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Abstract

The fixity of a finite permutation group is the maximal number of
fixed points of a non-identity element. We study the fixity of primitive
groups of degree n, showing that apart from a short list of exceptions,
the fixity of such groups is at least n1/6. We also prove that there is
usually an involution fixing at least n1/6 points.

1 Introduction

If G is a permutation group on a finite set Ω of size n, we define the fixity
f(G) to be the maximal number of fixed points of a non-identity element of
G. For example, transitive groups of fixity 0 are regular, those of fixity 1
are Frobenius groups, and doubly transitive groups of fixity at most 2 are
Zassenhaus groups. The general concept of fixity was introduced in [19],
and further studied in [20]. The corresponding notion for linear groups is
the subject of [16, 18, 21, 22, 23].

There is an obvious relationship between fixity and the classical notion
of the minimal degree µ(G) of G (the minimal number of points moved
by any non-identity element) – namely, f(G) = n − µ(G). Much of the
literature on minimal degrees focusses on lower bounds for µ(G) when G is
primitive, going back to classical work of Bochert, Jordan and Manning (see
[24, Section 15]); an example of a post-classification result can be found in
[12] where it is shown that with some standard exceptions, µ(G) ≥ 1

3n for

The authors are grateful for the support of an EPSRC grant. The second author
acknowledges the support of grants from the Israel Science Foundation and ERC.

2010 Mathematics Subject Classification: 20D06, 20E05, 20E26, 20P05.

1



primitive groups G of degree n. Correspondingly, one has upper bounds on
the fixity f(G).

In this paper we focus on lower bounds for the fixity of primitive groups.
The results in [20] are concerned with groups of bounded fixity: Theorem
1.3 of [20] shows that if G is a primitive group of fixity f , then either G
has a soluble subgroup of index bounded by a function of f , or the socle
Soc(G) of G is L2(q) or Sz(q) in its doubly transitive representation of
degree q + 1 or q2 + 1, respectively. Here we take this study much further
and analyse the structure of primitive permutation groups whose fixity may
be unbounded, and even a rather large function of the degree. Our first
result shows that with specified exceptions, the fixity of primitive groups is
large. In the statement, R(G) denotes the soluble radical of G – that is, the
largest soluble normal subgroup of G.

Theorem 1 If G is a primitive permutation group of degree n with point-
stabilizer H, then one of the following holds:

(i) f(G) ≥ n1/6;

(ii) G is affine and |G/R(G)| ≤ 120;

(iii) Soc(G) = L2(q) or Sz(q) in the 2-transitive action of degree n = q+ 1
or q2 + 1, respectively;

(iv) G = Ap and H = p.(p−1
2 ) for some prime p ≥ 19 with p ≡ 3 mod 4;

(v) Soc(G) = Lεp(q) (ε = ±1) and H ∩ Soc(G) = ( qp−ε
(q−ε)(p,q−ε)).p, where p

is an odd prime;

(vi) G is one of the sporadic groups M23 or BM , and H = 23.11 or 47.23,
respectively.

In cases (iv), (v) and (vi), |H| is odd.

Remarks 1. The condition |G/R(G)| ≤ 120 in (ii) just says that either G
is soluble or G/R(G) is A5 or S5.

2. There are examples of groups in (ii)-(vi) for which f(G) is much less
than n1/6. Under (ii) there are soluble Frobenius groups and also Frobenius
groups with Frobenius complement SL2(5), for example. For the groups in
(iii), every non-identity element of Soc(G) fixes at most 2 points. In (iv) the
value of f(G) depends on the arithmetic nature of the number (p − 1)/2;
for example if it is prime, then f(G) = (p− 1)(p− 3)/4 while n = (p− 2)!.
Similar comments apply to (v), and in (vi) the fixities of M23 and BM are
5 and 22. Details of all these assertions are given in Section 5.

3. It may be that the constant 1
6 in part (i) of the theorem can be

improved, but only slightly. Indeed, for infinitely many natural numbers
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n there is a primitive group of degree n of fixity n1/5 which is not of type
(ii)-(vi). For example, let p ≥ 5 be a prime, let H = L2(p) and let V be the
irreducible 5-dimensional FpH-module (so V ∼= S4W , where W is the natu-
ral 2-dimensional module for SL2(p)). Then since non-identity semisimple
(respectively, unipotent) elements of H have fixed space on V of dimension
at most 1 (respectively, exactly 1), the affine group V H ≤ Sp5 has fixity

p = n1/5.

A more detailed analysis of the fixity of the groups in parts (iv) and (v)
(see Section 5) of the theorem yields an interesting dichotomy for the fixity
of primitive groups.

Corollary 2 There is an absolute constant c > 0 such that if G is a non-
affine primitive permutation group of degree n, then one of the following
holds:

(i) f(G) > ( c logn
log logn)2;

(ii) Soc(G) = L2(q) or Sz(q) in the 2-transitive action of degree n = q+ 1
or q2 + 1.

We shall deduce Theorem 1 from the following two results. The first is
a reduction to affine and almost simple groups.

Theorem 3 If G is a primitive permutation group of degree n such that
f(G) < n1/3, then G is either affine or almost simple.

The affine case of Theorem 1 is taken care of by the main result of [16],
which states that if H is a finite group satisfying |H/R(H)| > 120, then
for any field K and any KH-module V , there exists a non-identity element
h ∈ H such that dimCV (h) ≥ 1

6 dimV .

The next theorem covers almost simple groups. It shows that not only do
almost simple primitive groups of degree n have non-identity elements fixing
at least n1/6 points (with specified exceptions), but that this fixed point
number can usually be achieved by an involution. In fact the involution fixity
of permutation groups (the maximal number of fixed points of an involution)
has been studied in a number of papers, going back to the celebrated result
of Bender [3] classifying transitive groups with involution fixity 1; these are
groups for which a point-stabilizer is a “strongly embedded” subgroup.

Theorem 4 Let G be an almost simple primitive permutation group of de-
gree n, with socle T and point-stabilizer H. Then one of the following holds.

(i) There is an involution t ∈ T such that fix(t) > n1/6.
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(ii) H ∩ T has odd order.

(iii) T = L2(q), Sz(q) or U3(q) (with q even in the last case) in the 2-
transitive action of degree n = q + 1, q2 + 1 or q3 + 1, respectively.

Remarks 1. For groups satisfying (ii) of the theorem, involutions in T are
fixed point free; such groups are known (see Lemma 2.1).

2. Notice the extra group U3(q) (q even) which appears in part (iii) but
not in Theorem 1(iii); the involutions in this group fix only one point, but
there are elements of odd order fixing q + 1 points.

3. It is possible that the constant 1
6 in part (i) of the theorem could

be improved, perhaps to around 1
3 . We have not attempted to do this here

since we only need 1
6 for the application to Theorem 1, but we leave it for a

future project.

The following result can be deduced fairly quickly from Theorem 4.

Corollary 5 If G is an almost simple primitive permutation group of degree
n, then one of the following holds:

(i) there is an involution in G which fixes at least n1/6 points;

(ii) every involution in G fixes at most 2 points.

This result reveals a remarkable dichotomy in the involution fixity of
almost simple primitive groups. We can extend this to all non-affine groups,
as follows.

Theorem 6 Let G be a non-affine primitive permutation group of degree n.
Then one of the following holds:

(i) G has an involution fixing at least n1/6 points;

(ii) every involution in G has at most 2 fixed points;

(iii) G ≤ PΓL2(q) o Sm in the product action of degree (q + 1)m, where
Soc(G) = L2(q)m and q ≡ 3 mod 4.

The rest of the paper is divided into five further sections. After some
preliminaries in Section 2, Theorem 4 is proved in Section 3, and Theorem 3
in Section 4. Section 5 contains the deduction of Theorem 1 and Corollaries
2 and 5, and Theorem 6 is proved in the final section. We make use of
Magma [4] for routine computations in some of our proofs.
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2 Preliminaries

We begin with a result taken from [11, Theorem 2], which describes the
almost simple primitive permutation groups in which all involutions are
fixed point free.

Lemma 2.1 Let G be a finite almost simple group with non-abelian simple
socle T , and suppose H is a maximal subgroup of G such that |H ∩ T | is
odd. Then the possibilities for T and H ∩ T are as in Table 1.

Table 1:

T H ∩ T Conditions

Ap p.(p−1
2 ) p prime, p ≡ 3 mod 4,

G = Sp if p = 7, 11, 23

L2(q) F+
q .(

q−1
2 ) q ≡ 3 mod 4

Lεp(q) (ε = ±) ( qp−ε
(q−ε)(p,q−ε)).p p odd prime,

T 6= U3(3), U5(2),
G ≥ T.3 if T = L3(4), U3(5)

M23, Th,BM 23.11, 31.15, 47.23 (resp.)
J3, O

′N 19.9, 31.15 (resp.) G = T.2

Proof. Theorem 2 of [11] lists all maximal subgroups H of odd order in
almost simple groups with socle T . Inspection of the proof shows that we get
the same list, with the addition of the J3 and O′N examples in the last row
of Table 1, if we merely assume that H ∩ T has odd order. Hence T,H ∩ T
are in the list in [11, Theorem 2] (together with the J3, O

′N examples).
This is the list in the conclusion of the lemma, except that it also includes
subgroups 59.29 and 71.35 in the Monster M ; these have subsequently been
shown to lie in subgroups L2(59) and L2(71) (see [7, 8]), so are omitted.

Next we give an elementary but useful result on fixed points.

Lemma 2.2 Let G be a transitive permutation group on a set Ω of degree
n with point-stabilizer H, and let x ∈ H.

(i) Then
fix(x)

n
=
|xG ∩H|
|xG|

.

(ii) We have fix(x) ≥ |CG(x) : CH(x)|, with equality if and only if xG∩H =
xH .
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(iii) If fix(x) ≤ n1/6, then

|H| ≥ |CG(x)|6/5

|G|1/5
.

(iv) If fix(x) ≤ n1/6 and |xG| < |G|5/9, then |H| > |G|1/3.

Proof. Part (i) is well-known (see for example [12, 2.5]), and (ii)
follows from (i). For (iii), note that if fix(x) ≤ n1/6 then by (ii) we have
|CG(x)|/|H| ≤ |G : H|1/6, and the conclusion of (iii) follows from this.
Finally, (iv) is a consequence of (iii).

Our proof of Theorem 4 will make use of the bounds on the sizes of
involution classes and centralizers in finite simple groups given in the next
two results.

Proposition 2.3 If T is a simple group of Lie type, then one of the follow-
ing holds:

(i) |uT | < |T |5/9 for all involutions u ∈ T ;

(ii) T is a classical group of type A1, Bm (m ≤ 4), Cm (m ≤ 4), D4 or
2D4;

(iii) T is an exceptional group of type G2, 2G2, 3D4 or 2B2;

(iv) T = L3(4) or 2F4(2)′.

Proof. For T classical this follows from the proof of [15, 4.1], keeping
track of the precise involution centralizers given in the references quoted
there. Similarly, for T of exceptional type, the conclusion follows from the
proof of [15, 4.3].

Proposition 2.4 If T is a non-abelian simple group, and α is an involutory
automorphism of T , then |CT (α)| > |T |1/3.

Proof. This is a routine calculation for the alternating groups, and fol-
lows from the information on involution centralizers in [6] for the sporadic
groups. For the groups of Lie type the proof is as in the previous propo-
sition, using [15, 4.1,4.3] for inner automorphisms and [15, 4.4] for outer
automorphisms.
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3 Proof of Theorem 4

Let G be an almost simple primitive permutation group of degree n on a set
Ω with point-stabilizer H, and let T = Soc(G). Assume that (i) and (ii) of
Theorem 4 do not hold, that is, |H ∩ T | is even, and

fix(t) ≤ n1/6 for all involutions t ∈ T. (1)

By Lemma 2.2, it follows that

|CG(t) : CH(t))| ≤ n1/6 for all involutions t ∈ H ∩ T. (2)

We aim to show that (iii) of Theorem 4 holds.

The proof is divided into subsections covering the cases where the socle
T is alternating or sporadic, classical, or exceptional of Lie type.

3.1 Alternating and sporadic groups

Here we handle the case where T is an alternating or sporadic group.

Proposition 3.1 T is not a sporadic group.

Proof. This is a routine Magma computation with the following steps.
Suppose T is sporadic. If t ∈ T is an involution with minimal centralizer
order, then by Lemma 2.2(iii) we have

|H| > |CT (t)|6/5

|T |1/5
.

The maximal subgroups H satisfying this inequality are known and are in
[6], and for each it can be checked that there is an involution t ∈ H ∩ T
violating (1) or (2).

Proposition 3.2 If T is an alternating group, then T = A5
∼= L2(4) and

n = 5, as in (iii) of Theorem 4.

Proof. Let T = Al. The conclusion is clear if l = 5, and it is easily
checked that (1) fails if l = 6, so assume that l > 6. Then G = Al or Sl. As
H is maximal in G, one of the following holds:

(1) H = (Sk × Sl−k) ∩G, where 1 ≤ k < l/2,

(2) H = (Sk o Sr) ∩G, where kr = l and 1 < k < l,

(3) H acts primitively on the set {1, . . . , l}.
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Consider case (1). HereG is acting on the set Ω of k-subsets of {1, . . . , l}. Let
t be the involution (1 2) (3 4). Then t fixes all k-subsets that contain{1, 2}
or {3, 4}, or are disjoint from both, so

fixΩ(t) ≥ 2

(
l − 4

k − 2

)
+

(
l − 4

k

)
.

One checks that this is greater than
(
l
k

)1/6
= n1/6, contradicting (1).

Now consider (2). Here the action of G is on the set of (k, r)-partitions
of {1, . . . , l} – that is, partitions into r subsets of size k, and

n =
(kr)!

(k!)rr!
:= f(k, r).

If we again let t = (1 2) (3 4), then t fixes all partitions with one part con-
taining {1, 2} and another containing {3, 4}, so

fixΩ(t) ≥
(
l − 4

k − 2

)
×
(
l − k − 2

k − 2

)
× f(k, r − 2).

It is straightforward to verify that this is greater than n1/6.

Finally, consider case (3). Let t ∈ H ∩ T be an involution, and suppose
that t is in the conjugacy class of cycle-shape (2m, 1f ), where 2m + f = l.
By our assumption (1) together with Lemma 2.2(iii), we have

|H| > |CG(t)|6/5

|G|1/5
≥ (2m−1m!f !)6/5

(l!)1/5
. (3)

If we define g(m, f) = 2m−1m!f !, then g(m−1,f+2)
g(m,f) = (f+2)(f+1)

2m , so the mini-

mal value of g(m, f) is attained when (f + 2)(f + 1) is roughly equal to 2m.
Combining this with the well-known inequalities ( se)

s < s! < se( se)
s for any

positive integer s, we see that the right hand side of the inequality (3) is
greater than 2l for l > 24. This conflicts with the result of Maroti [17, 1.2]
which states that a primitive subgroup of Sl (l > 24) not containing Al has
order less than 2l.

Hence l ≤ 24. At this point, a Magma computation using the list of
maximal primitive groups of degree l ≤ 24 shows that each such group has
an involution t which violates the inequality (2). This completes the proof.

3.2 Classical groups

Continue with the assumptions at the beginning of this section: G is an
almost simple primitive permutation group of degree n on a set Ω with
point-stabilizer H and socle T , and (i) and (ii) of Theorem 4 do not hold.
In this subsection we prove
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Proposition 3.3 If T is a classical group, then T = L2(q) or U3(q) (with
q even in the latter case) in the 2-transitive action of degree n = q + 1 or
q3 + 1.

Let us embark on the proof of this. Suppose that T = Cld(q), where
Cld(q) stands for one of the groups Ld(q), Ud(q), PSpd(q), PΩε

d(q) (d odd
or even); we refer to these as cases L,U,S,O respectively. Write V for the
natural d-dimensional module for T over Fqu (where u = 2 in case U and
u = 1 otherwise), and let p be the characteristic of the field Fq.

First we pin down the possibilities for the maximal subgroup H. In the
following result, we use Aschbacher’s classification [2] of maximal subgroups
of classical groups into families Ci (1 ≤ i ≤ 8) and S: the families Ci are called
geometric subgroups, and the family S consists of almost simple subgroups
acting absolutely irreducibly on V . Detailed descriptions of these families
can be found in [9].

Define the following collections of simple groups:

L1 = {L3(4), L4(5), U3(5), U4(3), U4(7)},
L2 = {L3(4), L4(2), L4(7), L5(3), U3(3), U3(5), U4(3), U4(5), U5(2), U6(2)}.

Lemma 3.4 Assume that T is not of type A1, Bm (m ≤ 4), Cm (m ≤ 4),
D4 or 2D4. Then one of the following holds:

(i) H ∈ C1 ∪ C′1 (the reducible maximal subgroups);

(ii) H ∈ C8 (the classical maximal subgroups);

(iii) H ∈ C6 and T ∈ L1;

(iv) H ∈ Ci (2 ≤ i ≤ 5) is as in Table 2;

(v) H ∈ S and either T ∈ L2 or H, T are as in Table 3.

Proof. By assumption there is an involution t ∈ H∩T such that fix(t) ≤
n1/6. Also (excluding T = L3(4)) we have |tT | < |T |5/9 by Proposition 2.3,
and so |H ∩ T | > |T |1/3 by Lemma 2.2(iv). Maximal subgroups satisfying
this bound are classified in [1], and the conclusion follows from this.

We now consider the various possiblities in Lemma 3.4, starting with
the case where H is a parabolic subgroup (which is part of the case where
H ∈ C1 ∪ C′1).

Lemma 3.5 The conclusion of Proposition 3.3 holds if H is a parabolic
subgroup.
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Table 2:

Family Ci Type of H Possibilities

C2 Cld/k(q) o Sk k ≤ 3

k = d (Cases U,O)

k = d
2 ≤ 5 (Cases S,O)

GLd/2(qu) Cases U,S,O

C3 Cld/k(q
k) k ≤ 3

GUd/2(q) Cases S,O

C4 Sp2(q)⊗ Spd/2(q) Case O+

C5 Cld(q
1/k) k ≤ 3

Spd(q), O
ε
d(q) Case U

Table 3:

Soc(H) T

Ad+α (α ∈ {1, 2}) Spd(2) or Ωε
d(2), 10 ≤ d ≤ 22

A12 PΩ+
10(3)

M12 Ω−10(2)

Proof. Suppose H is parabolic. The cases where T = L2(q) or T =
U3(q) (q even) are in conclusion (iii) of Proposition 3.3, so exclude these
groups from consideration.

Consider first T = Ld(q). Here d ≥ 3 by the assumption in the previous
paragraph. There are two possibilities:

(a) H = Pi, the stabilizer in G of an i-space Vi ⊂ V ; here

n = fd,i(q) :=
(qd − 1)(qd−1 − 1) · · · (qd−i+1 − 1)

(qi − 1)(qi−1 − 1) · · · (q − 1)
.

(b) H = Pi,d−i, the stabilizer of a flag Vi ⊂ Vd−i with d − i > i, and G
contains a graph automorphism of T ; here

n = fd,i(q)fd−i,d−2i(q).

Choose an involution t ∈ T that fixes pointwise a (d − 2)-subspace of V ;
specifically, choose

t = diag(A, Id−2) (4)

where A = −I2 if q is odd and A = J2, a 2 × 2 unipotent Jordan block
matrix, if q is even.
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In case (a) we may assume that i ≤ d/2 as the permutation character
of T on Pi is the same as that on Pd−i. Since t fixes every i-space in the
(d − 2)-space it fixes pointwise, we have fix(t) ≥ fd−2,i(q). When i < d− 2
it is easy to check that fd−2,i(q)

6 > fd,i(q), which contradicts (1). And if
i ≥ d−2 we must have (i, d) = (1, 3) or (2, 4); in the first case t fixes at least
q + 1 1-spaces, and in the second case it fixes at least q2 + q + 1 2-spaces,
and again (1) is contravened.

In case (b) with i ≥ 2, the element t fixes all flags Vi ⊂ Vd−i such that
Vi contains the 2-space spanned by the first 2 basis vectors (on which t acts
as the matrix A above), so fix(t) ≥ fd−2,i−2(q)fd−i,d−2i(q). One checks that
(fd−2,i−2(q)fd−i,d−2i(q))

6 > fd,i(q)fd−i,d−2i(q), contradicting (1). Finally, if
i = 1 and d ≥ 4 then fix(t) ≥ fd−2,1(q); and if i = 1, d = 3 then a calculation
gives fix(t) ≥ q. Both cases give a contradiction to (1). This completes the
analysis when T = Ld(q).

The cases where T = Ud(q) or PSpd(q) are similar. In these cases
H = Pi, the stabilizer of a totally singular i-space, and n = gd,i(q) or hd,i(q)
respectively, where

gd,i(q) :=

∏d
r=d−2i+1(qr − (−1)r)∏i

r=1(q2r − 1)
, hd,i(q) :=

∏i−1
r=0(qd−2r − 1)∏i
r=1(qr − 1)

.

Define an involution t ∈ T as in (4). Then fix(t) is at least gd−2,i(q) or
hd−2,i(q) respectively, which contradicts (1) except in the cases where (d, i) =
(4, 2) or (3, 1); in these cases we calculate that fix(t) is greater than q2 or q
respectively (noting that q is odd in the latter case as T = U3(q), q even is
excluded by assumption), again contradicting (1).

The case where T = PΩε
d(q) with H = Pi is very similar, but using

instead the involution
t = diag(B, Id−4), (5)

where B = −I4 ∈ Ω+
4 (q) if q is odd, and B = J2 ⊗ I2 ∈ SL2(q)⊗ SL2(q) =

Ω+
4 (q) if q is even. We leave the details to the reader.

There are two remaining parabolic cases: these are the cases where T =
PΩ+

8 (q) or Sp4(q) (q even), G contains a graph automorphism of order 3
or 2, and H = P134 (obtained by deleting nodes 1,3,4 from the D4 Dynkin
diagram) or B (a Borel subgroup), respectively. In the first case, we regard
points as flags V1 ⊂ V3 ⊂ V4 of singular subspaces, and the involution defined
as in (5) fixes at least (q + 1)2 of these (this is the number of singular 1-
spaces in an O+

4 -space on which t acts trivially); and in the second case,
regarding points as flags V1 ⊂ V2, the involution defined in (4) fixes at least
2q of these. Hence (1) is contradicted as usual.

Lemma 3.6 The conclusion of Proposition 3.3 holds if H ∈ C1 ∪ C′1.
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Proof. These are the cases in which H is a reducible maximal subgroup
of G. Since we have covered the parabolics in the previous lemma, the
remaining cases are those in which H ∩T = Ni, where Ni is the stabilizer of
a non-degenerate i-space in cases U,S,O, or a nonsingular 1-space in case O
with q even, or a decomposition V = Vi ⊕ Vd−i in case L where G contains
a graph automorphism.

The proof follows along the same lines as that of the previous lemma.
Define an involution t ∈ T as in (4) or (5). If we set n = |T : Ni| := sd,i(q),
then t fixes at least sd−r,i(q) points, where r = 4 in case O and r = 2
otherwise, and we check that this number is greater than sd,i(q)

1/6, apart
from a few cases with small d, i for which slightly better estimates of fix(t)
are required to violate the inequality (1).

Lemma 3.7 The conclusion of Proposition 3.3 holds if H ∈ C8.

Proof. In this case T and H are as follows:

T Type of H

Ld(q) Spd(q), Ud(q
1/2), Oεd(q)

Spd(q) (q even) Oεd(q)

In all cases there is an involution t = diag(A, Id−2) ∈ H∩T defined as in (4).
We proceed by computing a lower bound for |CG(t) : CH(t)| and checking
that it is greater than n1/6, contradicting (2).

First consider the case where T = Ld(q) and H is of type Spd(q). Write
d = 2l, so l ≥ 2. We have |CG(t) : CH(t)| ≥ |SL2l−2(q) : Sp2l−2(q)|, and
this is greater than n1/6 unless l = 2. Now let l = 2. If q is even then
|CG(t) : CH(t)| = q5 |SL2(q)| /q3 |SL2(q)| = q2 which is again greater than
n1/6. And if q is odd we regard T as the orthogonal group PΩ+

6 (q) acting
on nonsingular 1-spaces, and t = (−I2, I4), from which we see that fix(t) is
at least the number of nonsingular 1-spaces in the 4-space on which it acts
trivially; this is greater than n1/6, contradicting (1).

The cases where T = Ld(q) and H is of type Ud(q
1/2) or Oεd(q) are

very similar to the one in the previous paragraph. Finally, if T = Spd(q)
and H ∩ T = Oεd(q) with q even and d = 2l ≥ 4, then t is a reflection in
Oε2l(q), so |CH∩T (t)| = 2|SO2l−1(q)|. Hence we have n = 1

2q
l(ql + ε) and

|CT (t) : CH∩T (t)| = 1
2q

2l−1, contradicting (2).

Lemma 3.8 The conclusion of Proposition 3.3 holds if T is not of type A1,
Bm (m ≤ 4), Cm (m ≤ 4), D4 or 2D4.

Proof. Assume T is not one of the types in the statement. By Lemma
3.4 together with Lemmas 3.5, 3.6 and 3.7, H is as in (iii), (iv) or (v) of
Lemma 3.4.
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If H is as in Lemma 3.4(iii) then H ∈ C6 and T ∈ L1. A Magma
computation shows that in each case there is an involution t ∈ H violating
the bound (1).

Now suppose H is as in Lemma 3.4(v). Again a Magma computation
rules out T ∈ L2, so assume H,T are as in Table 3. In all cases except the
last row of the table, V is the fully deleted permutation module for Soc(H) =
Ad+α (α = 1 or 2) over F2 or F3. Let t = (1 2) (3 4) ∈ Soc(H). If q = 2 then
in the notation of [14, Chapter 4], t is an involution in T = Cl(V ) = Sp(V )
or Ω(V ) with V ↓ t = V (2)2 + W (1)(d−4)/2, and the centralizer CT (t) can
be read off from [14, Theorem 4.2]. In all cases it follows that |CT (t) :
CH∩T (t)| > n1/6, contrary to (2): for example, if T = Ω−10(2) and Soc(H) =
A12, then |CT (t)| = 28|Sp6(2)| and |CS12(t)| = 4|S8|, while n ≤ |T : S12|. If
q = 3 then from Table 3 we have T = PΩ+

10(3), Soc(H) = A12; here t acts
on V as (−I2, I8), and again we find that |CT (t) : CH∩T (t)| > n1/6. For the
last row of Table 3, Soc(H) = M12, T = Ω−10(2) and again V is the fully
deleted permutation module, dealt with in similar fashion.o

It remains to consider the case where H is as in (iv) of Lemma 3.4, so
that H is as in Table 2. We shall give the arguments for cases L and O, and
leave the similar cases U and S to the reader.

Suppose then that T = Ld(q) and H is as in Table 2. First let H ∈ C2, so
that H is of type GLd/k(q) oSk with k ≤ 3, the stabilizer of a decomposition
of V as a direct sum of k subspaces of dimension d/k. Then H contains
a conjugate of the involution t = diag(A, Id−2) defined as in (4). Write
V = V2 ⊕ Vd−2, where t acts on V2 as the matrix A, and t acts trivially on
Vd−2. If k = 2, set l := d/2 ≥ 2, and observe that t fixes all decompositions
of the form (V2 ⊕ Vl−2) ⊕ Vl, where Vl−2 ⊕ Vl = Vd−2. Hence fix(t) ≥
|GL2l−2(q) : GLl−2(q) × GLl(q)| > q2l(l−2), while n < q2l2 . Therefore (1)
fails for l > 2, while if l = 2 then it is easy to see that fix(t) ≥ q2, again
contradicting (1). The case k = 3 is similar.

Now let H ∈ C3 (still with T = Ld(q)), so that H is of type GLd/k(q
k)

with k ≤ 3. Set l = d/k. Observe that l > 1: for if l = 1 then k must
be 3, but this means that H ∩ T has odd order (as in row 3 of the table
in Lemma 2.1). If l ≥ 3, let t = diag(A, Il−2) ∈ SLl(q

k) ≤ H, where
A is as defined in (4). Then t acts on V as diag(Ak, I(l−2)k) (where Ak

represents k diagonal blocks A). Now CG(t) and CH(t) can be worked out
using [14, 7.1], and one checks that |CG(t) : CH(t)| > n1/6. If l = 2, let

t =

(
0 1
−1 0

)
∈ SL2(qk) ≤ H, acting on V as

(
0 Ik
−Ik 0

)
and argue

similarly.

To complete the case T = Ld(q), let H ∈ C5, so that H is of type
GLd(q

1/k) with k ≤ 3. Here we define t = diag(A, Id−2) ∈ SLd(q1/k) ≤ H
as in (4), and argue in the usual way that |CG(t) : CH(t)| > n1/6.
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Now suppose that T = PΩε
d(q) and H is as in Table 2. Assume first that

d = 2l and H is of type Oδl (q) oS2. Then ε = + and n ≤ |Ω+
2l(q)|/|SOl(q)|

2 <

4ql
2
. We can pick an involution t = (A, I2l−4) ∈ H, where A = −I4 if q is

odd, and A has Jordan form J2
2 if q is even (where each of the J2’s acts on

a non-degenerate subspace of type O+
2 ). If q is odd then we can choose t so

that |CG(t) : CH(t)| ≥ |Ω+
4 (q)×Ω+

2l−4(q) : SOδ2(q)2×SOδl−2(q)2|, and this is

greater than n1/6; and if q is even then CG(t) and CH(t) are given by [14,
7.3], and we get the same conclusion. We use the same involution t for the
cases where H is of type Oδd/k(q) oSk with k = 3, 4 or 5. And if H is of type

O1(q) o Sd then q is odd and we use an involution t = (−I2, Id−2) to obtain
|CG(t) : CH(t)| > n1/6. The last case with H ∈ C2 is of type GLd/2(q), and
for this we use the usual centralizer argument taking t in GLd/2(q) as in (4).

ForH ∈ C3 of typeOd/k(q
k) orGUd/2 we define t ∈ H as in (4) and obtain

|CG(t) : CH(t)| > n1/6 as usual. For H ∈ C4 of type Sp2(q) ⊗ Spd/2(q) we
use the same definition of t ∈ Spd/2(q). And finally the cases where H ∈ C5

are handled using t as in (5).

Lemma 3.9 The conclusion of Proposition 3.3 holds if T is of type B3, B4,
C3, C4 or 2D4.

Proof. Suppose T is of one of these types. The maximal subgroups of
G are given by [5]. We know that H is not in C1 ∪ C′1 ∪ C8 by Lemmas 3.6
and 3.7. We also have |H| > |CG(t)|6/5/|G|1/5 for some involution t ∈ T by
Lemma 2.2(iii), and the minimal involution centralizer orders are given in
the proofs of [15, 4.1, 4.3]. It follows from these observations that either H
is as in Table 2, or H is in Table 4.

The subgroups in Table 2 are handled as in the previous lemma, so
assume H is in Table 4. In all cases it is routine to find an involution
t ∈ H such that |CG(t) : CH(t)| > n1/6. As an illustration, consider the
case where T = Ω7(q) (q odd) and H ∩ T = G2(q). An involution t ∈ G2(q)
satsifies |CG2(q)(t)| = |SL2(q)|2, while CT (t) = (Ω+

4 (q) × Ω3(q)).2, so that

|CG(t) : CH(t)| ≥ 1
2q(q

2− 1). Since n = q3(q4− 1), the conclusion follows in
this case.

Lemma 3.10 The conclusion of Proposition 3.3 holds if T is of type A1,
C2 or D4.

Proof. Suppose T = L2(q) and H is not parabolic. When q is odd,
H ∩ T is Dq±1, of type L2(q0), or A4, S4 or A5; and when q is even H ∩ T
is D2(q±1) or L2(q0) (where Fq0 is a subfield of Fq). In all cases it is routine

to find an involution t ∈ H ∩ T and check that |CG(t) : CH(t)| > n1/6.

Likewise, when T = PSp4(q) or PΩ+
8 (q), the non-parabolic maximal

subgroups H of G are given by [5, Tables 8.12-8.14, 8.50], and in all cases
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Table 4:

T H ∩ T
PSp6(q) (q odd) Sp2(q) ◦GO3(q) ∈ C4

PSp6(q) (q even) G2(q) ∈ S
PSp6(3) L2(13) ∈ S
PSp6(5) J2 ∈ S
Sp8(2) S10 ∈ S
PSp8(3) 26.U4(2) ∈ C6

Ω7(q) G2(q) ∈ S
Ω7(p) (p ≤ 11) Sp6(2) ∈ S
Ω7(3) S9 ∈ S
Ω9(3) A10 ∈ S

we find an involution t ∈ H ∩T such that |CG(t) : CH(t)| > n1/6. There are
numerous cases to check, but the arguments are all similar to those we have
given previously and we omit the details.

This completes the proof of Proposition 3.3.

3.3 Exceptional groups

Continue to assume that G is an almost simple primitive permutation group
of degree n on a set Ω with point-stabilizer H and socle T , and (i) and (ii)
of Theorem 4 do not hold. In this subsection we prove

Proposition 3.11 If T is an exceptional group of Lie type, then T = 2B2(q)
in the 2-transitive action of degree q2 + 1.

Together with Propositions 3.1, 3.2 and 3.3, this will complete the proof
of Theorem 4.

Let us embark upon the proof of Proposition 3.11. Assume that T is an
exceptional group of Lie type over a field Fq of characteristic p. We know
that |H ∩T | is even, and the inequalities (1) and (2) hold for all involutions
t ∈ H ∩ T .

Lemma 3.12 Assume T is not of type G2, 2G2, 3D4 or 2B2. Then one of
the following holds:

(i) H is a parabolic subgroup;

(ii) H is as in Table 5.
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Proof. The proof is the same as that of Lemma 3.4: Proposition 2.3
and Lemma 2.2(iv) imply that |H∩T | > |T |1/3, and the maximal subgroups
satisfying this bound are classified in [1].

Remark Most of the subgroups in Table 5 are subgroups of maximal rank
in the sense of [13], and their precise structure is given in [13, Table 5.1].
All the subgroups in the table contain the group indicated there with small
index (at most 3).

Table 5:

T Type of H

E8(q) A1(q)E7(q), D8(q), Aε2(q)Eε6(q), E8(q1/2)

E7(q) (q − ε)Eε6(q), A1(q)D6(q), Aε7(q), A1(q)F4(q), E7(q1/2)
Eε6(q) (q − ε)Dε

5(q), A1(q)Aε5(q), F4(q), (q − ε)2D4(q).S3,

(q2 + εq + 1) 3D4(q), C4(q) (p 6= 2), E±6 (q1/2) (ε = +), Eε6(q1/3)

F4(q) B4(q), D4(q).S3,
3D4(q).3, A1(q)C3(q), F4(q1/2),

2F4(q) (q = 22m+1), C2(q)2 (p = 2), C2(q2) (p = 2)
2F4(q)′ (2B2(q))2, C2(q)
E6(2) (7× 3D4(2)).3
2E6(2) Fi22, Ω7(3)
F4(3) 3D4(2)
F4(2) L4(3).2

Lemma 3.13 The conclusion of Proposition 3.11 holds if H is a parabolic
subgroup.

Proof. Consider first the cases where T is of type E8, E7, Eε6 or F4.
Suppose H ∩ T = QL, a parabolic subgroup with unipotent radical Q and
Levi factor L. Since H is maximal in G, either H = Pi for some i, or G
contains a graph automorphism of T and H = Pij for some i, j. In any case
L contains a subgroup A ∼= SL2(q) generated by long root groups, which we
take to be in the largest simple factor of L. The centralizer D = CT (A) is
as follows (see [14, Table 11.4]):

T E8(q) E7(q) Eε6(q) F4(q) G2(q)

D E7(q) D6(q) Aε5(q) C3(q) A1(q)

Choose an involution t ∈ A; then t is a long root element if p = 2 and
t ∈ Z(A) if p 6= 2. Then CT (t) = AD if p 6= 2, and CT (t) = UD, where U is
the unipotent radical of the parabolic with Levi factor D, if p = 2. Likewise,
if we set L0 = CL(A) (again given by [14, Table 11.4]), then CL(t) is AL0

if p 6= 2 and U0L0 (with unipotent radical U0) if p = 2. It follows that
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|CT (t) : CH∩T (t)| ≥ |D : U1L0|, where U1 is a unipotent normal subgroup
of U1L0. In all cases we calculate that

|D : U1L0| > |T : QL|1/6 = n1/6, (6)

contradicting (2). We illustrate this calculation with an example. Let T =
E8(q) and H = P5 = QL. Here D = E7(q) and L = A3(q)A4(q)T1 where
|T1| = q − 1. Then L0 = CL(A) = A3(q)A2(q)T2, so

|D : U1L0| = |E7(q) : U1A3(q)A2(q)T2|.

The index of an A3A2 parabolic in E7(q) is greater then q54, while n =
|E8(q) : P5| is less than 4q104, giving (6).

Next consider T = G2(q). Here H = P1, P2 or a Borel subgroup B
(the latter only if p = 3 and G contains a graph automorphism of T ). Let
H ∩ T = QL as above. Then L contains a long or short root involution
t and CT (t) contains a subgroup D ∼= SL2(q) generated by short or long
root elements, respectively. It follows that we can choose t so that |CT (t) :
CH∩T (t)| is at least the index of a parabolic of D, which is q + 1, and this
is greater than n1/6.

If T = 3D4(q) then H ∩ T = QL with L = ((q3 − 1) ◦ A1(q)).d or
((q − 1) ◦ A1(q3)).d, where d = (2, q − 1). In the first case an involution
t ∈ A1(q) has centralizer containing D = A1(q3) and we argue as above
that |CT (t) : CH∩T (t)| ≥ q3 + 1. In the second case, if q is odd we choose
an involution t ∈ L \ Z(L); and if q is even choose t ∈ A1(q3). Now it is
straightforward to see that |CT (t) : CH∩T (t)| ≥ q2 > n1/6.

Now let T = 2F4(q)′. The case q = 2 is easily done using [6] so assume
q > 2. Then H∩T = QL with L = (q−1).A1(q) or (q−1).2B2(q). Choosing
an involuton t ∈ L we have |CT (t)| = q9|A1(q)| or q10|2B2(q)| respectively
(see [14, Table 22.2.5]), and now we check that |CT (t) : CH∩T (t)| ≥ q2 >
n1/6.

When T = 2G2(q), H is a Borel subgroup and an involution t ∈ H has
CT (t) = 2× L2(q), so |CT (t) : CH∩T (t)| ≥ q + 1 > n1/6.

Finally, the case where T = 2B2(q) andH is parabolic is in the conclusion
of Proposition 3.11.

Lemma 3.14 The conclusion of Proposition 3.11 holds if T is not of type
G2, 2G2, 3D4 or 2B2.

Proof. Assume that T is not of one of these types. By the previous
lemma, H is not parabolic, so Lemma 3.12 shows that H is as in Table 5.

Suppose first that H is as in one of the first four rows of Table 5, exclud-
ing 2F4(q) < F4(q). Then H∩T contains a long root involution t of T , which
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we take in the larger simple factor of H ∩ T . We have seen in the proof of
Lemma 3.13 how to compute CG(t) (it is the group AD or UD in the proof,
where U is the unipotent radical of the parabolic of T with Levi factor D),
and similarly we can compute CH∩T (t). Using this we easily check that
|CT (t) : CH∩T (t)| > n1/6 in all these cases. And for H ∩T = 2F4(q) < F4(q)
we choose an involution t ∈ H ∩ T in the class A1Ã1 and read off CT (t)
and CH∩T (t) from [14, Tables 22.2.4, 22.2.5]. Similarly, for the cases where
T = 2F4(q) we can use [14] to pick involutions t ∈ H ∩ T and compute
centralizers, where t is in the T -class (Ã1)2 or A1Ã1 for H of type 2B2(q)2

or C2(q), respectively.

The remaining groups in Table 5 are handled in the usual way by choos-
ing an involution t ∈ H ∩T and checking (using [6] for the centralizers) that
|CT (t) : CH∩T (t)| > n1/6.

Lemma 3.15 The conclusion of Proposition 3.11 holds if T is of type G2,
2G2, 3D4 or 2B2.

Proof. The non-parabolic maximal subgroups H of G are known and
are listed in tables in [5, Chapter 8], and involution centralizers in T are
well-known. It is routine to work through the lists and in each case find
an involution t ∈ H ∩ T such that |CT (t) : CH∩T (t)| > n1/6. We omit the
details.

This completes the proof of Theorem 4.

4 Proof of Theorem 3

Let G be a primitive permutation group of degree n on a set Ω, and suppose
G is not affine or almost simple. Assume that every non-identity element in
G fixes at most n1/3 points.

We distinguish between the three possible types for the primitive group
G, according to the O’Nan–Scott theorem (see [10]):

(1) product type

(2) simple diagonal type

(3) twisted wreath type.

Case (1). In this case, for some integer m ≥ 2 we have

G ≤ G0 o Sm,

where G0 ≤ Sn0 is primitive on Ω0, a set of size n0, nm0 = n, and the wreath
product has the product action on Ω = Ωm

0 . Moreover, in this case we
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have Soc(G) = Soc(G0)m, and either G0 is almost simple or it is of simple
diagonal type (as in case (2) below).

Since Soc(G0) is not regular on Ω0, we can choose an element 1 6=
t ∈ Soc(G0) fixing a point of Ω0. Then the m-tuple g = (t, 1, . . . , 1) ∈
Soc(G0)m ≤ G fixes at least nm−1

0 points of Ω, and hence

fix(g) ≥ nm−1
0 ≥ n

1
2 ,

a contradiction.

Case (2). In this case, for some integer m ≥ 2 and some simple group T
we have

Tm ≤ G ≤ NSn(Tm),

where Tm is embedded in Sn via its action on the cosets of the diagonal
subgroup D = {(u, . . . , u) : u ∈ T}. In this case we have n = |T |m−1.

Let t ∈ T be an involution and let x = (t, t, . . . , t) ∈ D. Then CTm(x) =
CT (t)m. Noting that |CT (t)| > |T |1/3 by Proposition 2.4, we therefore have

|CTm(x) : CD(x)| = |CT (t)|m−1 ≥ (|T |
1
3 )m−1.

Hence by Lemma 2.2(ii),

fix(x) ≥ (|T |m−1)
1
3 = n

1
3 ,

which is a contradiction.

Case (3). Here G is a twisted wreath product of the form T twrφH = TmH,
where T is a non-abelian simple group, N := Soc(G) = Tm is regular on
Ω, H (the point-stabilizer in G) is a permutation group on {1, . . . ,m}, and
φ is a homomorphism from the point-stabilizer H1 (in H) to Aut(T ) whose
image contains T (see [10, p.391] for more details). It is clear from the
properties of φ that T is a section of H. Thus H has even order; let t ∈ H
be an involution. Observe that fix(t) = CN (t).

WriteN = T1×T2×. . .×Tm where Tj ∼= T . Then t induces a permutation
on T1, . . . , Tm of order dividing 2. Suppose that, as such, t decomposes into
m1 cycles of length 1 and m2 cycles of length 2 (so m1 + 2m2 = m). If
Tj is a cycle of length 1, then t induces an automorphism of Tj which by

Proposition 2.4 has at least |T |
1
3 fixed points in Tj . If Tk, Tl is an orbit of

length 2, then t centralizes some diagonal subgroup of Tk × Tl, so it has at
least |T | fixed points in Tk × Tl. Altogether we see that

fix(t) = |CN (t)| ≥ (|T |
1
3 )m1 · |T |m2 .

Since m1/3 +m2 ≥ m/3 (with equality if m1 = m), we conclude that

fix(t) = |CN (t)| ≥ |T |
m
3 = n

1
3 ,

a contradiction.

This completes the proof of Theorem 3.
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5 Deduction of Theorem 1 and corollaries

In this section we deduce Theorem 1 and Corollaries 2 and 5 from the results
already proved.

We shall need a few lemmas concerning the fixity of the actions of the
groups with odd order point-stabilizers in the conclusion of Lemma 2.1.

Lemma 5.1 Let p ≥ 7 be a prime with p ≡ 3 mod 4, let G = Sp and let H
be a subgroup p.(p−1). Define Ω to be the set of right cosets of H in G, and
let x ∈ H be an element of prime order q dividing p− 1. Write p− 1 = qm.

(i) Then fix(x) = (q − 1)qm−1(m− 1)!.

(ii) If q = 2 then fix(x) = 2(p−3)/2 · (p−3
2 )!.

(iii) If q = p−1
2 then fix(x) = 1

4(p− 1)(p− 3).

Proof. The element x has cycle-shape (qm, 1), and all elements of order
q in H are G-conjugate, so |xG ∩H| = p(q − 1). Now part (i) follows from
Lemma 2.2(i), and (ii) and (iii) follow from (i).

Lemma 5.2 Let G be a primitive permutation group with socle T = Lεp(q)

and point-stabilizer H such that H ∩ T = ( qp−ε
(q−ε)(p,q−ε)).p = H0.p, where p is

an odd prime.

(i) If x is an element of order p in H ∩T \H0, then fix(x) = p−1
p |CT (x)|.

(ii) If |H| is even and x is an involution in H, then fix(x) = |CT (x) :
CH∩T (x)|.

Proof. (i) Since x acts fixed-point-freely on H0, the number of elements
of order p in H ∩ T \H0 is |H0|(p− 1). These elements act as p-cycles on a
basis, so are all T -conjugate. Hence |xT ∩H| = |H0|(p − 1), and now part
(i) follows from Lemma 2.2(i). Part (ii) is similar.

Remark In part (ii) of the lemma, x is an involutory outer automorphism
of T , and the possibilities for CT (x) are well-known (see for example [15,
4.4]): they are of type Op(q), and also Lp(q

1/2), Up(q
1/2) (the latter two

only for ε = + and q square).

For the sporadic groups occurring in Lemma 2.1, similar arguments yield
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Lemma 5.3 For the actions of M23, Th, BM , J3.2 and O′N.2 with point-
stabilizers 23.11, 31.15, 47.23, 19.18 and 31.30 respectively, the fixities are

f(M23) = 5, f(Th) = 23328, f(BM) = 22,
f(J3.2) = 272, f(O′N.2) = 11704,

realised by elements of orders 11, 3, 23, 2 and 2.

Proof of Theorem 1

Let G be a primitive permutation group of degree n on a set Ω, and
suppose that f(G) < n1/6. Then G is affine or almost simple by Theorem
3. If G is affine then [16] shows that |G/R(G)| ≤ 120 as in conclusion (ii)
of Theorem 1, so we assume that G is almost simple. Let T be the socle of
G and H a point-stabilizer. Then Theorem 4 implies that either H ∩ T has
odd order, or T is L2(q), Sz(q) or U3(q) (q even) in the 2-transitive action
of degree q + 1, q2 + 1 or q3 + 1, respectively. In the latter case L2(q) and
Sz(q) are in conclusion (iii) of Theorem 1, and for T = U3(q) an element of
the form diag(λ, λ, λ−2) (where λq+1 = 1) fixes q + 1 points, contradicting
the assumption that f(G) < n1/6.

It remains to consider the case where |H∩T | is odd. Here T and H∩T are
given by Lemma 2.1. The cases where G = Sp or Th contradict f(G) < n1/6,
by Lemmas 5.1(ii) and 5.3. All the other possibilities are in the conclusion
of Theorem 1.

This completes the proof of Theorem 1.

Proof of Corollary 2

Let G be a non-affine primitive permutation group of degree n, and
assume (i) and (ii) of Corollary 2 do not hold. Then G is as in (iv), (v) or
(vi) of Theorem 1. If G = Ap then n = (p − 2)!, while Lemma 5.1 shows
that f(G) ≥ 1

4(p − 1)(p − 3); and if Soc(G) = Lεp(q) then Lemma 5.2 gives

f(G) ≥ p−1
p |CT (x)| where x acts as a p-cycle on a basis, and this is at least

of the order of qp−1, while n is of the order of qp
2−p. In both cases (i) of

Corollary 2 holds.

Proof of Corollary 5

Let G be an almost simple primitive permutation group of degree n. Let
H be a point-stabilizer and T = Soc(G). Suppose that there is no involution
in G fixing at least n1/6 points. Then (ii) or (iii) of Theorem 4 holds.

In case (ii) of Theorem 4, any involution in H (if one exists) fixes at
least n1/6 points by Lemmas 5.1(ii), 5.2(ii) and 5.3. Hence by assumption
|H| must be odd, so that involutions in G are fixed-point-free, and (ii) of
Corollary 5 holds.
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In case (iii) of Theorem 4, T is L2(q), Sz(q) or U3(q) (q even) of degree
q + 1, q2 + 1 or q3 + 1, respectively. Then involutions in T fix at most
2 points, as in Corollary 5(ii). Finally, if G contains an involutory outer
automorphism t of T , then either T = L2(q) and fix(t) = q1/2 + 1, or
T = U3(q) and fix(t) = q + 1; in both cases fix(t) > n1/6. This completes
the proof.

6 Proof of Theorem 6

Let G be a primitive permutation group of degree n on a set Ω, and suppose
G is not affine, and also is not as in conclusion (iii) of Theorem 6. We may
also assume that G is not almost simple, by Corollary 5.

Assume that G has an involution which is not fixed point free. We shall
show that G then has an involution fixing at least n1/3 points, which will be
more than enough to establish Theorem 6.

As in the proof of Theorem 3, there are three types of primitive group to
consider for G. In cases (2) (simple diagonal type) and (3) (twisted wreath
type), we produced an involution fixing more than n1/3 points. Hence it
remains to handle case (1), in which G ≤ G0 o Sm in the product action on
Ω = Ωm

0 , and (G0,Ω0) is of simple diagonal or almost simple type.

Suppose first that Soc(G0) possesses an involution t which fixes at least
one point of Ω0. Then the m-tuple g = (t, 1, . . . , 1) ∈ Soc(G0)m ≤ G is an
involution fixing at least nm−1

0 ≥ n1/2 points of Ω.

Hence we may assume now that G0 is almost simple and that every
involution in T := Soc(G0) is fixed point free on Ω0; in other words, (G0)ω∩T
has odd order for ω ∈ Ω0. Hence T, Tω are as in the table of Lemma 2.1.

Claim Every involution in G0 is either fixed point free on Ω0, or fixes at

least n
1/3
0 points of Ω0.

Proof. Since involutions in T are fixed point free, we need to consider
involutions t ∈ G0 \ T . Recall that we have excluded the case where T =
L2(q) with n0 = q + 1 and q ≡ 3 mod 4 (these occur in (iii) of Theorem
6). For the remaining cases in Lemma 2.1, G0 \T can have involutions only
when T = Ap, L

±
p (q), J3 or O′N . In the first case we need to consider

G0 = Sp with point stabilizer H0 = p.(p − 1). By Lemma 5.1(ii), for an
involution u ∈ H0 we have

fix(u) = 2(p−3)/2.((p− 3)/2)!

and it it easily checked that this is greater than n
1/3
0 for p ≥ 7 (as is the case

by Lemma 2.1). For T = L±p (q) we use Lemma 5.2 and the ensuing remark,
and for T = J3 or O′N we use Lemma 5.3. Hence the Claim is proved.
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By assumption, G possesses an involution t which is not fixed point free.
Write

t = (g1, . . . , gm)π

where each gi ∈ G0 and π ∈ Sm. Let (ω1, . . . , ωm) be a point in Ω fixed by
t.

Observe that π2 = 1. Let π ∈ Sm have m1 2-cycles and m0 fixed points,
so that m0 + 2m1 = m. If iπ = i, then g2

i = 1 and gi fixes ωi, so by the

Claim we have fixΩ0(gi) ≥ n
1/3
0 . And if iπ = j 6= i, then gi = g−1

j and any

element (α, αgi) (α ∈ Ω0) is fixed by (gi, g
−1
i )(i j). It follows that

fixΩ(t) ≥ (n
1/3
0 )m0(n0)m1 ≥ (nm0 )1/3 = n1/3.

This completes the proof of Theorem 6.
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