Maximal subgroups of large rank in exceptional groups of Lie type

Martin W. Liebeck Department of Mathematics Imperial College London SW7 2BZ England Gary M. Seitz Department of Mathematics University of Oregon Eugene, Oregon 97403 USA

1 Introduction

Let G be a simple adjoint algebraic group of exceptional type over $K = \overline{\mathbb{F}}_p$, the algebraic closure of the prime field \mathbb{F}_p , where p is prime, and let σ be a Frobenius endomorphism of G. If G_{σ} denotes the fixed point group $\{g \in G : g^{\sigma} = g\}$, then $G_0 = (G_{\sigma})'$ is a finite simple exceptional group of Lie type, with the exceptions of $G_2(2)' \cong U_3(3)$ and ${}^2G_2(3)' \cong L_2(8)$, which we exclude from consideration.

The main result of this paper represents a contribution to the study of the maximal subgroups of almost simple groups with socle G_0 as above. Let L be such an almost simple group (i.e. $F^*(L) = G_0$), and let M be a maximal subgroup of L not containing G_0 . In the case where M is not almost simple, the possibilities for M up to conjugacy are completely determined by [11, Theorem 2]. Hence we assume that M is almost simple, and write $M_0 = F^*(M)$, a simple group.

Denote by Lie(p) the set of finite quasisimple groups of Lie type in characteristic p. In the case where $M_0 \notin \text{Lie}(p)$, the possibilities for M_0 are given up to isomorphism in [15] (although the problem of determining them up to conjugacy remains largely open).

Our main result focusses on the case where $M_0 \in \text{Lie}(p)$; say $M_0 = M(q)$, a simple group of Lie type over the finite field \mathbb{F}_q . There are several re-

²⁰⁰⁰ Mathematics Classification Numbers: 20D06, 20E28, 20G15.

sults in the literature concerning this case. Two of the main ones are [16, Corollary 5], which determines the possibilities for M up to conjugacy under the assumption that q is not too small (usually q > 9 suffices); and [19, Theorem 3], which gives the possibilities assuming that q > 2, that rank $(M(q)) > \frac{1}{2}$ rank(G), and also that $(M(q), G) \neq ({}^{2}A_{5}(5), E_{8})$ or $({}^{2}D_{5}(3), E_{8})$). Here rank(M(q)) denotes the untwisted Lie rank of M(q) (i.e. the rank of the corresponding untwisted group); and we write just E_{8} for the algebraic group $E_{8}(K)$.

It is apparent that the above results say nothing in the case where q = 2, a fact which frequently causes difficulties when applying them. Our main purpose is to extend the results of [19] to this case, and to settle the exceptional cases mentioned above. This requires a different approach to that of [19], one reason being that the latter is based on the vanishing of H^1 groups for M(q) acting on various modules, and such conclusions are either false or unknown for many of the groups M(2) (see for example [8]).

Here is our main result on maximal subgroups.

Theorem 1 Let L be a finite almost simple group with $F^*(L) = (G_{\sigma})'$ and G of exceptional type in characteristic p, as above. Suppose M is a maximal subgroup of L such that $F^*(M) = M(q)$, a simple group of Lie type in characteristic p, with $rank(M(q)) > \frac{1}{2}rank(G)$. Then one of the following holds:

(i) M(q) is a subgroup of maximal rank (determined in [18]);

(ii) M(q) is of the same type as G, possibly twisted (determined by [12, 5.1]);

(iii) $F^*(L) = E_6^{\epsilon}(q)$ and $M(q) = F_4(q)$ or $C_4(q)$ (q odd) (two G_{σ} -classes of each, interchanged by a graph automorphism);

(iv) $F^*(L) = E_7(q)$ (q odd) and $M(q) = {}^3D_4(q)$ (one G_{σ} -class).

The case q = 2 of this theorem is proved here; the case q > 2 is covered by [19, Theorem 3], apart from the ${}^{2}A_{5}(5)$, ${}^{2}D_{5}(3)$ cases mentioned above. Unfortunately the maximal subgroups in part (iv) were omitted in error in [19, Theorem 3]. These arise as follows: let p > 2, take \overline{M} to be a maximal closed σ -stable local subgroup $(2^{2} \times D_{4}).Sym_{3}$ of G (see [4] for a construction), and take σ to act on \overline{M} as $\sigma_{q}w$, where σ_{q} is a standard field morphism and $w \in Sym_{3}$ has order 3 (note that $\sigma_{q}w$ is G_{σ} -conjugate to σ_{q} by Lang's theorem); then $M_{\sigma} = {}^{3}D_{4}(q).3$, and these are the subgroups in (iv). (The error in [19, Theorem 3] is in the penultimate sentence of the proof, which is precisely where the above subgroups should have arisen.) We shall deduce Theorem 1 from the following result describing embeddings of arbitrary (not necessarily maximal) subgroups X(q) of Lie type of rank more than $\frac{1}{2}$ rank(G). This is done in [19, Theorem 2] for q > 2(and also excluding the two cases $(M(q), G) = ({}^{2}A_{5}(5), E_{8})$ or $({}^{2}D_{5}(3), E_{8})$) mentioned above). Here we cover the remaining cases.

Write V_{adj} for the nontrivial composition factor of the adjoint module for G, excluding $(G, p) = (F_4, 2)$ or $(G_2, 3)$; and write V_{min} for one of the irreducible modules for E_7, E_6, F_4, G_2 of dimension 56, 27, 26 $-\delta_{p,3}, 7 - \delta_{p,2}$ and high weight $\lambda_7, \lambda_1, \lambda_4, \lambda_1$ respectively (also λ_1 for $F_4, p = 2$). Note that $V_{adj} = L(G)$, except for $(G, p) = (E_7, 2)$ or $(E_6, 3)$, in which cases it has codimension 1 in L(G) (see [14, 1.10]). Note also that for $(G, p) = (F_4, 2)$, V_{adj} is undefined, while there are two choices for V_{min} .

Theorem 2 Let X = X(q) be a simple group of Lie type in characteristic p, and suppose that X < G, where G is a simple adjoint algebraic group of type F_4, E_6, E_7 or E_8 , also in characteristic p. Assume that $rank(X) > \frac{1}{2}rank(G)$, and also that either

(i) q = 2, or

(ii) $G = E_8$ and $X = {}^{2}A_5(5)$ or ${}^{2}D_5(3)$.

Then, with the exception of $(X, G) = (L_4(2), F_4)$, there is a closed connected subgroup \overline{X} of G containing X, such that for at least one module $V \in \{V_{adj}, V_{min}\}, X$ and \overline{X} stabilize exactly the same subspaces of V.

In the exceptional case $(X,G) = (L_4(2), F_4)$, the centralizer $C_G(X)$ contains a long or short root subgroup of G.

The layout of the paper is as follows. After some preliminaries in Section 2, we give the proof of Theorem 2 in Sections 3 and 4. Section 5 contains the deduction of Theorem 1.

2 Preliminaries

In this section we collect some preliminary results from the literature which will be needed in our proofs. We use standard notation. In particular, if X is a group of Lie type in characteristic p, $V_X(\lambda)$ denotes the irreducible X-module in characteristic p of high weight λ ; often we just write λ intead of $V_X(\lambda)$. We may write $\lambda = \sum c_i \lambda_i$, where the c_i are non-negative integers and the sum is over fundamental dominant weights λ_i (see [2, p.250]). When all $c_i \leq p-1$ we say the weight λ and the module $V_X(\lambda)$ are restricted. For small ranks we usually denote the weight $\lambda = \sum c_i \lambda_i$ just by the sequence $c_1 c_2 \dots$. Finally, for dominant weights μ_1, \dots, μ_k , and positive integers c_1, \dots, c_k , we write $\mu_1^{c_1} / \dots / \mu_k^{c_k}$ to denote an X-module having the same composition factors as the module $V_X(\mu_1)^{c_1} \oplus \dots \oplus V_X(\mu_k)^{c_k}$.

Lemma 2.1 ([8]). Let $X = L_n(2)$ with $n \ge 4$.

(i) For $n \ge 5$ we have $H^1(X, V_X(\lambda_i)) = 0$ for all fundamental dominant weights λ_i .

(ii) For n = 4, $H^1(X, V_X(\lambda_1)) = 0$ and $H^1(X, V_X(\lambda_2))$ has dimension 1.

(iii) dim $H^1(X, V_X(\lambda_1 + \lambda_{n-1}))$ is 0 if n is odd, and is 1 if n is even.

Lemma 2.2 Let $G = F_4$, E_6 or E_7 and let $V = V_{min}$. Let α be a 1-space in V.

(i) If $G = E_7$ then $(G_{\alpha})^0$ is contained in an E_6 -parabolic or a D_6 -parabolic subgroup of G.

(ii) If $G = E_6$ then $(G_{\alpha})^0$ is contained either in a D_5 -parabolic, or in a subgroup F_4 of G.

(iii) If $G = F_4$ then $(G_{\alpha})^0$ is contained either in a maximal parabolic, or in a subgroup B_4 or C_4 (p = 2) of G.

Proof For parts (i) and (ii), the orbits of the corresponding groups and modules over finite fields are classified completely in [10, 4.3, 5.4]; there are 5 orbits in case (i) and 4 orbits in case (ii). Hence the same holds for the action of G on $P_1(V)$, by [6, 2.10], and the conclusion follows from the lists of finite stabilizers in [10].

For (iii), since dim G = 52 we have dim $G_{\alpha} \ge 27$. Any such subgroup either lies in a parabolic or in a maximal rank subgroup B_4 or C_4 (p = 2), by [21].

Lemma 2.3 Let $X < \overline{X} < G$ with X = X(q) a quasisimple group in Lie(p) and \overline{X} a simple connected subsystem subgroup of the same type as X. Suppose that V is a KG-module such that $V \downarrow \overline{X}$ is completely reducible with all composition factors restricted. Then X and \overline{X} stabilize precisely the same subspaces of V.

Proof By hypothesis each irreducible summand of $V \downarrow \bar{X}$ is restricted, and hence (by [22, 13.3]) is irreducible upon restriction to X. Moreover, non-isomorphic irreducible \bar{X} -submodules are also nonisomorphic upon restriction to X (again by [22]). The assertion follows.

Table 1

n	G	$C_G(t)^0$	$\chi_n(t)$
248	E_8	A_8	-4
		A_2E_6	5
		D_7T_1	14
		E_7T_1	77
132, 56	E_7 (adj., s.c.)	A_6T_1	6, -7 (resp.)
		E_6T_1	51, -25
		A_5A_2	-3, 2
		$A_1 D_5 T_1$	6, 2
		D_6T_1	33, 20
78,27	E_6 (adj., s.c.)	A_5T_1	$15,9(\mathrm{resp.})$
		$A_2A_2A_2$	-3, 0
		D_4T_2	6, 0
26	F_4	C_3T_1	8
		B_3T_1	-1
		A_2A_2	-1

Lemma 2.4 Assume p = 2, let $V = V_{adj}$ or V_{min} (taking $V_{min} = V(\lambda_4)$ if $G = F_4$), and let $n = \dim V$. Let $t \in G$ be an element of order 3; moreover, if G is adjoint of type E_6 , assume that t lifts to an element of order 3 in the simply connected group. Then the possibilities for $C_G(t)^0$ and the values of the trace $\chi_n(t)$ of t on V are as recorded in Table 1.

Proof Most of this information can be found in [15, 1.2]; the rest can, as in the proof of that result, easily be deduced from the corresponding information for the case $K = \mathbb{C}$ found in [5, 3].

Lemma 2.5 If X < G, where X is a finite quasisimple group of Lie type in characteristic p, then rank $(X) \leq \operatorname{rank}(G)$.

Proof This is [9, 1.4].

Lemma 2.6 Let X < G, where X is a finite quasisimple group, and suppose that $X < \overline{X} < G$, where \overline{X} is closed of positive dimension and $X \cap \overline{X}^0 \not\leq Z(X)$. Then $X < \overline{X}^0$.

Proof Since X is quasisimple and $X \cap \overline{X}^0$ is a normal subgroup of X not contained in Z(X), we have $X \cap \overline{X}^0 = X$, as required.

3 Proof of Theorem 2, part I: the q = 2 cases

In this section let G be an exceptional adjoint algebraic group over an algebraically closed field K of characteristic 2, and let X = X(2) be a subgroup of G which is simple of Lie type over \mathbb{F}_2 , where $\operatorname{rank}(X) > \frac{1}{2}\operatorname{rank}(G)$. By Lemma 2.5, we have $\operatorname{rank}(X) \leq \operatorname{rank}(G)$.

We begin by handling the case where $G = G_2$.

Lemma 3.1 Theorem 2 holds when $G = G_2$.

Proof Here $X = L_3(2)$ or $Sp_4(2)$. Let $V = V_G(\lambda_1)$, a symplectic module of dimension 6. If $X = Sp_4(2)$ then as X has no irreducibles in characteristic 2 of dimension 6, X must fix a 1-space $\langle v \rangle$ of V, hence lie in G_v , which is a parabolic of G; this is clearly not possible, as it would force $Sp_4(2)$ to embed in a Levi factor A_1 . And if $X = L_3(2)$ then $V \downarrow X = 10/01$. An element $t \in X$ of order 7 has distinct eigenvalues on V, hence fixes the same subspaces of V as any torus T containing t. This gives the conclusion with $\overline{X} = \langle X, T \rangle$ (note that $X < \overline{X}^0$ by Lemma 2.6).

Assume from now on that $G \neq G_2$.

3.1 Subgroups $X = L_n(2)$

Suppose $X = L_n(2) = A_{n-1}(2) < G$, with $n - 1 = \operatorname{rank}(X) > \frac{1}{2}\operatorname{rank}(G)$.

Lemma 3.2 Theorem 2 holds for $X = L_n(2)$, $G = E_6, E_7$ or E_8 . In each case X lies in a subsystem subgroup A_{n-1} of G.

Proof Suppose first that $G = E_6$. We begin by establishing the result for $X = L_5(2)$. For this, we consider the action of X on $V_{min} = V_{27}$. By [20], the only nontrivial irreducible modules for X in characteristic 2 of dimension 27 or less are $V(\lambda)$ for either $\lambda = \lambda_i$ $(1 \le i \le 4)$, of dimension 5 or 10, or $\lambda = \lambda_1 + \lambda_4$, of dimension 24. Lemma 2.1 shows that $H^1(X, \lambda) = 0$ for all these λ , and it follows that X fixes a 2-space in V_{27} . Since X does not lie in a point-stabilizer in F_4 (note that $L_5(2) \le B_4$), it follows from Lemma 2.2

that X lies in a D_5 -parabolic of G. Any subgroup $L_5(2)$ of D_5 must have two composition factors of high weights λ_1, λ_5 on the orthogonal 10-dimensional module, and hence we have $X < QA_4$, where Q is unipotent and $A_4 < D_5$. The nontrivial composition factors of A_4 acting on Q have the structure of irreducible KA_4 -modules (see [1]), and each has high weight λ_i for some *i* (see [13, 3.1]). Hence, as $H^1(X, \lambda_i) = 0$, an inductive argument shows that there is just one class of complements to Q in QX. One such complement lies in a Levi A_4 , hence we have $X < A_4$. The conclusion now follows, using Lemma 2.3 together with [13, 2.1].

To complete the proof for $G = E_6$, we deduce the conclusion for $X = L_n(2), n \ge 6$. By the above, a subgroup $Y = L_5(2)$ of X lies in A_4 , a subsystem subgroup of G. Then Y and A_4 fix the same subspaces of L(G) by Lemma 2.3, so X and $\bar{X} := \langle X, A_4 \rangle$ also fix the same subspaces. By [13, Theorem 4], X is reducible on L(G), so $\bar{X} < G$. If M is a maximal connected subgroup of G containing \bar{X}^0 , then by [21], M is either parabolic or reductive of maximal rank. It then follows that $X = L_6(2)$ and $X < Q_1A_5$, where Q_1 is a unipotent group normalized by the subsystem group A_5 . As above, the high weights of the composition factors of A_5 on Q_1 are fundamental weights λ_i , so Lemma 2.1 shows that $X < A_5$, completing the proof.

Now assume $G = E_7$. Again it is enough to prove the result for $X = L_5(2)$. We consider the action on $V_{min} = V_{56}$. By [20], the only nontrivial self-dual irreducible X-module in characteristic 2 of dimension 56 or less is $V(\lambda_1 + \lambda_4)$, of dimension 24; and the non-self-dual irreducibles of dimension 28 or less are $V(\lambda_i)$ ($1 \le i \le 4$), of dimension 5 or 10. Hence, using Lemma 2.1, it is clear that X fixes a 1-space in V_{56} . Then by Lemma 2.2, X lies in either an E_6 -parabolic or a D_6 -parabolic subgroup of G. In either case we deduce as in the previous paragraph that $X < A_4$, a subsystem subgroup, and the conclusion follows.

Finally, assume that $G = E_8$. Here it suffices to consider $X = L_6(2)$. Take a parabolic subgroup UR of X with $U = 2^5$, $R = L_5(2)$. This lies in a parabolic P = QL of G with Levi subgroup L. If L has a factor E_6 or E_7 , we deduce from the previous paragraphs that $R < QA_4$, where A_4 is a subsystem subgroup; otherwise, L is a product of classical groups and the same conclusion follows, using Lemma 2.1. Thus $R < QA_4$. By [13, 3.1], the nontrivial composition factors of A_4 on Q have fundamental high weights λ_i , so we deduce as before that $R < A_4$. Now the argument in the second paragraph of this proof gives $X < A_6$, completing the proof.

Lemma 3.3 Theorem 2 holds for $X = L_n(2)$, $G = F_4$.

Proof First assume that n = 5 and consider $X = L_5(2) < G < E_6$. By the previous proof, there is a subsystem subgroup A_4 of E_6 containing Xsuch that X and A_4 fix the same subspaces of $L(E_6)$. In particular, X, and hence A_4 , fix the subspace L(G). However, the stabilizer S of L(G) in E_6 is F_4 , and hence $A_4 < F_4$, which is a contradiction. Thus $L_5(2) \not\leq F_4$.

It remains to prove the result for $X = L_4(2)$. We consider the action on V_{26} . The nontrivial irreducibles for X in characteristic 2 of dimension at most 26 (at most 13 for non-self-dual modules) are those of high weights 100,001,010 and 101, of dimensions 4, 4, 6 and 14, respectively (see [20]). Write χ_8 for the Brauer character of the X-module $V(100) \oplus V(001)$, and χ_6, χ_{14} for the Brauer characters of the other irreducibles. Let v denote an element of order 3 in $L_2(2)$, and write $t = \text{diag}(v, I_2)$, $u = \text{diag}(v, v) \in X$. Now a graph morphism of G interchanges $V(\lambda_1)$ and $V(\lambda_4)$ and also the subsystems B_3T_1 and C_3T_1 . Hence by Lemma 2.4, replacing X by its image under a graph morphism of G if necessary, we may take $\chi(u) = -1$, where χ is the Brauer character of X on V. Write $\chi \downarrow X = a\chi_1 + b\chi_8 + c\chi_6 + d\chi_{14}$. Then evaluating χ on the elements 1, t and u, we obtain the equations

$$a + 8b + 6c + 14d = 26$$

 $a + 2b - d = 8 \text{ or } -1$
 $a - 4b + 3c + 2d = -1$

The only solution is (a, b, c, d) = (4, 2, 1, 0), i.e. $V \downarrow X = 100^2/001^2/010/000^4$. By Lemma 2.1 this forces $C_V(X) \neq 0$. Hence by Lemma 2.2, X lies in either B_4 , C_4 or a B_3 - or C_3 -parabolic of G. In the latter two cases X centralizes a long or short root group in G, giving the conclusion of Theorem 2. And if $X < B_4$ then either X lies in a B_3 - or C_3 -parabolic, giving the result again, or it lies in an A_3 -parabolic; in the latter case using Lemma 2.1 we see that X lies in a subsystem A_3 , which centralizes a long or short A_1 .

3.2 Subgroups $X = U_n(2)$

We begin by handling one of the base cases for E_8 .

Lemma 3.4 Suppose $G = E_8 (p = 2)$. Then G has no subgroup isomorphic to $U_6(2)$.

Proof Suppose $X = U_6(2) < G$. We consider the restriction of V = L(G) to X. By [20], the nontrivial irreducible modules for X (as opposed to

 $SU_6(2)$) in characteristic 2 of dimension at most 248 (at most 124 for nonself-dual modules) are the modules $V_X(\lambda)$ listed below (up to duals):

	00100		11000	01010
$\dim V_X(\lambda)$	20	34	70	154

Let χ denote the Brauer character of X on V. We may write

$$\chi = a\chi_1 + b\chi_{20} + c\chi_{34} + d\chi_{140} + e\chi_{154},$$

where each χ_i is the Brauer character of the above module of dimension *i*, except for χ_{140} , which is the Brauer character of $V(11000) \oplus V(00011)$.

We now calculate the values of χ on elements of order 3 in X. Let $\omega \in \mathbb{F}_4$ be a cube root of 1, and define the following elements of order 3 in X (relative to an orthonormal basis of the natural 6-dimensional unitary module $W = V_6(4)$):

$$t = \text{diag}(\omega, \omega^{-1}, 1^{(4)}), \ u = \text{diag}(\omega^{(2)}, \omega^{-1\,(2)}, 1^{(2)}), \ v = \text{diag}(\omega^{(3)}, \omega^{-1\,(3)})$$

where the bracketed superscripts denote multiplicities. If $ch(\lambda)$ denotes the character of $V(\lambda)$, then $ch(11000) = ch(10000) \cdot ch(01000) - ch(00100)$ and $ch(01010) = ch(01000) \cdot ch(00010) - 2ch(10001) - 3ch(00000)$. Hence we calculate the following values:

$$\begin{array}{c|ccccc} i & \chi_i(t) & \chi_i(u) & \chi_i(v) \\ \hline 20 & 2 & 2 & -7 \\ 34 & 7 & -2 & 7 \\ 140 & 14 & -4 & -22 \\ 154 & -8 & 1 & 19 \\ \hline \end{array}$$

Evaluating χ at the elements 1, t, u, v, and using Lemma 2.4, we obtain the following equations:

(1)	a	+	20b	+	34c	+	140d	+	154e	= 248
(2)	a	+	2b	+	7c	+	14d	_	8e	= -4, 5, 14 or 77
(3)	a	+	2b	—	2c	—	4d	+	e	= -4, 5, 14 or 77
(4)	a	_	7b	+	7c	_	22d	+	19e	= -4, 5, 14 or 77

Suppose first that e = 0. Then subtraction of (4) from (1) shows that the right hand side of (4) must be 5 (i.e. $\chi(v) = 5$), and gives b + c + 6d = 9. Subtraction of (2) and (3) from (1) yields the equations

$$2b + 3c + 14d = 28,27,26$$
 or $19, 2b + 4c + 16d = 28,27,26$ or $19.$

Combining these with the equation b+c+6d = 9, we get c+2d = 10, 9, 8 or 1 and 2c + 4d = 10, 9, 8 or 1. These are clearly contradictory.

Hence e = 1, from which it is readily seen that the only solution to the equations (1)-(4) is (a, b, c, d, e) = (0, 3, 1, 0, 1). It follows that $\chi(t) = \chi(u) = \chi(v) = 5$; that is, all elements of X of order 3 are conjugate in G, with G-centralizer A_2E_6 .

Now choose a subgroup $S = SU_3(2) \circ SU_3(2) < X$. Then $S \cong 3^{1+4} \cdot (Q_8 \times Q_8)$, where the normal subgroup $E = 3^{1+4}$ is extraspecial of exponent 3, and is the central product E_1E_2 of two subgroups E_1, E_2 , both extraspecial of order 27, and both normal in S. Write $Z(E) = \langle z \rangle$. Then

$$S \le C_G(z) = A_2 E_6.$$

Choose $x, y \in E_1$ with $\langle x, y \rangle = E_1$ and define $F = \langle z, x \rangle \cong 3^2$. Calculation with characters gives

dim
$$C_G(F) = \frac{1}{9}(248 + (8 \times 5)) = 32,$$

and similarly dim $C_G(E_1) = 14$, dim $C_G(E) = 6$.

Consider the embedding $E < C_G(z) = A_2 E_6$. We have $E \not\leq E_6$, since otherwise E would centralize the A_2 factor, whereas dim $C_G(E) = 6$. Also $E \cap E_6 \triangleleft S$, so $E \cap E_6 = E_1$ or E_2 , say the former. Now $C_G(F) = C_G(z, x) =$ $A_2 C_{E_6}(x)$ has dimension 32. From the possible 3-element centralizers in E_6 given by Lemma 2.4, we see that $C_G(F)^0 = A_2^4$ and $C_{E_6}(x)^0 = A_2^3$. The element $y \in E_6$ has order 3 and satisfies $[x, y] = z^{\pm 1}$, and hence y permutes the three A_2 factors of $C_{E_6}(x)$ cyclically. Consequently $C_{E_6}(x, y) \ge A_2$. It follows that $C_G(x, y) = C_G(E_1) \ge A_2A_2$. However, $C_G(E_1)$ has dimension 14, which is a contradiction.

Most of the rest of the proof for $X = U_n(2)$ concerns the case where $G = E_7$. For this case we shall make heavy use of the subgroups $SU_3(2) \cong 3^{1+2}.Q_8$ of X (where as before, 3^{1+2} denotes an extraspecial group of order 27 and exponent 3). To this end, we classify the extraspecial subgroups 3^{1+2} of E_7 in the next lemma. Note that if such a subgroup lies in a subgroup $SU_3(2)$ of G, then all of its non-central elements of order 3 are conjugate.

Lemma 3.5 The group $G = E_7 (p = 2)$ has exactly 4 conjugacy classes of subgroups isomorphic to 3^{1+2} in which all non-central elements are fused. Representatives $E_i (1 \le i \le 4)$ of these classes have the following properties, where $Z(E_i) = \langle z_i \rangle$:

(i) $E_1 < M_1 = A_2$, a subsystem subgroup of G;

(ii) $E_2 < M_2 < A_2A_2$, where M_2 is a diagonal A_2 in the subsystem A_2A_2 ; we have $C_G(M_2)^0 = A_2A_1$; z_2 has G-centralizer A_2A_5 , with M_2 acting on the natural A_5 -module as 10 + 10; the other order 3 elements in E_2 have G-centralizer $A_1D_5T_1$;

(iii) $E_3 < M_3 < A_2A_2$, where M_3 is a diagonal A_2 in the subsystem A_2A_2 ; we have $C_G(M_3)^0 = G_2T_1$; z_3 has G-centralizer E_6T_1 , and the other order 3 elements in E_3 have centralizer $A_1D_5T_1$;

(iv) $E_4 < M_4 < A_2A_2A_2$, where M_4 is a diagonal A_2 in the subsystem $A_2A_2A_2$; we have $C_G(M_4)^0 = A_1$; all order 3 elements in E_4 have centralizer A_2A_5 .

Proof Let E < G with $E \cong 3^{1+2}$, and let $Z(E) = \langle z \rangle$. The possibilities for $C_G(z)$ are listed in Lemma 2.4. Since $z \in C_G(z)'$, the centralizer $C_G(z)$ must be E_6T_1 or A_2A_5 . Choose x, y such that $E = \langle x, y \rangle$, and write $F = \langle z, x \rangle \cong 3^2$. Also let χ be the Brauer character of E on L(G), and write $a = \chi(x), b = \chi(z)$. We have

dim $C_{L(G)}(F) = (133 + 2b + 6a)/9$, dim $C_{L(G)}(E) = (133 + 2b + 24a)/27$.

Suppose now that $C_G(z) = E_6T_1$. Then $E \cap E_6 \ge \langle z \rangle$, so we may assume that $F \le E_6$. We have b = 52, so $(\dim C_G(F), \dim C_G(E))$ is (31,15), (25,7), (49,39) or (61,55), according as a = 7, -2, 34 or 52, respectively. The centralizers of order 3 elements in E_6 are A_2^3, D_4T_2, A_5T_1 , so $\dim C_G(F)$ cannot be 49 or 61. If $C_G(F)$ has dimension 25, then $C_G(F)^0 =$ $A_2^3T_1$ with $F \le Z(A_2^3)$, so y must cycle the three A_2 factors. Consequently $C_G(E) \ge A_2$, whereas dim $C_G(E) = 7$ in this case, a contradiction.

We are left with the case where a = 7: here $C_G(F)^0 = D_4T_3$ and y acts as a triality on D_4 , giving $C_G(E)^0 = G_2T_1$. Now $N_G(D_4)^0 = D_4A_1^3$ and y acts on this with centralizer $G_2\bar{A}_1$, where the second term is diagonal in A_1^3 . Also $z \in T_1 < \bar{A}_1$, so that y centralizes an involution t which inverts T_1 . Then $y \in C_{E_6T_1}(t) < E_6$. So $E < E_6$ and hence $E < C_{E_6}(G_2) =$ $A \cong A_2$. Now $C_G(G_2) = C_3$ and the C_3 lies in a subsystem A_5 with Adiagonal in a subsystem A_2A_2 of this A_5 . Calculation of $L(G) \downarrow A$ shows that there are precisely 15 trivial composition factors, and hence we have $C_G(A) = G_2T_1$, giving the conclusion of part (iii) of the lemma (note that $C_G(y) = A_1D_5T_1$ rather than A_6T_1 , since in the latter case dim $C_{V_{56}}(E)$ would be $(56 - 50 - 24 \cdot 7)/9$, which is ridiculous).

Now suppose that $C_G(z) = A_2 A_5$. Here b = -2, and $(\dim C_G(F), \dim C_G(E))$ is (19, 11), (13, 3), (37, 35) or (49, 51), according as a = 7, -2, 34 or 52. The

last case is clearly absurd, as dim $C_G(F) \leq \dim C_G(z) = 43$.

In the third case we have $C_G(E) = A_5$, so $E \leq A_2$, a subsystem group, as in part (i).

Now consider the second case: a = -2 and $(\dim C_G(F), \dim C_G(E)) = (13,3)$. As |x| = 3, the only 13-dimensional possibility for $C_G(F)^0 = C_{A_2A_5}(x)^0$ is $A_1^3T_4$. As $[x,y] = z^{\pm 1}$, y must act nontrivially on T_4 and must cycle the three A_1 factors. Hence $A_1^3 < A_5$ and $C_G(E)^0 = A_1$. This A_1 , call it A, is diagonal in $A_1^3 < A_5$, so from the construction of the maximal subgroup A_1F_4 of G in [21], we see that $C_G(A) = F_4$. Thus $E < F_4$, indeed, $E < C_{F_4}(z) = A_2\tilde{A}_2 < A_2A_2A_2$, a subsystem subgroup of G, as in (iv).

Finally, consider the case where a = 7 and $(\dim C_G(F), \dim C_G(E)) = (19, 11)$. Here $C_G(x) = A_1 D_5 T_1$ as above, and $C_G(z) = A_2 A_5$. Looking at order 3 elements in $A_1 D_5 T_1$, we see that the 19-dimensional group $C_G(F)^0$ is $A_3 T_4$ or $A_2 A_1^3 T_2$.

In the latter case we have $C_G(F)^0 = A_2 A_1^3 T_2 < A_2 A_5$. Then $x \in A_5$ and $C_{A_5}(x) = A_1^3 T_2$. Now $y \in A_2 A_5$ and $[y, x] = z^{\pm 1}$, so y cycles the three A_1 factors and as dim $C_G(E) = 11$, this gives $C_G(E) = A_2 A_1$. So here $E < C_G(A_1 A_2) = C_{A_5}(A_1) = A_2$ (a factor of a tensor product subgroup $A_1 \otimes A_2 < A_5$). Thus we have conclusion (ii).

Now assume that $C_G(F)^0 = A_3T_4$. Then $C_G(E)^0$ must be A_2T_3 , so $E \leq C_G(A_2T_3) = C_{A_5}(T_3) = T_3A_2$. Consider the action of E on the natural module for this A_5 . The space decomposes under the action of E as an irreducible of dimension 3 and three linear representations. Choose $s \in E - \langle z \rangle$. On the nonlinear part s has eigenvalues $1, \omega, \omega^{-1}$. On the linear part s either has eigenvlues $1, \omega, \omega^{-1}$ or δ, δ, δ for $\delta \in \{1, \omega, \omega^{-1}\}$. The latter must occur for at least one such element s. But then $C_{A_5}(z, s) \geq A_2$ and $C_{A_2A_5}(z, s) \geq A_2A_2$. However, having settled all other cases we may assume $F = \langle z, s \rangle$ and obtain a contradiction, since A_3T_4 does not contain A_2A_2 .

Lemma 3.6 Let $G = E_7$ (p = 2), and suppose $S = SU_3(2) \cong 3^{1+2}.Q_8 < G$. Let $E = O_3(S) \cong 3^{1+2}$, and suppose that $E = E_i$ (i = 1 or 2) is as in (i) or (ii) of Lemma 3.5, so that $E < M_i < G$ with $M_i \cong A_2$. Then every S-invariant subspace of V_{56} is also M_i -invariant.

Proof Consider $E = E_1 < M_1$, a subsystem A_2 . The restriction of V_{56} to M_1 is completely reducible, with summands 10,01 and 00. Evidently E acts irreducibly on each 3-dimensional summand, and $10 \downarrow E \not\cong 01 \downarrow E$. Therefore E and M_1 fix exactly the same subspaces of V_{56} in this case.

Now consider $E = E_2 < M_2 < A_2A_2 < A_5$. Proposition 2.3 of [13] shows that $V_{56} \downarrow A_5 = V_{A_5}(\lambda_1)^3 \oplus V_{A_5}(\lambda_5)^3 \oplus V_{A_5}(\lambda_3)$. Using Lemma 3.5(ii) we see from this that $V_{56} \downarrow M_2 = 10^6 \oplus 01^6 \oplus 11^2 \oplus 00^4$ (see [13, Table 8.6]). Observe that $11 \downarrow E$ is a sum of eight 1-spaces corresponding to the nontrivial linear characters of E. These are permuted transitively by $S/E \cong Q_8$; hence any M_2 -submodule of V_{56} isomorphic to 11 is S-invariant and S-irreducible. The conclusion follows.

Lemma 3.7 Theorem 2 holds when $X = U_5(2)$, $G = E_7$ for both $V = V_{min}$ and $V = V_{adj}$.

Proof Suppose X < G with $X = U_5(2)$, $G = E_7$. We first prove the result for $V = V_{min} = V_{56}$. Consider the restriction $V_{56} \downarrow X$. By [20], the nontrivial irreducible X-modules in characteristic 2 of dimension at most 56 (at most 28 for non-self-dual modules) are $V_X(\lambda)$ for $\lambda = 1000,0100,0010,0001$ and 1001. Let χ be the Brauer character of X on V_{56} , and write

$$\chi = a\chi_1 + b\chi_{10} + c\chi_{20} + d\chi_{24},$$

where χ_{10}, χ_{20} are the characters of $V(1000) \oplus V(0001)$, $V(0100) \oplus V(0010)$ respectively, and χ_{24} is the character of V(1001).

Now choose a subgroup $S = SU_3(2) < X$, and let $E = O_3(S) \cong 3^{1+2}$ and $Z(E) = \langle z \rangle$, so z acts as diag $(\omega^{(3)}, 1^{(2)})$ on the natural 5-dimensional X-module. Easy calculation gives $\chi_{10}(z) = 1$, $\chi_{20}(z) = -7$, $\chi_{24}(z) = 6$.

If $E = E_i$ (i = 1 or 2) as in Lemma 3.5, then Lemma 3.6 gives the conclusion, taking $\bar{X} = \langle X, M_i \rangle$.

Now assume $E = E_3$. Here $C_G(z) = E_6T_1$, so $\chi(z) = -25$ (see Lemma 2.4), giving the equations

$$a + 10b + 20c + 24d = 56$$
, $a + b - 7c + 6d = -25$.

These clearly have no solutions with a, b, c, d non-negative integers.

Finally, consider the case where $E = E_4$. Here all the elements of order 3 in E have G-centralizer A_2A_5 . Let $x \in E - Z(E)$. Then $\chi(x) = \chi(z) = 2$. Moreover, x acts on the natural X-module as diag $(\omega, \omega^{-1}, 1^{(3)})$, from which we calculate that $\chi_{10}(x) = 4$, $\chi_{20}(x) = 2$, $\chi_{24}(x) = 3$. Thus we have the equations

$$a + 10b + 20c + 24d = 56$$

$$a + b - 7c + 6d = 2$$

$$a + 4b + 2c + 3d = 2$$

Again these have no solutions with a, b, c, d non-negative integers.

This completes the proof of the lemma for $V = V_{56}$. We now prove it for $V = V_{adj}$. Since $X = U_5(2)$ is not irreducible on V_{56} (see [20]), it follows from the above that $X < \overline{X}$, where \overline{X} is a proper connected subgroup of G fixing the same subspaces of V_{56} as X. By [21], if \overline{M} is a maximal connected subgroup of G containing X, then either $M = A_1 F_4$, or M is parabolic or reductive of maximal rank. If X is of the form QE_6 or QF_4 with Q a (possibly trivial) unipotent normal subgroup, then it has a composition factor of dimension 26 or 27 on V_{56} ; however by [20], X has no irreducibles of dimension 26 or 27, so this is impossible. It follows that \overline{X} , hence also X, lies in a connected group QD, where Q is unipotent and D is a subsystem group which is a product of classical groups. Using this it is easy to see that $X < Q_1 A_4$, where Q_1 is unipotent and the A_4 is a subsystem group. If $S = SU_3(2) < X$ and $E = O_3(S)$, this means that E lies in a subsystem subgroup A_2 of G. Now $V_{adj} \downarrow A_2$ is completely reducible, with composition factors 10, 01, 11 and 00. Hence we see as in Lemma 3.6 that every Sinvariant subspace of V_{adj} is also fixed by A_2 , and so X and $\bar{X} := \langle X, A_2 \rangle$ fix the same subspaces. Note finally that $X < \overline{X}^0$ by Lemma 2.6, giving the conclusion of Theorem 2.

Lemma 3.8 Theorem 2 holds for $X = U_4(2)$, $G = F_4$.

Proof Suppose $X = U_4(2) < G$. Take a subgroup $S = SU_3(2)$ of X and let $E = O_3(S) \cong 3^{1+2}$. Let $Z(E) = \langle z \rangle$, $x \in E - Z(E)$ and $F = \langle z, x \rangle$. As $z \in C_S(z)'$, we must have $C_G(z) = A_2A_2$. If χ is the Brauer character of X on L(G), then $\chi(z) = -2$ and $\chi(x) = -2$ or 7 (see Lemma 2.4).

If $\chi(x) = 7$ then dim $C_G(F) = 10$, dim $C_G(E) = 8$. Therefore $C_G(F)^0 = A_2T_2$ and $C_G(E) = A_2$, a long or short subsystem group. Then $E \leq C_G(A_2) = J$, where J is also a subsystem A_2 . Then E and J fix the same subspaces of either $V_G(\lambda_4)$ or $V_G(\lambda_1)$.

Now suppose that $\chi(x) = -2$, so that $E - \{1\}$ is fused. Then $C_G(E)^0 = 1$ and also $C_V(E) = 0$, where V is either of the 26-dimensional modules $V_G(\lambda_4), V_G(\lambda_1)$. Consider the monomial subgroup $3^3.S_4$ of X, and let H be the normal elementary abelian 3^3 subgroup. Then $H - \{1\}$ has 20 elements which are X-conjugate to z or x; let h be one of the remaining 6 elements (so h is conjugate to diag $(\omega^{(2)}, \omega^{-1})$). Then dim $C_G(H) = 2$ or 0, according as $\chi(h) = 7$ or -2, respectively.

If $\chi(h) = 7$, then $C_G(h) = B_3T_1$ or C_3T_1 . As $C_{B_3}(h')$ (respectively $C_{C_3}(h')$) is connected for all $h' \in H$, it follows that H lies in a torus of

 $C_G(h)$, so $C_G(H)$ contains a maximal torus of G, contradicting the fact that $\dim C_G(H) = 2$.

Hence $\chi(h) = -2$, and so all order 3 elements of X have G-centralizer A_2A_2 . Let χ_{26} be the Brauer character of X on the 26-dimensional module $V_G(\lambda_4)$. Then $\chi_{26}(u) = -1$ for all elements $u \in X$ of order 3. Referring to [7, p.60], we can write

$$\chi_{26} = a\chi_1 + b\chi_8 + c\chi_6 + d\chi_{14},$$

where $\chi_8, \chi_6, \chi_{14}$ are the Brauer characters of the X-modules $V(100) \oplus V(001), V(010), V(101)$ respectively. Evaluating at the elements 1, $(\omega, \omega^{-1}, 1, 1), (\omega, \omega, \omega, 1)$ and $(\omega, \omega, \omega^{-1}, \omega^{-1})$, we obtain the following equations:

$$a + 8b + 6c + 14d = 26$$

$$a + 2b - d = -1$$

$$a - b - 3c + 5d = -1$$

$$a - 4b + 3c + 2d = -1$$

These have no non-negative integer solutions.

Lemma 3.9 Theorem 2 holds for $X = U_n(2)$.

Proof Suppose $X = U_n(2) = {}^2A_{n-1}(2) < G$, with $n-1 = \operatorname{rank}(X) > \frac{1}{2}\operatorname{rank}(G)$. If $G = E_6$ or E_7 then X contains a subgroup $U = U_5(2)$, and by Lemma 3.7, there is a connected subgroup \overline{U} of E_7 containing U and fixing the same subspaces of V_{56} as U. Then X and $\overline{X} := \langle X, \overline{U} \rangle$ fix the same subspaces of V_{56} . As $X < \overline{X}^0$ by Lemma 2.6, the result follows for $G = E_7$. For $G = E_6$, note that if $X < E_6$ then X fixes a pair of 27-dimensional subspaces of V_{56} , of which the stabilizer is E_6 . Hence \overline{X} also fixes this pair, so that $\overline{X} \leq E_6$.

If $G = F_4$, the result follows from Lemma 3.8 for $X = U_4(2)$. For $X = U_5(2)$, the previous paragraph gives a connected subgroup \bar{X} of E_6 containing X and fixing the same subspaces of V_{27} . Since F_4 is the stabilizer in E_6 of a 1-space of V_{27} it follows that $X < \bar{X} < F_4$, giving the result.

Now consider $G = E_8$. By Lemma 3.4, we have $n \ge 7$, so X has a subgroup $V = U_7(2)$. Pick an element $t \in V$ of order 3 such that $C_V(t) \ge$ $SU_6(2)$. As $t \in C(t)'$, it follows from Lemma 2.4 that $C_G(t) = A_8$ or A_2E_6 . In the former case the group A_8 is SL_9/\mathbb{Z}_3 , so t must lift to an element of order 9 in the preimage of $SU_6(2)$ in SL_9 , which is not possible as $SU_6(2)$ is the full covering group of $U_6(2)$. Hence $C_G(t) = A_2E_6$, and we have $SU_6(2) < E_6 < E_7 < G$. This $SU_6(2)$ contains a subgroup $U = U_5(2)$, and from the last paragraph of the proof of Lemma 3.7, if $S = SU_3(2) < U$ and $E = O_3(S) \cong 3^{1+2}$, then $E < A_2$, a subsystem subgroup of E_7 . This A_2 is also a subsystem group in G, and so every S-invariant subspace of L(G) is also A_2 -invariant. The result follows, taking $\bar{X} = \langle X, A_2 \rangle$.

3.3 Subgroups $X = D_n^{\epsilon}(2)$

In this section $X = D_n^{\epsilon}(2)$, where $n \ge 4$, $\epsilon = \pm$, and also for n = 4, ϵ can be 3 in which case $D_4^{\epsilon}(2)$ denotes the twisted group ${}^{3}D_4(2)$.

Lemma 3.10 Theorem 2 holds for $X = D_n^{\epsilon}(2), G = E_8$.

Proof Suppose $X = D_n^{\epsilon}(2) < G = E_8$, with $n > \frac{1}{2} \operatorname{rank}(G) = 4$. Then X contains a subgroup $D = D_5^{\epsilon}(2)$.

If $\epsilon = +$ then D has a parabolic subgroup $P_D = 2^{10}.L_5(2)$, and this lies in a proper parabolic subgroup P of G. Using Lemma 3.2 if the Levi factor of P contains E_7 or E_6 , we see that $P_D < QA_4$, where Q is a unipotent group and A_4 is a subsystem subgroup of G. The composition factors of A_4 acting on Q have high weight λ_i for some i (see [13, 3.1]), so by Lemma 2.1, the Levi subgroup $L = L_5(2)$ of P_D lies in a subsystem group A_4 . Since $L(G) \downarrow A_4$ is completely reducible with all composition factors restricted (see [13, 2.1]), Lemma 2.3 implies that L and A_4 fix the same subspaces of L(G), and this gives the conclusion taking $\overline{X} = \langle X, A_4 \rangle$.

Now suppose $\epsilon = -$. Then *D* has an element *t* of order 3 such that $C_D(t) \geq U_5(2) = U$. By Lemma 2.4, $C_G(t) = A_8, A_2E_6, D_7T_1$ or E_7T_1 . Hence $U < A_8, D_7$ or E_7 . In the first two cases, clearly $U < QA_4$, where *Q* is unipotent and A_4 is a subsystem group; the same holds when $U < E_7$, arguing as in the last paragraph of the proof of Lemma 3.7. Now we complete the argument as at the end of that proof.

Lemma 3.11 Theorem 2 holds for $X = D_n^{\epsilon}(2), G = E_7, E_6, F_4$.

Proof We deal with $n = 4, G = E_7$; the result will follow from this, by the argument of the first two paragraphs of the proof of Lemma 3.9. So suppose that $X = D_4^{\epsilon}(2) < G = E_7$. Then X has a subgroup $S = SU_3(2)$. Let $E = O_3(S) \cong 3^{1+2}$, $Z(E) = \langle z \rangle$ and $x \in E - Z(E)$. By Lemma 3.6, we may take $E = E_3$ or E_4 in the notation of Lemma 3.5. We shall consider the actions of X on $V_{min} = V_{56}$, and $V_{adj} = V_{132}$, with Brauer characters χ_n (n = 56, 132). Using [7], we see that

(*)
$$\chi_n = a\chi_1 + b\chi_8 + c\chi_{26} + d\chi_{48},$$

where χ_i (i = 8, 26, 48) is the Brauer character of an irreducible X-module of dimension *i*; we do not distinguish here between the three irreducibles of dimension 8 (or 48), as we shall evaluate χ on order 3 elements $z, x \in$ X which have the same trace on all of these modules: namely, $\chi_8(z) =$ $-1, \chi_8(x) = 2 \chi_{48}(z) = 3, \chi_{48}(x) = 0$. The values of χ_{26} on z, x are both -1.

Suppose that $E = E_3$. Then $C_G(z) = E_6T_1$, so $\chi_{56}(z) = -25$ by Lemma 2.4, so evaluating (*) for n = 56 on the elements 1, z gives the equations

$$a + 8b + 26c + 48d = 56$$
, $a - b - c + 3d = -25$.

This is clearly impossible.

Now suppose $E = E_4$. Here $C_G(z) = A_2A_5$ and $E - \{1\}$ is fused, so $\chi_{132}(z) = \chi_{132}(x) = -3$ by 2.4. Evaluating (*) for n = 132 on 1, z, x gives the equations

$$\begin{array}{rcl} + 8b + 26c + 48d = & 132 \\ a - b - c + 3d = & -3 \\ a + 2b - c = & -3 \end{array}$$

We easily see that the only solution is (a, b, c, d) = (2, 0, 5, 0): in other words,

$$V_{132} \downarrow X = 0100^5 / 0000^2$$

From [7] we see that X has a rational element u of order 7 such that $\chi_{26}(u) = -2$, hence $\chi_{132}(u) = -8$. This means that u acts on L(G) with eigenvalues $(1^{(13)}, \lambda^{(20)}, \ldots, \lambda^{6(20)})$, where λ is a 7th root of 1. Hence dim $C_G(u) = 13$. Then $C_G(u) = A_1^3 T_4$ or $A_2 T_5$. In the latter case $u \in C(A_2) = A_5$ and $u = \text{diag}(\lambda, \lambda^2, \ldots, \lambda^6) \in A_5 = SL_6$. But $(L(G)/L(A_5)) \downarrow A_5 = \lambda_2^3/\lambda_4^3/0^8$ (see [13, Table 8.2]), from which it follows easily that dim $C_{L(G)}(u) > 13$, a contradiction. So suppose $C_G(u) = A_1^3 T_4$. We have $C_G(A_1) = D_6$, so $u \in D_6$ with $C_{D_6}(u) = A_1^2 T_4$. However D_6 has no such element of order 7, a contradiction.

3.4 Remaining subgroups over \mathbb{F}_2

a

Suppose X = X(2) < G with $G = F_4, E_6, E_7$ or E_8 and rank $(X) > \frac{1}{2}$ rank(G). The possibilities not already dealt with are $X = C_n(2), F_4(2),$

 $E_6^{\epsilon}(2), E_7(2)$ or $E_8(2)$. These groups contain a subgroup $D_n^-(2), D_4(2), D_5^{\epsilon}(2), D_5(2), D_5(2)$, respectively. Call this subgroup Y. By what we have proved, there is a connected subgroup \bar{Y} of G containing Y such that Y and \bar{Y} fix the same subspaces of some $V \in \{V_{min}, V_{adj}\}$. Then X and $\bar{X} := \langle X, \bar{Y} \rangle$ fix the same subspaces, as required.

This completes the proof of Theorem 2 for the subgroups X = X(2).

4 The exceptional cases ${}^{2}\!A_{5}(5), {}^{2}\!D_{5}(3)$ in E_{8}

Lemma 4.1 Theorem 2 holds for $X = U_6(5)$, $G = E_8 (p = 5)$.

Proof Suppose $X = U_6(5) < G = E_8$. Pick an involution $t \in X$ such that $C_X(t) \ge C = SU_2(5) \circ SU_4(5)$.

First we handle the case where $C_G(t) = A_1 E_7$. If the factor $SU_2(5)$ lies in the A_1 , then as this is a fundamental A_1 , it fixes the same subspaces of L(G) as the $SU_2(5)$, and the conclusion follows by defining $\bar{X} = \langle X, A_1 \rangle$. So suppose the $SU_2(5)$ does not lie in A_1 . Then C projects into the adjoint group $E_7/\langle t \rangle$ as $L_2(5) \times U_4(5) = L_1 \times L_2$, say.

Let $A < L_1$ with $A \cong Alt_4$. Let $O_2(A) = \langle a, b \rangle \cong 2^2$. Then a, blift to elements of order 4 in simply connected E_7 , so have connected E_7 centralizer A_7 or E_6T_1 . If the centralizer is A_7 , we see as in the proof of [4, 2.15] that $C_{E_7}(a, b)^0 = D_4$, and an element $v \in A$ of order 3 acts as a triality automorphism of this D_4 . Thus we have $U_4(5) < C_{D_4}(v)$, which is impossible as the latter group is G_2 or A_2 .

Hence $C_{E_7}(a)^0 = E_6T_1$. Moreover, *b* acts as a graph automorphism of the E_6 factor, so $C_{E_7}(a,b)^0 = C_4$ or F_4 (see [4, 2.7]). Since $L(E_7) \downarrow E_6T_1 = L(E_6T_1) + V(\lambda_1) + V(\lambda_6)$ with *b* interchanging $V(\lambda_1)$ and $V(\lambda_6)$, we have dim $C_{E_7}(b) = 27 + \dim C_{E_6}(b)$; as *b* is conjugate to *a*, it follows that $C_{E_7}(a,b)^0 = C_{E_6}(b)^0 = F_4$. Thus $L_2 = U_4(5) < F_4$. But this is impossible, as the derived group of the preimage of L_2 in the simply connected group E_7 is $SU_4(5)$ (with centre $\langle t \rangle$), whereas the derived group of the preimage of F_4 has trivial centre.

Now consider the case where $C_G(t) = D_8$. Here $L_2(5) \times U_4(5) = L_1 \times L_2$ embeds in $D_8/\langle t \rangle = PSO_{16}$. Let V_{16} be the corresponding 16-dimensional orthogonal space.

Let $\hat{L} = \hat{L}_1 \hat{L}_2$ be the preimage in SO_{16} of $L_1 \times L_2$. Suppose \hat{L} acts on V_{16} as $1 \otimes 100/1 \otimes 001$. Then \hat{L} lies in a parabolic subgroup QA_7 of D_8 . The unipotent radical Q is an A_7 -module of high weight λ_2 or λ_6 , so the

composition factors of \hat{L}_2 on Q have high weights $\lambda = 200, 002$ or 010. Since $H^1(SU_4(5), \lambda) = 0$ for both of these weights λ (see [19, 1.8]), it follows that $\hat{L}_2 = SU_4(5)$ lies in a Levi subgroup A_7 , indeed $\hat{L}_2 < E < A_3A_3 < A_7$, where E is a diagonal subgroup A_3 of the subsystem A_3A_3 . Now we see using Lemma 2.3, along with [13, Table 8.1] and the table in [13, p.109], that \hat{L}_2 and E fix the same subspaces of L(G), which gives Theorem 2, taking $\bar{X} = \langle X, E \rangle$.

We may now assume that $1 \otimes 100, 1 \otimes 001$ do not appear in $V_{16} \downarrow \hat{L}$. Then \hat{L} must be $L_2(5) \times U_4(5)$. The only possible composition factors for $L_2 = U_4(5)$ on V_{16} are 000, 010, 101 and 200. The latter is impossible as V_{16} is self-dual, and 101 (of dimension 15) is impossible as L_2 centralizes $L_1 = L_2(5)$. Hence $V_{16} \downarrow L_2 = 010^2/000^4$ or $010/000^{10}$. Moreover, $H^1(SU_4(5), 010) = 0$ by [8], so $V_{16} \downarrow L_2$ is completely reducible. It follows that $L_2 = SU_4(5) < D = A_3$, where D is either a subsystem subgroup of G, or a diagonal subgroup of a subsystem A_3A_3 . In either case we see as usual using [13] that L_2 and D fix the same subspaces of L(G), giving the result by taking $\bar{X} = \langle X, D \rangle$.

Lemma 4.2 Theorem 2 holds for $X = P\Omega_{10}^{-}(3)$, $G = E_8 (p = 3)$.

Proof Suppose $X = P\Omega_{10}^{-}(3) < G = E_8$. There is an involution $t \in X$ such that $C_X(t) \ge D = \Omega_8^+(3)$.

Suppose $C_G(t) = A_1E_7$. Then $D < E_7$, and by [19], there is a connected subgroup D_4 of E_7 containing D, and this D_4 is either a subsystem group or contained in a subsystem A_7 . As usual using [13], we see that D and D_4 fix the same subspaces of L(G), giving the result with $\bar{X} = \langle X, D_4 \rangle$.

Now suppose $C_G(t) = D_8$, and let V_{16} be the associated othogonal 16space. By [8] as usual, $V_{16} \downarrow D$ is completely reducible, showing that D lies in a connected subgroup $E = D_4$ of a subsystem D_4D_4 , and now we see in the usual way using [13] that D and E fix the same subspaces of L(G). This completes the proof.

5 Deduction of Theorem 1

Assume the hypotheses of Theorem 1, and write $X = F^*(M) = M(q)$. Suppose that X is not of the same type as G (this is conclusion (ii) of Theorem 1). Theorem 1 is already established in [19, Theorem 3] (see also the comment after our statement of Theorem 1), except for the cases where q = 2 or $(M(q), G) = ({}^{2}A_{5}(5), E_{8})$ or $({}^{2}D_{5}(3), E_{8})$; so suppose we are in one of these cases.

By Theorem 2, with the possible exception of $(G, X) = (F_4, L_4(2))$, there is a connected subgroup \bar{X} of G containing X, such that X and \bar{X} fix the same subspaces of some $V \in \{V_{min}, V_{adj}\}$.

Assume for the moment that $G \neq F_4$, and also that if $G = E_6$ and $V = V_{27}$ then the almost simple group L does not contain a graph or graphfield automorphism of $F^*(L) = (G_{\sigma})'$. Define $\operatorname{Aut}^+(G)$ to be the group generated by inner automorphisms and field morphisms of G. Then $\operatorname{Aut}^+(G)$ acts semilinearly on V. Moreover, by the above assumption L is contained in $\operatorname{Aut}^+(G)$ (where we identify an automorphism of $F^*(L)$ with its extension to $\operatorname{Aut}^+(G)$).

Now [17, Corollary 2] determines all maximal subgroups of G_{σ} which are irreducible on either V_{min} or V_{adj} . It follows from this result that Xacts reducibly on V. Let \mathcal{M} be the set of all subspaces of V which are X-invariant. Define $Y = G_{\mathcal{M}}$. Then $\bar{X} \leq Y$. Moreover Y is $N_{Aut^+(G)}(X)$ invariant (see the proof of [14, 1.12]). In particular Y is L- and σ -invariant. From the maximality of M, we deduce that $M \cap G_{\sigma} = Y_{\sigma}$, that $((Y^0)_{\sigma})' = X$, and that Y^0 is a maximal connected $N_{Aut^+(G)}(X)$ -invariant subgroup in G. At this point [11, Theorem 1] applies to give the possibilities for Y. Now Yis not a parabolic subgroup, so it is reductive. Moreover, since $\operatorname{rank}(X) > \frac{1}{2}\operatorname{rank}(G)$, it follows that Y^0 is simple of rank greater than $\frac{1}{2}\operatorname{rank}(G)$. It follows that either Y is of maximal rank in G, or $(G, Y) = (E_6, F_4)$ (note that by hypothesis, p = 2 when $G \neq E_8$). Hence conclusion (i) or (iii) of Theorem 1 holds.

Now suppose that $G = E_6$, $V = V_{27}$ and the almost simple group L contains a graph or graph-field automorphism τ of $F^*(L) = (G_{\sigma})'$. Again X is reducible on V by [17]. Now τ interchanges the G-modules V and V^* . Moreover X and \bar{X} fix the same subspaces of both V and V^* (as the latter are the annihilators of the former). Hence if we define \mathcal{M} to be the set of all X-invariant subspaces of both V and V^* , then the argument of the previous paragraph goes through, yielding conclusion (i) or (iii) of Theorem 1.

Finally, suppose $G = F_4$. Here $X = D_4^{\epsilon}(2), C_4(2), C_3(2)$ or $A_3^{\epsilon}(2)$ (note that rank $(X) \leq 4$ by Lemma 2.5). Consider $X = D_4^{\epsilon}(2)$ or $C_4(2)$. If X is reducible on $V_{26} = V_G(\lambda_4)$ or $V_G(\lambda_1)$, then \bar{X} is proper in G, and clearly $\bar{X} = D_4, B_4$ or C_4 . Defining \mathcal{M} as above, we see that $(G_{\mathcal{M}})^0 = \bar{X}$, which is therefore σ -invariant (note that σ is not an exceptional isogeny since ${}^2F_4(q)$ does not contain $D_4^{\epsilon}(2)$), and hence $X = \bar{X}_{\sigma}$ is of maximal rank. If

X is irreducible on V_{26} , then [17] shows that X again lies in a connected subgroup $\bar{X} = D_4, B_4$ or C_4 of G. Further, \bar{X} is σ -invariant: for $X < \bar{X}$ and $X < \bar{X}^{\sigma} = \bar{X}^g$ $(g \in G)$, so $X, X^{g^{-1}} < \bar{X}$, whence $X^{g^{-1}} = X^n$ $(n \in \bar{X})$, giving $ng \in N_G(X)$. Now $N_G(\bar{X})$ induces the full group $\operatorname{Aut}(X)$ on X, and $C_G(X) = 1$. It follows that $N_G(X) \leq N_G(\bar{X})$, so $ng \in N_G(\bar{X})$. Therefore $\bar{X}^{\sigma} = \bar{X}^g = \bar{X}$, as asserted. It follows as before that $X = \bar{X}_{\sigma}$ is of maximal rank.

To conclude, consider $X = C_3(2)$ or $A_3^{\epsilon}(2)$. Then X is reducible on V_{26} . If $X = L_4(2)$ then Lemma 3.3 shows that $C_G(X)$ contains a root group. In the other cases we have $X < \overline{X} < G$, and [21] forces \overline{X} either to lie in a B_3 or C_3 -parabolic, or to be a maximal rank subgroup D_4 , C_4 or B_4 . In the latter two cases, X cannot fix the same subspaces of V as \overline{X} . Therefore X lies in a B_3 - parabolic or C_3 -parabolic of G, hence centralizes a root group.

We have established that in all cases, X centralizes a root subgroup of G. But this means that $C_G(X)_{\sigma} \neq 1$, which contradicts the maximality of M.

This completes the proof of Theorem 1.

References

- H. Azad, M. Barry and G.M. Seitz, On the structure of parabolic subgroups, Comm. Alg. 18 (1990), 551-562.
- [2] N. Bourbaki, Groupes et algèbres de Lie (Chapters 4,5,6), Hermann, Paris, 1968.
- [3] A.M. Cohen and R.L. Griess, On finite simple subgroups of the complex Lie group E₈, Proc. Symp. Pure Math. 47 (1987), 367-405.
- [4] A.M. Cohen, M.W. Liebeck, J. Saxl and G.M. Seitz, The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, *Proc. London Math. Soc.* 64 (1992), 21-48.
- [5] A.M. Cohen and D.B. Wales, Finite subgroups of $E_6(\mathbb{C})$ and $F_4(\mathbb{C})$, Proc. London Math. Soc. **74** (1997), 105-150.
- [6] R.M. Guralnick, M.W. Liebeck, H.D. Macpherson and G.M. Seitz, Modules for algebraic groups with finitely many orbits on subspaces, *J. Algebra* 196 (1997), 211-250.

- [7] C. Jansen, K. Lux, R. Parker and R. Wilson, An atlas of Brauer characters, Oxford University Press, 1995.
- [8] W. Jones and B. Parshall, On the 1-cohomology of finite groups of Lie type, Proc. Conf. on Finite Groups (eds. W. Scott and F. Gross), Academic Press, New York, 1976, pp. 313-328.
- [9] R. Lawther, M.W. Liebeck and G.M. Seitz, Fixed point ratios in actions of finite exceptional groups of Lie type, *Pacific J. Math.* 205 (2002), 393-464.
- [10] M.W. Liebeck and J. Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. London Math. Soc. 55 (1987), 299-330.
- [11] M.W. Liebeck and G.M. Seitz, Maximal subgroups of exceptional groups of Lie type, finite and algebraic, *Geom. Dedicata* 36 (1990), 353-387.
- [12] M.W. Liebeck and G.M. Seitz, Subgroups generated by root elements in groups of Lie type, Annals. of Math. 139 (1994), 293-361.
- [13] M.W. Liebeck and G.M. Seitz, Reductive subgroups of exceptional algebraic groups, *Mem. Amer. Math. Soc.*, Vol. 121, No. 580, 1996.
- [14] M.W. Liebeck and G.M. Seitz, On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc. 350 (1998), 3409-3482.
- [15] M.W. Liebeck and G.M. Seitz, On finite subgroups of exceptional algebraic groups, J. reine angew. Math. 515 (1999), 25-72.
- [16] M.W. Liebeck and G.M. Seitz, The maximal subgroups of positive dimension in exceptional algebraic groups, *Mem. Amer. Math. Soc.* 169 (2004), no. 802, pp.1-227.
- [17] M.W. Liebeck and G.M. Seitz, Subgroups of exceptional algebraic groups which are irreducible on an adjoint or minimal module, *J. Group Theory*, to appear.
- [18] M.W. Liebeck, J. Saxl and G.M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc. 65 (1992), 297-325.
- [19] M.W. Liebeck, J. Saxl and D.M. Testerman, Subgroups of large rank in groups of Lie type, *Proc. London Math. Soc.* 72 (1996), 425-457.
- [20] F. Lübeck, Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math. 4 (2001), 22-63.
- [21] G.M. Seitz, Maximal subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. Vol. 90, No. 441, 1991.
- [22] R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., No. 80 (1968), pp.1-108.

Abstract

Let G = G(q) be a finite almost simple exceptional group of Lie type over the field of q elements, where $q = p^a$ and p is prime. The main result of this paper determines all maximal subgroups M of G(q) such that M is an almost simple group which is also of Lie type in characteristic p, under the condition that rank $(M) > \frac{1}{2}$ rank(G). The conclusion is that either M is a subgroup of maximal rank, or it is of the same type as G over a subfield of \mathbb{F}_q , or (G, M) is one of $(E_6^{\epsilon}(q), F_4(q))$, $((E_6^{\epsilon}(q), C_4(q)), (E_7(q), {}^{3}D_4(q)))$. This completes work of the first author with J. Saxl and D. Testerman, in which the same conclusion was obtained under some extra assumptions.