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Abstract

Let Γ be a Fuchsian group of genus at least 2 (at least 3 if Γ
is non-oriented). We study the spaces of homomorphisms from Γ to
finite simple groups G, and derive a number of applications concerning
random generation and representation varieties.
Precise asymptotic estimates for |Hom(Γ, G)| are given, implying

in particular that as the rank of G tends to infinity, this is of the form
|G|μ(Γ)+1+o(1), where μ(Γ) is the measure of Γ. We then prove that a
randomly chosen homomorphism from Γ to G is surjective with proba-
bility tending to 1 as |G| → ∞. Combining our results with Lang-Weil
estimates from algebraic geometry, we obtain the dimensions of the
representation varieties Hom(Γ, Ḡ), where Ḡ is GLn(K) or a simple
algebraic group over K, an algebraically closed field of arbitrary char-
acteristic.
A key ingredient of our approach is character theory, involving the

study of the ‘zeta function’ ζG(s) =
∑
χ(1)−s, where the sum is over

all irreducible complex characters χ of G.

The second author thanks EPSRC for its support and Imperial College for its hospi-
tality while this work was carried out
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1 Introduction

Results on random generation of finite simple groups often amount to saying
that randomly chosen homomorphisms from certain infinite groups Γ to
finite simple groups G are surjective with probability tending to 1 as |G| →
∞. For example, if Γ is the free group of rank two this is Dixon’s conjecture
on random generation of simple groups by two elements, which was proved
in [6, 16, 27]; if Γ = Z2 ∗ Z this is the Kantor-Lubotzky conjecture on
random generation by an involution and another element proved in [29]; for
Γ =PSL2(Z) this is random (2, 3)-generation obtained in [28, 14] (assuming
G is not of type B2 or

2B2); and for Γ = Zr ∗ Zs this is random (r, s)-
generation, proved in [31] for G classical of large rank and r, s primes (not
both 2).

All the groups Γ above are Fuchsian, and it is natural to ask whether
results of this type can be obtained in the much more general context of
Fuchsian groups. Some positive evidence is provided in [32], where various
results on random Fuchsian generation of alternating and symmetric groups
are established. In particular, we show in [32, 1.12] that if Γ is a Fuchsian
group of genus at least 2 (3 if Γ is non-oriented), and G is an alternating
group, then a random homomorphism from Γ to G is surjective with prob-
ability tending to 1 as |G| → ∞. One main goal of this paper is to extend
this result to all finite simple groups G (see Theorem 1.6 below).

To prove such a result one needs good estimates on |Hom(Γ, G)| and
|Hom(Γ,M)| for finite simple groups G and their maximal subgroups M .
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Bounds for these numbers are given in terms of a character-theoretic ‘zeta
function’ (see Lemma 3.3), and much of the proof involves analysis of these
functions using character theory of finite groups of Lie type. Another in-
gredient is an estimate for the number of solutions to the equation xm = 1
in finite simple groups (see Section 4). These results seem to have some
independent interest.

When G = G(q), a group of Lie type over Fq, the space Hom(Γ, G(q)) can
essentially be regarded as the set of q-rational points of the representation
variety Hom(Γ, Ḡ), where Ḡ is the simple algebraic group of the same type as
G over the algebraic closure of Fq. Combining our results on |Hom(Γ, G(q))|
with Lang-Weil estimates for the number of q-rational points in algebraic
varieties ([19]), we obtain the dimensions of these representation varieties,
solving some open problems initiated in [42] (see 1.8 - 1.11 below).

Recall that a Fuchsian group is a finitely generated non-elementary dis-
crete group of isometries of the hyperbolic plane H2. By classical work of
Fricke and Klein, the orientation-preserving such groups Γ have a presenta-
tion of the following form:

(1.1) generators: a1, b1, . . . , ag, bg (hyperbolic)
x1, . . . , xd (elliptic)
y1, . . . , ys (parabolic)
z1, . . . , zt (hyperbolic boundary elements)

relations: xm11 = ∙ ∙ ∙ = x
md
d = 1,

x1 ∙ ∙ ∙xd y1 ∙ ∙ ∙ ys z1 ∙ ∙ ∙ zt [a1, b1] ∙ ∙ ∙ [ag, bg] = 1,

where g, d, s, t ≥ 0 and mi ≥ 2 for all i. The number g is referred to as the
genus of Γ. The measure μ(Γ) of an orientation-preserving Fuchsian group
Γ is defined by

μ(Γ) = 2g − 2 +
d∑

i=1

(1−
1

mi
) + s+ t.

It is well known that μ(Γ) > 0.

We shall also study non-orientation-preserving Fuchsian groups; these
have presentations as follows, with g > 0:

(1.2) generators: a1, . . . , ag
x1, . . . , xd
y1, . . . , ys
z1, . . . , zt

relations: xm11 = ∙ ∙ ∙ = x
md
d = 1,

x1 ∙ ∙ ∙xd y1 ∙ ∙ ∙ ys z1 ∙ ∙ ∙ zt a21 ∙ ∙ ∙ a
2
g = 1.
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In this case the measure μ(Γ) is defined by

μ(Γ) = g − 2 +
d∑

i=1

(1−
1

mi
) + s+ t,

and again, μ(Γ) > 0.

Note that Γ is a lattice in PSL2(R), and μ(Γ) = −χ(Γ), where χ(Γ) is
the Euler characteristic.

We call Fuchsian groups as in (1.1) oriented, and those as in (1.2) non-
oriented. Define v = v(Γ) to be 2 if Γ is oriented and 1 otherwise. Define
also d∗ = d∗(Γ) to be the number of i such that mi is even.

If s + t > 0 then Γ is just a free product of cyclic groups. The most
interesting Fuchsian groups are those with s = t = 0; these are co-compact
(also termed proper in [32]) and are the main focus of this paper. Examples
include surface groups (where d = 0) of genus g ≥ 2 (g ≥ 3 in the non-
oriented case); note that surface groups of smaller genus are not Fuchsian,
and are in fact virtually abelian.

Many of our proofs will depend on the above-mentioned ‘zeta function’,
which seems to have some independent interest. For a finite group G, let
Irr(G) denote the set of irreducible complex characters of G, and for real
s > 0, define

ζG(s) =
∑

χ∈Irr(G)

χ(1)−s.

For example, ζG(−2) = |G|, and ζG(0) = k(G), the number of conjugacy
classes of G. The behaviour of ζG(s) for s > 0 is significant for many
applications: for instance, when G is a symmetric group, this was studied
in [36, 41, 32], with applications to random walks, subgroup growth and
coverings of Riemann surfaces.

Note that, if cn = cn(G) denotes the number of characters of degree n of
G, then ζG(s) =

∑
n≥1 cnn

−s. A similar function can be defined for certain
infinite groups, for which cn are all finite, and polynomially bounded, in
which case ζG(s) converges for all large enough s. For example, this is the
case when G is a compact connected semisimple Lie group and we count Lie
group representations, as can be quickly deduced from the Weyl dimension
formula. In this case the zeta function has great geometric significance, as
shown for instance by Witten (see [53, (4.72)]). Note that, for G = SU(2)
we have cn = 1 for all n, and so in this case ζ

G coincides with the classical
Riemann zeta function.

For our purpose here it is important to understand the asymptotic be-
haviour of ζG(s) where G is a finite quasisimple group whose order tends
to infinity. Recall that G quasisimple means that G is perfect and G/Z(G)
is simple. Note that with finitely many exceptions, quasisimple groups are
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central factor groups of either double covers of alternating groups, or of finite
Chevalley groups of simply connected types (see [10, 6.1.4]).

We show the following.

Theorem 1.1 Let G be a finite quasisimple group.

(i) If s > 1, then ζG(s)→ 1 as |G| → ∞.

(ii) If s > 2
3 and G 6= L2(q) or SL2(q), then ζ

G(s)→ 1 as |G| → ∞.

The condition s > 1 in (i) is sharp: indeed, inspection of the character
table of SL2(q) (see [7, p.228]) shows that ζ

SL2(q)(1) → 2 and for q odd,
ζL2(q)(1) → 3

2 as q → ∞, while ζ
G(s) → ∞ for s < 1 for these groups

(see Lemma 2.2). Likewise, the condition on s in (ii) is also sharp, since
ζG(2/3) 6→ 1 for G = L3(q) or U3(q). Excluding the latter groups, even
sharper results can be obtained. These will appear in [33].

For G alternating, a stronger result holds, namely ζG(s)→ 1 as |G| → ∞
for any s > 0 (see [32, 2.7]). We show in [33] that this also holds for classical
groups of rank tending to infinity.

Note that since the limit points of {ζG(1) : G finite simple} are 1, 32 and
2, it follows that with the above notation, cn(G) < Cn for all finite simple
groups G, where C is an absolute constant, and sharper results follow for
G 6= L2(q) - see Corollary 2.7.

Theorem 1.1 can be extended to the case where G is a nearly simple
group - that is, F ∗(G) is quasisimple (see Theorem 2.8).

We shall apply Theorem 1.1 in the study of the space of homomorphisms
from Fuchsian groups to finite quasisimple groups. In [41], the authors
obtain good estimates for |Hom(Γ, G)| where Γ is a surface group and G =
Sn. This is extended in [32] to the case where Γ is an arbitrary Fuchsian
group and G = Sn or An. Hence our focus here is on the case where G is a
quasisimple group of Lie type.

For a finite group G and a positive integer m, denote by jm(G) the
number of solutions in G of the equation xm = 1. If Γ is a non co-compact
Fuchsian group, then Γ decomposes as a free product of vg+ s+ t−1 copies
of Z and cyclic groups of orders m1, . . . ,md, and hence for any finite group
G, we have |Hom(Γ, G)| = |G|vg+s+t−1 ∙

∏d
i=1 jmi(G). The following result

shows that if G is a finite quasisimple group, a rather similar estimate holds
also for co-compact groups (i.e. when s+ t = 0), provided the genus is not
too small. In the statements below, o(1) refers to a quantity which tends to
0 as |G| → ∞.

Theorem 1.2 Let Γ be a co-compact Fuchsian group as in (1.1) or (1.2),
and let G be a finite quasisimple group.
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(i) If Γ is oriented of genus g ≥ 2, we have

|Hom(Γ, G)| = (1 + o(1)) ∙ |G|2g−1 ∙
d∏

i=1

jmi(G).

(ii) Assume Γ is non-oriented of genus g ≥ 3, and (G/Z(G), g) 6=
(L2(q), 3). Then

|Hom(Γ, G)| = (1 + o(1)) ∙ |G|g−1 ∙
d∏

i=1

jmi(G).

(iii) Assume Γ is non-oriented of genus g = 3 and G = L2(q). Then

|Hom(Γ, G)| = (h+ o(1)) ∙ |G|2 ∙
d∏

i=1

jmi(G),

where h = 1 unless (mi, |G|) = 1 for all i, in which case h = 3
2 for q odd

and h = 2 for q even.

(iv) Assume Γ is non-oriented of genus g = 3 and G = SL2(q) with q
odd. Then

|Hom(Γ, G)| = (h+ o(1)) ∙ |G|2 ∙
d∏

i=1

jmi(G),

where h = 1 unless d∗ > 0 and (mi, |G|) is 1 or 2 for all i, in which case
h = 3 ∙ 2d

∗−1.

The anomaly of L2(q) and SL2(q) in the theorem is related to their excep-
tional behaviour in Theorem 1.1 and the remark following. This anomaly is
also reflected in subsequent results on representation varieties (see 1.8, 1.11).
Note also that in part (iii) we have h 6= 1 if and only if all homomorphisms
from Γ to G = L2(q) factor through a non-oriented surface group of genus
3.

Theorem 1.2 takes a particularly simple form when d = 0, that is, Γ is a
surface group:

Corollary 1.3 Let Γ be a surface group which is not virtually abelian, let
g be the genus of Γ, let v = v(Γ), and let G be a finite quasisimple group.
Then

|Hom(Γ, G)| = (h+ o(1)) ∙ |G|vg−1

where h = 1 unless v = 1, g = 3 and G = L2(q), in which case h =
3
2 for q

odd, and h = 2 for q even.
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In order to use Theorem 1.2 one requires information on the values of
jm(G) for G quasisimple. Such information can be found in [32, 52] for
G = An, in [28, 31] for G classical andm prime, and in [15] for G exceptional
and m ≤ 5. Recently, Lawther [20] has obtained tight estimates for the
dimension of the variety Jm(X) = {x ∈ X : xm = 1}, where X is any
connected simple algebraic group. Using this we prove the following.

Theorem 1.4 Let G = G(q) be a finite quasisimple group of Lie type over
Fq of rank r, and let m ≥ 2 be an integer. Then

jm(G) = |G|
1− 1

m
+ε(r),

where |ε(r)| = O(r−1).

We also obtain a number of more detailed estimates of jm(G) for G of
Lie type, including GLn(q) (see Section 4).

Combining Theorems 1.2 and 1.4 gives the following.

Theorem 1.5 Let Γ be a Fuchsian group of genus g ≥ 2 (g ≥ 3 if G is
non-oriented), and let G be a finite classical quasisimple group of rank r.
Then

|Hom(Γ, G)| = |G|μ(Γ)+1+δ(r),

where |δ(r)| = O(r−1).

Hence, if Gn is a sequence of finite quasisimple classical groups whose
ranks tend to infinity, then

lim
n→∞

log |Hom(Γ, Gn)|
log |Gn|

= μ(Γ) + 1.

This also holds for alternating groups Gn = An, as shown in [32].

Our main result concerns random Fuchsian generation of finite simple
groups, and uses some of the above theorems, as well as various new results
on maximal subgroups of finite simple groups presented in Section 5.

Theorem 1.6 Let Γ be a Fuchsian group of genus g ≥ 2 (g ≥ 3 if G is
non-oriented), and let G be a finite simple group. Then the probability that
a randomly chosen homomorphism in Hom(Γ, G) is an epimorphism tends
to 1 as |G| → ∞.

We make a few remarks concerning the strategy of the proof of Theo-
rem 1.6. If a homomorphism in Hom(Γ, G) is not an epimorphism, then its
image lies in a maximal subgroupM of G, and this happens with probability
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|Hom(Γ,M)|
|Hom(Γ,G)| . Hence the probability that a randomly chosen homomorphism

in Hom(Γ, G) is not an epimorphism is bounded above by

Q(Γ, G) =
∑

M max G

|Hom(Γ,M)|
|Hom(Γ, G)|

.

It therefore suffices to show that Q(Γ, G)→ 0 as |G| → ∞.

To prove this we need not only lower bounds on |Hom(Γ, G)| provided
by Theorem 1.2, but also upper bounds on |Hom(Γ,M)| for all maximal
subgroups M of finite simple groups G. The latter are obtained via the
inequality

|Hom(Γ,M)| ≤ |M |vg−1 ∙
d∏

i=1

jmi(M) ∙ ζ
M (vg − 2),

where v = v(Γ) (see Lemma 3.3). To apply this, a painstaking analysis of the
function ζM (s) is required, leading to a bound on ζM (1) in terms of the index
of M in G (see Theorem 5.1 below). This bound is combined with recent
results on maximal subgroups [26] to complete the proof of Theorem 1.6.

Theorem 1.6 is new even for surface groups, where it takes the following
form.

Corollary 1.7 Let Γ be a surface group which is not virtually abelian, and
let G be a finite simple group. Then the probability that a randomly chosen
homomorphism in Hom(Γ, G) is an epimorphism tends to 1 as |G| → ∞.

Theorem 1.6 extends [32, 1.12], which yields the conclusion in the case
where G = An. We note that some assumption on the genus is essential,
since there are Fuchsian groups of genus 0 or 1 which do not have all large
enough finite simple groups as quotients. Examples include triangle groups
of genus 0 such as the Hurwitz (2, 3, 7)-group (see for example [4]), and genus
1 groups of the form (1.1) with d = 1 and m1 an odd prime (since there are
infinitely many finite simple groups containing no element of order m1).

Still, it would be interesting to find partial extensions of Theorem 1.6 to
Fuchsian groups of genus 0 or 1. We propose the following.

Conjecture For any Fuchsian group Γ there is an integer f(Γ), such that if
G is a finite simple classical group of rank at least f(Γ), then the probability
that a randomly chosen homomorphism from Γ to G is an epimorphism
tends to 1 as |G| → ∞.

We can show that the conjecture holds for non co-compact Fuchsian
groups. Since the latter are free products of cyclic groups, some cases are
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already covered by results mentioned in the first paragraph of this paper;
the proof is completed by establishing that the simple groups in question
are also randomly (r, s)-generated when r, s are not both prime. This work
will appear elsewhere.

The proof of the conjecture for co-compact Fuchsian groups (of small
genus) seems to require strong bounds on character ratios |χ(x)/χ(1)| for
χ ∈ Irr(G) and for elements x ∈ G of given order (see Lemma 3.1 below).
Some bounds on these ratios do exist (see for instance [11]), with many
interesting applications, but these bounds are not sufficient to settle our
conjecture, and substantial refinements will be required.

Finally, we apply our results on Hom(Γ, G) for G finite of Lie type to
the study of representation varieties of Γ in reductive algebraic groups over
algebraically closed fields. For a Fuchsian group Γ, an algebraically closed
field K, and a positive integer n, define

Rn,K(Γ) = Hom(Γ, GLn(K)).

This has a natural structure as an algebraic variety defined over the prime
subfield of K, and has been extensively studied in the case where K has
characteristic zero and Γ is a surface group (see [35, 42, 3, 12]). However, not
much seems to be known in positive characteristic. We make the following
contribution.

Theorem 1.8 Let Γ be a surface group of genus g which is not virtually
abelian, and let K be an algebraically closed field of characteristic p > 0.

(i) If Γ is oriented, then dimRn,K(Γ) = (2g− 1)n2+1 and Rn,K(Γ) has
a unique irreducible component of highest dimension.

(ii) If Γ is non-oriented, then dimRn,K(Γ) = (g− 1)n2 and Rn,K(Γ) has
(2, p− 1) irreducible components of highest dimension unless (n, g) = (2, 3),
in which case it has (2, p− 1) + 1 such components.

These dimensions agree with those given for the characteristic zero case
in [42] for oriented groups and in [3] for non-oriented groups. In fact it is well
known that the dimension of a variety in characteristic zero coincides with
the dimension of its reduction modulo p for all large primes p, and so The-
orem 1.8 provides an alternative proof of the characteristic zero dimension
results in [42, 3].

Our methods extend to give the values of dimRn,K(Γ) for arbitrary Fuch-
sian groups. We need some notation. For positive integers n andm1, . . . ,md,
all at least 2, write n = kimi + li with 0 ≤ li < mi, and m = (m1, . . . ,md),
and define

c(n,m) =
d∑

i=1

li(1−
li

mi
).
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Note that c(n,m) is bounded in terms of m only.

Theorem 1.9 Let Γ be a co-compact Fuchsian group as in (1.1) or (1.2), of
genus g ≥ 2 (g ≥ 3 if Γ is non-oriented). Set E = {i : mi even }, μ = μ(Γ),
v = v(Γ), let n ≥ 2, and let K be an algebraically closed field of arbitrary
characteristic. Then

dimRn,K(Γ) = (μ+ 1)n
2 − c(n,m) + v − δ,

where δ = 1 unless v = 2, char(K) 6= 2, mi|n for all i ∈ E, and
∑
i∈E

n
mi
(mi+

1) is odd, in which case δ = 3.

It follows from the theorem that dimRn,K(Γ) = (μ(Γ) + 1)n
2 +O(1); in

particular,
dimRn,K(Γ)

n2
→ μ(Γ) + 1 as n→∞.

As suggested in [42], it is of interest to extend these results to represen-
tation varieties Hom(Γ, Ḡ) for other algebraic groups Ḡ, the natural focus
being on the case where Ḡ is a connected simple algebraic group. For a
positive integer m, define

Jm(Ḡ) = {x ∈ Ḡ : x
m = 1},

Then Jm(Ḡ) is an algebraic variety. Information about its dimension can be
found in Section 4 (see Theorem 4.1).

Theorem 1.10 Let Γ be a Fuchsian group of genus g ≥ 2 (g ≥ 3 if Γ is
non-oriented), let v = v(Γ), and let Ḡ be a connected simple algebraic group
over an algebraically closed field K of arbitrary characteristic. Then

(i) dimHom(Γ, Ḡ) = (vg − 1) dim Ḡ+
∑d
i=1 dim Jmi(Ḡ);

(ii) dimHom(Γ,Ḡ)
dim Ḡ

→ μ(Γ) + 1 as dim Ḡ→∞.

For surface groups we obtain more detailed information. In the statement
below, for a simple algebraic group Ḡ we denote by π1(Ḡ) the fundamental
group of Ḡ, that is, the kernel of the canonical map from the simply con-
nected cover of Ḡ onto Ḡ; and π1(Ḡ)

2 denotes the subgroup generated by
all squares in π1(Ḡ).

Corollary 1.11 Let Γ be a non-virtually abelian surface group of genus
g, let v = v(Γ), and let Ḡ be a connected simple algebraic group over an
algebraically closed field K of arbitrary characteristic.

(i) We have dimHom(Γ, Ḡ) = (vg − 1) ∙ dim Ḡ.
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(ii) If Γ is oriented, then the number of irreducible components of highest
dimension in Hom(Γ, Ḡ) is equal to |π1(Ḡ)|; in particular if Ḡ is simply
connected, this number is 1.

(iii) If Γ is non-oriented, then the number of irreducible components of
highest dimension in Hom(Γ, Ḡ) is equal to |π1(Ḡ)/π1(Ḡ)2|, except when
(g, Ḡ) = (3, PSL2), in which case the number is 1 + |π1(Ḡ)/π1(Ḡ)2|.

It is interesting to note that while results for finite groups are frequently
deduced from corresponding results for algebraic groups, in our case the
deductions are in the reverse direction.

Finally, we note that when Ḡ is a compact Lie group and Γ a surface
group, the space Hom(Γ, Ḡ) has geometric significance. For example, in [40]
its volume is defined and studied using a representation-theoretic formula;
this is closely related to Witten’s celebrated volume formula for the moduli
space of flat Ḡ-connections on the relevant surface [53].

Notation and layout

We shall freely use the notation already introduced, together with the
following. We define F to be the class of all co-compact Fuchsian groups
as in (1.1) with g ≥ 2, or in (1.2) with g ≥ 3. For functions f, g, we write
f ∼ g to mean that there are positive absolute constants c1, c2 such that
c1f ≤ g ≤ c2f . Finally, if m1, . . . ,md are positive integers and G is a group,
then, setting m = (m1, . . . ,md), we define

Im(G) = {(g1, . . . , gd) : gi ∈ G, g
mi
i = 1,

d∏

1

gi ∈ G
′}.

The layout of the paper is as follows. In Section 2 we study the function
ζG(s) and prove Theorem 1.1. In Section 3 we recall two character-theoretic
formulae, essentially dating back to Hurwitz, giving the size of certain ho-
momorphism spaces from a Fuchsian group to a finite group, and use these,
together with Theorem 1.1, to prove Theorem 1.2 and various related results.
Section 4 is devoted to counting elements of given order in finite classical
groups; this is where Theorems 1.4 and 1.5 are established. In Section 5 we
study ζM (s) for maximal subgroups M of finite simple groups. The bound
on ζM (1) in Theorem 5.1 is one of the main tools in our proof of Theo-
rem 1.6, given in Section 6. Finally, representation varieties are discussed
in Section 7, where the results 1.8 - 1.11 are proved.
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2 Character degrees

In this section we prove Theorem 1.1 and various related results. For G =
An, it is shown in [32, 2.7] that ζ

G(s) → 1 as n → ∞ for any s > 0.
Moreover, for the double cover Ân, it follows from [49] that every faithful
irreducible character of Ân has degree at least c

n
1 , where c1 > 1 is an absolute

constant. Also k(Ân) < c
√
n
2 for some absolute constant c2. Hence for s > 0,

∑

χ∈Irr(Ân) faithful

χ(1)−s < c
√
n
2 c

−sn
1 → 0 as n→∞.

This establishes Theorem 1.1 in the case where G/Z(G) = An. Hence it
remains to deal with simple groups of Lie type.

For a finite group G, let k(G) denote the number of conjugacy classes of
elements in G. And for a simple group G of Lie type, not of type 2B2,

2G2
or 2F4, define the rank r = r(G) to be the untwisted Lie rank of G (that is,
the rank of the ambient simple algebraic group Ḡ); for G of type 2B2,

2G2
or 2F4, define r(G) = 1, 1, 2 respectively.

Lemma 2.1 Let G = G(q) be a quasisimple group of Lie type of rank r =
r(G) over Fq. Then there are positive absolute constants c1, c2 such that

(i) k(G) < c1q
r, and

(ii) χ(1) > c2q
r for any nontrivial irreducible complex character χ of G.

Proof Part (i) follows from [23, Theorem 1] for groups of bounded rank,
and from [9] for groups of unbounded rank (see also [8, 9.1]). Part (ii) is
immediate from [18].

Proof of Theorem 1.1(i) This now follows quickly. By Lemma 2.1, we
have

ζG(s) ≤ 1 + c1q
r ∙ (c2q

r)−s = 1 + c3(s)q
−(s−1)r,

which tends to 1 as |G| → ∞, assuming that s > 1. This completes the
proof of Theorem 1.1(i).

To see that in general the condition s > 1 is necessary, we note the
following.

Lemma 2.2 (i) For q odd, ζL2(q)(1)→ 3/2 as q →∞.

(ii) ζSL2(q)(1)→ 2 as q →∞.

(iii) For G = L2(q) or SL2(q) and s < 1, we have ζ
G(s)→∞ as q →∞.

Proof Suppose first that q is odd. From the character table of SL2(q)
given in [7, 38.1], we see that L2(q) has

q
2 + O(1) irreducible characters of
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degree q + 1 or q − 1, and three other nontrivial irreducible characters, all
of degree at least 12(q − 1). This yields part (i).

For (ii), observe that by [7, 38.1] (for q odd) and [7, 38.2] (for q even),
SL2(q) has q+O(1) irreducible characters of degree q± 1, and at most five
other nontrivial irreducible characters, all of degree at least 12(q − 1). Part
(ii) follows, and (iii) is immediate from the above information.

To prove 1.1(ii), we need more detailed information about irreducible
characters of small degree of groups of Lie type. First we handle exceptional
groups. The following is taken from [18].

Proposition 2.3 Let G = G(q) be an exceptional quasisimple group of Lie
type over Fq, and define h = h(G) as follows:

G E8 E7 E
ε
6 F4

2F4
3D4 G2

2G2
2B2

h 29 17 11 8 11
2 5 3 2 3

2

Then there is an absolute constant c > 0 such that every nontrivial irre-
ducible character of G has degree greater than cqh.

We can now deduce the following.

Corollary 2.4 If G is an exceptional quasisimple group of Lie type and
s > 6

11 , then ζ
G(s)→ 1 as |G| → ∞.

Proof By Proposition 2.3, we have

ζG(s) ≤ 1 + c1q
r ∙ (cqh)−s = 1 + c3(s)q

r−sh.

Note that rh ≤
6
11 for all types except

2B2, G2 and
3D4, so the result fol-

lows, apart from these cases. The irreducible character degrees and their
multiplicities for 2B2(q) and

3D4(q) can be found in [47, 5], and for G2(q)
a summary can be found in [43, Appendix]. Inspection of this data shows
that ζG(s) → 1 for s > s0, where s0 = 1

2 ,
1
3 ,
1
3 according as G =

2B2(q),
G2(q),

3D4(q) respectively. This completes the proof.

For classical groups we shall need the following slightly more refined
information than that in [18]. This result is taken from [48]; the case where
G is orthogonal is not explicitly stated there, but it follows easily from the
proofs of [48, Theorems 6.1, 7.6].

Proposition 2.5 Let G = G(q) be a classical quasisimple group over Fq,
write H = G/Z(G), and let f = f(G) be as in Table 1 below. Then there
is an absolute constant c > 0 such that G has at most q + 2 nontrivial
irreducible characters of degree less than cqf .

13



Table 1

H Lεn(q) (n ≥ 4) L
ε
3(q) PSp2n(q) PΩ2n+1(q) (n ≥ 3) PΩ

ε
2n(q) (n ≥ 4)

f 2n− 4 3 2n− 1 2n− 1 2n− 2

Corollary 2.6 Let D be a family of classical finite quasisimple groups, not
L2(q) or SL2(q), and define s0 = limsupG∈D

r(G)
f(G) . Then for any s > s0, we

have ζG(s)→ 1 as |G| → ∞ with G ∈ D.

In particular, this holds when s0 =
2
3 and D consists of all classical

groups apart from L2(q), SL2(q).

Proof Using Lemma 2.1 and Proposition 2.5, we have

ζG(s) ≤ 1+(q+2) ∙(c2q
r)−s+(c1q

r) ∙(cqf )−s = 1+c3(s) ∙q
1−rs+c4(s) ∙q

r−fs.

As L2(q), SL2(q) are excluded, we have r ≥ 2. The first assertion follows,
provided s > max(s0,

1
r ), which is equal to s0 (since

r
f ≥

1
2 in all cases).

An easy check shows that rf ≤
2
3 in all cases (with equality when G =

Lε3(q) or PΩ
ε
8(q)), yielding the last part.

Proof of Theorem 1.1(ii) This now follows from Corollaries 2.4 and 2.6.

This completes the proof of Theorem 1.1.

Combining the results 2.1, 2.3 and 2.5 easily yields the following.

Corollary 2.7 There exists an absolute constant c such that if G 6= L2(q)
is a finite simple group and n is a positive integer, then G has at most cn2/3

irreducible characters of degree n.

Similar methods yield an analogue of Theorem 1.1 for nearly simple
groups, that is, finite groups G such that F ∗(G) = G0 is quasisimple.
For such a group G, the function ζG(s) − ζG/G0(s) is the sum

∑
χ(1)−s

over all irreducible characters χ of G with kerχ ≤ Z(G0). Moreover,
G/G0 ≤ Out(G0/Z(G0)) is a soluble group with a transparent structure,
and ζG/G0(s) can be easily computed. Note that ζG(s) ≥ |G/G′|, and also
ζG/G0(s) ≥ |G/G′|, with equality if and only if G0 = G′.

Theorem 2.8 Let G be a finite nearly simple group with F ∗(G) = G0, and
fix a real number s.

(i) If s > 1, then ζG(s)− ζG/G0(s)→ 0 as |G| → ∞.

14



(ii) If s > 2/3 and G0 6= L2(q) or SL2(q), then ζG(s)− ζG/G0(s)→ 0 as
|G| → ∞.

(iii) In particular, if G/G0 is abelian then ζ
G(s) = |G/G′| + o(1) for

s > 1, and the same holds for s > 2/3 if G0 6= L2(q) or SL2(q).

Proof The case where G0 = An is covered by [32, 1.1], and that where
G0 = Ân follows easily as at the beginning of this section.

So assume G0 is of Lie type, of rank r over Fq. By Lemma 2.1 to-
gether with Clifford’s theorem, every irreducible character of G with ker-
nel contained in Z(G0) has degree at least c2q

r. It is well known that
k(G) ≤ |G : G0| ∙ k(G0), so Lemma 2.1 gives k(G) ≤ c1qr ∙ |G : G0|. More-
over, |G : G0| ≤ |Out(G0)| ≤ c3r log q. Hence k(G) ≤ c4rqr log q. It follows
that

ζG(s)− ζG/G0(s) ≤ c4rq
r log q ∙ (c2q

r)−s ≤ c5(s) ∙ r log q ∙ q
−r(s−1).

If s > 1, the right hand side tends to zero as q or r tends to infinity, proving
part (i).

For part (ii), in the case where G0 is an exceptional group, Proposi-
tion 2.3 shows that any irreducible character of G with kernel contained in
Z(G0) has degree at least cq

h, and hence

ζG(s)− ζG/G0(s) ≤ c4rq
r log q ∙ (cqh)−s.

Excluding type 3D4, we have
r
h ≤

2
3 , so the conclusion follows; for G of type

3D4 we use [5] as in the proof of 2.4.

Part (ii) in the case where G0 is classical is handled similarly, as in the
proof of Corollary 2.6.

Finally, part (iii) follows immediately from (i) and (ii).

Sometimes we shall also need to study certain variants of ζG involving
only the real irreducible characters of G. For a finite group G, and a real
number s, define

ζGR (s) =
∑

χ∈Irr(G), χ real

χ(1)−s;

and for an integer k, define

ζGr (k) =
∑

χ∈Irr(G)

ι(χ)kχ(1)−k,

where ι(χ) ∈ {0, 1,−1} is the Schur indicator of χ. Note that a finite group
G has |G/G2| real linear characters, where G2 is the group generated by the
squares in G. Hence

ζGR (k) ≥ |G/G
2|.
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Lemma 2.9 Let G be a finite nearly simple group with F ∗(G) = G0. Sup-
pose that either s > 1, or G0 6= L2(q), SL2(q) and s > 2/3. Then

ζGR (s) = ζ
G/G0
R (s) + o(1), and ζGr (s) = ζ

G/G0
r (s) + o(1).

If moreover G/G0 is abelian, then both ζ
G
R (s) and ζ

G
r (s) have the form

|G/G2|+ o(1).

Proof Note that ζGR (s) − ζ
G/G0
R (s) =

∑
χ(1)−s, the sum running over

irreducible real χ ∈ Irr(G) such that kerχ ≤ Z(G0). This sum is bounded
above by the sum

∑
χ(1)−s over all χ ∈ Irr(G) such that kerχ ≤ Z(G0),

which is of the form o(1) by Theorem 2.8. IfG/G0 is abelian, then ζ
G/G0
R (s) =

|G/G2|. This completes the proof for ζGR , and a similar argument gives the
conclusion for ζGr .

We conclude this section with a result on ζG and ζGr for G = GLn(q)
which is important for later applications. In the statement we fix n and let
q →∞.

Proposition 2.10 Fix n ≥ 2, and let G = GLn(q).

(i) For n ≥ 3 and s ≥ 2, we have ζG(s) = q − 1 + o(1).

(ii) For n ≥ 3 and k ≥ 1, we have ζGr (k) = (q − 1, 2) + o(1).

(iii) For n = 2, we have ζG(2) = q + o(1), and ζG(s) = q − 1 + o(1) for
s > 2.

(iv) For n = 2, we have ζGr (1) = (q − 1, 2) + 1 + o(1), and ζ
G
r (k) =

(q − 1, 2) + o(1) for k > 1.

Proof (i) First note that G has at most c1q
n irreducible characters, by

Lemma 2.1. There are q − 1 linear characters, contributing q − 1 to ζG(s).
The remaining characters have degree at least c2q

n−1. Hence for s ≥ 2,

q − 1 ≤ ζG(s) ≤ q − 1 +O(qn ∙ q−2(n−1)),

giving the conclusion since n ≥ 3.

(ii) The linear characters contribute (q − 1, 2) to ζGr (k) for any k ≥ 1.
Of the remaining irreducible characters, Proposition 2.5 shows that there
are at most c3q

2 of degree less than c4q
2n−4, and these have degree at least

c5q
n−1. Hence for k ≥ 1,

(q − 1, 2) ≤ ζGr (k) ≤ (q − 1, 2) +O(q
2 ∙ q−(n−1)) +O(qn ∙ q−(2n−4)).

This gives the conclusion for n ≥ 5.
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For n = 3 or 4, we use the information in [46]. Analysis of the character
tables there shows that there are just O(q2) real irreducible characters of
GL3(q) in all, and O(q) of these have degree less than c6q

3, which yields

ζGr (1) = (q − 1, 2) +O(q.q
−2) +O(q2.q−3) = (q − 1, 2) + o(1).

For n = 4, the number of irreducible characters of GL4(q) of degree less
than c7q

5 is O(q2), and hence

ζGr (1) = (q − 1, 2) +O(q
2.q−3) +O(q4.q−5) = (q − 1, 2) + o(1).

(iii) As follows from [46], GL2(q) has (1 + o(1))q
2 non-linear characters,

and their degrees are q − 1, q, q + 1. The conclusion follows.

(iv) Again from [46], it can be checked that GL2(q) has q + O(1) real
non-linear characters; their degrees are q, q − 1, q + 1, and Schur indicators
are +1. The conclusion follows easily.

Proposition 2.10 and its proof yield the following.

Corollary 2.11 Fix n ≥ 2, and let G = GLn(q). Then for any integer
k ≥ 1, we have ζGR (k)− ζ

G
r (k) = o(1) (as q →∞). Consequently

ζGR (k) = (q − 1, 2) + δ + o(1),

where δ = 0 unless n = 2 and k = 1, in which case δ = 1.

3 Counting homomorphisms

In this section we prove Theorem 1.2 and related results. We shall use a
well known formula expressing the sizes of certain spaces of homomorphisms
in terms of characters. At this point the results of the previous section will
come into play.

Throughout the section we assume that Γ is a Fuchsian group as in
(1.1),(1.2) with s = t = 0.

Let G be a finite group, and C = (C1, . . . , Cd) be a d-tuple of conjugacy
classes Ci of G with representatives gi. Set

HomC(Γ, G) = {φ ∈ Hom(Γ, G) : φ(xi) ∈ Ci for i = 1, . . . , d}.

The next result, essentially dating back to Hurwitz, plays a key role in this
paper; for a proof, see for example [32, 3.2].

17



Lemma 3.1 Let Γ be a co-compact Fuchsian group and G a finite group.

(i) If Γ is oriented, then

|HomC(Γ, G)| = |G|
2g−1|C1| ∙ ∙ ∙ |Cd|

∑

χ∈Irr(G)

χ(g1) ∙ ∙ ∙χ(gd)
χ(1)d−2+2g

.

(ii) If Γ is non-oriented, then

|HomC(Γ, G)| = |G|
g−1|C1| ∙ ∙ ∙ |Cd|

∑

χ∈Irr(G)

ι(χ)g
χ(g1) ∙ ∙ ∙χ(gd)
χ(1)d−2+g

,

where ι(χ) ∈ {0, 1,−1} is the Schur indicator of χ.

We now estimate |Hom(Γ, G)| in terms of the functions ζG, ζGr studied
above. We start with the case of surface groups, which is already known
[39], and follows from Lemma 3.1 by substituting d = 0.

Corollary 3.2 Let Γ be a surface group of genus g and let G be a finite
group.

(i) If Γ is oriented, then |Hom(Γ, G)| = |G|2g−1ζG(2g − 2).

(ii) If Γ is non-oriented, then |Hom(Γ, G)| = |G|g−1ζGr (g − 2).

In order to deal with general Fuchsian groups, recall that we define jm(G)
to be the number of solutions to the equation xm = 1 in G; also v = v(Γ) is
2 if Γ is oriented and 1 if not.

Lemma 3.3 For any finite group G, we have

2− ζG(vg − 2) ≤
|Hom(Γ, G)|

|G|vg−1 ∙
∏d
i=1 jmi(G)

≤ ζG(vg − 2).

Proof First assume that Γ is oriented. Observe that for χ ∈ Irr(G),

|χ(g1) ∙ ∙ ∙χ(gd)|
χ(1)d−2+2g

≤ χ(1)−(2g−2).

Hence

|
∑

1 6=χ∈Irr(G)

χ(g1) ∙ ∙ ∙χ(gd)
χ(1)d−2+2g

| ≤ ζG(2g − 2)− 1,

which yields

2− ζG(2g − 2) ≤
∑

χ∈Irr(G)

χ(g1) ∙ ∙ ∙χ(gd)
χ(1)d−2+2g

≤ ζG(2g − 2). (1)
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Now
|Hom(Γ, G)| =

∑

C

|HomC(Γ, G)|,

where the sum ranges over d-tuples C of classes Ci of elements of order
dividing mi. Also

∑
C |C1| ∙ ∙ ∙ |Cd| =

∏d
i=1 jmi(G). Applying Lemma 3.1(i)

and (1), we obtain

(2−ζG(2g−2))|G|2g−1
d∏

i=1

jmi(G) ≤ |Hom(Γ, G)| ≤ ζ
G(2g−2)|G|2g−1

d∏

i=1

jmi(G).

This completes the case where Γ is oriented.

Now assume Γ is non-oriented. We use 3.1(ii). Observe that for χ ∈
Irr(G), we have

|ι(χ)g
χ(g1) ∙ ∙ ∙χ(gd)
χ(1)d−2+g

| ≤ χ(1)−(g−2).

The proof now follows as in the oriented case above.

Lemma 3.3 is particularly useful when ζG(vg− 2) is close to 1, since the
upper and lower bounds are then both close to 1.

Proof of Theorem 1.2 Let Γ be a Fuchsian group in F (recall that this
means Γ has genus g ≥ 2 (g ≥ 3 in the non-oriented case)), and let G be a
finite quasisimple group.

(i) Suppose Γ is oriented. Since 2g−2 ≥ 2, we have ζG(2g−2) = 1+o(1)
by Theorem 1.1(i), and so Theorem 1.2(i) follows from Lemma 3.3.

(ii) Suppose now that Γ is non-oriented, and either G/Z(G) 6= L2(q) or
g > 3. Then using both parts of Theorem 1.1, we have ζG(g−2) = 1+ o(1),
and Theorem 1.2(ii) follows again from Lemma 3.3.

(iii) Assume now Γ is non-oriented with g = 3 and G = L2(q). Write
h = 3/2 if q is odd, and h = 2 if q is even. Let Ci be classes of elements of
order dividing mi in G (1 ≤ i ≤ d). We claim that

|HomC(Γ, G)| = (k + o(1)) ∙ |G|
2 ∙ |C1| ∙ ∙ ∙ |Cd|, (2)

where k = 1 unless Ci = {1} for all i, in which case k = h.

To prove the claim, suppose first that Ci 6= {1} for some i, and let
gi ∈ Ci. Inspection of the character table of G = L2(q) in [7, Section 38]
shows that |χ(gi)/χ(1)| ≤ 2q−1/2 for all nontrivial χ ∈ Irr(G), and hence

|
∑

1 6=χ∈Irr(G)

ι(χ)g
χ(g1) ∙ ∙ ∙χ(gd)
χ(1)d−2+g

| ≤ 2q−1/2
∑

1 6=χ∈Irr(G)

χ(1)−1 = 2q−1/2(ζG(1)−1).
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Since ζG(1) is bounded (see Lemma 2.2), this shows that

∑

χ∈Irr(G)

ι(χ)g
χ(g1) ∙ ∙ ∙χ(gd)
χ(1)d−2+g

= 1 + 2q−1/2 ∙O(1) = 1 + o(1).

Hence by Lemma 3.1(ii), we have

|HomC(Γ, G)| = (1 + o(1)) ∙ |G|
2 ∙ |C1| ∙ ∙ ∙ |Cd|,

proving the claim (2) under the assumption that Ci 6= {1} for some i.

Next, suppose Ci = {1} for all i. Then Lemma 3.1(ii) gives

|HomC(Γ, G)| = |G|
2 ∙

∑

χ∈Irr(G)

ι(χ)χ(1)−1 = |G|2 ∙ ζGr (1).

It is easily checked from the character table that ι(χ) = +1 for all but at
most two irreducible characters χ of G = L2(q). Hence from Lemma 2.2 we
have

ζGr (1) = (1 + o(1)) ∙ ζ
G(1) = h+ o(1),

which completes the proof of (2).

Applying (2) and summing over all d-tuples C1, . . . , Cd of classes of ele-
ments of orders dividing m1, . . . ,md respectively, we obtain

|Hom(Γ, G)| = (1 + o(1))|G|2(jm1(G) ∙ ∙ ∙ jmd(G)− 1) + (h+ o(1))|G|
2.

If (mi, |G|) 6= 1 for some i the right hand side has the form

(1 + o(1))|G|2jm1(G) ∙ ∙ ∙ jmd(G),

while if (mi, |G|) = 1 for all i, then it has the form (h+ o(1))|G|2.

This completes the proof of Theorem 1.2(iii).

(iv) Suppose Γ is non-oriented with g = 3, and G = SL2(q) with q
odd. The proof is similar to the previous case, but a few modifications are
necessary. Let Ci be classes of elements of order dividingmi inG (1 ≤ i ≤ d),
and gi ∈ Ci. Let z = −I be the non-identity central element of G. Recall
that d∗ = d∗(Γ) is the number of i such that mi is even. Denote by n(C)
the number of i such that Ci = {z}. Note that n(C) ≤ d∗.

We claim that

|HomC(Γ, G)| = (k + o(1)) ∙ |G|
2 ∙ |C1| ∙ ∙ ∙ |Cd|, (3)

where k = 1 unless |Ci| = 1 for all i and n(C) is odd , in which case k = 2.

The proof of (3) in the case where |Ci| 6= 1 for some i is essentially
identical to the analogous proof for G = L2(q), so it will be omitted.
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Assume then that the classes Ci are all central, and let n = n(C). Note
that for an irreducible character χ of G we have χ(gi)/χ(1) = 1 unless χ is
faithful and gi = z, in which case χ(gi) = −1. Combining this with part (ii)
of Lemma 3.1 we obtain

|HomC(Γ, G)| = |G|
2(Σ1 +Σ2), (4)

where

Σ1 =
∑

χ∈Irr(G) nonfaithful

ι(χ)χ(1)−1, Σ2 =
∑

χ∈Irr(G) faithful

ι(χ)(−1)nχ(1)−1.

Clearly Σ1 = ζ
L2(q)
r (1), so as seen above,

Σ1 = 3/2 + o(1).

It is easily checked from the character table that ι(χ) = −1 for all but two
of the faithful irreducible characters χ of G, of which there are q2 +O(1) of
degree q ± 1. We conclude that

Σ2 = (−1)
n+1(

1

2
+ o(1)).

Hence Σ1 +Σ2 = k + o(1), where k is as in (3). Now (3) follows using (4).

Let Y (respectively Z) be the set of d-tuples (C1, . . . , Cd) such that
|Ci| 6= 1 for some i (respectively |Ci| = 1 for all i). Note that |Z| = 2d

∗
.

Write
|Hom(Γ, G)| = A+B,

where
A =

∑

C∈Y

|HomC(Γ, G)|, B =
∑

C∈Z

|HomC(Γ, G)|.

By (3), we have

A = (1+o(1))|G|2(
d∏

i=1

jmi(G)−
d∏

i=1

jmi(Z(G)) = (1+o(1))|G|
2(
d∏

i=1

jmi(G)−2
d∗).

Also for d∗ > 0, (3) yields

B = |G|2∙(
∑

C∈Z, n(C) even

1+o(1)+
∑

C∈Z, n(C) odd

2+o(1)) = |G|2∙(3∙2d
∗−1+o(1)),

while B = |G|2(1 + o(1)) if d∗ = 0. In the latter case we have A + B =
(1 + o(1))|G|2

∏d
i=1 jmi(G). Assume now that d

∗ > 0. If (mi, |G|) > 2 for
some i, then A is the dominant term and A+B = (1+o(1))|G|2

∏d
i=1 jmi(G).

Finally, if (mi, |G|) = 1 or 2 for all i, then A = 0. Thus Theorem 1.2(iv) is
proved in all cases.
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This completes the proof of Theorem 1.2.

Our methods also enable us to estimate |Hom(Γ, G)|, where G is nearly
simple, which is important for our applications to representation varieties.

We first formulate the case where Γ is a surface group:

Proposition 3.4 Let Γ be a surface group of genus g, and let G be a finite
nearly simple group with F ∗(G) = G0, a quasisimple group.

(i) If Γ is oriented with g ≥ 2, then

|Hom(Γ, G)| = |G|2g−1 ∙ (ζG/G0(2g − 2) + o(1)).

In particular, if G0 = G
′ then |Hom(Γ, G)| = |G|2g−1 ∙ (|G/G′|+ o(1)).

(ii) If Γ is non-oriented with g ≥ 3, and (g,G0/Z(G0)) 6= (3, L2(q)), then

|Hom(Γ, G)| = |G|g−1 ∙ (ζG/G0r (g − 2) + o(1)).

In particular, if G0 = G
′ then |Hom(Γ, G)| = |G|g−1 ∙ (|G/G2|+ o(1)).

Proof Part (i) follows from Theorem 2.8 and Corollary 3.2(i). Similarly
part (ii) follows from Lemma 2.9 and Corollary 3.2(ii).

We next extend this result to general Fuchsian groups, assuming that
G/G0 is abelian. This requires some preparation.

Recall from the Introduction that for a d-tuple m = (m1, . . . ,md) of
integers mi ≥ 2, we define

Im(G) = {(g1, . . . , gd) : gi ∈ G, g
mi
i = 1,

d∏

1

gi ∈ G
′}.

Also, letting G2 denote the group generated by the squares in G, define

Irm(G) = {(g1, . . . , gd); : gi ∈ G, g
mi
i = 1,

d∏

1

gi ∈ G
2}.

The following result is a variant of Lemma 3.3 which is useful in the case
where G is not a perfect group.

Lemma 3.5 Let Γ be a Fuchsian group as in (1.1), (1.2), and let G be a
finite group.

(i) If Γ is oriented, then

2|G/G′| − ζG(2g − 2) ≤
|Hom(Γ, G)|
|G|2g−1 ∙ |Im(G)|

≤ ζG(2g − 2).
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(ii) If Γ is non-oriented, then

2|G/G2| − ζGR (g − 2) ≤
|Hom(Γ, G)|
|G|g−1 ∙ |Irm(G)|

≤ ζGR (g − 2).

Proof The proof of this extends that of Lemma 3.3. For 1 ≤ i ≤ d let
Ci = g

G
i be a conjugacy class of G with g

mi
i = 1. Write

∑

χ∈Irr(G)

χ(g1) ∙ ∙ ∙χ(gd)
χ(1)d−2+2g

= Σ1 +Σ2,

where Σ1 and Σ2 are the sums over the linear and non-linear irreducible
characters, respectively. Suppose HomC(Γ, G) 6= ∅. Then the relation
x1 . . . xd [a1, b1] . . . [ag, bg] of Γ implies that g1 . . . gd ∈ G′. Hence for ev-
ery linear character χ of G we have χ(g1) ∙ ∙ ∙χ(gd) = 1. This shows that
Σ1 = |G/G′|. We also have |Σ2| ≤ ζG(2g− 2)− |G/G′|. Now by Lemma 3.1
we have

|HomC(Γ, G)| = |G|
2g−1|C1| . . . |Cd| ∙ (|G/G

′|+Σ2),

and so

|G|2g−1
d∏

i=1

|Ci|(2|G/G
′|−ζG(2g−2)) ≤ |HomC(Γ, G)| ≤ |G|

2g−1
d∏

i=1

|Ci|ζ
G(2g−2).

Summing over all C1, . . . , Cd such that
∏d
1 Ci ⊆ G

′, and observing that∑
∏
Ci⊆G′ |C1| . . . |Cd| = |Im(G)|, this yields (i).

The proof of (ii) is similar. For i ≤ i ≤ d let Ci = gGi be a conjugacy
class of G with gmii = 1. Write

∑

χ∈Irr(G)

ι(χ)g
χ(g1) ∙ ∙ ∙χ(gd)
χ(1)d−2+g

= Δ1 +Δ2,

where Δ1 and Δ2 are the sums over the linear and non-linear irreducible
characters, respectively. Suppose HomC(Γ, G) 6= ∅. Then the relation
x1 . . . xd a

2
1 . . . a

2
g of Γ implies that g1 . . . gd ∈ G

2. Hence for every real linear
character χ of G we have χ(g1) ∙ ∙ ∙χ(gd) = 1. This shows that Δ1 = |G/G2|.
We also have |Δ2| ≤ ζGR (g − 2)− |G/G

2|. Now by Lemma 3.1 we have

|HomC(Γ, G)| = |G|
g−1|C1| . . . |Cd| ∙ (|G/G

2|+Δ2). (5)

Summing over all C1, . . . , Cd such that
∏d
1 Ci ⊆ G

2, this yields the required
conclusion.
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Theorem 3.6 Let Γ be a Fuchsian group in F , and let G be a finite nearly
simple group with F ∗(G) = G0. Assume that G/G0 is abelian.

(i) If Γ is oriented, then

|Hom(Γ, G)| = |G|2g−1|Im(G)| ∙ (|G/G
′|+ o(1)).

(ii) If Γ is non-oriented, and (g,G0/Z(G0)) 6= (3, L2(q)), then

|Hom(Γ, G)| = |G|g−1|Irm(G)| ∙ (|G/G
2|+ o(1)).

Proof (i) By Theorem 2.8(iii) we have ζG(2g − 2) = |G/G′|+ o(1). Sub-
stituting this in Lemma 3.5(i) gives the conclusion.

(ii) By Lemma 3.5(ii),

|
|Hom(Γ, G)|
|G|g−1 ∙ |Irm(G)|

− |G/G2|| ≤ ζGR (g − 2)− |G/G
2|.

The right hand side is of the form o(1) by Lemma 2.9, and the conclusion
follows.

In view of Theorem 3.6 it is important to estimate the sizes of the subsets
Im(G) and I

r
m(G). Trivially, we have

d∏

i=1

jmi(G
′) ≤ |Im(G)| ≤ |I

r
m(G)| ≤

d∏

i=1

jmi(G). (6)

We shall show in Section 4 (see Corollary 4.4) that under some conditions,
the upper and lower bounds in (6) are asymptotically the same, which will
be crucial in the proof of Theorem 1.10 in Section 7.

For our applications on representation varieties we shall also need to
estimate |Hom(Γ, G)| when G = GLn(q), where n is fixed and q →∞ (note
that GLn(q) is not nearly simple). Again, we start with the easier case of
surface groups.

Proposition 3.7 Let Γ be a surface group of genus g which is not virtually
abelian, and fix n ≥ 2.

(i) If Γ is oriented, then

|Hom(Γ, GLn(q))| = (q − 1 + δ + o(1)) ∙ |GLn(q)|
2g−1,

where δ = 0 unless n = g = 2, in which case δ = 1.

(ii) If Γ is non-oriented, then

|Hom(Γ, GLn(q))| = ((q − 1, 2) + δ + o(1)) ∙ |GLn(q)|
g−1,

where δ = 0 unless n = 2 and g = 3, in which case δ = 1.
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Proof This follows by combining Corollary 3.2 with Proposition 2.10.

Theorem 3.8 Let Γ be a Fuchsian group in F , and fix n ≥ 2.

(i) If Γ is oriented, then

|Hom(Γ, GLn(q))| = (1 + o(1))(q − 1) ∙ |GLn(q)|
2g−1 ∙ |Im(GLn(q))|.

(ii) If Γ is non-oriented, then

|Hom(Γ, GLn(q))| ∼ |GLn(q)|
g−1 ∙ |Irm(GLn(q))|.

Proof (i) Set G = GLn(q). Then as g ≥ 2, Lemma 2.10(i),(iii) shows that
ζG(2g − 2) = q − 1 + δ + o(1), where δ = 0 unless n = g = 2, in which case
δ = 1. Substituting in Lemma 3.5(i), we obtain

q − 1− δ − o(1) ≤
|Hom(Γ, G)|
|G|2g−1 ∙ |Im(G)|

≤ q − 1 + δ + o(1).

The conclusion follows.

(ii) By Corollary 2.11, ζGR (g − 2) = (q − 1, 2) + δ + o(1), where δ = 0
unless n = 2, g = 3, in which case δ = 1. Also |G/G2| = (q − 1, 2). Hence
Lemma 3.5(ii) gives

(q − 1, 2)− δ − o(1) ≤
|Hom(Γ, G)|
|G|g−1 ∙ |Irm(G)|

≤ (q − 1, 2) + δ + o(1).

The conclusion follows, unless n = 2, g = 3 and q is even. In this case, using
the notation of the proof of Lemma 3.5(ii), and inspecting the character table
of G = GL2(q), we see that if some Ci is non-central then Δ2 = O(q

−1),
and otherwise Δ2 = q/(q − 1). In either case, (5) shows that

|HomC(Γ, G)| ∼ |G|
g−1|C1| . . . |Cd|,

and the result follows by summing over all C1, . . . , Cd such that
∏d
1 Ci ⊆ G

2.

Note that the proof shows that the implied constants in part (ii) are
between 1 + o(1) and 3 + o(1).

To apply Theorem 3.8 we need to estimate the sizes of the subsets
Im(GLn(q)) and I

r
m(GLn(q)). By (6), we have

d∏

i=1

jmi(SLn(q)) ≤ |Im(GLn(q))| ≤ |I
r
m(GLn(q))| ≤

d∏

i=1

jmi(GLn(q)). (7)

The next few lemmas show that under some extra conditions, tighter esti-
mates can be obtained in terms of the numbers jmi(GLn(q)) (which in turn
will be studied in Section 4 - see Proposition 4.5).
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Lemma 3.9 Let m = (m1, . . . ,md), where the mi ≥ 2 are integers, let p be
a prime, and let m′i be the p

′-part of mi. Let q be a power of p such that
q ≡ 1 mod m′i for all i. Fix n ≥ 2 such that (m

′
i, n) = 1 for all i. Then as

q →∞, we have

|Im(GLn(q))| ∼
d∏

i=1

jmi(GLn(q)).

Proof In view of (7), it suffices to show that under the hypotheses of the
lemma,

jmi(GLn(q)) = m
′
i ∙ jmi(SLn(q)). (8)

To see this, let ω ∈ Fq be an element of multiplicative order m′i, and let
z = ωI ∈ GLn(q). As (m′i, n) = 1, det(z) also has order m

′
i in Fq. Now

let g ∈ GLn(q) satisfy gmi = 1. Then det(g)m
′
i = 1, and so there is a

unique power zj of z such that gzj ∈ SLn(q). Moreover (gzj)mi = 1, and
(8) follows.

Lemma 3.10 Let m = (m1, . . . ,md), where the mi ≥ 2 are integers, and
let q be a prime power. If q is odd, assume q ≡ 1 mod 2a+1, where 2a is the
maximal power of 2 dividing some mi. Then for any n ≥ 2,

|Irm(GLn(q))| =
d∏

i=1

jmi(GLn(q)).

Proof Note first that GLn(q)
2 consists of all elements of GLn(q) whose

determinant is a square in Fq. If q is even then GLn(q)2 = GLn(q) and the
result follows trivially from the definition of Irm(GLn(q)). So suppose q is odd
and q ≡ 1 mod 2a+1. We claim that for any g1, . . . , gd ∈ GLn(q) satisfying
gmii = 1, we have (g1, . . . , gd) ∈ I

r
m(GLn(q)). Indeed, for 1 ≤ i ≤ d, write

mi = 2
aiki with ki odd and 0 ≤ ai ≤ a. Then 1 = det(gi)mi = det(gi)2

aiki .
By our assumption on q, it follows that det(gi)

ki is a square in Fq, and since
ki is odd, det(gi) is therefore also a square. The claim follows, and with it
the required conclusion.

We remark that in general, |Im(GLn(q))| and |Irm(GLn(q))| can be asymp-
totically smaller than

∏d
i=1 jmi(GLn(q)): for example, suppose d = 1, m1 =

n ≡ 2 mod 4, q ≡ 1 mod n and q ≡ 3 mod 4. Then the largest class of ele-
ments of order dividingm1 inGLn(q) contains g1 = diag(1, ω, ω

2, . . . , ωm1−1),
where ω ∈ Fq is a primitive mth1 root of 1; this has determinant −1, a non-
square, hence does not lie in Irm(GLn(q)). It follows easily that in this
example, fixing n and letting q → ∞, we have jm1(GLn(q)) ∼ q

n2−n, while
|Irm(GLn(q))| ∼ |I

r
m(GLn(q))| ∼ q

n2−n−2.
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Corollary 3.11 Let Γ be co-compact non-oriented Fuchsian group as in
(1.2), of genus g ≥ 3, and let q satisfy the assumptions of Lemma 3.10.
Then for any fixed n ≥ 2, we have

|Hom(Γ, GLn(q))| ∼ |GLn(q)|
g−1 ∙

d∏

i=1

jmi(GLn(q)).

Proof This is immediate from Theorem 3.8(ii) and Lemma 3.10.

4 Counting elements of given order

In this section we obtain bounds on the numbers jm(G) of elements of order
dividing m in G, where G is a quasisimple group of Lie type or a general
linear group. We use these bounds to deduce Theorems 1.4 and 1.5.

One of our main tools is the following result of Lawther concerning the
dimension of Jm(X), the variety of elements of order dividing m in a simple
algebraic group X.

Theorem 4.1 (Lawther [20]) Let X be a simple algebraic group of rank r
over an algebraically closed field, and let m be a positive integer. Then there
is a constant c(m) depending only on m such that

(1−
1

m
) dimX − c(m) ≤ dim Jm(X) ≤ (1−

1

m
) dimX +

r

m
.

Moreover, for X of adjoint type, dim Jm(X) is known and is given in [20].

The upper bound in this theorem is immediate from [20, Theorem 1].
The lower bound is an easy consequence of the work in [20] (see also the
proof of (12) below).

Corollary 4.2 With notation as in Theorem 4.1, we have

dim Jm(X)

dimX
→ 1−

1

m
as r →∞.

Here is our main result on jm(G) for finite groups G of Lie type.
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Theorem 4.3 Fix an integer m ≥ 2, a prime p, let K = F̄p, and let X be
a simple algebraic group of rank r over K. For q a power of p, let G = G(q)
be a quasisimple group of Lie type over Fq of the form X ′σ, where σ = σq
is a Frobenius endomorphism of X. Define t = 1

2 if G is of type
2B2,

2G2
or 2F4, and t = 1 otherwise. Then there are positive constants c1, c2, c3, c4
depending only on m, such that the following hold.

(i) jm(G) ≤ jm(Xσ) < c1mrqt dim Jm(X).

(ii) There exists q0 = p
a such that if q is any power of q0, then jm(G) >

c2q
t dim Jm(X).

(iii) For any power q of p, we have

q−c3 ∙ |G|1−
1
m < jm(G) < c4m

r ∙ q
r
m ∙ |G|1−

1
m .

Proof For G of type 2B2,
2G2 or

2F4, all the assertions are readily checked
using the complete information on conjugacy classes of these groups found
in [47, 51, 44]. So assume from now on that G is not of one of these types.

We first claim that if nm(X) denotes the number of conjugacy classes of
elements of order dividing m in X, then

nm(X) ≤ m
r. (9)

To see this, write m = m1m2 where m1 is coprime to p and m2 is a power of
p. Any element x ∈ X of order dividingm is a commuting product x = x1x2,
where xi has order dividing mi for i = 1, 2. Here x1 is semisimple, hence
lies in a maximal torus of X, and so there are at most mr1 possibilities for
x1 up to X-conjugacy. Moreover, x2 is a unipotent element of D = CX(x1);
by [45, II,4.4], D/D0 is a p′-group, and D0 is reductive. As in the proof of
[23, 1.7(iii)], we see that the number of classes of unipotent elements of D is
at most 6r. Hence nm(X) ≤ (6m1)r. The claim (9) follows unless m2 ≤ 5.
In these cases we estimate the number of classes of unipotent elements of
D0 of order m2 a little more carefully using the methods of [23, Section 1],
and find that this number is at most mr2. This proves (9).

Now let x ∈ Xσ be an element of order dividing m, and consider the
σ-stable class xX . We bound the size of the fixed point set (xX)σ in similar
fashion to the proof of [31, Lemma 1]. Write x = x1x2 as above. Then
CX(x) is the centralizer of the unipotent element x2 in the reductive group
D = CX(x1). Each of the following quantities is bounded by a function of
m: |D/D0|; the number of simple components of D0; and the rank of the
torus Z(D0). Hence, writing C = CX(x), the corresponding statement is
true for C/U = CD(x2)/U , where U is the unipotent radical of C. Moreover,
|Uσ| = qdimU by [21, 1.7]. By Lang’s theorem [45, 3.4], (xX)σ is a union
of Xσ-classes, the number of which is bounded in terms of |C/C0|, and the
sizes of which are of the form |Xσ : (Cg)σ| for various σ-stable conjugates
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Cg of C. Note also that dim(X/C) = dim xX . It follows that

c2(m) ∙ q
dimxX < |(xX)σ| < c1(m) ∙ q

dimxX , (10)

where c1(m), c2(m) depend only on m. Part (i) follows; so does (ii), noting
that for suitable q0 we have Xσ ≤ X ′σq0 = G(q0), hence x ∈ G(q0).

By Theorem 4.1, dim Jm(X) ≤ (1 − 1
m) dimX +

r
m , so in particular, if

x ∈ Xσ has order dividing m, then dim xX ≤ (1 − 1
m) dimX +

r
m . Since

|G| ∼ qdimX , the upper bound of part (iii) now follows from (9) and (10).

We complete the proof by establishing the lower bound of part (iii). By
taking c3 large enough, we may assume that the rank r of X is large. Let
n be the dimension of the natural module V for G, and write n = km + t,
where k, t are integers with k > 0, 0 ≤ t < 2m+2 and k even for G unitary,
symplectic or orthogonal. Then we may embed the cyclic group Cm = 〈x〉
in G in such a way that V ↓ 〈x〉 = F ⊕ I, where F is free of dimension km
and I is trivial of dimension s. Call such an embedding almost free.

We shall show that

|xG| > q−c3 ∙ |G|1−
1
m , (11)

where c3 depends only on m, which will establish the lower bound in (iii).
Write G = X ′σ as above, where X is the corresponding classical algebraic
group over F̄q. Arguing as for (10), we see that

|(xX)σ| > c1(m) ∙ q
dimxX ,

and hence to prove (11) it is sufficient to show that

dimCX(x) ≤
dimX

m
+ c2(m). (12)

Write m = m1m2 and x = x1x2 as above. Then x1 is semisimple, and on V
has each eigenvalue different from 1 occuring with multiplicity km2, while
the eigenvalue 1 has multiplicity km2 + t. Hence, if m1 is odd we see that
CX(x1)

0 is the image modulo scalars of

((GLkm2)
m1−1 ×GLkm2+t) ∩ SLn, if X = PSLn

(GLkm2)
(m1−1)/2 × Spkm2+t, if X = PSpn

(GLkm2)
(m1−1)/2 × SOkm2+t, if X = PSOn.

Ifm1 is even, the second line changes to (GLkm2)
(m1−2)/2×Spkm2+t×Spkm2 ,

and similarly for the third line. A quick calculation with the dimensions of
these groups yields

dimCX(x1) ≤
dimX

m1
+ c3(m1). (13)
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Now x2 is a unipotent element in the semisimple group D = (CX(x1)
0)′.

We shall show that

dimCD(x2) ≤
dimD

m2
+ c4(m). (14)

Together with (13), this will establish (12).

Now D is a product of at most m1+1 simple factors, with x2 embedded
almost freely in each, so it is sufficient to prove (14) for each simple factor
of D. Let E be a simple factor, with natural module of dimension d. On
this module the unipotent element x2 acts as ((Jm2)

l, (J1)
u), where Ji is a

unipotent Jordan block of size i, and we have d = lm2 + u with u ≤ t. The
dimension of CE(x2) can be read off from [50]: assuming E is not symplectic
or orthogonal in characteristic 2, dimCE(x2) is as follows:

m2l
2 + 2ul + u2 − 1, if E = SLd

1
2(m2l

2 + 2ul + l + u2 + u), if E = Spd
1
2(m2l

2 + 2ul − l + u2 − u) if E = SOd.

A check of dimensions now yields (14). Finally, if E is symplectic or or-
thogonal in characteristic 2, then E has two classes of elements of type
((Jm2)

l, (J1)
u); taking x2 in the larger of these, we have

dimCE(x2) =
1

2
(m2l

2 + 2ul + u2 + u) or
1

2
(m2l

2 + 2ul − l + u2 − u),

according as E = Spd or SOd, respectively. Again, (14) follows.

This completes the proof of the theorem.

Proof of Theorem 1.4

Theorem 1.4 follows immediately from part (iii) of Theorem 4.3.

Proof of Theorem 1.5

Let G be a finite simple classical group of rank r, and let Γ be a Fuchsian
group as in (1.1) or (1.2).

Suppose first that Γ is co-compact of genus g ≥ 2 (g ≥ 3 if Γ is non-
oriented). Recall that we defined v = v(Γ) to be 2 if Γ is oriented, and 1
otherwise. By Theorem 1.2, we have

|Hom(Γ, G)| ∼ |G|vg−1 ∙
d∏

i=1

jmi(G).

Using Theorem 1.4, this yields

|Hom(Γ, G)| = |G|vg−1 ∙ |G|
∑d
1 1−

1
mi
+εi(r),
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where |εi(r)| < c(mi)r−1. Since vg − 1 +
∑d
i=1(1 −

1
mi
) = μ(Γ) + 1, the

conclusion of Theorem 1.5 follows, with δ(r) =
∑d
i=1 εi(r).

Finally, if Γ is non co-compact (i.e. s + t > 0 in (1.1) or (1.2)), then
from the preamble to Theorem 1.2 we have

|Hom(Γ, G)| = |G|vg+s+t−1 ∙
d∏

i=1

jmi(G),

and the same proof works, without any assumption on the genus of Γ.

We conclude the section with a few further results concerning the func-
tions jm, Jm, Im, I

r
m, which will be required later.

Corollary 4.4 Let m,K,X, t be as in Theorem 4.3, and write H = H(q) =
Xσ. Then the following hold.

(i) There exists q0 = p
a such that for q a power of q0, we have jm(H

′) ∼
jm(H) ∼ qt dim Jm(X).

(ii) Let m = (m1, . . . ,md) with all mi ≥ 2. Then there exists q1 = pb

such that for q a power of q1, we have

|Im(H)| ∼ |I
r
m(H)| ∼ q

∑
dim Jmi (X).

Proof Part (i) follows from Theorem 4.3(i),(ii), and part (ii) is immediate
from (i) together with (6).

In later applications we shall require the following version of Proposi-
tion 4.3 for jm(GLn(q)), which also gives an explicit formula for the dimen-
sion of Jm(GLn(K)) and Jm(SLn(K)).

Proposition 4.5 Fix integers m,n ≥ 2, a prime p, and let K be an alge-
braically closed field.

(i) The conclusions of Theorem 4.3 hold for G = GLn(q) and X =
GLn(F̄p).

(ii) Writing n = km+ l with k, l ∈ Z and 0 ≤ l < m, we have

dim Jm(GLn(K)) = n
2(1−

1

m
)− l(1−

l

m
).

(iii) If m does not divide n, then given any mth root of unity λ ∈ K,
there exists y ∈ GLn(K) of determinant λ such that dim Jm(GLn(K)) =
dim yGLn(K).

(iv) If m|n then there is a unique conjugacy class C = yGLn(K) such that
dim Jm(GLn(K)) = dimC; moreover, y has determinant (−1)n(m+1)/m.
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(v) We have dim Jm(SLn(K)) = dim Jm(GLn(K)), unless m is even, m
divides n, n/m is odd and char(K) 6= 2, in which case dim Jm(SLn(K)) =
dim Jm(GLn(K))− 2.

Proof (i) This follows from the proof of Theorem 4.3.

(ii) It is proved in [20, Theorem 1] that dim Jm(PGLn(K)) = n
2(1 −

1
m) − l(1 −

l
m). If x ∈ Jm(PGLn(K)), then as K is algebraically closed,

x has a preimage in Jm(GLn(K)). It follows that dim Jm(GLn(K)) =
dim Jm(PGLn(K)), proving (ii).

(iii,iv) We shall frequently use the following formula which can be found
in [45, IV,1.8]: for λ ∈ K∗, denote by Jv(λ) the v × v Jordan block matrix
with all eigenvalues λ. If x ∈ GLn(K) has Jordan form (Ji(λ)ni) (i.e. all
eigenvalues λ, and ni is the multiplicity of the block of size i), and q =
max{i : ni > 0}, then

dimCGLn(K)(x) =

q∑

i=1

(ni + . . .+ nq)
2. (15)

Note also that
∑q
i=1(ni + . . .+ nq) = n.

Write m = pam1, where p is the characteristic of K and m1 is coprime
to p (take a = 0 if K has characteristic zero). Let n = um1 + t with
0 ≤ t < m1, and write u = kpa+ s with 0 ≤ s < pa. Then n = km+ sm1+ t
and l = sm1 + t. Let λ1, . . . , λm1 be the m

th
1 roots of 1 in K, and define

y = (

m1⊕

i=1

Jpa(λi))
k ⊕ (

t⊕

i=1

Js+1(λi))⊕ (
m1⊕

i=t+1

Js(λi)).

Calculating dimCGLn(K)(y) using (15), and using (ii), we see that dim y
GLn(K) =

dim Jm(GLn(K)). Moreover, since
∏m1
i=1 λi = (−1)

m1+1 = (−1)m+1, we
have

det(y) = (−1)u(m+1) ∙ λ1 . . . λt.

If t > 0 then we can choose λ1, . . . , λt with product an arbitrary m
th
1

root of 1, giving the conclusion of (iii). So now assume that t = 0.

If s > 0 and m1 > 1, define

z = (

m1⊕

i=1

Jpa(λi))
k ⊕ Js+1(λ1)⊕ Js−1(λ2)⊕ (

m1⊕

i=3

Js(λi)).

Using (15) we see that dim zGLn(K) = dim yGLn(K). Also det(z) = det(y) ∙
λ1λ

−1
2 , so between them, y and z have determinant an arbitrary m

th
1 root

of 1, and (iii) again holds.

Now assume s = 0 - that is, m|n and n = kpam1 = km. Here we have
dimCGLn(K)(y) = k

2m and det(y) = (−1)k(m+1). We claim that yGLn(K) is
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the unique class of highest dimension. To see this, let z ∈ Jm(GLn(K)), and
for 1 ≤ i ≤ m1 let ri be the multiplicity of λi as an eigenvalue of z. Write
ri = kip

a+ li with 0 ≤ li < pa. By (15), for the given partition (r1, . . . , rm1)
of n, the dimension of CGLn(K)(z) is minimal when z = z1⊕ . . .⊕zm1 , where

zi = (Jpa(λi)
ki , Jli(λi)).

For this z we have

dimCGLn(K)(z) =

m1∑

i=1

(pak2i + 2kili + li).

This is equal to 1pa
∑m1
i=1 r

2
i +li(1−

li
pa ), which is clearly at least k

2pam1, with

equality if and only if ri = kp
a for all i - that is, if and only if z ∈ yGLn(K).

This establishes the claim. Part (iv) is now proved.

(v) If m does not divide n then the conclusion follows from (iii). So
assume that m|n. It follows from (15) that all dimensions dimCGLn(K)(x)
(x ∈ Jm(GLn(K))) have constant parity, and moreover, if

x = Jpa(λ1))
k−1 ⊕ Jpa−1(λ1)⊕ J1(λ1)⊕

m1⊕

i=2

Jpa(λi)
k,

then dimxGLn(K) = dim yGLn(K) − 2. The conclusion of (v) follows.

Corollary 4.6 Let m = (m1, . . . ,md), where mi ≥ 2 for all i, let E = {i :
mi even }, let K be an algebraically closed field, and let n ≥ 2.

(i) Then

dim Im(GLn(K)) =
d∑

i=1

dim Jmi(GLn(K))− ε,

where ε = 0 unless char(K) 6= 2, mi|n for all i ∈ E and
∑
i∈E

n
mi
(mi+1) is

odd, in which case ε = 2.

(ii) Writing n = kimi + li with 0 ≤ li < mi, we have

dim Im(GLn(K)) = n
2 ∙

d∑

i=1

(1−
1

mi
)−

d∑

i=1

li(1−
li

mi
)− ε,

where ε is as in part (i).

Proof (i) By Proposition 4.5, for each i we can choose yi ∈ Jmi(GLn(K))

such that dim y
GLn(K)
i = dim Jmi(GLn(K)) and det(yi) = ±1. If mi does

not divide n for some i ∈ E, then by 4.5(ii), both 1 and −1 are possible for
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det(yi), so we can choose the yj so that
∏d
j=1 det(yj) = 1; then (y1, . . . , yd) ∈

Im(GLn(K)), and hence

dim Im(GLn(K)) =
d∑

i=1

dim Jmi(GLn(K)). (16)

Now suppose mi|n for all i ∈ E. Then by 4.5(iv), det(yi) = (−1)n(mi+1)/mi

for i ∈ E, while det(yi) = 1 for i 6∈ E, giving

d∏

i=1

det(yi) = (−1)
∑
i∈E n(mi+1)/mi .

If this product is 1 then (16) holds again. If it is −1 (and char(K) 6= 2), then∏
i∈E det(yi) = −1, so since −1 is not a product of m

th
i roots of 1 for i 6∈ E,

we see that (16) does not hold. In this case, choose i ∈ E such that n(mi +
1)/mi is odd, and using 4.5(v), replace yi by zi ∈ Jmi(GLn(K)) of determi-

nant 1 such that dim z
GLn(K)
i = dim Jmi(SLn(K)) = dim Jmi(GLn(K))− 2.

Then (y1, . . . , zi, . . . , yd) ∈ Im(GLn(K)), and hence we see that in this case

dim Im(GLn(K)) =
d∑

i=1

dim Jmi(GLn(K))− 2.

Part (i) is now proved.

Part (ii) follows from (i) together with the formula in Proposition 4.5(ii).

5 Maximal subgroups

Recall that for a finite group M and a real number s, we define

ζM (s) =
∑

χ∈Irr(M)

χ(1)−s.

In this section we prove the following result, which will be one of the main
tools in our proof of Theorem 1.6.

Theorem 5.1 Let G be a finite simple group of Lie type of rank r over Fq,
and let M be a maximal subgroup of G. Then there are absolute constants
c, ε > 0 such that

ζM (1) ≤
c|G :M |
qεr

,
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unless G = L2(q) and M is a parabolic subgroup, in which case ζM (1) ∼
|G :M | ∼ q.

We prove Theorem 5.1 in a series of lemmas.

Let G be a finite simple group of Lie type of rank r over Fq, and let M
be a maximal subgroup of G.

Lemma 5.2 If M is not a parabolic subgroup of G, then the conclusion of
Theorem 5.1 holds.

Proof Obviously ζM (1) ≤ k(M), the number of conjugacy classes of M ,
so we may assume that

k(M) ∙ |M | ∙ qεr > c|G|, (17)

where ε is an arbitrarily small, and c an arbitrarily large, positive constant.

Suppose G is classical, say G = Cln(q), with natural module V of di-
mension n over Fqu (where u = 2 if G is unitary, u = 1 otherwise). By
Aschbacher’s theorem [1], either M lies in one of the families Ci (1 ≤ i ≤ 8)
of subgroups of G, orM lies in a family S of almost simple subgroups acting
absolutely irreducibly on V ; for explicit descriptions of the families Ci and
full definition of S, see also [17].

IfM ∈ C1 then asM is not parabolic, it is of the form Clk(q)×Cln−k(q)
(the stabilizer of a non-degenerate subspace of V ). Now an easy check using
Lemma 2.1(i) shows that (17) is violated: for example if G = Sp2r(q) and
M = Sp2m(q)× Sp2r−2m(q) (so n = 2r, k = 2m), then 2.1(i) and (17) give

q(1+ε)r ∙ q2m
2+m+2(r−m)2+r−m > c1q

2r2+r,

leading to (1 + ε)r > 4m(r −m), which is impossible.

For M ∈ Ci with 2 ≤ i ≤ 8, the argument is similar, noting the following
rough structure of such subgroups:

C2 : Clm(q) o Sk (mk = n), or GLn/2(q
u)

C3 : Clm(qk) (mk = n), or GUn/2(q)
C5 : Cln(q1/k) (k ≥ 2), or PSpn(q), PSOn(q) < G = Un(q)
C8 : PSpn(q), PSOn(q), Un(q1/2) < Ln(q), or On(q) < Spn(q) (q even).

(Subgroups in the classes C4, C6, C7 are too small to concern us, having orders
much less than |G|1/2.)

Finally, consider M ∈ S. Here, for later use we establish the bound

k(M) < c|G :M |1/2, (18)
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which is more than enough to violate (17). Now [22, 4.1] gives either
|M | < q3un, or M ∈ {An+δ, Sn+δ} with δ = 1 or 2. In the latter case (18)
clearly holds. Next, observe that Lemma 2.1(i) implies that k(M) < c|M |1/2.
Hence, in establishing (18) we may assume that |M |1/2 > c|G :M |1/2, which
gives |G| < c1|M |2 < c1q6un. Inspection of the orders of the simple groups
G = Cln(q) now shows that n ≤ 12. For n ≤ 12 we may assume that
F ∗(M) ∈ Lie(p) where q = pe (otherwise |M | is bounded), and it is simple
to list the possible such groups having irreducible representations of dimen-
sion n ≤ 12 (see [34] for example). In all cases (18) holds.

Now suppose that G is of exceptional type. By (17) we may assume that

|M | > |G|
1
2
−ν for ν arbitrarily small and positive. Hence M is given by [24,

Table 1], and inspection of this list, together with Lemma 2.1(i) shows that
(17) is violated.

In view of Lemma 5.2, we assume from now on that M is a parabolic
subgroup, say M = QL, where Q is the unipotent radical and L a Levi
subgroup.

We shall need some fairly crude information about k(M), the number of
conjugacy classes of the maximal parabolic subgroup M . By [2], there is an
L-invariant central series

1 = Q0 / Q1 / ∙ ∙ ∙ / Ql = Q

such that each factor Qi/Qi−1 has the structure of an irreducible L-module
over Fq (or possibly an extension field if G is twisted). Write Vi = Qi/Qi−1.

Lemma 5.3 Let C(L) be a set of conjugacy class representatives of the Levi
subgroup L, and denote by o(L,Q) the number of orbits of L on Q. Then

k(M) ≤ o(L,Q) +
∑

1 6=x∈C(L)

(
l∏

i=1

|CVi(x)|).

Proof Every element of M is conjugate to an element of a coset Qx with
x ∈ C(L). The number of M -classes in the coset Q is at most o(L,Q). Now
consider a coset Qx with 1 6= x ∈ C(L). For any u ∈ Q we have

|CQ(ux)| ≤
k∏

i=1

|CVi(x)|,

and hence |(ux)Q| ≥ |Q|/(
∏
|CVi(x)|). Hence the number of Q-classes in Qx

is at most
∏
|CVi(x)|. The conclusion follows.

Here are our estimates for conjugacy class numbers of maximal parabolic
subgroups.
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Proposition 5.4 There is an absolute constant c > 0 such that if G is
a classical group of rank r over Fq, and M = QL is a maximal parabolic
subgroup of G, then

k(M) < c|Q| ∙ q2r/3.

Proposition 5.5 There are absolute constants c, ρ > 0 such that if G is an
exceptional group of Lie type over Fq, and M = QL is a maximal parabolic
subgroup of G, then

k(M) < c|Q| ∙ q−ρ.

Proof of Proposition 5.4

Suppose first that G = SLn(q), and let M = Pm, the stabilizer of an
m-space. Then M = QL with L = (GLm(q) × GLn−m(q)) ∩ G and Q ∼=
Vm(q) ⊗ Vn−m(q) as an FqL-module. Since Pm ∼= Pn−m, we may assume
that m ≤ n/2.

If n = 2 then M = P1 ∼= AGL1(q), and it is trivial to see that k(M) = q,
giving the conclusion. So assume that n ≥ 3.

Let C(L) be a set of class representatives for L. Then |C(L)| < cqn−1

by Lemma 2.1. Set C(L)∗ = C(L)\{1}, and define

C1 = C(L)
∗ ∩ (1⊗GLn−m(q)),

C2 = C(L)
∗ ∩ (GLm(q)⊗ 1),

C3 = C(L)
∗\(C1 ∪ C2),

and for 1 ≤ i ≤ 3, let Σi =
∑
x∈Ci |CQ(x)|. By Lemma 5.3, we have

k(M) ≤ o(L,Q) + Σ1 +Σ2 +Σ3. (19)

For x ∈ C2 ∪ C3 we have dim[Q, x] = dimQ − dimCQ(x) ≥ n −m (see
(22) below). Hence

Σ2 +Σ3 < cq
n−1 ∙ |Q| ∙ q−(n−m) = c|Q| ∙ qm−1 ≤ c|Q| ∙ q2r/3, (20)

the last inequality since r = n− 1 and m ≤ n/2.

To estimate Σ1, subdivide C1 into the following two subsets:

C ′1 = {1⊗ y ∈ C1 : dimCVn−m(y) ≥ 2(n−m)/3}, C
′′
1 = C1\C

′
1.

For 1 ⊗ y ∈ C ′1 we have y ∈ GL[2(n−m)/3](q) ⊕ 1 < GLn−m(q), so by
Lemma 2.1,

|C ′1| < cq
[2(n−m)/3].

Also |C ′′1 | < |C1| < cq
n−m, and for x = 1 ⊗ y ∈ C ′′1 we have dimCQ(x) ≤

2m(n −m)/3. Hence, defining Σ′1 =
∑
x∈C′1

|CQ(x)|, Σ′′1 =
∑
x∈C′′1

|CQ(x)|,
we have

Σ1 = Σ
′
1 +Σ

′′
1 < cq

[2(n−m)/3] ∙ |Q|+ cqn−m ∙ q2m(n−m)/3
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≤ c|Q| ∙ (q[2(n−m)/3] + q(n−m)(1−
m
3
)) ≤ c|Q| ∙ q2r/3 (21)

(recall that the rank r = n− 1 here).

Now observe that o(L,Q) ≤ cm. Hence the conclusion follows from (19),
(21) and (20). This completes the proof for G = Ln(q).

Next consider G = Spn(q) (with n = 2r). Take M = Pm, the stabilizer
of a totally isotropic m-space. Here L = GLm(q) × Sp2r−2m(q) and Q has
an L-invariant central series 1 ≤ Q1 ≤ Q, where as L-modules Q/Q1 ∼=
Vm(q) ⊗ V2r−2m(q) and Q1 ∼= S2(Vm(q)) (with trivial action of the factor
Sp2r−2m(q) on Q1). If m < r we argue as above with the factor M/Q1 ∼=
(Vm(q)⊗V2r−2m(q)).(GLm(q)×Sp2r−2m(q)), obtaining k(M/Q1) < c|Q/Q1|∙
q2r/3. And if m = r then we have M = Pr = (S

2(Vr(q)).GLr(q). A simple
check shows that if 1 6= x ∈ L then dim[Q, x] ≥ r/3, hence dimCQ(x) ≤
dimQ− (r/3). Therefore, letting C(L) denote a set of class representatives
from L (so that |C(L)| < cqr by Lemma 2.1), we have

∑

1 6=x∈C(L)

|CQ(x)| < cq
r ∙ |Q| ∙ q−r/3 = c ∙ |Q| ∙ q2r/3.

The conclusion now follows from Lemma 5.3.

Similar arguments yield a proof for the other classical groups Cln(q),
noting that L = GLm(q

u) × Cln−2m(q) and Q has an L-invariant series
1 ≤ Q1 ≤ Q, where Q1 and Q/Q1 are the following L-modules:

G = SOn(q) : Q1 ∼= ∧2(Vm(q)), Q/Q1 ∼= Vm(q)⊗ Vn−2m(q)
G = SUn(q) : Q1 ∼= Vm(q2)⊗ Vm(q2)(q) (realised over Fq),

Q/Q1 ∼= Vm(q2)⊗ Vn−2m(q2).

This completes the proof of Proposition 5.4.

For the proof of Proposition 5.5, we require some results which classify
the possibilities for the L-modules Vi = Qi/Qi−1 occurring within Q, and
some information about the action of L on such modules. This is given in the
next two lemmas. We use the standard notation for irreducible representa-
tions of groups of Lie type in the natural characteristic: thus V (λ) = VG(λ)
denotes the irreducible G-module of high weight λ in characteristic p. We
often abbreviate V (λ) by writing just λ. Also for groups of small rank we
write ab... to represent the weight aλ1 + bλ2 + ..., where a, b, ... are non-
negative integers and the λi are the fundamental dominant weights. Finally,
if V is a G-module in characteristic p, we write V = V (λ)/V (λ′)/ . . . or just
λ/λ′ . . . to indicate that the composition factors of V are V (λ), V (λ′), . . ..

We need a definition, taken from [30]: if K is a field, and V a finite-
dimensional vector space over K, set V̄ = V ⊗ K̄ (where K̄ is the algebraic
closure of K), and for x ∈ GL(V ) define

ν(x) = νV (x) = min {dim[V̄ , αx] : α ∈ K̄
∗}.
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Table 2

G λ dimV (λ) nλ
E7(q) λ7 56 14
Eε6(q) λ1 27 8
Aεn(q) (n ≥ 3) λ2

1
2n(n+ 1) n

Aεn(q) (n ≥ 5) λ3
1
6n(n

2 − 1) n+ 3
Dε7(q) λ6 64 8
Dε6(q) λ5 32 8
Dε5(q) λ4 16 5
B3(q) λ3 8 4
C3(q), (q odd) λ3 14 4

We shall also need the following elementary fact, taken from [30, 3.7]: if
Va, Vb are K-vector spaces of dimensions a, b respectively, and x = x1⊗x2 ∈
GL(Va) ⊗ GL(Vb) is an element of prime order (acting in the obvious way
on Va ⊗ Vb), then

νVa⊗Vb(x) ≥ max (aνVb(x2), bνVa(x1)). (22)

Lemma 5.6 Let G be a finite group of Lie type over Fq, and let V = V (λ)
be an irreducible F̄qG-module of high weight λ as in Table 2. Then for any
semisimple element x ∈ G\Z(G), we have νV (x) ≥ nλ, where nλ is as
specified in the table.

Moreover, for the entries in the table for G = Dε5(q) or C3(q), the number
of G-classes of semisimple elements x with νV (x) ≤ 6 is at most c or cq,
respectively.

Proof For G of type An, we have V (λ) = ∧2(W ) or ∧3(W ) where W
is the natural G-module, and finding a lower bound for ν(x) with x ∈ G
semisimple is a routine calculation; in all cases the minimum value is attained
by a diagonal matrix having an eigenspace on W of codimension 1 or 2. For
G = E7(q) note that if A7(q) is a subgroup of maximal rank in G, we have
V (λ7) ↓ A7(q) = VA7(λ2) + VA7(λ6) (see [25, 2.3]), and the bound follows
from the A7 bound of 7 on VA7(λ2) already observed. Likewise, for G of
type E6, the restriction V (λ1) ↓ A1A5 = (1⊗ λ1)/(0⊗ λ4) yields the bound
8 for ν(x). The bounds for spin modules of Dn are obtained similarly by
restricting to a Levi subgroup T1An−1 using [25, 2.6]; the bound for B3 is
clear; and the bound for C3 follows from the fact that the 14-dimensional
module V (λ3) is the wedge-cube of the natural module, factored out by a
copy of the natural module. Finally, the last sentence of the lemma follows
from the above considerations as well.
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We now complete the proof of Proposition 5.5 by using Lemma 5.6 to-
gether with Proposition 5.3, observing some relevant L-modules which occur
as composition factors in Q. Here are the details.

Lemma 5.7 Let G be exceptional of Lie type over Fq, and let M = QL
be a maximal parabolic subgroup of G. Table 3 below lists some of the high
weights λ of irreducible L-modules which occur as composition factors within
Q. (The λ’s are listed only up to duals.)

Proof This is routine computation. Write L(G) for the adjoint module for
G over F̄q (so L(G) is the restriction to G of the Lie algebra L(Ḡ), where Ḡ is
the simple algebraic group corresponding to G). The composition factors of
the restriction of the adjoint module L(G) ↓ L′ can be read off using [25, 2.1].
Further, if Q− denotes the unipotent radical of the parabolic opposite to M ,
then L(G) = L(Q) + L(L) + L(Q−), all three subspaces fixed by L, and as
L-modules, L(Q−) affords the dual of L(Q). It is therefore straightforward
to compute the L′-composition factors of L(Q), giving the conclusion.

Proof of Proposition 5.5

Let G be an exceptional group of Lie type of rank r = r(G) over Fq,
and let M = QL be a maximal parabolic subgroup. Assume for now that G
is not of type 2B2,

2G2, G2 or
3D4; we handle these cases at the end of the

proof.

Adopt the notation of the preamble to Lemma 5.3: so 1 = Q0 < Q1 <
∙ ∙ ∙ < Ql = Q, and Vi = Qi/Qi−1 are the L-composition factors within Q.
Let C(L) be a set of conjugacy class representatives of non-identity elements
of L, and let C(L)† consist of those elements of C(L) whose semisimple part
lies in Z(L). For x ∈ L set νi(x) = νVi(x). Then Lemma 5.3 gives

k(M) ≤ o(L,Q) +
∑

x∈C(L)†

|CQ(x)|+ |Q| ∙
∑

x∈C(L)\C(L)†

q−
∑l
1 νi(x).

Now |Z(L)| < cq (except for the cases where (G,L′) = (2E6(q), 2D4(q)) or
(2E6(q), A1(q

2)A2(q)), when |Z(L)| < cq2). Also the number of unipotent
classes in L is bounded by a constant, and hence |C(L)†| < c′q (or c′q2

in the exceptional cases). Since every non-identity element of Z(L) acts
nontrivially on some composition factor Vi listed in Table 3, it follows that

o(L,Q) +
∑

x∈C(L)†

|CQ(x)| ≤ c|Q| ∙ q
−1.

Now we know from Lemma 2.1 that |C(L)| < cqr. Hence it will suffice to
show that for x ∈ C(L)\C(L)†, we have

l∑

i=1

νi(x) > r(G). (23)
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Table 3

type of G type of L′ λ

E8 E7 λ7
A7 λ1, λ2, λ3
A1A6 1⊗ λ1, 1⊗ λ2, 0⊗ λ1, 0⊗ λ3
A1A2A4 1⊗ 10⊗ λ1, 0⊗ 01⊗ λ1, 1⊗ 00⊗ λ2, 0⊗ 10⊗ λ2
A3A4 100⊗ λ2, 000⊗ λ2, 100⊗ λ4, 010⊗ λ4
A2D5 10⊗ λ4, 00⊗ λ4, 10⊗ λ1
A1E6 1⊗ λ1, 0⊗ λ1
D7 λ1, λ6

E7 D6 λ5
A6 λ1, λ3
A1A5 1⊗ λ2, 0⊗ λ2
A1A2A3 1⊗ 10⊗ λ1, 0⊗ 10⊗ λ2
A2A4 10⊗ λ1, 10⊗ λ2
A1D5 0⊗ λ1, 1⊗ λ4
E6 λ1

Eε6 D5 (ε = +) λ4
D−4 (ε = −) λ1, λ3, λ4
Aε5 λ3
A1A4 (ε = +) 0⊗ λ1, 1⊗ λ2
A1(q

2)A2(q) (ε = −) 1⊗ 1⊗ 10, 0⊗ 1⊗ 10, 1⊗ 0⊗ 10
A1A2A2 (ε = +) 1⊗ 10⊗ 10, 0⊗ 10⊗ 10
A1(q)A2(q

2) (ε = −) 1⊗ 10⊗ 10(q), 0⊗ 10⊗ 10(q)

F4 C3 λ3 (q odd)
λ3, λ1 (q even)

A1Ã2 1⊗ 02, 0⊗ 02 (q odd)
1⊗ 02, 0⊗ 02, 1⊗ 10, 0⊗ 10 (q even)

Ã1A2 2⊗ 10, 1⊗ 10, 0⊗ 10 (q odd)
2⊗ 10, 1⊗ 10, (0⊗ 10)2 (q even)

B3 λ1, λ3
2F4

2B2 102

A1 1, 2a, 1⊗ 2a

G2 A1 12

Ã1 3 (p 6= 3)
3, 1 (p = 3)

3D4 A1(q) 14

A1(q
3) 1⊗ 1(q) ⊗ 1(q

2)
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By definition of C(L)†, each element of C(L)\C(L)† has a power which is
a non-identity semisimple element of L\Z(L). Hence (23) follows quickly
from Lemmas 5.7 and 5.6 together with (22), except in the following cases:
(G,L′) = (E−6 , D

−
4 ), (E6, D5) or (F4, C3). In the last two cases the extra

refinement in the last sentence of Lemma 5.6 gives the conclusion. And in
the first, we have νV (λi)(x) ≥ 2 for any non-identity semisimple x ∈ D

−
4 (q)

(where i = 1, 3 or 4); moreover, if νV1(x) = 2 then νVi(x) > 2 for i = 3 or 4,
and this yields (23).

We complete the proof by handling the postponed cases where G is of
type 2B2,

2G2, G2 or
3D4. In the first two casesM = QL is a Borel subgroup,

with |Q| = q2 or q3 and L cyclic of order q − 1. Moreover, |Z(Q)| = q,
and L acts faithfully on both Z(Q) and Q/Z(Q). Hence Lemma 5.3 gives
k(M) ≤ cq or cq2 respectively, as required. Now consider G = G2(q). Let
T be a maximal torus of order (q − 1)2 in L. Then T lies in a maximal
rank subgroup of G of type A1Ã1(q), and (L(G2)/L(A1Ã1)) ↓ A1Ã1 = 1⊗ 3
(or 1 ⊗ (3/1) if p = 3). Hence we can parametrise T by ordered pairs
(c, d) ∈ (F∗q)

2, where (c, d) has eigenvalues c±1, d±3 on the L-composition
factors of Q listed in Table 3. It follows that

∑

x∈C(L)\C(L)†

q−
∑l
1 νi(x) < cq−1,

and now the conclusion follows as above. The argument for G = 3D4(q) is
similar, taking T of order (q−1)(q3−1) in a maximal rank subgroup of type
A1(q)A1(q

3).

This completes the proof of Proposition 5.5.

Proof of Theorem 5.1

We are now in a position to complete the proof of 5.1. Let G be a finite
simple group of Lie type of rank r over Fq, and letM be a maximal subgroup
of G. Recall that

ζM (1) =
∑

χ∈Irr(M)

χ(1)−1.

By Lemma 5.2, we may assume that M is a parabolic subgroup of G.

If G is of exceptional type, the result is immediate from Proposition 5.5,
since clearly ζM (1) ≤ k(M).

Now assume that G is classical. Write M = Pm = QL as above. Our
estimation of ζM (1) requires one further ingredient.

Lemma 5.8 If χ is an irreducible character of M such that Q 6≤ kerχ, then
χ(1) > cqr−1, where c > 0 is an absolute constant; further, in the case where
G = Ln(q) we have χ(1) > cq

r.
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Proof First consider G = Ln(q). Here Q = Vm(q) ⊗ Vn−m(q) and L is
the image modulo scalars of (GLm(q)×GLn−m(q))∩ SLn(q). By Clifford’s
theorem, χ ↓ Q = e

∑
θi, where e is an integer and the θi are L-conjugate

linear characters of Q. Consequently, χ(1) is at least the size of a nontrivial
orbit of L on the linear characters of Q, and such an orbit has size at least
(qm − 1)(qn−m − 1)/(q − 1) (see for example [17, 5.2.2]), which is at least
cqn−1 = cqr, as required.

Next consider G = PSp2r(q). This is a little more complicated. Again
let M = Pm. As described in the proof of Proposition 5.4, we have L =
GLm(q) × Sp2r−2m(q) (modulo scalars), and Q has an L-invariant central
series 1 < Q1 < Q, where as L-modules Q/Q1 ∼= Vm(q) ⊗ V2r−2m(q) and
Q1 ∼= S2(Vm(q)) (with trivial action of the factor Sp2r−2m(q) on Q1). Note
that GLm(q) acts irreducibly on Q1 if q is odd, while if q is even, Q1 has
a unique GLm(q)-submodule Q0 ∼= ∧2(Vm(q)), and Q1/Q0 is irreducible of
dimension m.

Let χ ∈ Irr(M) with Q 6≤ kerχ. If Q1 ≤ kerχ then χ(1) is at least the
size of a nontrivial orbit of L on Q/Q1, hence is at least cq

2r−m−1 (see [17,
5.2.2]), giving the conclusion. So suppose now that Q1 6≤ kerχ. Let S be
the factor Sp2r−2m(q) of L, so QS /M . By Clifford’s theorem, we can write

χ ↓ QS = e
t∑

i=1

χi,

where e is a positive integer, and the χi are distinct, L-conjugate irreducible
characters of QS.

Suppose first that m > 1 and the factor SLm(q) of L fixes χi for all
i. Then Q ∩ kerχi is SLm(q)-invariant for all i. It is also S-invariant, and
hence Q∩ kerχi = 1, Q0, Q1 or Q. Since QS/kerχi must have cyclic centre,
this forces Q1 ≤ kerχi, a contradiction. Hence either m = 1, or the factor
SLm(q) permutes the χi nontrivially. In particular, t > cq

m−1.

One checks (for example by matrix calculations) that the normal closure
of S in QS is the whole group QS. Hence S 6≤ kerχi, and so χi(1) ≥ qr−m

by Lemma 2.1(ii). It follows that

χ(1) = tχi(1) > cq
m−1 ∙ qr−m = cqr−1,

as required.

This completes the proof for G = PSp2r(q), and the proof for the other
classical groups is similar, using the structure of the maximal parabolic
subgroups given in the proof of Proposition 5.4.
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We now conclude the proof of Theorem 5.1. Write ζM (1) = Σ1 + Σ2,
where

Σ1 =
∑

χ∈Irr(M),Q≤ker(χ)

χ(1)−1, Σ2 =
∑

χ∈Irr(M),Q 6≤ker(χ)

χ(1)−1.

Note that Σ1 = ζ
L(1). Now |L/L′| < c1q2, and L′ has a characteristic

subgroup L0 of bounded index which is a central product of at most three
quasisimple groups. By Theorem 1.1, ζL0(1) is bounded. Using the easy
inequality ζL(1) ≤ |L/L0|ζL0(1), it follows that

Σ1 < cq
2. (24)

Further, by Propositions 5.4 and 5.8, we have

Σ2 <
c|Q| ∙ q2r/3

qr−1
(25)

(and the denominator can be improved to qr for G = Ln(q)).

Since |G : M | ∼ |Q|, the conclusion of Theorem 5.1 follows from (24)
and (25), except when r ≤ 3. For these low rank groups, the conclusion is
obtained by improving the bound in Proposition 5.4, tightening the argu-
ment slightly. We do this for G = L2(q), U3(q) and PSp4(q) and leave the
remaining groups of rank at most 3 (viz. L3(q), L4(q), U4(q), PSp6(q)) to be
dealt with in similar fashion by the reader.

Suppose G = L2(q). Here M = P1 = (Fq).((q − 1)/δ), where δ =
(q−1, 2). Here L acts fixed point freely on Q, hence k(M) ≤ q. Also M has
(q−1)/δ linear characters, and the rest have degree at least cq. Consequently

(q − 1)/δ ≤ ζM (1) < (q − 1)/δ + q/cq.

Thus ζM (1) ∼ |G :M | ∼ q, giving the exceptional case in Theorem 5.1.

Next let G = U3(q). Here M = QL with Q = q
1+2 and L = (q2 − 1)/δ

where δ = (3, q + 1). Again L is fixed point free on Q/Z(Q) = q2, so
k(M) < cq3. Irreducible characters χ of M with Q 6≤ kerχ have degree at
least q. Hence we get

ζM (1) < c(q2 + q3/q).

Since |G : M | = q3 + 1 this shows that ζM (1) < c|G : M |q−1, giving the
result.

Finally consider G = PSp4(q) with M = P1 = QL; here we have 1 <
Q1 < Q with |Q1| = q and Q/Q1 ∼= F2q , and L ∼= GL2(q)/〈−1〉, acting
naturally on Q/Q1 and as the determinant on Q1. Now L has only cq
classes having nontrivial centralizer in Q/Q1, and hence Lemma 5.3 gives
k(M) < cq3. Now we complete the argument in the usual way. The proof
for M = P2 has no novel features.
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This completes the proof of Theorem 5.1.

6 Random homomorphisms

In this section we prove Theorem 1.6. Let Γ be a Fuchsian group in F , let
v = v(Γ), and let G be a finite simple group.

Theorem 1.6 is established in [32] for G alternating, so we assume that
G is a simple group of Lie type of rank r over Fq.

Lemma 6.1 The probability that a randomly chosen homomorphism in Hom(Γ, G)
is an epimorphism is at least

1− (1 + o(1))
∑

M max G

ζM (vg − 2) ∙ |G :M |−(vg−1).

Proof Let Q be the complementary probability. Then

Q ≤
∑

M max G

|Hom(Γ,M)|
|Hom(Γ, G)|

.

By Theorem 1.2,

|Hom(Γ, G)| ≥ (1 + o(1))|G|vg−1 ∙
d∏

i=1

jmi(G).

By Lemma 3.3 we have

|Hom(Γ,M)| ≤ |M |vg−1 ∙
d∏

i=1

jmi(M) ∙ ζ
M (vg − 2).

It follows that

|Hom(Γ,M)|
|Hom(Γ, G)|

≤ (1 + o(1)) ∙ ζM (vg − 2) ∙ |G :M |−(vg−1),

giving the result.

We shall also use the following result, taken from [27, Section 3] and [28,
2.1].
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Lemma 6.2 Let G be a finite simple group. Then

(i)
∑
M max G |G :M |

−2 → 0 as |G| → ∞;

(ii) if G is classical and s > 1 then
∑
M max G |G : M |

−s → 0 as |G| →
∞.

Proof of Theorem 1.6

Note that by our assumptions on Γ we have vg− 2 ≥ 1, and so ζM (vg−
2) ≤ ζM (1). In view of Lemma 6.1, it suffices to show that

T (G) =
∑

M max G

ζM (1) ∙ |G :M |−(vg−1) → 0 as |G| → ∞. (26)

We distinguish between four cases.

Case 1: (v, g) 6= (1, 3).

It follows from Theorem 5.1 that ζM (1) ≤ c|G :M |. This yields

T (G) ≤
∑

M max G

c|G :M | ∙ |G :M |−(vg−1) = c
∑

M max G

|G :M |−(vg−2).

Our assumptions on (v, g) imply vg − 2 ≥ 2, and so Lemma 6.2(i) yields
T (G)→ 0 as |G| → ∞.

Case 2: v = 1, g = 3, G is classical, and G 6= L2(q).

Let C denote the set of maximal subgroups of G belonging to the As-
chbacher classes C1, . . . , C8, and let S denote the remaining maximal sub-
groups (see the proof of Lemma 5.2). Note that vg − 1 = 2. Set

T1(G) =
∑

M∈C

ζM (1) ∙ |G :M |−2,

and
T2(G) =

∑

M∈S

ζM (1) ∙ |G :M |−2.

Then T (G) = T1(G) + T2(G), so it suffices to show that Ti(G) → 0 as
|G| → ∞.

By Theorem 5.1 (noting that G 6= L2(q) by assumption), we have
ζM (1) ≤ cq−εr|G :M | with ε > 0, and this yields

T1(G) ≤ cq
−εr

∑

M∈C

|G :M |−1 = cq−εrk(C),

where k(C) denotes the number of conjugacy classes of subgroups in C. By
[13, 2.1], we have k(C) ≤ c1(r + log log q). It follows that

T1(G) ≤ c2q
−εr ∙ (r + log log q)→ 0 as |G| → ∞.
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Now, for M ∈ S we have ζM (1) ≤ k(M) ≤ c|G :M |1/2 by (18), hence

T2(G) ≤ c
∑

M∈S

|G :M |−3/2,

which tends to 0 as |G| → ∞ by part (ii) of Lemma 6.2.

Case 3: v = 1, g = 3 and G = L2(q).

Suppose first that d > 0 and (mi, |G|) 6= 1 for some i. It is easily checked
for G = L2(q) that jmi(M)/jmi(G) < cq

−1 for all maximal subgroups M of
G. Fix a maximal subgroup M . By Lemma 3.3,

|Hom(Γ,M)| ≤ |M |2 ∙
d∏

i=1

jmi(M) ∙ ζ
M (1).

Applying Theorem 1.2, this yields

|Hom(Γ,M)|
|Hom(Γ, G)|

≤ (1 + o(1)) ∙ |G :M |−2 ∙
d∏

i=1

jmi(M)

jmi(G)
∙ ζM (1).

Since ζM (1) < c|G : M | by Theorem 5.1, and jmi(M)/jmi(G) < cq
−1 for

some i, it follows that

|Hom(Γ,M)|
|Hom(Γ, G)|

≤ c1q
−1 ∙ |G :M |−1.

Therefore

∑

M max G

|Hom(Γ,M)|
|Hom(Γ, G)|

< c1q
−1

∑

M max G

|G :M |−1 < c2q
−1 ∙ log log q,

which tends to 0 as q →∞. This establishes Theorem 1.6 in this case.

To complete the proof in Case 3, suppose now that (mi, |G|) = 1 for all
i. Then every homomorphism from Γ to G factors through a non-oriented
surface group of genus 3, so we may assume that Γ is such a group, i.e. that
d = 0. As usual, it is enough to show that

∑
M max G

|Hom(Γ,M)|
|Hom(Γ,G)| → 0 as

q → ∞. This sum over non-parabolic maximal subgroups can be shown to
tend to 0 exactly as in Case 2 above, so it remains to show that the sum
over parabolic subgroups also tends to 0.

Let M be a parabolic subgroup of G. By Corollary 3.2(ii), we have

|Hom(Γ,M)| = |M |2 ∙ ζMr (1).

Now M = (Fq).((q − 1)/δ), where δ = (q − 1, 2), so M has at most 2 real
linear characters. The non-linear characters have degree at least cq, and
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k(M) ≤ q. Hence ζMr (1) =
∑
χ∈Irr(M) ι(χ)χ(1)

−1 is bounded independently
of q. Consequently

∑

M parabolic

|Hom(Γ,M)|
|Hom(Γ, G)|

< c2
∑

M parabolic

|G :M |−2,

which tends to 0 as q →∞.

Case 4: v = 1, g = 3 and G is exceptional.

For this case we require the following recent result on maximal subgroups
of G taken from [26].

Lemma 6.3 Let G = G(q) be an exceptional simple group of Lie type over
Fq, and letM be a maximal subgroup of G. Then there are absolute constants
c1, c2 such that one of the following holds:

(i) M is a known subgroup, belonging to one of at most c1 log log q con-
jugacy classes,

(ii) G is of type F4, E
ε
6, E7 or E8, M is almost simple, and |M | < c2.

Proof For G of type 2B2,
2G2,

3D4, G2,
2F4, all the maximal subgroups of

G are known. For the remaining types, the result follows from [26, Corollary
4]. Note that the log log q term comes from the subfield subgroups G(q1/r),
where r is a prime divisor of logp q.

Denote byM1,M2 the sets of maximal subgroups as in parts (i), (ii) of
Lemma 6.3 respectively, and for i = 1, 2 define

Ti(G) =
∑

M∈Mi

ζM (1) ∙ |G :M |−2.

Then T (G) = T1(G) + T2(G), so it suffices to show that Ti(G) → 0 as
|G| → ∞.

By Theorem 5.1, ζM (1) ≤ cq−εr|G :M | with ε > 0, and this yields

T1(G) ≤ cq
−εr

∑

M∈M1

|G :M |−1 = cq−εrc1 log log q

using Lemma 6.3(i). Thus T1(G)→ 0 as |G| → ∞.

Finally, since for M ∈M2 we have ζ
M (1) ≤ |M | < c2, we conclude that

T2(G) ≤ c2
∑

M max G

|G :M |−2,

which tends to 0 as |G| → ∞ by Lemma 6.2(i).
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This completes the proof of Theorem 1.6.

7 Representation varieties

In this section we apply results on Hom(Γ, G) for Γ a Fuchsian group and
G a finite group of Lie type, and use them to study representation varieties
of Γ in algebraic groups over algebraically closed fields.

Our main tool is a basic result from algebraic geometry on the number
of q-rational points, which follows from the well known Lang-Weil estimate
[19]. Here algebraic varieties are assumed to be affine or projective, but not
necessarily irreducible; the dimension is defined to be the maximal dimension
of an irreducible component.

Lemma 7.1 Let p be a prime, and let V be an algebraic variety over K =
F̄p. Suppose dimV = f , and that V has e components of dimension f . For
a power q of p, let V (q) denote the set of q-rational points in V . Then there
is a power q0 of p such that

|V (q)| = (e+ o(1))qf

for all powers q of q0.

Proof Write V = ∪hi=1Vi where Vi are the irreducible components. Suppose
dimVi = f for i ≤ e and dimVi ≤ f − 1 for i > e. Choose a p-power q0 such
that all the varieties Vi are defined over the field Fq0 . Then for q = q

k
0 the

Lang-Weil estimate [19] yields

|Vi(q)| = q
f +O(qf−1/2) (1 ≤ i ≤ e),

and
|Vi(q)| = O(q

f−1) (e < i ≤ h).

The conclusion follows.

We shall deduce our results on representation varieties by combining
Lemma 7.1 with our results on |Hom(Γ, G)| for finite groups G of Lie type.

Proof of Theorem 1.8

Adopt the notation of the theorem, and write V = Hom(Γ, GLn(K)) =
Rn,K(Γ). We may assume that K = F̄p. Choose a power q0 of p such that
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all components of V are defined over Fq0 . Let q be a power of q0, and
σ a Frobenius q-power endomorphism of GLn(K) with fixed point group
GLn(q). Then σ acts on V , with fixed points V (q) = Hom(Γ, GLn(q)). It
follows from Proposition 3.7(i) that for Γ oriented, we have

|V (q)| = (q − 1 + δ + o(1)) ∙ |GLn(q)|
2g−1 = (1 + o(1))q(2g−1)n

2+1.

On the other hand, Lemma 7.1 and the choice of q0 show that |V (q)| = (e+
o(1))qf , where f = dimV and e is the number of f -dimensional components
of V . We see that e = 1 and f = (2g − 1)n2 + 1, proving part (i) of the
theorem.

The proof of part (ii) is similar, using Proposition 3.7(ii).

Proof of Theorem 1.9

We start with the following proposition.

Proposition 7.2 Let Γ ∈ F be a Fuchsian group, n ≥ 2, and K an alge-
braically closed field.

(i) If Γ is oriented, then

dimRn,K(Γ) = 1 + (2g − 1)n
2 + dim Im(GLn(K)).

(ii) If Γ is non-oriented, then

dimRn,K(Γ) = (g − 1)n
2 +

d∑

i=1

dim Jmi(GLn(K)).

Proof It is well known that the dimension of a variety in characteristic
zero coincides with the dimension of its reduction modulo p for all large
primes p. Hence in the proof we may assume that the algebraically closed
field K has characteristic p > 0.

Let V, V (q),K, q0 be as in the proof above. Then by Theorem 3.8(i) we
have

|V (q)| = (1 + o(1))q|GLn(q)|
2g−1|Im(GLn(q))|.

Replacing q0 by a suitable power of it if needed, we may assume that all
components of the variety U = Im(GLn(K)) are defined over Fq0 . Let
f1 = dimU and e1 the number of f1-dimensional components of U . Then
for powers q of q0 we have

|Im(GLn(q))| = |U(q)| = (e1 + o(1))q
f1 ,

and this implies

|V (q)| = (e1 + o(1))q
1+(2g−1)n2+f1 .
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Applying 7.1 again we see that dim V = 1 + (2g − 1)n2 + f1, proving part
(i) of the proposition.

To prove part (ii) we apply Corollary 3.11. We first replace q0 by a suit-
able power of it which satisfies q ≡ 1 mod 2a+1, where a is as in Lemma 3.10.
It then follows that, with the above notation we have

|V (q)| ∼ |GLn(q)|
g−1 ∙

d∏

i=1

jmi(GLn(q)).

Modifying q0 again if needed so that all components of Jmi(GLn(K)) are
defined over Fq0 , we see that

|V (q)| ∼ q(g−1)n
2+
∑
fi ,

where fi = dim Jmi(GLn(K)). Part (ii) now follows.

We now complete the proof of Theorem 1.9. Suppose first that Γ is
oriented. By Proposition 7.2(i) and Corollary 4.6(ii), we have

dimRn,K(Γ) = 1 + (2g − 1)n2 + dim Im(GLn(K))
= 1 + (2g − 1)n2 + n2 ∙

∑d
i=1(1−

1
mi
)−

∑d
i=1 li(1−

li
mi
)− ε

= 1 + (μ+ 1)n2 − c(n,m)− ε,

where ε ∈ {0, 2} is as in Corollary 4.6. Theorem 1.9 follows in the oriented
case.

Finally, the non-oriented case follows by combining Propositions 7.2(ii)
and 4.5(ii).

Proof of Theorem 1.10

Let Γ be a Fuchsian group in F , and let Ḡ be a simple algebraic group
over the algebraically closed field K. As above, it suffices to consider the
case where K has characteristic p > 0. For each power q of p let σ = σq be a
field morphism of Ḡ with fixed point group G = G(q) = Ḡσ, a nearly simple
group with G′ quasisimple (of untwisted type). Write V = Hom(Γ, Ḡ), so
that σ acts naturally on V with fixed point space V (q) = Hom(Γ, G).

Assume now that Γ is oriented. By Theorem 3.6(i), we have

|V (q)| = |G|2g−1|Im(G)| ∙ (|G/G
′|+ o(1)). (27)

Note that |G/G′| is bounded and |G| ∼ qdim Ḡ. By Corollary 4.4(ii), there
exists q1 = p

b such that for q a power of q1, we have

|Im(G)| ∼ q
∑
dim Jmi (Ḡ).
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It follows that for q a power of q1, we have

|V (q)| ∼ q(2g−1) dim Ḡ+
∑
dim Jmi (Ḡ).

Part (i) of Theorem 1.10 in the oriented case now follows using Lemma 7.1.

The non-oriented case of Theorem 1.10(i) is similar, using part (ii) of
Theorem 3.6, except when g = 3 and Ḡ = SL2 or PSL2. In the first case,
G = SL2(q) and the result follows as above using Theorem 1.2(iv). In the
second case, G = PGL2(q), and we may assume q is odd (otherwise we are
back in the first case). Inspection of the character table of G in [46] shows
that ζGR (1) = 3+ o(1). Also |G/G

2| = 2. Substituting in Lemma 3.5(ii) now
gives

1 + o(1) ≤
|Hom(Γ, G)|
|G|g−1 ∙ |Irm(G)|

≤ 3 + o(1).

The conclusion now follows as before.

This completes the proof of Theorem 1.10(i). Part (ii) now follows from
(i) using Corollary 4.2.

Proof of Corollary 1.11

Part (i) of the corollary is immediate from Theorem 1.10(i). To prove
the other parts, we can assume as above that K has positive characteristic.
Suppose first that Γ is oriented. Adopting the above notation, (27) gives

|V (q)| = |G|2g−1(|G/G′|+ o(1)).

There exists q0 such that for all powers q of q0 we have |G/G′| = |π1(Ḡ)|.
The conclusion of Corollary 1.11(ii) follows using Lemma 7.1.

Now suppose Γ is non-oriented. By Corollary 3.2(ii) we have |Hom(Γ, G)| =
|G|g−1ζGr (g − 2). If g > 3 or Ḡ 6= SL2, PSL2 then Lemma 2.9 gives
ζGr (g − 2) = |G/G

2| + o(1), and since |G/G2| = |π1(Ḡ)/π1(Ḡ)2| for all
powers q of a suitable q0, the conclusion of Corollary 1.11(iii) follows. So
assume now that g = 3 and Ḡ = SL2 or PSL2. In the first case it is easily
checked from the character table of G = SL2(q) that ζ

G
r (1) = 1 + o(1); and

in the second case G = PGL2(q) and we have ζ
G
r (1) = (q − 1, 2) + 1 + o(1).

The conclusion again follows.
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