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Abstract

Let G be a finite simple group of Lie type in characteristic 2, and
t ∈ G an involution. We provide a lower bound for the proportion of
elements g ∈ G such that ttg has odd order. This has applications to
the theory of recognition algorithms for such groups.

1 Introduction

Many algorithms involving finite simple groups depend on the ability to
construct involution centralizers. The standard method for doing this was
given by Bray [2]: let G be a simple group and t ∈ G an involution. For
a conjugate tg of t, let n be the order of ttg = [t, g]. If n is odd, then
g[t, g](n−1)/2 centralizes t; moroever, if g is uniformly distributed among
elements of G for which [t, g] has odd order, then the corresponding element
g[t, g](n−1)/2 is uniformly distributed among elements of CG(t). Since few
random elements are required to generate CG(t), this leads to a construction
of this centralizer, provided there is a good proportion of elements g for
which [t, g] has odd order. Lower bounds for such proportions were obtained
for groups of Lie type in odd characteristic in [9, Theorems 1,2], and for long
root elements in characteristic 2 in [7, 3.9]. In this note we obtain lower
bounds for all involutions in finite groups of Lie type in characteristic 2.

Our first result deals with the case of classical groups. It is useful for
the recognition algorithm developed in [5].
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Theorem 1 Let G be a finite classical simple group with natural module of
dimension d over a field of characteristic 2, let t ∈ G be an involution, and
let r = rank(t + 1). Then the proportion of g ∈ G such that [t, g] has odd
order is at least c/r, where c is a positive absolute constant; in particular it
is at least 2c/d.

The proof shows that c = 1
64 suffices, and more care would improve this

value. However, computational evidence indicates that a stronger result may
be true with 2c/d replaced by a positive absolute constant independent of
d.

For the exceptional groups of Lie type, we prove:

Theorem 2 There is a positive absolute constant b such that if G is a finite
simple exceptional group of Lie type over a field of characteristic 2, and t ∈ G
is an involution, then the proportion of g ∈ G such that [t, g] has odd order
is at least b.

The proof shows that b = 1
100 suffices (see the Remark at the end of the

paper). Again, this is undoubtedly far from best possible.

Acknowledgement I would like to thank the referee for suggesting the
inclusion of Theorem 2 and a number of other helpful remarks.

2 Proof of Theorem 1

The proof of Theorem 1 is based on a simple idea – embedding any given
involution of G in a suitable dihedral subgroup. For simplicity we break the
proof up into four lemmas, each dealing with one family of classical groups.

Lemma 2.1 Theorem 1 holds when G = PSLd(q) (q even).

Proof. Let G = PSLd(q) with q even. Since two involutions in G are
conjugate in G if and only if they are conjugate in PGLd(q), it suffices to
prove the result with G replaced by GLd(q), which is a little more convenient
notation-wise.

Let t ∈ G = GLd(q) be an involution, and take t to have Jordan
canonical form diag(Jr2 , J

d−2r
1 ), where Ji denotes an i × i unipotent Jor-

dan block matrix. Let U (respectively, W ) be the subspace spanned by
bases for the J2-blocks (respectively, J1-blocks), so that GL(U)×GL(W ) =
GL2r(q) × GLd−2r(q) ≤ G. There is a subgroup S ∼= SL2(q

r) of the first
factor (embedded as in [6, §4.3]) such that t ∈ S. Let D be a dihedral
subgroup of S of order 2(qr + 1) containing t, and let x ∈ D be an element
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of order qr + 1. The eigenvalues of x on U ⊗ F̄q (where F̄q is the algebraic
closure of Fq) are all distinct, so CGL2r(q)(x) is a maximal torus of GL2r(q)
and hence is equal to GL1(q

2r). It follows that

NG(〈x〉) = NGL2r(q)(〈x〉)×GLd−2r(q) = (GL1(q
2r).2r)×GLd−2r(q).

LetD0 be the set of elements in 〈x〉 of order not dividing any qi+1 with i < r.
Then |D0| > 1

2q
r, and for y ∈ D0 we have CG(y) = CG(x). All involutions

in D are conjugate to t, and the number of pairs of involutions in D with
product equal to an element of D0 is at least 1

2q
2r. Hence the number of

ordered pairs of G-conjugates of t with product equal to a conjugate of an
element in D0 is at least

N :=
1

2
q2r × |G : NG(〈x〉)| = 1

4r
· q2r · |GLd(q)|

(q2r − 1) · |GLd−2r(q)|
.

Now |CG(t)| = qr
2+2r(d−2r)|GLr(q)| |GLd−2r(q)| (see [8, 7.1]). Hence the

proportion of pairs of conjugates of t with product of odd order (dividing
qr + 1) is at least

N

|tG|2
=

1

4r
· q

2r · q2r2+4r(d−2r) · |GLr(q)|2|GLd−2r(q)|
(q2r − 1) · |GLd(q)|

.

Since |GLr(q)| > 1
4q
r2 , it follows that

N

|tG|2
>
c

r
≥ 2c

d
,

where c = 1
64 . This completes the proof of the lemma.

Lemma 2.2 Theorem 1 holds when G = PSUd(q) (q even).

Proof. The proof is very similar to that of the previous lemma. We can
replace G by GUd(q). An involution t ∈ G is determined up to conjugacy by
its Jordan form diag(Jr2 , J

d−2r
1 ). Again t lies in a subgroup S×1 = SL2(q

r)×
1 ≤ GU2r(q) × GUd−2r(q) of G (where if r is odd, S = SU2(q

r) embedded
in GU2r(q) as in [6, §4.3], and if r is even, S = SL2(q

r) ≤ GLr(q
2) <

GU2r(q)). Now we argue as in the previous proof using a dihedral subgoup
D ∼= D2(qr+1) of S containing t, noting that for x ∈ D of order qr + 1 we
have NG(〈x〉) = ((qr + 1) × (qr − (−1)r).2r) × GUd−2r(q), and also that
|CG(t)| = qr

2+2r(d−2r)|GUr(q)| |GUd−2r(q)|.

Lemma 2.3 Theorem 1 holds when G = Spd(q) (q even).
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Proof. Let G = Spd(q), and write d = 2n and V = V2n(q), the natural
module for G. The conjugacy classes of involutions and their centralizers
in G were determined in [1], and a convenient statement can be found in
[8, 7.3]. We summarize the results. Each involution t ∈ G is unipotent,
and V ↓ t is an orthogonal direct sum of non-degenerate subspaces of the
following forms: V (2), a 2-space on which u acts as a Jordan block J2;
W (2), a 4-space on which u acts as J2

2 , a sum of two singular J2-blocks; and
W (1), a 2-space on which u acts trivially. The involution classes in G are
represented by elements

ar (r even, r ≤ n), br (r odd, r ≤ n), cr (r even, r ≤ n),

where
V ↓ ar = W (2)r/2 +W (1)n−r,
V ↓ br = V (2)r +W (1)n−r,
V ↓ cr = V (2)r +W (1)n−r.

The centralizers are as follows:

t CG(t)/O2(CG(t)) |CG(t)| ∼
ar Spr(q)× Sp2n−2r(q) qn

2+(n−r)2+n

br Spr−1(q)× Sp2n−2r(q) qn
2+(n−r)2+n−r

cr Spr−2(q)× Sp2n−2r(q) qn
2+(n−r)2+n−r

Here, when we write |CG(t)| ∼ qR we mean that |CG(t)| is a polynomial in
q with leading term qR.

Consider t = br or cr. Let S be a subgroup Sp2(q
r) of Sp2r(q), embedded

as in [6, §4.3]. One checks that an involution in S acts on the natural
module for Sp2r(q) as V (2)r, so that S contains a conjugate of t. As in
previous proofs, let D ∼= D2(qr+1) be a dihedral subgroup of S containing
t. For x ∈ D of order dividing qr + 1 but not qi + 1 for i < r, we have
NG(〈x〉) = (D.r) × Sp2n−2r(q). Hence the number of ordered pairs of G-
conjugates of t with product of odd order (dividing qr + 1) is at least

N :=
1

2
q2r × |G : NG(〈x〉)| = 1

4r
· q2r · |Sp2n(q)|

(qr + 1) · |Sp2n−2r(q)|
.

The proportion of pairs of conjugates of t with product of odd order is
therefore at least N/(|tG|2), and using the above information on CG(t), we
see that this proportion is at least c/r, where c = 1

64 .

Now consider t = ar. In this case t lies in a subgroup Sp4(q
r/2) of Sp2r(q)

(acting on the natural 4-dimensional module for Sp4(q
r/2) as W (2)). Indeed,

t ∈ S := SL2(q
r/2)⊗ 1 < SL2(q

r/2)⊗ SL2(q
r/2) = Ω+

4 (qr/2) < Sp4(q
r/2).

As usual, let D ∼= D2(qr/2+1) be a dihedral subgroup of S containing t.

For x ∈ D of order dividing qr/2 + 1 but not qi + 1 for i < r/2, we have
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CSp2r(q)(x) = (qr/2 + 1) ⊗ SL2(q
r/2) ∼= GU2(q

r/2), and hence NG(〈x〉) =

((D.(r/2)) ⊗ SL2(q
r/2)) × Sp2n−2r(q). Now argue as above to obtain the

conclusion.

Lemma 2.4 Theorem 1 holds when G = Ω±d (q) (q even).

Proof. Let G = Ωε
d(q), and write d = 2n and V = V2n(q). We can

assume that n ≥ 4. Involution classes and centralizers in G can be found in
[8, 7.3] (originally in [1]). The class representatives are the involutions ar
and cr defined in the previous proof (the involutions br lie in O(V ) \Ω(V )),

noting that if n is even, an lies in Ω+
2n(q) but not Ω−2n(q), and a

O+
2n(q)

n splits
into two classes in Ω+

2n(q). Also,

CG(ar)/O2(CG(ar)) = Spr(q)× Ωε
2n−2r(q), |CG(ar)| ∼ qn

2+(n−r)2−n+r,

CG(cr)/O2(CG(cr)) = Spr−2(q)× Sp2n−2r(q), |CG(cr)| ∼ qn
2+(n−r)2−n.

As in the previous proof, an involution ar lies in a subgroup S = SL2(q
r/2)

of Ω+
4 (qr/2), and this is contained in a subgroup Ω+

2r(q) of G. Elements
x ∈ S of order dividing qr/2 + 1 but not qi + 1 for i < r/2 satisfy NG(〈x〉) =
((qr/2 + 1).r) ⊗ SL2(q

r/2)) × Ωε
2n−2r(q), and now we obtain the conclusion

in the usual way.

Finally, an involution cr lies in a subgroup D := Oε2(q
r) ∼= D2(qr−ε) of

Ωε
2r(q) < G, and for x ∈ D of order dividing qr − ε but not qi − ε for i < r

we have NG(〈x〉) ≤ (D.r) × Ωε
2n−2r(q), leading to the result in the usual

way.

3 Proof of Theorem 2

Let G be a simple group of exceptional Lie type over Fq with q even. The
conjugacy classes of involutions in G can be found in Tables 22.2.1-6 of [8]
(originally in [1]). For convenience we postpone the proof for the twisted
types 2F4(q)

′, 3D4(q),
2B2(q) until the end of the section; so assume for now

that G is not one of these types.

For each involution class in G, we argue as follows, letting c1, c2, . . .
denote positive absolute constants. Let t be an involution in the class. For
suitable k (specified in Table 1), we find a torus Tk of order a polynomial
in q of degree k, such that every element of Tk is inverted by t. Then
all involutions in the coset Tkt are conjugate to t. For sufficiently large q,
at least c1q

k of the elements x ∈ Tk satisfy CG(x) = CG(Tk). Hence the
number of pairs of conjugates of t with product equal to a conjugate of such
an element x is at least

N := c2q
2k × |G : NG(Tk)|.
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We have N ≥ c3q2k+s, where s is the degree of the polynomial |G : CG(Tk)|,
computed using Table 1 (noting that |NG(Tk) : CG(Tk)| is bounded by the
order of the Weyl group of G) . Also |tG| < c4q

l, where l is also in Table 1.
In all cases we calculate that 2k + s = 2l. Hence the proportion N/|tG|2 is
greater than some positive absolute constant, as required for Theorem 2.

For each involution class, the entries in Table 1 are justified by choosing
an involution w0(D) in the Weyl group W (G) as a representative of the class,
where D is a subsystem subgroup given in column 3 of the table and w0(D)
denotes the longest element of W (D). This involution inverts a maximal
torus Tk of D, and CG(Tk) is a Levi subgroup of G which is easily computed
using knowledge of CG(D) (see [8, Chapter 11]).

Table 1:

G t rep. k type of CG(Tk) l, where |tG| ∼ ql
E8(q) A1 w0(A1) 1 T1E7(q) 58

A2
1 w0(A

2
1) 2 T2D6(q) 92

A3
1 w0(D4) 4 T4D4(q) 112

A4
1 w0(E8) 8 T8 128

E7(q) A1 w0(A1) 1 T1D6(q) 34
A2

1 w0(A
2
1) 2 T2A1(q)D4(q) 52

(A3
1)

(1) w0(A
3
1) 3 T3D4(q) 54

(A3
1)

(2) w0(D4) 4 T4A1(q)
3 64

A4
1 w0(E7) 7 T7 70

Eε6(q) A1 w0(A1) 1 T1A
ε
5(q) 22

A2
1 w0(A

2
1) 2 T3A

ε
3(q) 32

A3
1 w0(D4) 4 T6 40

F4(q) A1 w0(A1) 1 T1C3(q) 16

Ã1 w0(Ã1) 1 T1B3(q) 16

(Ã1)2 w0(B2) 2 T2B2(q) 22

A1Ã1 w0(F4) 4 T4 28

G2(q) A1 w0(A1) 1 T1A1(q) 6

Ã1 w0(G2) 2 T2 8

It remains to handle the cases where G is 2F4(q)
′, 3D4(q) or 2B2(q).

First, G = 2B2(q) has one class of involutions, and contains a dihedral
subgroup of order 2(q−1). Hence an involution t inverts a torus T1 of order
q − 1, and we have CG(T1) = T1 and |tG| ∼ q3. In the above calculation we
now have k = 1, s = 4 and l = 3, so that 2k + s = 2l, giving the conclusion
of the theorem as before.

When G = 2F4(q)
′ there are two classes of involutions; representatives

are denoted by z and t in [1, (18.2)]. For q = 2 we can check the result
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using [4, p.74], so assume q > 2. Now z is a long root involution, so the
conclusion for this class follows from [7, 3.9]. The involution t lies in a
subgroup A1(q) of G, so inverts a torus T1 of order q + 1 in this subgroup,
and CG(T1) = T1A1(q). Since |tG| ∼ q12 the result follows in the usual way.

Similarly, G = 3D4(q) has two involution classes. A representative t of
the non-root involution class can be taken to lie diagonally in a subgroup
A1(q) × A1(q

3), and hence to invert a torus of order (q + 1)(q3 − 1). Also
|tG| ∼ q16 (see [1, (18.5)]), and the conclusion follows as usual.

This completes the proof of Theorem 2.

Remark By keeping track of the various polynomials in q occurring in
the proof (namely |Tk|, |G : NG(Tk)| and |tG|), it is straightforward to see
that taking b = 1

100 suffices in the conclusion of Theorem 2. We justify this
briefly for G = E8(q); the other groups are very similar. For t in the class
A1, the conclusion follows from [7, 3.9] with b = 1

4 . When t is in the class
A2

1, it inverts a torus T2 of order q2 + 1 in a subgroup A1(q
2) ∼= Ω−4 (q) ≤

Ω−4 (q) × Ω−12(q) ≤ D8(q), and NG(T2) = (T2 × Ω−12(q)).4. More than half
the elements of T2 have the same centralizer as T2 itself, so as in the above
proof, the proportion of pairs of conjugates of t with product equal to a
conjugate of an element of T2 is at least

1
2 |T2|

2 · |G : (T2 × Ω−12(q)).4|
|tG|2

,

and |tG| = |G|/q78|B6(q)| (see [8, Table 22.2.1]). The above ratio is easily
seen to be greater than 1

100 . An involution t in the class A3
1 inverts a torus T4

of order q4 + 1 in a subgroup A1(q
4) ∼= Ω−4 (q2) < Ω−8 (q) < Ω−8 (q)×Ω−8 (q) <

D8(q), and NG(T4) = (T4 × Ω−8 (q)).[8], while |tG| = |G|/q81|A1(q)| |F4(q)|,
giving the assertion as above. Finally, an involution t in the class A4

1 inverts
a cyclic torus T8 of order equal to the cyclotomic polynomial Φ30(q) =
q8 + q7 − q5 − q4 − q3 + q + 1, and NG(T8) = T8.30 (see [3]). We have
|tG| = |G|/q84|C4(q)|, and the assertion follows as before.
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