate bilinear form,
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and also lying in the appropriate exceptional algebraic group (see [22, Tables
10.1-10.4]), are listed in Table 2. In addition, it could be that V ↓ H0 is
not irreducible, but is a direct sum of t > 1 irreducibles of equal dimension,
where t divides |Out(H0)|. Such possibilities are also included in Table 2,
except for those where t = 2, p 6= 2 and H\H0 contains an involution, say
u, in which case χn(u) = 0, which is impossible by Lemma 3.3.

Lemma 3.5 Theorem 1 holds when H0 6∈ Lie(p).

Proof The proof is in two parts:

(i) we establish the existence of the irreducible examples in Tables 1.1
and 1.3, and

(ii) we show that the remaining entries in Table 2 above do not give
irreducible subgroups.

Part (i) First consider G = E8. From the construction given in [6, 5.1],
a subgroup L4(5) of E8 (p = 2) contains the local subgroup 53.L3(5) seen
in the proof of Lemma 3.1; this local subgroup is irreducible on Vadj by [3],
hence so is L4(5). Also, a subgroup Th of E8 (p = 3) must be irreducible on
Vadj , since 248 is the smallest dimension of a nontrivial module for Th (see
[9]). Finally, an irreducible subgroup 2F4(2) of E8 (p = 3) is constructed by
Ryba in [27].

Next consider G = E7. The irreducibility of the subgroups M22,HS,Ru

on V133 (p = 5) is given by [13, 14]. And as for U3(8), the smallest degree
of a nontrivial representation in any characteristic is 56 (see [10]), so it is
irreducible on V56. Now consider H = U3(8), and assume that V133 ↓ H is
reducible. From [10] we see that χ133 ↓ H = 2χ56 +21χ1 or χ57 +χ′57 +19χ1.
If p 6= 3, then letting u ∈ H be a 3C-element, we see that χ133(u) = 25,
contrary to Lemma 3.3. Now let p = 3. If t ∈ H is of order 4, then
χ133(t) = 21 and χ133(t2) = 5. Hence t2 acts on V133 as diag(−1(64), 1(69)),
and t acts as diag(i(32),−i(32),−1(24), 1(45)). This means that CG(t) has
dimension 45; however there is no such semisimple element centralizer in
E7, so this is a contradiction.

Now let G = E6. First consider V = V78−δp,3 . The smallest nontrivial
representations in characteristic 2 of the simple groups Ω7(3), F i22 and J3

have dimension 78 (see [9]), so these groups are irreducible on V78. A glance
at the 2-modular character table of G2(3) in [10] shows that G2(3) has no
reducible Brauer character of degree 78 which is compatible with the values

12



of χ78 in Lemma 3.3 which preserves an orthogonal form; hence G2(3) is
irreducible on V78 (p = 2). Similarly, we see that 2F4(2)′ is irreducible on V

for p 6= 2. Finally, M12 is irreducible on V78 (p = 5) by [15].

Next consider V = V27 (still with G = E6). For p = 2, we have 3.G2(3) <
3.Ω7(3) < 3.F i22 < E6 (simply connected), and the smallest nontrivial 2-
modular representations of these groups have dimension 27 (see [10]), so
these are irreducible on V . The smallest nontrivial representations of 2F4(2)′
in characteristic p 6= 2 have dimensions 26, 27 (see [10]). Since 2F4(2)′ does
not lie in a 1-space stabilizer in G (the latter are either F4 or contained in
a parabolic), the subgroup 2F4(2)′ is irreducible on V . Moreover, 2F4(2)′
has a subgroup L3(3) (see [7]), and for p 6= 2, 3, 13 (i.e. for p not dividing
|L3(3)|), the irreducible degree 27 characters of 2F4(2)′ remain irreducible
on restriction to L3(3).

It remains to justify the examples U3(3), J1 and L2(8).3 in Table 1.3.
For these, observe first that for p 6= 2, 7, E6 possesses a maximal connected
subgroup G2 which acts irreducibly on V27 with high weight 20 (see [29]).
This module has codimension 1 in the symmetric square S2(V7), where V7 =
VG2(10), a 7-dimensional irreducible G2-module. It is well known (see [1]
for example) that G2 possesses subgroups L2(8) (p 6= 2), U3(3) (p 6= 2, 3, 7)
and J1 (p = 11) acting irreducibly on V7, and from the tables in [7, 10]
for these groups, we see that U3(3), J1 also act irreducibly on V27, while
V27 ↓ L2(8) = V9 + V ′9 + V ′′9 , a direct sum of 3 irreducible 9-dimensional
submodules permuted transitively by an outer automorphism of order 3.
The existence of L2(8).3 < G was originally established in an unpublished
article by M. Aschbacher (29.18 of “The maximal subgroups of E6”), and
has recently been constructed in a different way in [27]. This subgroup acts
irreducibly on V27, as required.

Next we consider G = F4. The subgroup 3D4(2) (p 6= 2) is irreducible
on V52, as can be seen using the character tables [7, 10] together with
Lemma 3.3. So consider now V = V26−δp,3 .

The subgroups L4(3), 3D4(2) have smallest nontrivial character degree
equal to 26− δp,3 (see [10]), so these are irreducible on V .

Next we justify the Alt9, Alt10 examples with p = 2. Note that when
p = 2, G has a maximal rank subgroup C4 acting irreducibly on V26 with
high weight 0100; this module is the nontrivial irreducible constituent of
∧2V8, where V8 is the natural module for C4. If we embed Alt9 and Alt10

irreducibly in C4 via the usual permutation module, an easy calculation
using the Alt9 table in [10] shows that these subgroups are irreducible on
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V26.

By [29], for p = 7, G has a maximal connected subgroup G2 acting
irreducibly on V26 with high weight 20. As above, G2 (p = 7) has a subgroup
U3(3) acting irreducibly on V7 = VG2(10), and hence we see that this U3(3)
is irreducible on V26.

Next, use of the L3(3) character tables in [7, 10], together with Lemma 3.3,
show that a subgroup L3(3) of G (p 6= 3) acts irreducibly on V26.

We have already seen that E6 (p 6= 2) has a subgroup 2F4(2)′ which acts
irreducibly on V27. This contains a subgroup L2(25) (see [7]), and a glance
at character tables shows that the Brauer character χ27 restricts to L2(25)
as 1+χ26 if p 6= 3, and as 1+1+χ25 if p = 3, where χ25, χ26 are irreducible.
Hence L2(25) lies in a 1-space stabilizer in E6, which must be F4 (the others
are in parabolics, which do not act irreducibly on a 25- or 26-dimensional
section in V27).

It remains to justify the example L2(27) in Table 1.3. In [5, 6.5], a
subgroup L2(27) of F4(C) is constructed which acts irreducibly on V26. Now
[28, Corollaire, p.546] shows that there is a subgroup L2(27) of F4(K) (K
algebraically closed of characteristic p), in which semisimple elements have
the same eigenvalues on V26 as for the embedding in F4(C). Now a glance
at the tables for L2(27) in [10] shows that provided p 6= 3, 7, this L2(27) <
F4(K) acts irreducibly on V26. When p = 7 this is not the case, as the
7-modular irreducible of degree 26 for L2(27) takes the value −2 on an
involution, so cannot be the Brauer character of V26 ↓ L2(27) by Lemma 3.3.

Finally, let G = G2. The irreducible examples on V7−δp,2 are immediate
from [1, Theorem 9], and those on V14 (p 6= 3) using the character tables in
[7, 10] together with Lemma 3.3.

Part (ii) We now show that the remaining entries in Table 2 above do not
give irreducible subgroups. This amounts to eliminating the possibilities in
the following table.

G V H0

E8 V248 PSp4(5)

E7 V133 J2, Alt9, Alt10, Sp6(2)
V56 J2, L2(27), L2(29)

E6 V78 Alt9,
3D4(2)

V27 L2(27)

Consider first G = E8. Here H0 = PSp4(5) and p = 2. Choose a
transvection u ∈ H0 (in class 5A of PSp4(5) in the notation of [7]). The
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2-modular table for H0 in [10] shows that χ248(u) is irrational. However,
CH0(u)′ contains u, hence CG(u) has no nontrivial central torus, and so
CG(u) = A4A4. This means that χ248(u) = −2 by Lemma 3.3, a contradic-
tion.

Next consider G = E7. For the V133 possibilities, a glance at the tables
in [10] shows that H0 possesses an involution t with χ133(t) = 1,−3,−3
or −27, which is impossible by Lemma 3.3. For V56, observe from [10] that
none of the groups SL2(27), GL2(27), SL2(29) or GL2(29) has an irreducible
representation of degree 56, so H0 6= L2(27), L2(29).

It remains to rule out H0 = J2 on V56 with p 6= 2, 3. We use the character
tables for J2 in [7, 10]. The acting group is Ĥ = 2.J2 < Ê7; suppose this is
irreducible on V56. A 2A involution in J2 lifts to an involution t1 ∈ Ĥ, hence
CG(t1) = A1D6; and a 2B involution lifts to an element t2 ∈ Ĥ of order 4,
hence CG(t2)0 = A7 or T1E6. Now consider the action on L(G) = V133, and
let χ = χ133. By Lemma 3.3 we have χ(t1) = 5 and χ(t2) = −7 or 25. Also,
if u ∈ Ĥ is an element of order 3 then χ(u) = 7, 52,−2 or 34.

Suppose p = 5. We have

χ ↓ H0 = mχ1 + aχ14 + bχ21 + cχ41 + dχ70 + eχ85 + fχ90

where m, a, . . . , f are non-negative integers. Evaluating at the elements
1, t1, t2 we have

(1) m+ 14a+ 21b+ 41c+ 70d+ 85e+ 90f = 133
(2) m− 2a+ 5b+ 9c− 10d+ 5e+ 10f = 5
(3) m+ 2a− 3b+ c− 2d+ 5e+ 6f = −7 or 25

Subtracting (2) from (1) and also (3) from (2) gives the equations a + b +
2c+ 5d+ 5e+ 5f = 8 and −a+ 2b+ 2c−2d+ f = 3 or −5, and adding these
gives

(4) 3b+ 4c+ 3d+ 5e+ 6f = 11 or 3.

If the right hand side of (4) is 3, then either b = 1 and c, d, e, f = 0 or d = 1
and b, d, e, f = 0. In the first case a = 7,m = 14; taking u to be in the
class 3A of H, this implies that χ(u) = 52. This means that χ56(u) = −25
by Lemma 3.3. However, the 5-modular table for J2 in [10] shows that
χ56(u) = 2, so this is a contradiction. In the second case (d = 1), we have
a = 3,m = 21, and so χ(u) = 43, which is impossible.

Now suppose the right hand side of (4) is 11. If f = 1 then by (1),
d = e = 0, so 3b + 4c = 5, which is impossible. Hence f = 0. If e = 1
then d = 0 and 3b + 4c = 6, hence b = 2, c = 0; then a = 1, but this forces
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m to be negative by (1). Hence also e = 0, and 3b + 4c + 3d = 11. Then
c = 2, b + d = 1, from which we get b = 1, d = 0, a = 3; this again gives
m < 0 by (1). This completes the p = 5 case. The p = 7 and p = 0 cases
are similar.

Now let G = E6. If H0 = Alt9 (p = 2), and h ∈ H0 is an element of order
5, then by [10], χ78(h) = −2. On the other hand, h is a rational element,
so by Lemma 3.3, χ78(h) = 3, a contradiction. Also , H0 cannot be 3D4(2),
since in this case V78 ↓ H0 = V26 ⊕ V ′26 ⊕ V ′′26 with H = H0.3, whereas by
[7, 10], 3D4(2) has only one irreducible representation of degree 26. Finally,
if H0 = L2(27), irreducible on V27, then by [10], H0 has an involution t such
that χ27(t) = −1, contrary to Lemma 3.3.

This completes the proof.

4 Proof of Theorem 1, III : finite subgroups in
Lie(p)

Continue to let G be a simple adjoint algebraic group over K of exceptional
type, and H an almost simple finite subgroup, which normalizes no proper
nontrivial connected subgroup of G, and is irreducible on V = Vadj or Vmin.

In this section we complete the proof of Theorem 1 by handling the case
where H0 = F ∗(H) is a simple group in Lie(p). Say H0 = H(q), a group of
Lie type over Fq, where q = pe. Assume H0 is not of the same type as G.
We shall prove the following:

Proposition 4.1 Under the above assumptions, the only possibility is that
G = E6, p = 3 and H0 = Aε2(3) or G2(3), as in Table 1.3.

We shall use the following result, taken from [21].

Lemma 4.2 (i) Assume G 6= E8 and H(q) = A1(q), 2B2(q) or 2G2(q). Then
q ≤ t(G) · (2, p− 1), where t(G) is as follows:

G G2 F4 E6 E7

t(G) 12 68 124 388

(ii) Assume H(q) 6= A1(q), 2B2(q), 2G2(q). Then either q ≤ 9, or H(q) =
Aε2(16) (ε = ±).

(iii) Vadj ↓ H0 is reducible.
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Proof Corollary 5 of [21] shows that if q violates the bounds in (i) or (ii),
then H normalizes a proper nontrivial connected subgroup of G, contrary
to assumption. The given values of t(G) were computed by R. Lawther, and
are listed in [21, p.3411]. Finally, part (iii) follows from [21, Theorem 4].

We prove Proposition 4.1 in a series of lemmas.

Lemma 4.3 Suppose that V ↓ H0 is reducible. Then it is not the case that
H0 lies in a proper closed subgroup H̄ of positive dimension G such that H0

and H̄ fix exactly the same subspaces of V .

Proof Suppose H0 < H̄ as in the hypothesis. Let D be the set of subspaces
of V fixed by H0, and let Y be the stabilizer in G of D. Then H̄ ≤ Y <

G, and Y is normalized by H. This contradicts our assumption of Lie
primitivity for H.

Lemma 4.4 If V = Vadj then H0 6= A1(q).

Proof Suppose for a contradiction that H0 = A1(q) and H is irreducible
on V = Vadj . By Lemma 4.2, H0 is reducible on V , so V ↓ H0 =

⊕t
i=1Wi,

where t > 1, the Wi are irreducible H0-modules, all of dimension m, say, and
mt = dimV . Moreover, every irreducible SL2(q)-module over K extends to
GL2(q), and hence t divides |Aut(H0) : PGL2(q)| = logp q.

If G = E7 and p 6= 2, then dimV = 133 = 7 · 19, hence t ≥ 7 and
q ≥ 37, contrary to Lemma 4.2. And if p = 2 then dimV = 132, and since
irreducible H0-modules have dimension a power of 2 we have dimWi = 4 or
2 and t ≥ 33, again contradicting Lemma 4.2.

Next consider G = E6. If p = 3 then dimV = 77 and so t ≥ 7, q ≥ 37

contrary to 4.2. Now assume p 6= 3, so dimV = 78. Clearly t < 13 by 4.2, so
13| dimWi, and it follows that p ≥ 13; hence t = 2 by 4.2, and dimWi = 39.
The only possibility is that q = p2 and V ↓ H0 = (2 ⊗ 12(p)) ⊕ (2(p) ⊗ 12).
If u ∈ H0 is an element of order 3, then u acts on each summand of V
as diag(1(13), ω(13), (ω2)(13)), where ω is a cube root of 1 and superscripts
denote the multiplicity of each eigenvalue. Moreover, u lifts to an element of
order 3 in the simply connected group Ê6. This is impossible, by Lemma 3.3.

If G = F4, dimV = 52 and we see as before that t = 2, dimWi = 26.
But there is no irreducible L2(q)-module over K of dimension 26 (note that
V (25) and 1⊗ 12(pi) admit SL2(q)).

If G = G2, dimV = 14 and q ≥ 72, again contradicting 4.2.
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It remains to deal with the case where G = E8. Here dimV = 248 =
31 · 8. Now t is not divisible by 31, since otherwise involutions and elements
of order 3 in H0 would have trace on V equal to a multiple of 31, contrary
to Lemma 3.3. Hence 31 divides dimWi. It follows that p ≥ 31 and either
Wi
∼= V (30) with t = 8, or Wi

∼= V (30) ⊗ V (1)(r) ⊗ V (1)(s) with t = 2,
where r, s are powers of p. An element u ∈ H0 of order 3 has trace 1 on
both of these modules, hence has trace 8 or 2 on V . This again contradicts
Lemma 3.3.

Lemma 4.5 If V = Vmin then H0 6= A1(q).

Proof Suppose H0 = A1(q) and V = Vmin. Consider first G = E7, V =
V56, a symplectic module. If H0 is irreducible on V then up to a field twist,
V ↓ H0 is one of the following modules:

55, 13⊗ 1(r) ⊗ 1(s), 6⊗ 7(r), 6⊗ 1(r) ⊗ 1(s) ⊗ 1(t),

where r, s, t are distinct powers of p. In all cases we calculate that an element
of order 3 in H0 has trace −1 on V , contrary to Lemma 3.3.

Hence V ↓ H0 is reducible. Then V ↓ H0 =
⊕t

1Wi, where t > 1, the
Wi are irreducible, all of dimension m, say, and mt = 56; moreover the Wi

are permuted by a field automorphism of order t, so in particular, q ≥ pt.
Note also that the Wi are each self-dual and hence nondegenerate symplectic
modules.

If t ≥ 4, then we easily see that one of the following holds: t = 4 with
q ≥ 74; t = 7 with q = 37; or t = 7 with q = 27 and (up to a field twist)
W1 = 1 ⊗ 1(r) ⊗ 1(s) for some distinct powers r, s of 2. Hence the latter
occurs, by Lemma 4.2. Take a Borel subgroup B = RT 〈φ〉 of H = L2(27).7,
where R = 27, T = 27−1 and φ is a field automorphism of order 7. This lies
in a parabolic subgroup P of G, and the presence of T 〈φ〉 = (27−1).7 forces
P to be an A6-parabolic (since the corresponding Weyl group must have an
element of order 7). Then T lies in a 1-dimensional torus in A6 = SL7 of
the form T1 = {diag(c, c2, c4, c8, c16, c32, c−63) : c ∈ K∗}. The composition
factors of A6 on V have high weights λi (i = 1, 2, 5, 6) (see [20, p.106]),
from which one checks that distinct weights of T1 on V remain distinct on
restriction to T . In other words, T and T1 fix exactly the same subspaces
of V . It follows that Y = 〈H0, T1〉 is a subgroup of positive dimension
fixing exactly the same subspaces of V as H0. This is a contradiction by
Lemma 4.3.
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Thus we have t = 2. Here the H0-module W1 is 27 or 6 ⊗ 3(r) (up to
a field twist). In the first case we have q ≥ 292, contrary to Lemma 4.2.
Hence W1 = 6 ⊗ 3(r). Since p ≥ 7, Lemma 4.2 gives q = p2. Moreover, the
preimage of H in Ê7 has no outer involutions, as these would have trace
zero on V , contrary to Lemma 3.3. Thus the preimage of H is a group
SL2(p2).2 possessing no outer involutions, where the outer elements induce
field automorphisms. However, we claim that there is no such group: for
suppose there is, and let τ be an outer element of order 4, squaring to
the central involution in SL2(p2). As τ induces a field automorphism, its
centralizer contains SL2(p), which has an element t of order 4 squaring to the
central involution. But then τt has order 2, contradicting the assumption
that the group has no outer involutions. This completes the proof for G =
E7.

Now let G = E6, V = V27. If V ↓ H0 is irreducible, then up to a field
twist V = 26, 2⊗ 8(r) or 2⊗ 2(r)⊗ 2(s). In each case an involution in H0 has
trace −1 on V , contrary to Lemma 3.3.

Thus V ↓ H0 =
⊕t

1Wi, where the Wi are irreducible of dimension m

and mt = 27, t > 1. If t ≥ 9 then q ≥ 39, which is not so by 4.2. Hence
t = 3, and (up to a field twist) W1 = 8 or 2 ⊗ 2(r). In the first case, an
element of order p in H0 acts on V with Jordan form J3

9 ; however, there is
no such p-element in E6, by [16, Table 5].

Hence we may assume W1 = 2⊗ 2(r) with t = 3. By Lemma 4.2 we have
q = 33 or 53, and

V ↓ H0 = (2⊗ 2(p))⊕ (2(p) ⊗ 2(p2))⊕ (2(p2) ⊗ 2).

As before, take a Borel subgroup B = RT 〈φ〉 of H, where |R| = q, |T | =
(q−1)/2 and φ is a field automorphism of order 3. Then B lies in a parabolic
P = QL of G, with R < Q and T 〈φ〉 < L. From the action of H0 on V

we see that CV (R) has dimension 3 and T 〈φ〉 acts irreducibly on CV (R).
Hence CV (R) = CV (Q), and the Levi subgroup L must have a factor A2

acting. The same considerations apply to actions on the dual V ∗, so L has
two A2 factors and L = A2A2T2 or A2A2A1T1. The action of φ implies that
To = [T, φ] < A2A2. By [20, 2.3], with a suitable labelling of the A2 factors,
we have

V ↓ A2A2 = (10⊗ 01)⊕ (01⊗ 00)3 ⊕ (00⊗ 10)3.

Now the actions on CV (Q) and CV ∗(Q) show that To is contained in the
1-dimensional torus

T1 = {(diag(c, cp, c−1−p), diag(c, cp, c−1−p) : c ∈ K∗} < A2A2,
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where these actions are on the modules 10, 10 for the A2 factors. Therefore,
the distinct T1-weights on V are 0,±1,±(p−1),±p,±(p+1),±(p+2),±(2p+
1). When p ≥ 3, no two distinct T1-weights are congruent modulo |To| =
(p3 − 1)/(p− 1), and hence To and T1 fix exactly the same subspaces of V .
Then H0 and 〈H0, T1〉 fix the same subspaces of V , contrary to Lemma 4.3.

It remains only to treat the case where G = F4, V = V26−δp,3 . Here,
V ↓ H0 is reducible, as L2(q) has no irreducible module over K of dimension
26−δp,3. In the usual way, Lemma 4.2 implies that t = 2 (and V = V26). But
then W1 has high weight 12, so p ≥ 13 and q ≥ 132, contrary to Lemma 4.2.

Lemma 4.6 H0 is not 2B2(q) or 2G2(q).

Proof Irreducible representations of 2B2(q) over K (in characteristic 2)
have dimension a power of 2, so it is clear that H0 6= 2B2(q).

Now suppose H0 = 2G2(q) with q = 32e+1 > 3. By [25], the irreducible
KH0-modules of dimension 248 or less have dimension 7, 27, 49 or 189.
The cases V77 ↓ H0 = (V7)11 and V133 ↓ H0 = V 19

7 have q ≥ 311, contrary
to Lemma 4.2. The only other possibility is that G = E6 and V = V27;
moreover, V ↓ H0 has high weight 20, and is a submodule of codimension
1 in S2V7, where V7 is the irreducible 7-dimensional KH0-module of high
weight 10. Let t ∈ H0 be an involution. Then t acts on V7 as diag(−14, 13),
hence on V as diag(−112, 115), and it follows that CG(t) = A1A5. Also,
CH0(t) = 〈t〉 × L with L ∼= L2(q). Applying a suitable Frobenius twist, we
can take it that L embeds in A1A5 via one of the following projections:

02, 2/2(3a) (a < 2e)
02, 2/03

1(3a), 2⊗ 1(3b) (b < 2e)

1(3a), 2(3) ⊗ 1

1(3a), 1/1(3b)/1(3c)

where a, b, c < 2e + 1. We can choose a connected subgroup L̄ = A1 of
A1A5 containing L, and with one of the above listed projections. By [20,
2.1], we have L(G) ↓ A1A5 = L(A1A5)/1⊗ λ3. Hence we check that all the
weights of L̄ on L(G) are less than q, and so by [21, 1.5], L and L̄ fix exactly
the same subspaces of L(G). Then as usual, H0 and 〈H0, L̄〉 fix the same
subspaces of L(G), contradicting Lemma 4.3.

Lemma 4.7 (i) Either H0 = H(q) with q ≤ 9, or H0 = Aε2(16).
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(ii) If q > 2 then rank(H0) ≤ 1
2rank(G) (where rank(H0) denotes the

untwisted Lie rank of H0).

Proof Part (i) follows from the previous three lemmas. By [18, Theorem
2], either the conclusion of part (ii) holds, or G = E8 and H0 = 2A5(5) or
2D5(3). In the latter cases [25] shows that there is no suitable irreducible
for H0 of dimension m dividing 248.

Write

V ↓ H0 =
t⊕
1

Wi,

where t ≥ 1, the Wi are irreducible, all of dimension m, and t divides
|Out(H0) : Inndiag(H0)|.

Lemma 4.8 We have t ≤ 2.

Proof If t = 5 or t ≥ 7, the only possibility is that H0 = Aε2(16) with
t = 8. Then m = 7 or 31, but there are no irreducibles of this dimension for
A2 with p = 2.

Now suppose t = 3 or 6. Then by Lemma 4.7 and the fact that t divides
|Out(H0)|, one of the following holds:

(i) q = 8 and rank(H0) ≤ 1
2rank(G);

(ii) H0 = Dε
4(q), and moreover, q = 2 if G 6= E8.

For t = 6 we have m = 13 or 22 (p = 2); and for t = 3 we have m = 9, 26 or
44 (p = 2). Using [25], it follows that either H0 = Aε2(8) with m = 9, t = 3,
or H0 = Dε

4(2) with m = 26, t = 3. In the latter case the irreducible 26-
dimensional module for H0 has high weight λ2, so is fixed by triality, and so
this case is out.

Hence we have H0 = Aε2(8), G = E6, V = V27, and t = 3. First consider
ε = 1, H0 = L3(8). In this case

V ↓ H0 = (10⊗ 10(2))⊕ (10(2) ⊗ 10(4))⊕ (10(4) ⊗ 10), or

(10⊗ 01(4))⊕ (10(2) ⊗ 01)⊕ (10(4) ⊗ 01(2)),

or the dual of one of these. Let x ∈ H0 be an element of order 73. This acts
on the module 10 as diag(ω, ω8, ω64) for some ω ∈ K∗ of order 73. Hence we
check that x acts on V with 27 distinct eigenvalues, and it follows that there
is a 1-dimensional torus T1 < G containing x such that T1 and x fix exactly
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the same subspaces of V . Then H0 and 〈H0, T1〉 fix the same subspaces,
contrary to Lemma 4.3.

Now consider ε = −1, H0 = U3(8). In the simply connected group Ê6,
H0 lifts to Ĥ0 = U3(8) or SU3(8). Then the preimage of H contains a
subgroup (〈a〉 × L).3, where L = SU2(8) ∼= L2(8) and the element a has
order 3 or 9, respectively. As above, V ↓ H0 is the direct sum of three
9-dimensional modules, each of which is the tensor product of twists of 10
or 01. In particular, V ↓ L is completely reducible.

If |a| = 9 then the outer 3 acts on CG(a)′, and hence CG(a)′ = D4 or
A3

1; and if |a| = 3 then by Lemma 3.3, CG(a)′ = A5, D4 or A3
2. Thus in any

case we have L.3 < (A3
1).3, (A3

2).3, D4.3 or A5. By [20, 2.3], the nontrivial
composition factors of D4 on V are the 8-dimensional modules of high weight
λi (i = 1, 3, 4); those of A5 are of high weight λ1, λ4; while those of A3

1 and
A3

2 are tensor products of two twists of natural 2- or 3-dimensional modules.
Provided CG(a)′ 6= A3

2, it follows that there is a connected subgroup A1 of
CG(a)′ containing L having highest weight on V less than 8. By [21, 1.5]
this A1 fixes exactly the same subspaces of V as L. Hence H0 and 〈H0, A1〉
fix the same subspaces, contrary to Lemma 4.3 again.

Now assume CG(a)′ = A3
2. If L embeds completely reducibly in a factor

A2, we get a connected A1 containing L fixing the same subspaces, as above.
So assume L embeds in each A2 indecomposably. Then the restriction of the
9-dimensional summands of V ↓ A3

2 to L is of the form (1/0)⊗(2/0) (or some
twist of this), where 1/0, 2/0 denote 3-dimensional indecomposables for L
with the indicated composition factors. However, it is clear that (1/0) ⊗
(2/0) is not completely reducible for L. Indeed, this tensor product has
either a submodule or quotient module of the form 1/0 ⊗ 0 ∼= 1/0, which
is not completely reducible. Hence, V ↓ L is not completely reducible, a
contradiction.

Finally, suppose t = 4. Then either q = 4 or H0 = Aε2(16), and moreover
rank(H0) ≤ 1

2rank(G). Also m = 13, 14, 62 or 33 (p = 2). A quick check
using [25] shows that the only possibility is H0 = Aε3(4) with m = 14,
and the irreducible W1 of high weight 101. But this is fixed by a graph
automorphism of G, so the four Wi’s are not all non-isomorphic, which is
impossible.

At this point, a check using [25] gives the following.

Lemma 4.9 The possibilities for H0, t and V ↓ H0 are as in Table 3 below
(up to Frobenius twists).
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Table 3

H0 q t V ↓ H0 Case no.

Aε2(q) 3, 7, 9 1 V27 ↓ H0 = 22 (1)
8, 16 1 V27 ↓ H0 = V3 ⊗ V ′3 ⊗ V ′′3 (2)
7 2 V56 ↓ H0 = 60⊕ 06 (3)
5 2 V78 ↓ H0 = 32⊕ 32 (4)

Aε3(q) 7 2 V248 ↓ H0 = 302⊕ 203 (5)

Aε7(q) 2 2 V56 ↓ H0 = λ2 ⊕ λ6 (6)

B2(q) 3, 9 1 V25 ↓ H0 = 12 (7)

9 1 V25 ↓ H0 = 10⊗ 10(3) (8)

9 1 V56 ↓ H0 = 01⊗ 20(3) (9)
5 1 V52 ↓ H0 = 13 (10)
7 1 V56 ↓ H0 = 05 (11)

B3(q) 3, 5, 9 1 V27 ↓ H0 = 200 (12)

9 1 V56 ↓ H0 = 100⊗ 001(3) (13)
7 1 V248 ↓ H0 = 021 (14)

B4(q) 2 1 V26 ↓ H0 = 0100 (15)

C3(q) 5, 7 1 V56 ↓ H0 = 300 (16)

Dε
4(q) 2 1 V26 ↓ H0 = 0100 (17)

G2(q) 3, 5, 9 1 V27 ↓ H0 = 20 (18)
7 1 V26 ↓ H0 = 20 (19)
7 1 V248 ↓ H0 = 12 (20)

Lemma 4.10 We have t = 1.

Proof Consider the t = 2 cases in Table 3 above. In case (4), H0 = Aε2(q),
any extension H0.2 splits, and so H possesses an involution u interchanging
W1 and W2, hence acting as diag(−139, 139), which has determinant −1, a
contradiction.

Next consider (3). Here the outer involution in Aε2(7).2 could (indeed,
must) lift to an element of order 4 in the simply connected group Ĝ = Ê7.
Choose a subgroup S = SL2(7) < H0. The irreducible 60 for A2 is the 6th
symmetric power of the natural 3-dimensional module, so 60 ↓ S = S6(1⊕0),
which we calculate to be 6⊕5⊕4⊕3⊕2⊕1⊕0. Hence if u ∈ S is a unipotent
element of order 7, then u acts on V56 as J2

7 , J
2
6 , . . . , J

2
1 (where Ji denotes

a Jordan block of size i). Referring to [16, Table 7], we see that u is in
the class A4 + A1 of G, and hence lies in a connected subgroup A = A1 in
a subsystem subgroup A4A1, embedded via the representations 4, 1. The
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nontrivial composition factors of A1A4 on L(G) are 1⊗λ1, 1⊗λ4 and 0⊗λi.
Hence we see that the composition factors of A on L(G) all have high weight
less than 7. If U is a 1-dimensional unipotent subgroup of A containing u,
it follows that u and U fix exactly the same subspaces of V56. Hence H0 and
〈H0, U〉 fix the same subspaces, contrary to Lemma 4.3.

In case (5), H0 = Aε3(7) with V248 ↓ H0 = 203⊕302, the acting group has
nontrivial centre (since −I acts faithfully on 203), which is a contradiction.

Finally, consider case (6): H = Aε7(2).2 with V56 ↓ H0 = λ2 ⊕ λ6. For
ε = −1,H0 = U8(2), pick an element t ∈ H0 of order 3 with CH0(t) =
〈t〉×SU7(2). Then t acts on the natural 8-dimensional H0-module V (λ1) as
diag(ω−1, ω(7)) (where ω is a cube root of 1), hence on V (λ2) as diag(1(7), ω−1 (21)).
Hence χ56(t) = −7, whence CG(t) = A6T1 by Lemma 3.3. The subgroup
SU7(2) = CH0(t)′ lies in the factor A6, and the composition factors of this
A6 on V56 are of high weight λi (i = 1, 2, 5, 6). Hence SU7(2) and A6 fix the
same subspaces of V56, and so H0 and 〈H0, A6〉 also fix the same subspaces,
giving a contradiction by Lemma 4.3.

For ε = +1, H0 = L8(2), pick an element u ∈ H0 of order 3 with
CH0(u) = 〈u〉 × SL6(2). Then u acts on the natural 8-dimensional H0-
module as diag(ω, ω−1, 1(6)), from which we calculate that χ56(u) = 20,
hence CG(u) = D6T1. So we have CH0(u)′ = SL6(2) < D6. By [11],
H1(SL6(2), V (λ2)) = 0, so this SL6(2) is completely reducible on the nat-
ural 12-dimensional D6-module, and so we have SL6(2) < A5 < D6. The
composition factors of the A5 on V56 are of high weight λi, so SL6(2) and
A5 fix the same subspaces of V56, and now we complete the argument as
before.

Lemma 4.11 Cases (10), (13), (14) of Table 3 do not occur.

Proof In cases (10) and (14), the acting group has centre containing −1,
which is impossible. In case (13), the module 100⊗ 001(3) for B3(q) admits
a non-degenerate symmetric bilinear form, so does not embed H0 in E7.

Lemma 4.12 Cases (2), (8), (9), (11), (12), (16) of Table 3 do not occur.

Proof Let t ∈ H0 be an involution. In case (2), t acts on V27 as (J13
2 , J1)

(where Ji denotes an i × i Jordan block); but there is no such involution
in E6, by [16, Table 5]. In case (8) take t to act as diag(−14, 1) on the
5-dimensional orthogonal module 10; then t acts on V25 as diag(−18, 117),
contrary to Lemma 3.3. In case (9), take t to act as diag(−12, 12) on the
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4-dimensional sympletic module 01; then t acts as diag(−14, 110) on 20,
hence as diag(−128, 128) on V56, contrary to Lemma 3.3. Likewise, in case
(11), we have V56 ↓ H0 = 05 = S5(01), the 5th symmetric power of 01,
from which we see that t again acts on V56 as diag(−128, 128). In case (12)
take t to act as diag(−12, 15) on the 7-dimensional orthogonal module 100.
Since V27 ↓ H0 = 200 is of codimension 1 in S2(100), we see that t acts on
V27 as diag(−110, 117). But there is no such involution in E6 by Lemma 3.3.
Finally, in case (16) let u be an element of order 3 acting on the 6-dimensional
symplectic module 100 as diag(ω, ω−1, 14) (where ω is a cube root of unity).
As V56 ↓ H0 = 300 = S3(100), u acts on V56 as diag(1(26), ω(15), ω−1 (15)).
But there is no such element in E7, by Lemma 3.3.

Lemma 4.13 Cases (15), (17) of Table 3 do not occur.

Proof Here H0 = B4(2) or Dε
4(2) in G = F4 with p = 2. The group

G has two irreducible restricted 26-dimensional modules, which we shall
denote by V26 = V (λ4) and V ′26 = V (λ1) (in other characteristics this is the
52-dimensional adjoint module).

Assume now that H0 6= 3D4(2). Then we can choose an element u ∈ H0

of order 3 such that CH0(u)′ = Sp6(2) or Ω±6 (2). The 3-element centralizers
in G are listed in Lemma 3.3, and the only possibility is that CG(u) = T1B3

or T1C3. Replacing H0 by its image under a graph automorphism of G if
necessary, we can take CG(u) = T1C3 < C4. Now V26 ↓ C4 = VC4(λ2),
the irreducible constituent of ∧2V8 (where V8 is the natural module for C4).
Moreover, T1 acts on V8 as {diag(α, α−1, 1(6)) : α ∈ K∗}, hence acts on
V26 as {diag(α(6), α−1 (6), 1(14)) : α ∈ K∗}. On the other hand, V ′26 ↓ C4 =
2λ1/λ4/0

2, on which T1 acts as {diag(α(8), α−1 (8), α2, α−2, 1(8)) : α ∈ K∗}.
Since H0 contains u ∈ T1, and H0 has only one irreducible of dimension 26
(the nontrivial composition factor of the adjoint module) it follows that H0

is irreducible on V26, but reducible on V ′26.

First assume CH0(u)′ = Sp6(2). One checks that V ′26 ↓ C3 = W⊕λ2
3⊕02,

where W is uniserial of shape 0|2λ1|0 and we see that Sp6(2) and C3 leave
invariant the same subspaces of V ′26, contradicting Lemma 4.3. Now assume
CH0(u)′ = Dε

4(2), so that Dε
4(2) is contained in a subgroup D3 of C3. Then

V ′26 ↓ D3 = 2λ2 ⊕ λ2
1 ⊕ λ2

3 ⊕ 04. This time CH0(u)′ and D3 leave invariant
the same subspaces of V ′26, again contradicting Lemma 4.3.

Now let H0 = 3D4(2). Pick u ∈ H0 of order 3 with CH0(u) = 〈u〉×L2(8).
Then u acts as {diag(α(2), α−1 (2), 1(4)) on the orthogonal module and hence
as {diag(α(9), α−1 (9), 1(8)) on the irreducible module of dimension 26. So this

25



time, V ′26 ↓ H0 is irreducible. On the other hand, u and T1 leave invariant
the same subspaces of V26, so Lemma 4.3 yields a contradiction.

The only alternative is that CG(u) = A2Ã2. We have

V26 ↓ A2Ã2 = (10⊗ 10)⊕ (01⊗ 01)⊕ (00⊗ 11).

Hence we see that u acts on both V26 and V ′26 as diag(ω(9), ω−1 (9), 1(8))
(where ω is a cube root of 1). If H0 is reducible on either module, its
restriction has only 8-dimensional nontrivial composition factors, and u acts
on each such as diag(ω(2), ω−1 (2), 1(4)), which is incompatible with the above
action of u on the 26-dimensional modules. Hence H0 is irreducible on both
V26 and V ′26 (and these are isomorphic as H0-modules).

We can choose an element v ∈ H0 of order 7 such that CH0(v) = 〈v〉 ×
L3(2) (see [7]). If CG(v) = T1B3 or T1C3 then v ∈ T1; but we showed
above that T1 acts differently on V26 and V ′26, so this is impossible. Hence
CG(v) = T2A2 or T1A1A2, and applying a graph automorphism if necessary,
we may take it that the A2 factor is generated by long root groups. Then
CH0(v)′ = L3(2) < A2. However V ′26 ↓ A2 has 11 as a composition factor,
whereas V26 ↓ A2 has no such composition factor. This is a contradiction,
as L3(2) < H0 acts isomorphically on V26 and V ′26.

Lemma 4.14 Cases (7), (20) of Table 3 do not occur.

Proof First consider case (7): G = F4,H0 = B2(q). Here H0 ≥ B2(3) ∼=
U4(2) and so has a subgroup 24.A5 with the A5 acting on the 24 as Ω−4 (2).
We shall show that in general, for p 6= 2, F4 does not contain such a sub-
group 24.A5. Suppose then that 24.A5 < G = F4, and let E be the normal
subgroup 24. Then E is not fused in G (see [5, 3.4]), hence contains an in-
volution e with CG(e) = B4 = Spin9. Obviously E < B4. Apart from e, the
involutions in B4 are those elements whose image in SO9 = B4/〈e〉 is similar
to either diag(−14, 15) or diag(−18, 1). The former have G-centralizer A1C3,
the latter B4.

Conjugating if necessary, we may assume that E consists of matrices
whose image in SO9 is diagonal with eigenvalues ±1. The orbits of A5 on
E have sizes 5, 10, so there are at least 5 B4-involutions in E. Choose a
B4-involution f ∈ E − {e} with image diag(−18, 1). As 〈e, f〉 has only 3
involutions, E contains a further B4-involution, say g. Then the image of
g in SO9 has 8 eigenvalues −1, so the product fg has image with only 2
eigenvalues −1. But then fg is not an involution in B4, which is a contra-
diction.

26



Now consider case (20): G = E8,H0 = G2(7), V248 ↓ H0 = 12. Using the
computer programme in [8], we find that the subdominant weights, weight
space dimensions, and orbits sizes under W = W (G) for this representation
of G2 are as follows:

weight λ 12 40 21 02 30 11 20 01 10 00

dimVλ 1 1 2 2 3 4 6 6 8 8
|W (λ)| 12 6 12 6 6 12 6 6 6 1

A Cartan subgroup of G2(7) has 3 involutions, namely h1(−1), h2(−1),
h1(−1)h2(−1), and these are all conjugate. Hence, evaluating the above
weights on these involutions, we find that an involution in H0 acts on V248

as diag(−1124, 1124). This contradicts Lemma 3.3.

Lemma 4.15 Cases (1), (18), (19) of Table 3 do not occur.

Proof Consider case (1): G = E6, H0 = Aε2(q) (q = 3, 7 or 9), V27 ↓ H0 =
22. Let t ∈ H0 be an involution, and let S < CH0(t) with S ∼= SL2(q).
Note that for A2 we have 20 ⊗ 02 = W (22)/W (11)/W (00) (see [20, 2.14]).
Hence we calculate that t acts on V27 as diag(−112, 115), so CG(t) = A1A5

by Lemma 3.3. Moreover, S < A1A5 and V27 ↓ A1A5 = (1⊗ λ1)⊕ (0⊗ λ4),
while L(G) ↓ A1A5 = L(A1A5)/1⊗ λ3 (see [20, 2.1, 2.3]). The restriction of
V = VA2(22) to S has composition factors W (4)/W (3)2/W (2)3/W (1)2/0.
It follows that if q ≥ 7, then S embeds in a connected subgroup S̄ = SL2(K)
of A1A5 such that the composition factors of S̄ on L(G) are all less than
q. By [21, 1.5] this means that S and S̄ fix exactly the same subspaces of
L(G), and now we see in the usual way that H normalizes a proper nontrivial
connected subgroup of G, a contradiction.

This leaves q = 3: H0 = Aε2(3) < E6 with V27 ↓ H0 = 22. Note that this
possibility is in Table 1.3: we know that there is are irreducible subgroups
Aε2(3) lying in a connected subgroup A2 of G, but we have not determined
whether or not there are such subgroups Aε2(3) which are Lie primitive.

Next consider cases (18),(19): H0 = G2(q) (q = 3, 5, 7, 9) with V27−δp,7 ↓
H0 = 20. Let t ∈ H0 be an involution. As above we see that CG(t) = A1A5.
Also, for q ≥ 5, CH0(t)′ = S1S2 with S1

∼= S2
∼= SL2(q), and we see as

before that one of the Si’s lies in a connected SL2 in A1A5 fixing the same
subspaces of L(G).

This leaves q = 3. We complete the proof by showing that any H0 =
G2(3) in E6, such that V27 ↓ H0 = 20, is not Lie primitive. Take a long
root subgroup L = L3(3) < H0. Then writing V7 = VG2(10), we have
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V7 ↓ L = 10 + 01 + 00. Since VG2(20) is of codimension 1 in S2(10), we see
that

V27 ↓ L = T (11) + 20 + 02 + 10 + 01,

where T (11) is the tilting module 00/11/00. Thus L fixes a 1-space in
V27. The stabilizer of this 1-space in E6 is either F4 or contained in a D5-
parabolic; however V27 ↓ D5 has a self-dual composition factor of dimension
10, which is not compatible with the above decomposition of V27 ↓ L. Hence
L < F4.

Take an involution t ∈ L and a subgroup S = SL2(3) < CL(t). Re-
stricting to S we have V25 ↓ S = 23 + 16 + 04 (completely reducible).
Hence CF4(t) = A1C3, where t generated the center of each factor. Since
V25 ↓ A1C3 = (1⊗λ1)⊕ (0⊗λ2), it follows that the embedding of S in A1C3

must be 02, 1 + 1 + 1. Hence we see that there is a connected subgroup
A = A1 in C3 containing S and fixing the same subspaces as S. Setting
X = 〈L,A〉, we have L < X < F4, and L,X fix the same subspaces of V25.
Referring to the list of maximal connected subgroups of F4 in [23] and the
restrictions of V25 to these, we conclude that L lies in a maximal rank sub-
group A2A2 of F4, hence lies in a diagonal subgroup B = A2 of a maximal
rank subgroup A3

2 of G = E6. From [20, Table 8.3] we see that the com-
position factors of L(G) ↓ B are the irreducibles 00, 11, 10, 01, 20, 02, 21, 12;
moreover, L(G) ↓ B is a direct sum of irreducibles together with the inde-
composable 00/11/00, which remains indecomposable for L. It follows that
L and B fix the same subspaces of V77 = L(G)′. Then H0 and 〈H0, B〉 fix
the same subspaces, and moreover, H0 is reducible on L(G)′ (see [10]). This
is a contradiction, by Lemma 4.3.

5 Proof of Corollary 2

Let σ be a Frobenius morphism of the exceptional algebraic group G, so
that Gσ = G(r) is a finite exceptional group over Fr (r = pa). Let H be
a maximal subgroup of Gσ which is irreducible on V ∈ {Vadj , Vmin}, and
assume that H is not of the same type as G.

Suppose first that H = H̄σ with H̄ a maximal closed σ-stable subgroup
of positive dimension in G. If H̄ is not of maximal rank, then [23, Theorem
1] shows that H̄ must be as in the lists (b),(c) before Lemma 2.1, and now
Theorem 1 shows that H̄ must be as in Table 1.2 and hence conclusion (ii)
of Corollary 2 holds. If H̄ is of maximal rank, the possibilities are given by
[17], and again the result follows using Theorem 1.
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So assume from now on that H is not of the form H̄σ for such a subgroup
H̄.

Next observe that if Gσ is of type 2G2 or 2F4, then the conclusion is
immediate from [12, 26]. (Indeed, under our assumption that H is not of
the same type as G, no further maximal subgroups of 2G2(q) (q > 3) are
irreducible, and for Gσ = 2F4(q) only the maximal subgroups with socles
L3(3), L2(25) and q = 2 occur, with V = V26.) So assume Gσ is not of one
of these types, so that either σ is a field morphism or G = E6 and σ is a
graph-field morphism.

Suppose first that F ∗(H) is not simple. Then H is determined by [19,
Theorem 2], from which it follows that F ∗(H) is one of the local subgroups
in Tables 1.1, 1.3.

Thus we may now assume that F ∗(H) is simple. Write H0 = F ∗(H). If
H0 6∈ Lie(p) then the proofs of Lemmas 3.4 and 3.5 show that H0 is as in
Table 1.1 or 1.3.

Now assume H0 ∈ Lie(p), say H0 = H(q), a group of Lie type over Fq
(q = pb).

We next establish that the conclusion of Lemma 4.3 holds in our situ-
ation. Suppose V ↓ H0 is reducible and H0 lies in a closed subgroup H̄ of
positive dimension in G such that H0 and H̄ fix the same subspaces of V .
We apply the argument of the proof of [21, Theorem 6] (see p.3473 of [21]):
if σ is a field morphism, let M be the set of all H0-invariant subspaces of
V , and define Y =

⋂
W∈MGW . Then Y is H〈σ〉-stable (see the proof of

[21, 1.12]) and contains H̄. If Z is a maximal H〈σ〉-stable proper subgroup
of G containing Y , then by maximality we have H = Zσ, contrary to our
assumption above. Finally, if G = E6 and σ is a graph-field morphism, then
σ interchanges the G-modules V and V ∗, and moreover H0 and H̄ fix the
same subspaces of both V and V ∗ (as the latter are the annihilators of the
former). Thus if we define M to be the set of all H0-invariant subspaces of
both V and V ∗, the above argument yields the same contradiction.

We have now proved that the conclusion of Lemma 4.3 holds in our
situation. At this point the proof given in Section 4 establishes the result
(namely, that the conclusion of Proposition 4.1 holds). This completes the
proof of Corollary 2.
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