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Abstract

Given a finite group A we estimate the number of homomorphisms
from A to GLn(q), where q is a prime power coprime to |A|.

1 Introduction

Let A be a finite group. In [5] Müller studies the number of homomorphisms
from A to the symmetric group Sn, deriving a precise asymptotic expansion
as n tends to infinity. In this note we study the linear version of this problem,
where the symmetric group Sn is replaced by a finite general linear group
GLn(q).

Preliminary results of this type have already been obtained. The case
where A is of order 2 or 3 can be found in [2, 4.1] (in this case one is of course
essentially counting the number of elements of order 2 or 3 in the general
linear group). More generally, the case where A has prime order is handled
in [3, Lemma 1]. These results deal with both the modular case (where q and
|A| are not coprime) and the non-modular case. However, for more general
groups A the behaviour of |Hom(A,GLn(q))| seems to be very different in
the modular and non-modular cases (see section 3 below), and we assume
here that q and |A| are coprime. We derive lower and upper bounds for
|Hom(A,GLn(q))| which are of roughly the same order of magnitude when
n is large, but we do not provide a precise asymptotic expansion. Note that
in [1], |Hom(A,GLn(q))| is studied using generating functions, but bounds
for its order of magnitude are not provided.
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Our main result is as follows.

Theorem Let A be a finite group of order a, p a prime not dividing a, q
a power of p and n a positive integer. Then there is an absolute constant c,
and a number d = d(a) depending only on a, such that

cq−a
2 |GLn(q)|1−a−1

< |Hom(A,GLn(q))| < d|GLn(q)|1−a−1
.

In fact our proof produces a somewhat better lower bound as follows.
Write n = ka + r where k is an integer and 0 ≤ r < a. Then we show
|Hom(A,GLn(q))| > cq−b|GLn(q)|1−a−1

, where b = r2(1− a−1); in particu-
lar, if n is divisible by a we obtain

c|GLn(q)|1−a−1
< |Hom(A,GLn(q))| < d(a)|GLn(q)|1−a−1

.

The assumption in the Theorem that p does not divide a, and the depen-
dence of the constant d on a, are essential, as we show with various examples
in Section 3.

Our result can also be viewed in the context of representation varieties
(see Lubotzky-Magid [4]). In fact the strategy of our proof is first to study
the algebraic variety of homomorphisms from A to GLn(K) where K is the
algebraic closure of Fq, and then to pass to finite fields by taking fixed points
of a Frobenius morphism. A result of Richardson [6] which implies that the
GLn(K)-orbits on Hom(A,GLn(K)) are closed (in the non-modular case)
plays a key role in the proof.

It is certainly possible to prove the theorem staying entirely within the
realm of the representation theory of finite groups. However, we prefer our
algebraic group approach, firstly because we find it rather elementary and
conceptual, and secondly because the method may well generalise to other
classical groups.

2 Proof of the Theorem

We shall use throughout the elementary observation that there is an absolute
constant β > 0 such that βqn

2
< |GLn(q)| < qn

2
: indeed, β =

∏∞
i=1(1−2−i)

fits the bill.

We begin by establishing the lower bound for |Hom(A,GLn(q))| in the
Theorem. Write n = ka + r with 0 ≤ r < a, and let F = Fq. Define the
FA-module V = M ⊕ I, where M is a free FA-module of rank k and I is
a trivial module of dimension r. Let φ : A→ GLn(q) be the corresponding
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representation of A. Then

dimF (HomFA(V, V )) = dimF (HomFA(M,M)) + 2 dimF (HomFA(M, I))+
dimF (HomFA(I, I))

= ak2 + 2kr + r2 = n2a−1 + r2(1− a−1).

Hence

|CGLn(q)(φ(A))| ≤ |HomFA(V, V ))| = qn
2a−1+r2(1−a−1).

For g ∈ GLn(q), define φg ∈ Hom(A,GLn(q)) to send x → φ(x)g (x ∈ A).
Then the number of distinct such conjugates of φ is

|GLn(q) : CGLn(q)(φ(A))| > c1q
n2−(n2a−1+r2(1−a−1)) = c1q

(n2−r2)(1−a−1)

Hence |Hom(A,GLn(q))| > c1q
(n2−r2)(1−a−1), giving the lower bound in the

Theorem.

Now we prove the upper bound in the Theorem. Let K = F̄q, the
algebraic closure of Fq, and let σ be the Frobenius morphism of G = GLn(K)
sending (aij)→ (aqij), so that the fixed point group Gσ = GLn(q).

Consider the variety X = Hom(A,G). Then σ acts on X: for φ ∈ X and
x ∈ A we define φσ(x) = φ(x)σ. The fixed point set Xσ is Hom(A,GLn(q)).

Also G acts on X via φg(x) = φ(x)g (φ ∈ X, g ∈ G, x ∈ A). Since
by hypothesis p does not divide |A|, all φ ∈ X are completely reducible
representations. Hence [6, Section 16] shows that the G-orbits on X are all
closed, and are the irreducible components of the variety X.

We aim to find an upper bound for the size of the fixed point set Xσ.
For this we need only consider σ-invariant orbits of G on X.

Let ρ1, . . . , ρm be a full set of inequivalent irreducible representations of
A over K, and let di be the degree of ρi. The G-orbits on X correspond bijec-
tively in a natural way with m-tuples of non-negative integers (n1, . . . , nm)
such that

∑
nidi = n.

Fix a σ-invariantG-orbit Y ⊆ X, with corresponding m-tuple (n1, . . . , nm).
For φ ∈ Y , the stabilizer stabG(φ) = CG(φ(A)). Since φ is a completely re-
ducible representation, Schur’s Lemma implies that CG(φ(A)) =

∏m
1 GLni(K),

a closed connected subgroup of G. In particular, dim Y = n2−∑m
1 n2

i . Now
Lang’s theorem (see [7, 2.2,2.8]) shows that Gσ is transitive on Yσ. Take
φ ∈ Yσ. Now Gσ = GLn(q) has order less than qdimG, while CG(φ(A))σ is
a product of GLni ’s over extensions of Fq and has order at least b(a)q

∑
n2
i ,

where b(a) depends only on a. It follows that

|Yσ| = |Gσ : CG(φ(A))σ| < c(a)qdimY .
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Define t = n
a , and set ri = ni − tdi. Then

n =
∑

nidi = t
∑

d2
i +

∑
ridi = ta+

∑
ridi = n+

∑
ridi,

and so
∑
ridi = 0. Hence

m∑
1

n2
i =

∑
(tdi+ri)

2 = t2
∑

d2
i+
∑

r2
i +2t

∑
diri = t2a+

∑
r2
i = n2a−1+f,

where f =
∑
r2
i ≥ 0. We deduce that

|Yσ| < c(a)qn
2(1−a−1)−f .

Note that each ri is an integer multiple of a−1, so f is an integer multiple
of a−2. Given such a non-negative rational f = ha−2, the number of m-
tuples (r1, . . . , rm) satisfying

∑
r2
i = f is at most (2

√
h + 1)m. This is an

upper bound for the number of σ-invariant orbits Y for which f = ha−2.
Summing over all possible h, we obtain

|Xσ| < c(a)
∑
h≥0

(2
√
h+ 1)mqn

2(1−a−1)−ha−2
.

The sum
∑

h≥0(2
√
h+ 1)mq−ha−2

is finite and bounded by a function of a.
Therefore

|Xσ| < c′(a)qn
2(1−a−1) < d(a)|GLn(q)|1−a−1

.

Since Xσ = Hom(A,GLn(q)), this gives the upper bound in the Theorem.

3 Examples

We present some examples showing that the assumption in the Theorem
that p does not divide a, and the dependence of the constant d on a, are
essential.

Example 1 Let p be a prime and q a power of p. Let A = (Cp)
s, let

n = 2m be even, and define

E = {
(
Im X

0 Im

)
: X is m×m over Fq} < GLn(q).

Then E is elementary abelian of order qm
2
, so

|Hom(A,GLn(q))| ≥ qm2s,

which for large s is greater than the upper bound in the Theorem, and
indeed greater than any fixed power of |GLn(q)|.
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Example 2 Let A = Ca where a divides q− 1. If n = ka with k a positive
integer, it is easy to see that the number of elements of order a in GLn(q)
is at least

cqn
2(1−a−1)(1 + a(a− 1)q−2).

Indeed, the first term comes from taking all ni = k (defining ni as in the
above proof), and the second by taking ni = k + 1, nj = k − 1 and the rest
equal to k, over all possible ordered pairs (i, j). Consequently

|Hom(A,GLn(q))| > c(1 + a(a− 1)q−2)|GLn(q)|1−a−1
.

For q fixed and a large this shows the necessity for the dependence of d on
a in the Theorem.
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