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1 Introduction

Let G be a simple adjoint algebraic group of exceptional type over K = F̄p,
the algebraic closure of the prime field Fp, where p is prime, and let σ
be a Frobenius endomorphism of G. If Gσ denotes the fixed point group
{g ∈ G : gσ = g}, then G0 = (Gσ)′ is a finite simple exceptional group of
Lie type, with the exceptions of G2(2)

′ ∼= U3(3) and 2G2(3)′ ∼= L2(8), which
we exclude from consideration.

The main result of this paper represents a contribution to the study of
the maximal subgroups of almost simple groups with socle G0 as above.
Let L be such an almost simple group (i.e. F ∗(L) = G0), and let M be a
maximal subgroup of L not containing G0. In the case whereM is not almost
simple, the possibilities for M up to conjugacy are completely determined
by [11, Theorem 2]. Hence we assume that M is almost simple, and write
M0 = F

∗(M), a simple group.

Denote by Lie(p) the set of finite quasisimple groups of Lie type in char-
acteristic p. In the case whereM0 6∈ Lie(p), the possibilities forM0 are given
up to isomorphism in [15] (although the problem of determining them up to
conjugacy remains largely open).

Our main result focusses on the case whereM0 ∈ Lie(p); sayM0 =M(q),
a simple group of Lie type over the finite field Fq. There are several re-
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sults in the literature concerning this case. Two of the main ones are
[16, Corollary 5], which determines the possibilities for M up to conju-
gacy under the assumption that q is not too small (usually q > 9 suffices);
and [19, Theorem 3], which gives the possibilities assuming that q > 2,
that rank(M(q)) > 1

2rank(G), and also that (M(q), G) 6= (
2A5(5), E8) or

(2D5(3), E8)). Here rank(M(q)) denotes the untwisted Lie rank of M(q)
(i.e. the rank of the corresponding untwisted group); and we write just E8
for the algebraic group E8(K).

It is apparent that the above results say nothing in the case where q = 2,
a fact which frequently causes difficulties when applying them. Our main
purpose is to extend the results of [19] to this case, and to settle the excep-
tional cases mentioned above. This requires a different approach to that of
[19], one reason being that the latter is based on the vanishing of H1 groups
for M(q) acting on various modules, and such conclusions are either false or
unknown for many of the groups M(2) (see for example [8]).

Here is our main result on maximal subgroups.

Theorem 1 Let L be a finite almost simple group with F ∗(L) = (Gσ)
′ and

G of exceptional type in characteristic p, as above. Suppose M is a maximal
subgroup of L such that F ∗(M) = M(q), a simple group of Lie type in
characteristic p, with rank(M(q)) > 1

2rank(G). Then one of the following
holds:

(i) M(q) is a subgroup of maximal rank (determined in [18]);

(ii) M(q) is of the same type as G, possibly twisted (determined by [12,
5.1]);

(iii) F ∗(L) = Eε6(q) and M(q) = F4(q) or C4(q) (q odd) (two Gσ-classes
of each, interchanged by a graph automorphism);

(iv) F ∗(L) = E7(q) (q odd) and M(q) =
3D4(q) (one Gσ-class).

The case q = 2 of this theorem is proved here; the case q > 2 is covered
by [19, Theorem 3], apart from the 2A5(5),

2D5(3) cases mentioned above.
Unfortunately the maximal subgroups in part (iv) were omitted in error
in [19, Theorem 3]. These arise as follows: let p > 2, take M̄ to be a
maximal closed σ-stable local subgroup (22 ×D4).Sym3 of G (see [4] for a
construction), and take σ to act on M̄ as σqw, where σq is a standard field
morphism and w ∈ Sym3 has order 3 (note that σqw is Gσ-conjugate to σq
by Lang’s theorem); then Mσ =

3D4(q).3, and these are the subgroups in
(iv). (The error in [19, Theorem 3] is in the penultimate sentence of the
proof, which is precisely where the above subgroups should have arisen.)
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We shall deduce Theorem 1 from the following result describing embed-
dings of arbitrary (not necessarily maximal) subgroups X(q) of Lie type
of rank more than 12rank(G). This is done in [19, Theorem 2] for q > 2
(and also excluding the two cases (M(q), G) = (2A5(5), E8) or (

2D5(3), E8))
mentioned above). Here we cover the remaining cases.

Write Vadj for the nontrivial composition factor of the adjoint module
for G, excluding (G, p) = (F4, 2) or (G2, 3); and write Vmin for one of the
irreducible modules for E7, E6, F4, G2 of dimension 56, 27, 26− δp,3, 7− δp,2
and high weight λ7, λ1, λ4, λ1 respectively (also λ1 for F4, p = 2). Note that
Vadj = L(G), except for (G, p) = (E7, 2) or (E6, 3), in which cases it has
codimension 1 in L(G) (see [14, 1.10]). Note also that for (G, p) = (F4, 2),
Vadj is undefined, while there are two choices for Vmin.

Theorem 2 Let X = X(q) be a simple group of Lie type in characteristic p,
and suppose that X < G, where G is a simple adjoint algebraic group of type
F4, E6, E7 or E8, also in characteristic p. Assume that rank(X) >

1
2rank(G),

and also that either

(i) q = 2, or

(ii) G = E8 and X =
2A5(5) or

2D5(3).

Then, with the exception of (X,G) = (L4(2), F4), there is a closed connected
subgroup X̄ of G containing X, such that for at least one module V ∈
{Vadj , Vmin}, X and X̄ stabilize exactly the same subspaces of V .

In the exceptional case (X,G) = (L4(2), F4), the centralizer CG(X) con-
tains a long or short root subgroup of G.

The layout of the paper is as follows. After some preliminaries in Section
2, we give the proof of Theorem 2 in Sections 3 and 4. Section 5 contains
the deduction of Theorem 1.

2 Preliminaries

In this section we collect some preliminary results from the literature which
will be needed in our proofs. We use standard notation. In particular, if
X is a group of Lie type in characteristic p, VX(λ) denotes the irreducible
X-module in characteristic p of high weight λ; often we just write λ intead of
VX(λ). We may write λ =

∑
ciλi, where the ci are non-negative integers and

the sum is over fundamental dominant weights λi (see [2, p.250]). When all
ci ≤ p−1 we say the weight λ and the module VX(λ) are restricted. For small
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ranks we usually denote the weight λ =
∑
ciλi just by the sequence c1c2 . . ..

Finally, for dominant weights μ1, . . . , μk, and positive integers c1, . . . , ck,
we write μc11 / ∙ ∙ ∙ /μ

ck
k to denote an X-module having the same composition

factors as the module VX(μ1)
c1 ⊕ ∙ ∙ ∙ ⊕ VX(μk)ck .

Lemma 2.1 ([8]). Let X = Ln(2) with n ≥ 4.

(i) For n ≥ 5 we have H1(X,VX(λi)) = 0 for all fundamental dominant
weights λi.

(ii) For n = 4, H1(X,VX(λ1)) = 0 and H
1(X,VX(λ2)) has dimension 1.

(iii) dimH1(X,VX(λ1 + λn−1) is 0 if n is odd, and is 1 if n is even.

Lemma 2.2 Let G = F4, E6 or E7 and let V = Vmin. Let α be a 1-space
in V .

(i) If G = E7 then (Gα)
0 is contained in an E6-parabolic or a D6-

parabolic subgroup of G.

(ii) If G = E6 then (Gα)
0 is contained either in a D5-parabolic, or in a

subgroup F4 of G.

(iii) If G = F4 then (Gα)
0 is contained either in a maximal parabolic, or

in a subgroup B4 or C4 (p = 2) of G.

Proof For parts (i) and (ii), the orbits of the corresponding groups and
modules over finite fields are classified completely in [10, 4.3, 5.4]; there are
5 orbits in case (i) and 4 orbits in case (ii). Hence the same holds for the
action of G on P1(V ), by [6, 2.10], and the conclusion follows from the lists
of finite stabilizers in [10].

For (iii), since dimG = 52 we have dimGα ≥ 27. Any such subgroup
either lies in a parabolic or in a maximal rank subgroup B4 or C4 (p = 2),
by [21].

Lemma 2.3 Let X < X̄ < G with X = X(q) a quasisimple group in
Lie(p) and X̄ a simple connected subsystem subgroup of the same type as
X. Suppose that V is a KG-module such that V ↓ X̄ is completely reducible
with all composition factors restricted. Then X and X̄ stabilize precisely the
same subspaces of V .

Proof By hypothesis each irreducible summand of V ↓ X̄ is restricted,
and hence (by [22, 13.3]) is irreducible upon restriction to X. Moreover,
non-isomorphic irreducible X̄-submodules are also nonisomorphic upon re-
striction to X (again by [22]). The assertion follows.
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Table 1

n G CG(t)
0 χn(t)

248 E8 A8 −4
A2E6 5
D7T1 14
E7T1 77

132, 56 E7 (adj., s.c.) A6T1 6,−7 (resp.)
E6T1 51,−25
A5A2 −3, 2
A1D5T1 6, 2
D6T1 33, 20

78, 27 E6 (adj., s.c.) A5T1 15, 9 (resp.)
A2A2A2 −3, 0
D4T2 6, 0

26 F4 C3T1 8
B3T1 −1
A2A2 −1

Lemma 2.4 Assume p = 2, let V = Vadj or Vmin (taking Vmin = V (λ4) if
G = F4), and let n = dimV . Let t ∈ G be an element of order 3; moreover,
if G is adjoint of type E6, assume that t lifts to an element of order 3 in the
simply connected group. Then the possibilities for CG(t)

0 and the values of
the trace χn(t) of t on V are as recorded in Table 1.

Proof Most of this information can be found in [15, 1.2]; the rest can,
as in the proof of that result, easily be deduced from the corresponding
information for the case K = C found in [5, 3].

Lemma 2.5 If X < G, where X is a finite quasisimple group of Lie type
in characteristic p, then rank(X) ≤ rank(G).

Proof This is [9, 1.4].

Lemma 2.6 Let X < G, where X is a finite quasisimple group, and suppose
that X < X̄ < G, where X̄ is closed of positive dimension and X ∩ X̄0 6≤
Z(X). Then X < X̄0.
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Proof Since X is quasisimple and X ∩ X̄0 is a normal subgroup of X not
contained in Z(X), we have X ∩ X̄0 = X, as required.

3 Proof of Theorem 2, part I: the q = 2 cases

In this section let G be an exceptional adjoint algebraic group over an alge-
braically closed field K of characteristic 2, and let X = X(2) be a subgroup
of G which is simple of Lie type over F2, where rank(X) > 1

2rank(G). By
Lemma 2.5, we have rank(X) ≤ rank(G).

We begin by handling the case where G = G2.

Lemma 3.1 Theorem 2 holds when G = G2.

Proof Here X = L3(2) or Sp4(2). Let V = VG(λ1), a symplectic module of
dimension 6. If X = Sp4(2) then as X has no irreducibles in characteristic
2 of dimension 6, X must fix a 1-space 〈v〉 of V , hence lie in Gv, which is
a parabolic of G; this is clearly not possible, as it would force Sp4(2) to
embed in a Levi factor A1. And if X = L3(2) then V ↓ X = 10/01. An
element t ∈ X of order 7 has distinct eigenvalues on V , hence fixes the same
subspaces of V as any torus T containing t. This gives the conclusion with
X̄ = 〈X,T 〉 (note that X < X̄0 by Lemma 2.6).

Assume from now on that G 6= G2.

3.1 Subgroups X = Ln(2)

Suppose X = Ln(2) = An−1(2) < G, with n− 1 = rank(X) > 1
2rank(G).

Lemma 3.2 Theorem 2 holds for X = Ln(2), G = E6, E7 or E8. In each
case X lies in a subsystem subgroup An−1 of G.

Proof Suppose first that G = E6. We begin by establishing the result for
X = L5(2). For this, we consider the action of X on Vmin = V27. By [20],
the only nontrivial irreducible modules for X in characteristic 2 of dimension
27 or less are V (λ) for either λ = λi (1 ≤ i ≤ 4), of dimension 5 or 10, or
λ = λ1 + λ4, of dimension 24. Lemma 2.1 shows that H

1(X,λ) = 0 for all
these λ, and it follows that X fixes a 2-space in V27. Since X does not lie in
a point-stabilizer in F4 (note that L5(2) 6≤ B4), it follows from Lemma 2.2
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that X lies in a D5-parabolic of G. Any subgroup L5(2) of D5 must have two
composition factors of high weights λ1, λ5 on the orthogonal 10-dimensional
module, and hence we have X < QA4, where Q is unipotent and A4 < D5.
The nontrivial composition factors of A4 acting on Q have the structure of
irreducible KA4-modules (see [1]), and each has high weight λi for some i
(see [13, 3.1]). Hence, as H1(X,λi) = 0, an inductive argument shows that
there is just one class of complements to Q in QX. One such complement
lies in a Levi A4, hence we have X < A4. The conclusion now follows, using
Lemma 2.3 together with [13, 2.1].

To complete the proof for G = E6, we deduce the conclusion for X =
Ln(2), n ≥ 6. By the above, a subgroup Y = L5(2) of X lies in A4, a
subsystem subgroup of G. Then Y and A4 fix the same subspaces of L(G)
by Lemma 2.3, so X and X̄ := 〈X,A4〉 also fix the same subspaces. By [13,
Theorem 4], X is reducible on L(G), so X̄ < G. IfM is a maximal connected
subgroup of G containing X̄0, then by [21],M is either parabolic or reductive
of maximal rank. It then follows that X = L6(2) and X < Q1A5, where
Q1 is a unipotent group normalized by the subsystem group A5. As above,
the high weights of the composition factors of A5 on Q1 are fundamental
weights λi, so Lemma 2.1 shows that X < A5, completing the proof.

Now assume G = E7. Again it is enough to prove the result for X =
L5(2). We consider the action on Vmin = V56. By [20], the only nontrivial
self-dual irreducible X-module in characteristic 2 of dimension 56 or less is
V (λ1+λ4), of dimension 24; and the non-self-dual irreducibles of dimension
28 or less are V (λi) (1 ≤ i ≤ 4), of dimension 5 or 10. Hence, using
Lemma 2.1, it is clear that X fixes a 1-space in V56. Then by Lemma 2.2,
X lies in either an E6-parabolic or a D6-parabolic subgroup of G. In either
case we deduce as in the previous paragraph that X < A4, a subsystem
subgroup, and the conclusion follows.

Finally, assume that G = E8. Here it suffices to consider X = L6(2).
Take a parabolic subgroup UR of X with U = 25, R = L5(2). This lies in
a parabolic P = QL of G with Levi subgroup L. If L has a factor E6 or
E7, we deduce from the previous paragraphs that R < QA4, where A4 is a
subsystem subgroup; otherwise, L is a product of classical groups and the
same conclusion follows, using Lemma 2.1. Thus R < QA4. By [13, 3.1], the
nontrivial composition factors of A4 on Q have fundamental high weights
λi, so we deduce as before that R < A4. Now the argument in the second
paragraph of this proof gives X < A6, completing the proof.

Lemma 3.3 Theorem 2 holds for X = Ln(2), G = F4.
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Proof First assume that n = 5 and consider X = L5(2) < G < E6. By
the previous proof, there is a subsystem subgroup A4 of E6 containing X
such that X and A4 fix the same subspaces of L(E6). In particular, X, and
hence A4, fix the subspace L(G). However, the stabilizer S of L(G) in E6 is
F4, and hence A4 < F4, which is a contradiction. Thus L5(2) 6≤ F4.

It remains to prove the result for X = L4(2). We consider the action
on V26. The nontrivial irreducibles for X in characteristic 2 of dimension
at most 26 (at most 13 for non-self-dual modules) are those of high weights
100, 001, 010 and 101, of dimensions 4, 4, 6 and 14, respectively (see [20]).
Write χ8 for the Brauer character of the X-module V (100) ⊕ V (001), and
χ6, χ14 for the Brauer characters of the other irreducibles. Let v denote an
element of order 3 in L2(2), and write t = diag(v, I2), u = diag(v, v) ∈ X.
Now a graph morphism of G interchanges V (λ1) and V (λ4) and also the
subsystems B3T1 and C3T1. Hence by Lemma 2.4, replacing X by its image
under a graph morphism of G if necessary, we may take χ(u) = −1, where
χ is the Brauer character of X on V . Write χ ↓ X = aχ1+ bχ8+ cχ6+dχ14.
Then evaluating χ on the elements 1, t and u, we obtain the equations

a+ 8b+ 6c+ 14d = 26
a+ 2b− d = 8 or − 1

a− 4b+ 3c+ 2d = −1

The only solution is (a, b, c, d) = (4, 2, 1, 0), i.e. V ↓ X = 1002/0012/010/0004.
By Lemma 2.1 this forces CV (X) 6= 0. Hence by Lemma 2.2, X lies in either
B4, C4 or a B3- or C3-parabolic of G. In the latter two cases X centralizes
a long or short root group in G, giving the conclusion of Theorem 2. And if
X < B4 then either X lies in a B3- or C3-parabolic, giving the result again,
or it lies in an A3-parabolic; in the latter case using Lemma 2.1 we see that
X lies in a subsystem A3, which centralizes a long or short A1.

3.2 Subgroups X = Un(2)

We begin by handling one of the base cases for E8.

Lemma 3.4 Suppose G = E8 (p = 2). Then G has no subgroup isomorphic
to U6(2).

Proof Suppose X = U6(2) < G. We consider the restriction of V = L(G)
to X. By [20], the nontrivial irreducible modules for X (as opposed to
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SU6(2)) in characteristic 2 of dimension at most 248 (at most 124 for non-
self-dual modules) are the modules VX(λ) listed below (up to duals):

λ 00100 10001 11000 01010

dimVX(λ) 20 34 70 154

Let χ denote the Brauer character of X on V . We may write

χ = aχ1 + bχ20 + cχ34 + dχ140 + eχ154,

where each χi is the Brauer character of the above module of dimension i,
except for χ140, which is the Brauer character of V (11000)⊕ V (00011).

We now calculate the values of χ on elements of order 3 in X. Let
ω ∈ F4 be a cube root of 1, and define the following elements of order 3
in X (relative to an orthonormal basis of the natural 6-dimensional unitary
module W = V6(4)):

t = diag(ω, ω−1, 1(4)), u = diag(ω(2), ω−1 (2), 1(2)), v = diag(ω(3), ω−1 (3))

where the bracketed superscripts denote multiplicities. If ch(λ) denotes the
character of V (λ), then ch(11000) = ch(10000) ∙ ch(01000)− ch(00100) and
ch(01010) = ch(01000) ∙ ch(00010) − 2ch(10001) − 3ch(00000). Hence we
calculate the following values:

i χi(t) χi(u) χi(v)

20 2 2 −7
34 7 −2 7
140 14 −4 −22
154 −8 1 19

Evaluating χ at the elements 1, t, u, v, and using Lemma 2.4, we obtain the
following equations:

(1) a + 20b + 34c + 140d + 154e = 248
(2) a + 2b + 7c + 14d − 8e = −4, 5, 14 or 77
(3) a + 2b − 2c − 4d + e = −4, 5, 14 or 77
(4) a − 7b + 7c − 22d + 19e = −4, 5, 14 or 77

Suppose first that e = 0. Then subtraction of (4) from (1) shows that the
right hand side of (4) must be 5 (i.e. χ(v) = 5), and gives b + c + 6d = 9.
Subtraction of (2) and (3) from (1) yields the equations

2b+ 3c+ 14d = 28, 27, 26 or 19, 2b+ 4c+ 16d = 28, 27, 26 or 19.
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Combining these with the equation b+c+6d = 9, we get c+2d = 10, 9, 8 or 1
and 2c+ 4d = 10, 9, 8 or 1. These are clearly contradictory.

Hence e = 1, from which it is readily seen that the only solution to
the equations (1)-(4) is (a, b, c, d, e) = (0, 3, 1, 0, 1). It follows that χ(t) =
χ(u) = χ(v) = 5; that is, all elements of X of order 3 are conjugate in G,
with G-centralizer A2E6.

Now choose a subgroup S = SU3(2)◦SU3(2) < X. Then S ∼= 31+4.(Q8×
Q8), where the normal subgroup E = 3

1+4 is extraspecial of exponent 3, and
is the central product E1E2 of two subgroups E1, E2, both extraspecial of
order 27, and both normal in S. Write Z(E) = 〈z〉. Then

S ≤ CG(z) = A2E6.

Choose x, y ∈ E1 with 〈x, y〉 = E1 and define F = 〈z, x〉 ∼= 32. Calculation
with characters gives

dimCG(F ) =
1

9
(248 + (8× 5)) = 32,

and similarly dimCG(E1) = 14, dimCG(E) = 6.

Consider the embedding E < CG(z) = A2E6. We have E 6≤ E6, since
otherwise E would centralize the A2 factor, whereas dimCG(E) = 6. Also
E∩E6 /S, so E∩E6 = E1 or E2, say the former. Now CG(F ) = CG(z, x) =
A2CE6(x) has dimension 32. From the possible 3-element centralizers in E6
given by Lemma 2.4, we see that CG(F )

0 = A42 and CE6(x)
0 = A32. The

element y ∈ E6 has order 3 and satisfies [x, y] = z±1, and hence y permutes
the three A2 factors of CE6(x) cyclically. Consequently CE6(x, y) ≥ A2. It
follows that CG(x, y) = CG(E1) ≥ A2A2. However, CG(E1) has dimension
14, which is a contradiction.

Most of the rest of the proof for X = Un(2) concerns the case where
G = E7. For this case we shall make heavy use of the subgroups SU3(2) ∼=
31+2.Q8 of X (where as before, 3

1+2 denotes an extraspecial group of order
27 and exponent 3). To this end, we classify the extraspecial subgroups 31+2

of E7 in the next lemma. Note that if such a subgroup lies in a subgroup
SU3(2) of G, then all of its non-central elements of order 3 are conjugate.

Lemma 3.5 The group G = E7 (p = 2) has exactly 4 conjugacy classes of
subgroups isomorphic to 31+2 in which all non-central elements are fused.
Representatives Ei (1 ≤ i ≤ 4) of these classes have the following properties,
where Z(Ei) = 〈zi〉:
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(i) E1 < M1 = A2, a subsystem subgroup of G;

(ii) E2 < M2 < A2A2, whereM2 is a diagonal A2 in the subsystem A2A2;
we have CG(M2)

0 = A2A1; z2 has G-centralizer A2A5, with M2 acting on
the natural A5-module as 10 + 10; the other order 3 elements in E2 have
G-centralizer A1D5T1;

(iii) E3 < M3 < A2A2, where M3 is a diagonal A2 in the subsystem
A2A2; we have CG(M3)

0 = G2T1; z3 has G-centralizer E6T1, and the other
order 3 elements in E3 have centralizer A1D5T1;

(iv) E4 < M4 < A2A2A2, where M4 is a diagonal A2 in the subsystem
A2A2A2; we have CG(M4)

0 = A1; all order 3 elements in E4 have centralizer
A2A5.

Proof Let E < G with E ∼= 31+2, and let Z(E) = 〈z〉. The possibilities
for CG(z) are listed in Lemma 2.4. Since z ∈ CG(z)′, the centralizer CG(z)
must be E6T1 or A2A5. Choose x, y such that E = 〈x, y〉, and write F =
〈z, x〉 ∼= 32. Also let χ be the Brauer character of E on L(G), and write
a = χ(x), b = χ(z). We have

dimCL(G)(F ) = (133 + 2b+ 6a)/9, dimCL(G)(E) = (133 + 2b+ 24a)/27.

Suppose now that CG(z) = E6T1. Then E ∩ E6 ≥ 〈z〉, so we may
assume that F ≤ E6. We have b = 52, so (dimCG(F ), dimCG(E)) is
(31, 15), (25, 7), (49, 39) or (61, 55), according as a = 7,−2, 34 or 52, re-
spectively. The centralizers of order 3 elements in E6 are A

3
2, D4T2, A5T1, so

dimCG(F ) cannot be 49 or 61. If CG(F ) has dimension 25, then CG(F )
0 =

A32T1 with F ≤ Z(A
3
2), so y must cycle the three A2 factors. Consequently

CG(E) ≥ A2, whereas dimCG(E) = 7 in this case, a contradiction.

We are left with the case where a = 7: here CG(F )
0 = D4T3 and y acts

as a triality on D4, giving CG(E)
0 = G2T1. Now NG(D4)

0 = D4A
3
1 and

y acts on this with centralizer G2Ā1, where the second term is diagonal in
A31. Also z ∈ T1 < Ā1, so that y centralizes an involution t which inverts
T1. Then y ∈ CE6T1(t) < E6. So E < E6 and hence E < CE6(G2) =
A ∼= A2. Now CG(G2) = C3 and the C3 lies in a subsystem A5 with A
diagonal in a subsystem A2A2 of this A5. Calculation of L(G) ↓ A shows
that there are precisely 15 trivial composition factors, and hence we have
CG(A) = G2T1, giving the conclusion of part (iii) of the lemma (note that
CG(y) = A1D5T1 rather than A6T1, since in the latter case dimCV56(E)
would be (56− 50− 24 ∙ 7)/9, which is ridiculous).

Now suppose that CG(z) = A2A5. Here b = −2, and (dimCG(F ), dimCG(E))
is (19, 11), (13, 3), (37, 35) or (49, 51), according as a = 7,−2, 34 or 52. The
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last case is clearly absurd, as dimCG(F ) ≤ dimCG(z) = 43.

In the third case we have CG(E) = A5, so E ≤ A2, a subsystem group,
as in part (i).

Now consider the second case: a = −2 and (dimCG(F ), dimCG(E)) =
(13, 3). As |x| = 3, the only 13-dimensional possibility for CG(F )0 =
CA2A5(x)

0 is A31T4. As [x, y] = z
±1, y must act nontrivially on T4 and

must cycle the three A1 factors. Hence A
3
1 < A5 and CG(E)

0 = A1. This
A1, call it A, is diagonal in A

3
1 < A5, so from the construction of the max-

imal subgroup A1F4 of G in [21], we see that CG(A) = F4. Thus E < F4,
indeed, E < CF4(z) = A2Ã2 < A2A2A2, a subsystem subgroup of G, as in
(iv).

Finally, consider the case where a = 7 and (dimCG(F ), dimCG(E)) =
(19, 11). Here CG(x) = A1D5T1 as above, and CG(z) = A2A5. Looking at
order 3 elements in A1D5T1, we see that the 19-dimensional group CG(F )

0

is A3T4 or A2A
3
1T2.

In the latter case we have CG(F )
0 = A2A

3
1T2 < A2A5. Then x ∈ A5

and CA5(x) = A
3
1T2. Now y ∈ A2A5 and [y, x] = z

±1, so y cycles the three
A1 factors and as dimCG(E) = 11, this gives CG(E) = A2A1. So here
E < CG(A1A2) = CA5(A1) = A2 (a factor of a tensor product subgroup
A1 ⊗A2 < A5). Thus we have conclusion (ii).

Now assume that CG(F )
0 = A3T4. Then CG(E)

0 must be A2T3, so
E ≤ CG(A2T3) = CA5(T3) = T3A2. Consider the action of E on the natural
module for this A5. The space decomposes under the action of E as an
irreducible of dimension 3 and three linear representations. Choose s ∈
E − 〈z〉. On the nonlinear part s has eigenvalues 1, ω, ω−1. On the linear
part s either has eigenvlues 1, ω, ω−1 or δ, δ, δ for δ ∈ {1, ω, ω−1}. The latter
must occur for at least one such element s. But then CA5(z, s) ≥ A2 and
CA2A5(z, s) ≥ A2A2. However, having settled all other cases we may assume
F = 〈z, s〉 and obtain a contradiction, since A3T4 does not contain A2A2.

Lemma 3.6 Let G = E7 (p = 2), and suppose S = SU3(2) ∼= 31+2.Q8 < G.
Let E = O3(S) ∼= 31+2, and suppose that E = Ei (i = 1 or 2) is as in (i)
or (ii) of Lemma 3.5, so that E < Mi < G with Mi ∼= A2. Then every
S-invariant subspace of V56 is also Mi-invariant.

Proof Consider E = E1 < M1, a subsystem A2. The restriction of V56
to M1 is completely reducible, with summands 10, 01 and 00. Evidently E
acts irreducibly on each 3-dimensional summand, and 10 ↓ E 6∼= 01 ↓ E.
Therefore E and M1 fix exactly the same subspaces of V56 in this case.
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Now consider E = E2 < M2 < A2A2 < A5. Proposition 2.3 of [13] shows
that V56 ↓ A5 = VA5(λ1)

3⊕VA5(λ5)
3⊕VA5(λ3). Using Lemma 3.5(ii) we see

from this that V56 ↓M2 = 106⊕016⊕112⊕004 (see [13, Table 8.6]). Observe
that 11 ↓ E is a sum of eight 1-spaces corresponding to the nontrivial linear
characters of E. These are permuted transitively by S/E ∼= Q8; hence any
M2-submodule of V56 isomorphic to 11 is S-invariant and S-irreducible. The
conclusion follows.

Lemma 3.7 Theorem 2 holds when X = U5(2), G = E7 for both V = Vmin
and V = Vadj.

Proof Suppose X < G with X = U5(2), G = E7. We first prove the result
for V = Vmin = V56. Consider the restriction V56 ↓ X. By [20], the nontrivial
irreducible X-modules in characteristic 2 of dimension at most 56 (at most
28 for non-self-dual modules) are VX(λ) for λ = 1000, 0100, 0010, 0001 and
1001. Let χ be the Brauer character of X on V56, and write

χ = aχ1 + bχ10 + cχ20 + dχ24,

where χ10, χ20 are the characters of V (1000)⊕V (0001), V (0100)⊕V (0010)
respectively, and χ24 is the character of V (1001).

Now choose a subgroup S = SU3(2) < X, and let E = O3(S) ∼= 31+2

and Z(E) = 〈z〉, so z acts as diag(ω(3), 1(2)) on the natural 5-dimensional
X-module. Easy calculation gives χ10(z) = 1, χ20(z) = −7, χ24(z) = 6.

If E = Ei (i = 1 or 2) as in Lemma 3.5, then Lemma 3.6 gives the
conclusion, taking X̄ = 〈X,Mi〉.

Now assume E = E3. Here CG(z) = E6T1, so χ(z) = −25 (see Lemma 2.4),
giving the equations

a+ 10b+ 20c+ 24d = 56, a+ b− 7c+ 6d = −25.

These clearly have no solutions with a, b, c, d non-negative integers.

Finally, consider the case where E = E4. Here all the elements of order
3 in E have G-centralizer A2A5. Let x ∈ E −Z(E). Then χ(x) = χ(z) = 2.
Moreover, x acts on the natural X-module as diag(ω, ω−1, 1(3)), from which
we calculate that χ10(x) = 4, χ20(x) = 2, χ24(x) = 3. Thus we have the
equations

a+ 10b+ 20c+ 24d = 56
a+ b− 7c+ 6d = 2
a+ 4b+ 2c+ 3d = 2
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Again these have no solutions with a, b, c, d non-negative integers.

This completes the proof of the lemma for V = V56. We now prove it
for V = Vadj . Since X = U5(2) is not irreducible on V56 (see [20]), it follows
from the above that X < X̄, where X̄ is a proper connected subgroup of G
fixing the same subspaces of V56 as X. By [21], if M̄ is a maximal connected
subgroup of G containing X̄, then either M̄ = A1F4, or M̄ is parabolic
or reductive of maximal rank. If X̄ is of the form QE6 or QF4 with Q
a (possibly trivial) unipotent normal subgroup, then it has a composition
factor of dimension 26 or 27 on V56; however by [20], X has no irreducibles
of dimension 26 or 27, so this is impossible. It follows that X̄, hence also X,
lies in a connected group QD, where Q is unipotent and D is a subsystem
group which is a product of classical groups. Using this it is easy to see
that X < Q1A4, where Q1 is unipotent and the A4 is a subsystem group.
If S = SU3(2) < X and E = O3(S), this means that E lies in a subsystem
subgroup A2 of G. Now Vadj ↓ A2 is completely reducible, with composition
factors 10, 01, 11 and 00. Hence we see as in Lemma 3.6 that every S-
invariant subspace of Vadj is also fixed by A2, and so X and X̄ := 〈X,A2〉
fix the same subspaces. Note finally that X < X̄0 by Lemma 2.6, giving the
conclusion of Theorem 2.

Lemma 3.8 Theorem 2 holds for X = U4(2), G = F4.

Proof Suppose X = U4(2) < G. Take a subgroup S = SU3(2) of X and
let E = O3(S) ∼= 31+2. Let Z(E) = 〈z〉, x ∈ E − Z(E) and F = 〈z, x〉. As
z ∈ CS(z)′, we must have CG(z) = A2A2. If χ is the Brauer character of X
on L(G), then χ(z) = −2 and χ(x) = −2 or 7 (see Lemma 2.4).

If χ(x) = 7 then dimCG(F ) = 10, dimCG(E) = 8. Therefore CG(F )
0 =

A2T2 and CG(E) = A2, a long or short subsystem group. Then E ≤
CG(A2) = J , where J is also a subsystem A2. Then E and J fix the same
subspaces of either VG(λ4) or VG(λ1).

Now suppose that χ(x) = −2, so that E−{1} is fused. Then CG(E)0 =
1 and also CV (E) = 0, where V is either of the 26-dimensional modules
VG(λ4), VG(λ1). Consider the monomial subgroup 3

3.S4 of X, and let H be
the normal elementary abelian 33 subgroup. Then H −{1} has 20 elements
which are X-conjugate to z or x; let h be one of the remaining 6 elements (so
h is conjugate to diag(ω(2), ω−1 (2))). Then dimCG(H) = 2 or 0, according
as χ(h) = 7 or −2, respectively.

If χ(h) = 7, then CG(h) = B3T1 or C3T1. As CB3(h
′) (respectively

CC3(h
′)) is connected for all h′ ∈ H, it follows that H lies in a torus of
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CG(h), so CG(H) contains a maximal torus of G, contradicting the fact that
dimCG(H) = 2.

Hence χ(h) = −2, and so all order 3 elements of X have G-centralizer
A2A2. Let χ26 be the Brauer character of X on the 26-dimensional module
VG(λ4). Then χ26(u) = −1 for all elements u ∈ X of order 3. Referring to
[7, p.60], we can write

χ26 = aχ1 + bχ8 + cχ6 + dχ14,

where χ8, χ6, χ14 are the Brauer characters of the X-modules V (100) ⊕
V (001), V (010), V (101) respectively. Evaluating at the elements 1, (ω, ω−1, 1, 1),
(ω, ω, ω, 1) and (ω, ω, ω−1, ω−1), we obtain the following equations:

a+ 8b+ 6c+ 14d = 26
a+ 2b− d = −1

a− b− 3c+ 5d = −1
a− 4b+ 3c+ 2d = −1

These have no non-negative integer solutions.

Lemma 3.9 Theorem 2 holds for X = Un(2).

Proof Suppose X = Un(2) =
2An−1(2) < G, with n − 1 = rank(X) >

1
2rank(G). If G = E6 or E7 then X contains a subgroup U = U5(2), and by
Lemma 3.7, there is a connected subgroup Ū of E7 containing U and fixing
the same subspaces of V56 as U . Then X and X̄ := 〈X, Ū〉 fix the same
subspaces of V56. As X < X̄

0 by Lemma 2.6, the result follows for G = E7.
For G = E6, note that if X < E6 then X fixes a pair of 27-dimensional
subspaces of V56, of which the stabilizer is E6. Hence X̄ also fixes this pair,
so that X̄ ≤ E6.

If G = F4, the result follows from Lemma 3.8 for X = U4(2). For
X = U5(2), the previous paragraph gives a connected subgroup X̄ of E6
containing X and fixing the same subspaces of V27. Since F4 is the stabilizer
in E6 of a 1-space of V27 it follows that X < X̄ < F4, giving the result.

Now consider G = E8. By Lemma 3.4, we have n ≥ 7, so X has a
subgroup V = U7(2). Pick an element t ∈ V of order 3 such that CV (t) ≥
SU6(2). As t ∈ C(t)′, it follows from Lemma 2.4 that CG(t) = A8 or A2E6.
In the former case the group A8 is SL9/Z3, so t must lift to an element of
order 9 in the preimage of SU6(2) in SL9, which is not possible as SU6(2)
is the full covering group of U6(2). Hence CG(t) = A2E6, and we have

15



SU6(2) < E6 < E7 < G. This SU6(2) contains a subgroup U = U5(2), and
from the last paragraph of the proof of Lemma 3.7, if S = SU3(2) < U and
E = O3(S) ∼= 31+2, then E < A2, a subsystem subgroup of E7. This A2 is
also a subsystem group in G, and so every S-invariant subspace of L(G) is
also A2-invariant. The result follows, taking X̄ = 〈X,A2〉.

3.3 Subgroups X = Dεn(2)

In this section X = Dεn(2), where n ≥ 4, ε = ±, and also for n = 4, ε can
be 3 in which case Dε4(2) denotes the twisted group

3D4(2).

Lemma 3.10 Theorem 2 holds for X = Dεn(2), G = E8.

Proof Suppose X = Dεn(2) < G = E8, with n >
1
2rank(G) = 4. Then X

contains a subgroup D = Dε5(2).

If ε = + then D has a parabolic subgroup PD = 2
10.L5(2), and this lies

in a proper parabolic subgroup P of G. Using Lemma 3.2 if the Levi factor
of P contains E7 or E6, we see that PD < QA4, where Q is a unipotent
group and A4 is a subsystem subgroup of G. The composition factors of A4
acting on Q have high weight λi for some i (see [13, 3.1]), so by Lemma 2.1,
the Levi subgroup L = L5(2) of PD lies in a subsystem group A4. Since
L(G) ↓ A4 is completely reducible with all composition factors restricted
(see [13, 2.1]), Lemma 2.3 implies that L and A4 fix the same subspaces of
L(G), and this gives the conclusion taking X̄ = 〈X,A4〉.

Now suppose ε = −. Then D has an element t of order 3 such that
CD(t) ≥ U5(2) = U . By Lemma 2.4, CG(t) = A8, A2E6, D7T1 or E7T1.
Hence U < A8, D7 or E7. In the first two cases, clearly U < QA4, where
Q is unipotent and A4 is a subsystem group; the same holds when U < E7,
arguing as in the last paragraph of the proof of Lemma 3.7. Now we complete
the argument as at the end of that proof.

Lemma 3.11 Theorem 2 holds for X = Dεn(2), G = E7, E6, F4.

Proof We deal with n = 4, G = E7; the result will follow from this, by
the argument of the first two paragraphs of the proof of Lemma 3.9. So
suppose that X = Dε4(2) < G = E7. Then X has a subgroup S = SU3(2).
Let E = O3(S) ∼= 31+2, Z(E) = 〈z〉 and x ∈ E − Z(E). By Lemma 3.6, we
may take E = E3 or E4 in the notation of Lemma 3.5.
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We shall consider the actions of X on Vmin = V56, and Vadj = V132, with
Brauer characters χn (n = 56, 132). Using [7], we see that

(∗) χn = aχ1 + bχ8 + cχ26 + dχ48,

where χi (i = 8, 26, 48) is the Brauer character of an irreducible X-module
of dimension i; we do not distinguish here between the three irreducibles
of dimension 8 (or 48), as we shall evaluate χ on order 3 elements z, x ∈
X which have the same trace on all of these modules: namely, χ8(z) =
−1, χ8(x) = 2 χ48(z) = 3, χ48(x) = 0. The values of χ26 on z, x are both
−1.

Suppose that E = E3. Then CG(z) = E6T1, so χ56(z) = −25 by
Lemma 2.4, so evaluating (∗) for n = 56 on the elements 1, z gives the
equations

a+ 8b+ 26c+ 48d = 56, a− b− c+ 3d = −25.

This is clearly impossible.

Now suppose E = E4. Here CG(z) = A2A5 and E − {1} is fused, so
χ132(z) = χ132(x) = −3 by 2.4. Evaluating (∗) for n = 132 on 1, z, x gives
the equations

a+ 8b+ 26c+ 48d = 132
a− b− c+ 3d = −3
a+ 2b− c = −3

We easily see that the only solution is (a, b, c, d) = (2, 0, 5, 0): in other words,

V132 ↓ X = 0100
5/00002.

From [7] we see that X has a rational element u of order 7 such that χ26(u) =
−2, hence χ132(u) = −8. This means that u acts on L(G) with eigenvalues
(1(13), λ(20), . . . , λ6 (20)), where λ is a 7th root of 1. Hence dimCG(u) = 13.
Then CG(u) = A

3
1T4 or A2T5. In the latter case u ∈ C(A2) = A5 and

u = diag(λ, λ2, . . . , λ6) ∈ A5 = SL6. But (L(G)/L(A5)) ↓ A5 = λ32/λ
3
4/0
8

(see [13, Table 8.2]), from which it follows easily that dimCL(G)(u) > 13,
a contradiction. So suppose CG(u) = A

3
1T4. We have CG(A1) = D6, so

u ∈ D6 with CD6(u) = A
2
1T4. However D6 has no such element of order 7,

a contradiction.

3.4 Remaining subgroups over F2

Suppose X = X(2) < G with G = F4, E6, E7 or E8 and rank(X) >
1
2rank(G). The possibilities not already dealt with are X = Cn(2), F4(2),
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Eε6(2),E7(2) or E8(2). These groups contain a subgroup D
−
n (2), D4(2),

Dε5(2), D5(2), D5(2), respectively. Call this subgroup Y . By what we have
proved, there is a connected subgroup Ȳ of G containing Y such that Y
and Ȳ fix the same subspaces of some V ∈ {Vmin, Vadj}. Then X and
X̄ := 〈X, Ȳ 〉 fix the same subspaces, as required.

This completes the proof of Theorem 2 for the subgroups X = X(2).

4 The exceptional cases 2A5(5),
2D5(3) in E8

Lemma 4.1 Theorem 2 holds for X = U6(5), G = E8 (p = 5).

Proof Suppose X = U6(5) < G = E8. Pick an involution t ∈ X such that
CX(t) ≥ C = SU2(5) ◦ SU4(5).

First we handle the case where CG(t) = A1E7. If the factor SU2(5) lies
in the A1, then as this is a fundamental A1, it fixes the same subspaces of
L(G) as the SU2(5), and the conclusion follows by defining X̄ = 〈X,A1〉.
So suppose the SU2(5) does not lie in A1. Then C projects into the adjoint
group E7/〈t〉 as L2(5)× U4(5) = L1 × L2, say.

Let A < L1 with A ∼= Alt4. Let O2(A) = 〈a, b〉 ∼= 22. Then a, b
lift to elements of order 4 in simply connected E7, so have connected E7-
centralizer A7 or E6T1. If the centralizer is A7, we see as in the proof of
[4, 2.15] that CE7(a, b)

0 = D4, and an element v ∈ A of order 3 acts as a
triality automorphism of this D4. Thus we have U4(5) < CD4(v), which is
impossible as the latter group is G2 or A2.

Hence CE7(a)
0 = E6T1. Moreover, b acts as a graph automorphism

of the E6 factor, so CE7(a, b)
0 = C4 or F4 (see [4, 2.7]). Since L(E7) ↓

E6T1 = L(E6T1) + V (λ1) + V (λ6) with b interchanging V (λ1) and V (λ6),
we have dimCE7(b) = 27+dimCE6(b); as b is conjugate to a, it follows that
CE7(a, b)

0 = CE6(b)
0 = F4. Thus L2 = U4(5) < F4. But this is impossible,

as the derived group of the preimage of L2 in the simply connected group
E7 is SU4(5) (with centre 〈t〉), whereas the derived group of the preimage
of F4 has trivial centre.

Now consider the case where CG(t) = D8. Here L2(5)×U4(5) = L1×L2
embeds in D8/〈t〉 = PSO16. Let V16 be the corresponding 16-dimensional
orthogonal space.

Let L̂ = L̂1L̂2 be the preimage in SO16 of L1 × L2. Suppose L̂ acts on
V16 as 1 ⊗ 100/1 ⊗ 001. Then L̂ lies in a parabolic subgroup QA7 of D8.
The unipotent radical Q is an A7-module of high weight λ2 or λ6, so the
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composition factors of L̂2 on Q have high weights λ = 200, 002 or 010. Since
H1(SU4(5), λ) = 0 for both of these weights λ (see [19, 1.8]), it follows that
L̂2 = SU4(5) lies in a Levi subgroup A7, indeed L̂2 < E < A3A3 < A7,
where E is a diagonal subgroup A3 of the subsystem A3A3. Now we see
using Lemma 2.3, along with [13, Table 8.1] and the table in [13, p.109],
that L̂2 and E fix the same subspaces of L(G), which gives Theorem 2,
taking X̄ = 〈X,E〉.

We may now assume that 1 ⊗ 100, 1 ⊗ 001 do not appear in V16 ↓ L̂.
Then L̂ must be L2(5) × U4(5). The only possible composition factors for
L2 = U4(5) on V16 are 000, 010, 101 and 200. The latter is impossible
as V16 is self-dual, and 101 (of dimension 15) is impossible as L2 central-
izes L1 = L2(5). Hence V16 ↓ L2 = 0102/0004 or 010/00010. Moreover,
H1(SU4(5), 010) = 0 by [8], so V16 ↓ L2 is completely reducible. It follows
that L2 = SU4(5) < D = A3, where D is either a subsystem subgroup of G,
or a diagonal subgroup of a subsystem A3A3. In either case we see as usual
using [13] that L2 and D fix the same subspaces of L(G), giving the result
by taking X̄ = 〈X,D〉.

Lemma 4.2 Theorem 2 holds for X = PΩ−10(3), G = E8 (p = 3).

Proof Suppose X = PΩ−10(3) < G = E8. There is an involution t ∈ X
such that CX(t) ≥ D = Ω

+
8 (3).

Suppose CG(t) = A1E7. Then D < E7, and by [19], there is a connected
subgroup D4 of E7 containing D, and this D4 is either a subsystem group
or contained in a subsystem A7. As usual using [13], we see that D and D4
fix the same subspaces of L(G), giving the result with X̄ = 〈X,D4〉.

Now suppose CG(t) = D8, and let V16 be the associated othogonal 16-
space. By [8] as usual, V16 ↓ D is completely reducible, showing that D lies
in a connected subgroup E = D4 of a subsystem D4D4, and now we see in
the usual way using [13] that D and E fix the same subspaces of L(G). This
completes the proof.

5 Deduction of Theorem 1

Assume the hypotheses of Theorem 1, and write X = F ∗(M) = M(q).
Suppose that X is not of the same type as G (this is conclusion (ii) of
Theorem 1). Theorem 1 is already established in [19, Theorem 3] (see also
the comment after our statement of Theorem 1), except for the cases where

19



q = 2 or (M(q), G) = (2A5(5), E8) or (
2D5(3), E8); so suppose we are in one

of these cases.

By Theorem 2, with the possible exception of (G,X) = (F4, L4(2)), there
is a connected subgroup X̄ of G containing X, such that X and X̄ fix the
same subspaces of some V ∈ {Vmin, Vadj}.

Assume for the moment that G 6= F4, and also that if G = E6 and
V = V27 then the almost simple group L does not contain a graph or graph-
field automorphism of F ∗(L) = (Gσ)

′. Define Aut+(G) to be the group
generated by inner automorphisms and field morphisms of G. Then Aut+(G)
acts semilinearly on V . Moreover, by the above assumption L is contained
in Aut+(G) (where we identify an automorphism of F ∗(L) with its extension
to Aut+(G)).

Now [17, Corollary 2] determines all maximal subgroups of Gσ which
are irreducible on either Vmin or Vadj . It follows from this result that X
acts reducibly on V . Let M be the set of all subspaces of V which are
X-invariant. Define Y = GM. Then X̄ ≤ Y . Moreover Y is NAut+(G)(X)-
invariant (see the proof of [14, 1.12]). In particular Y is L- and σ-invariant.
From the maximality ofM , we deduce thatM∩Gσ = Yσ, that ((Y 0)σ)′ = X,
and that Y 0 is a maximal connected NAut+(G)(X)-invariant subgroup in G.
At this point [11, Theorem 1] applies to give the possibilities for Y . Now Y
is not a parabolic subgroup, so it is reductive. Moreover, since rank(X) >
1
2rank(G), it follows that Y

0 is simple of rank greater than 12rank(G). It
follows that either Y is of maximal rank in G, or (G,Y ) = (E6, F4) (note
that by hypothesis, p = 2 when G 6= E8). Hence conclusion (i) or (iii) of
Theorem 1 holds.

Now suppose that G = E6, V = V27 and the almost simple group L
contains a graph or graph-field automorphism τ of F ∗(L) = (Gσ)

′. Again
X is reducible on V by [17]. Now τ interchanges the G-modules V and V ∗.
Moreover X and X̄ fix the same subspaces of both V and V ∗ (as the latter
are the annihilators of the former). Hence if we defineM to be the set of all
X-invariant subspaces of both V and V ∗, then the argument of the previous
paragraph goes through, yielding conclusion (i) or (iii) of Theorem 1.

Finally, suppose G = F4. Here X = D
ε
4(2), C4(2), C3(2) or A

ε
3(2) (note

that rank(X) ≤ 4 by Lemma 2.5). Consider X = Dε4(2) or C4(2). If X is
reducible on V26 = VG(λ4) or VG(λ1), then X̄ is proper in G, and clearly
X̄ = D4, B4 or C4. Defining M as above, we see that (GM)

0 = X̄, which
is therefore σ-invariant (note that σ is not an exceptional isogeny since
2F4(q) does not contain D

ε
4(2)), and hence X = X̄σ is of maximal rank. If
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X is irreducible on V26, then [17] shows that X again lies in a connected
subgroup X̄ = D4, B4 or C4 of G. Further, X̄ is σ-invariant: for X < X̄
and X < X̄σ = X̄g (g ∈ G), so X,Xg

−1
< X̄, whence Xg

−1
= Xn (n ∈ X̄),

giving ng ∈ NG(X). Now NG(X̄) induces the full group Aut(X) on X, and
CG(X) = 1. It follows that NG(X) ≤ NG(X̄), so ng ∈ NG(X̄). Therefore
X̄σ = X̄g = X̄, as asserted. It follows as before that X = X̄σ is of maximal
rank.

To conclude, consider X = C3(2) or A
ε
3(2). Then X is reducible on V26.

If X = L4(2) then Lemma 3.3 shows that CG(X) contains a root group. In
the other cases we have X < X̄ < G, and [21] forces X̄ either to lie in a B3-
or C3-parabolic, or to be a maximal rank subgroup D4, C4 or B4. In the
latter two cases, X cannot fix the same subspaces of V as X̄. Therefore X
lies in a B3- parabolic or C3-parabolic of G, hence centralizes a root group.

We have established that in all cases, X centralizes a root subgroup of
G. But this means that CG(X)σ 6= 1, which contradicts the maximality of
M .

This completes the proof of Theorem 1.
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[20] F. Lübeck, Small degree representations of finite Chevalley groups in defining
characteristic, LMS J. Comput. Math. 4 (2001), 22-63.

[21] G.M. Seitz, Maximal subgroups of exceptional algebraic groups, Mem. Amer.
Math. Soc. Vol. 90, No. 441, 1991.

[22] R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math.

Soc., No. 80 (1968), pp.1-108.

22



Abstract

Let G = G(q) be a finite almost simple exceptional group of Lie type
over the field of q elements, where q = pa and p is prime. The main result of
this paper determines all maximal subgroups M of G(q) such that M is an
almost simple group which is also of Lie type in characteristic p, under the
condition that rank(M) > 1

2rank(G). The conclusion is that either M is a
subgroup of maximal rank, or it is of the same type as G over a subfield of
Fq, or (G,M) is one of (Eε6(q), F4(q)), ((E

ε
6(q), C4(q)), (E7(q),

3D4(q)). This
completes work of the first author with J. Saxl and D. Testerman, in which
the same conclusion was obtained under some extra assumptions.
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