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The object of this survey is to bring the reader up to date with recent results
concerning the maximal subgroups of finite and algebraic groups of exceptional
Lie type. The first section deals with algebraic groups, and the second with finite
groups.

1 Maximal subgroups of exceptional algebraic groups

Let G be a simple algebraic group of exceptional type G2, F4, E6, E7 or E8 over an
algebraically closed field K of characteristic p. The analysis of maximal subgroups of
exceptional groups has a history stretching back to the fundamental work of Dynkin
[3], who determined the maximal connected subgroups of G in the case where K has
characteristic zero. The flavour of his result is that apart from parabolic subgroups
and reductive subgroups of maximal rank, there are just a few further conjugacy
classes of maximal connected subgroups, mostly of rather small dimension compared
to dimG. In particular, G has only finitely many conjugacy classes of maximal
connected subgroups.

The case of positive characteristic was taken up by Seitz [15], who determined the
maximal connected subgroups under some assumptions on p, obtaining conclusions
similar to those of Dynkin. If p > 7 then all these assumptions are satisfied. This
result was extended in [7], where all maximal closed subgroups of positive dimension
in G were classified, under similar assumptions on p.

In the years since [15, 7], the importance of removing the characteristic assump-
tions in these results has become increasingly clear, in view of applications to both
finite and algebraic group theory (see for example Section 2 below for some such
applications). This has finally been achieved in [11]. Here is a statement of the
result.

Theorem 1 ([11]) Let M be a maximal closed subgroup of positive dimension in
the exceptional algebraic group G. Then one of the following holds:

(a) M is either parabolic or reductive of maximal rank;

(b) G = E7, p 6= 2 and M = (22 ×D4).Sym3;

(c) G = E8, p 6= 2, 3, 5 and M = A1 × Sym5;

(d) M0 is as in Table 1 below.
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The subgroups M in (b), (c) and (d) exist, are unique up to conjugacy in Aut(G),
and are maximal in G.

Table 1

G M0 simple M0 not simple

G2 A1 (p ≥ 7)
F4 A1 (p ≥ 13), G2 (p = 7), A1G2 (p 6= 2)
E6 A2 (p 6= 2, 3), G2 (p 6= 7), A2G2

C4 (p 6= 2), F4

E7 A1 (2 classes, p ≥ 17, 19 resp.), A1A1 (p 6= 2, 3), A1G2 (p 6= 2),
A2 (p ≥ 5) A1F4, G2C3

E8 A1 (3 classes, p ≥ 23, 29, 31 resp.), A1A2 (p 6= 2, 3), A1G2G2 (p 6= 2),
B2 (p ≥ 5) G2F4

For notational convenience in the table, we set p = ∞ if K has characteristic
zero; thus, for example, the condition p ≥ 7 includes the characteristic zero case.

In fact [11] has a somewhat more general version of Theorem 1, which allows
the presence of Frobenius and graph morphisms of G.

A few remarks are in order concerning the subgroups occurring in the conclusion
of Theorem 1.

The subgroups of G of type (a) in the theorem are well understood. Maximal
parabolic subgroups correspond to removing a node of the Dynkin diagram. Sub-
groups which are reductive of maximal rank are easily determined. They correspond
to various subsystems of the root system of G, and a complete list of those which
are maximal in G can be found in [11, Table 10.3].

The subgroups under (b) and (c) of Theorem 1 were constructed in [2, 7]: in
(b), the connected component M0 = D4 lies in a subsystem A7 of G, and in (c),
M0 = A1 lies in a subsystem A4A4, with restricted irreducible embedding in each
factor.

The subgroups in Table 1 are constructed in [15, 16, 17], apart from a few cases
in small characteristic which can be found in [11].

Theorem 1 has a number of consequences. The first is the following, which
applies to all types of simple algebraic groups, both classical and exceptional.

Corollary 2 If H is a simple algebraic group over an algebraically closed field, then
H has only finitely many conjugacy classes of maximal closed subgroups of positive
dimension.

Another major consequence of Theorem 1 is that sufficiently large maximal
subgroups of finite exceptional groups of Lie type are known. We shall discuss this
in the next section.

Also determined in [11] are the precise actions of maximal subgroups X in Table
1 on the adjoint module L(G), as a sum of explicit indecomposable modules. An



interesting feature of these actions is that very few types of indecomposables arise.
Indeed, with one exception, each restriction L(G) ↓ X is the sum of indecomposables
of one of the following three types: an irreducible module V (λ); an indecomposable
tilting module T (λ); or an indecomposable module ∆(λ; γ) of shape µ|(λ ⊕ γ)|µ
arising in the following way: suppose λ, γ, µ are dominant weights for X such that
T (λ) = µ|λ|µ and T (γ) = µ|γ|µ (where µ denotes the irreducible V (µ), etc.). Then
∆(λ; γ) denotes an indecomposable module of shape µ|(λ ⊕ γ)|µ with socle and
cosocle both of type µ, and which is obtained as a section of T (λ)⊕T (γ), by taking
a maximal submodule and then factoring out a diagonal submodule of the socle.
The one exception to the above is X = G2 < E6 with p = 3, in which case L(G)′ ↓ X
is uniserial with series 10|01|11|01|10.

Finally, we mention that as a consequence of Theorem 1, together with work
on finite subgroups of exceptional groups described in the next section, all closed
subgroups of G which act irreducibly on either the adjoint module for G, or on one
of the irreducible modules of dimension 26 − δp,3, 27 or 56 for G = F4, E6 or E7

respectively, have been determined in [12].

2 Maximal subgroups of finite exceptional groups

In this section let G be an adjoint simple algebraic group of exceptional type over
K = F̄p, the algebraic closure of the prime field Fp, where p is a prime, and let σ be
a Frobenius morphism of G. Denote by Gσ the fixed point group {g ∈ G : gσ = g}.
Then G0 := G′σ is a finite simple exceptional group (exclude the cases G2(2)′ ∼=
U3(3) and 2G2(3)′ ∼= L2(8)).

Throughout the section, let H be a maximal subgroup of Gσ; all the results
below apply more generally to maximal subgroups of any almost simple group with
socle G0, but we restrict ourselves to Gσ for notational convenience. The ultimate
aim is of course to determine completely all the possiblities for H up to conjugacy.
This task is by no means finished, but there has been a great deal of recent progress,
and our aim is to bring the reader up to date with this.

First, we present a “reduction theorem”, reducing considerations to the case
where H is almost simple. In the statement reference is made to the following
exotic local subgroups of Gσ (one Gσ-class of each):

23.SL3(2) < G2(p) (p > 2)
33.SL3(3) < F4(p) (p ≥ 5)
33+3.SL3(3) < Eε6(p) (p ≡ ε mod 3, p ≥ 5)
53.SL3(5) < E8(pa) (p 6= 2, 5; a = 1 or 2, as p2 ≡ 1 or − 1 mod 5)
25+10.SL5(2) < E8(p) (p > 2)

Note that these local subgroups exist for p = 2 in lines 2, 3 and 4, but are non-
maximal because of the containments 33.SL3(3) < L4(3) < F4(2), 33+3.SL3(3) <
Ω7(3) < 2E6(2) and 53.SL3(5) < L4(5) < E8(4) (see [2]).

Theorem 3 ([7, Theorem 2]) Let H be a maximal subgroup of Gσ as above. Then
one of the following holds:

(i) H is almost simple;



(ii) H = Mσ, where M is a maximal σ-stable closed subgroup of positive dimen-
sion in G as in Theorem 1;

(iii) H is an exotic local subgroup;

(iv) G = E8, p > 5 and H = (Alt5 ×Alt6).22.

A version of this theorem was also proved by Borovik [1], who in particular
discovered the interesting maximal subgroup in part (iv).

In view of this result attention focusses on the case where H is an almost simple
maximal subgroup of Gσ. Let H be such, and write H0 = F ∗(H), a simple group.
The analysis falls naturally into two cases: H0 ∈ Lie(p), and H0 6∈ Lie(p), where
Lie(p) denotes the set of finite simple groups of Lie type in characteristic p. We call
these generic and non-generic subgroups, respectively.

We first discuss non-generic subgroups. Here we have the following result, which
determines the possibilities for H0 up to isomorphism; however the problem of
determining them up to conjugacy remains open.

Theorem 4 ([10]) Let S be a finite simple group, some cover of which is contained
in the exceptional algebraic group G , and assume S 6∈ Lie(p). Then the possibilities
for S and G are given in Table 2.

Table 2

G S

G2 Alt5,Alt6, L2(7), L2(8), L2(13), U3(3),
Alt7(p = 5), J1(p = 11), J2(p = 2)

F4 above, plus: Alt7−10, L2(17), L2(25), L2(27), L3(3), U4(2), Sp6(2),Ω+
8 (2),3D4(2), J2

Alt11(p = 11), L3(4)(p = 3), L4(3)(p = 2),2B2(8)(p = 5),M11(p = 11)

E6 above, plus: Alt11, L2(11), L2(19), L3(4), U4(3),2F4(2)′,M11,

Alt12(p = 2, 3), G2(3)(p = 2),Ω7(3)(p = 2),M22(p = 2, 7),
J3(p = 2), F i22(p = 2),M12(p = 2, 3, 5)

E7 above, plus: Alt12,Alt13, L2(29), L2(37), U3(8),M12,

Alt14(p = 7),M22(p = 5), Ru(p = 5), HS(p = 5)

E8 above, plus: Alt14−17, L2(16), L2(31), L2(32), L2(41), L2(49),
L2(61), L3(5), PSp4(5), G2(3),2B2(8),

Alt18(p = 3), L4(5)(p = 2), Th(p = 3),2B2(32)(p = 5)

This is actually a condensed version of the main result of [10], which also de-
termines precisely which simple groups (rather than just covers thereof) embed in
adjoint exceptional groups.

We now move on to discuss generic maximal subgroups H of Gσ - namely, those
for which H0 = F ∗(H) lies in Lie(p). The expectation in this case is that in general
H is of the form Mσ, where M is a maximal closed σ-stable subgroup of positive



dimension in G, given by Theorem 1. This is proved in the next result, under some
assumptions on the size of the field over which H0 is defined. In [9], a certain
constant t(G) is defined, depending only on the root system of G; and R. Lawther
has computed the values of t(G) for all exceptional groups except E8: we have
t(G) = u(G) · (2, p− 1), where u(G) is as follows

G G2 F4 E6 E7

u(G) 12 68 124 388

Theorem 5 ([9]) Let H be a maximal subgroup of the finite exceptional group Gσ
such that F ∗(H) = H(q), a simple group of Lie type over Fq, a field of characteristic
p. Assume that

q > t(G), if H(q) = L2(q), 2B2(q) or 2G2(q)
q > 9 and H(q) 6= Aε2(16), otherwise.

Then one of the following holds:

(i) H(q) has the same type as G (possibly twisted);

(ii) H = Mσ for some maximal closed σ-stable subgroup M of positive dimension
in G (given by Theorem 1).

Writing Gσ = G(q1), the subgroups in (i) are subgroups of the form G(q) or a
twisted version, where Fq is a subfield of Fq1 ; they are unique up to Gσ-conjugacy,
by [8, 5.1].

One of the points of this result is that it excludes only finitely many possibilities
for F ∗(H) = H(q), up to isomorphism. Since there are also only finitely many
non-generic simple subgroups up to isomorphism, the following is an immediate
consequence.

Corollary 6 There is a constant c, such that if H is a maximal subgroup of Gσ
with |H| > c, then either F ∗(H) = H(q) has the same type as G, or H = Mσ where
M is maximal closed σ-stable of positive dimension in G.

This is all very well, but in practice one needs more information concerning the
generic almost simple maximal subgroups which are not covered by Theorem 5. A
useful result in this direction is the following, which determines generic maximal
subgroups of rank more than half the rank of G. For a simple group of Lie type
H(q), let rk(H(q)) denote the untwisted Lie rank of H(q).

Theorem 7 ([5, 13]) Suppose H is a maximal subgroup of Gσ such that F ∗(H) =
H(q), a simple group of Lie type in characteristic p, with rk(H(q)) > 1

2rk(G). Then
either H(q) has the same type as G, or H = Mσ where M is maximal closed σ-stable
of positive dimension in G. In the latter case, the possibilities are as follows:

(i) M is a subgroup of maximal rank (possibilities determined in [6]);

(ii) Gσ = Eε6(q) and H(q) = F4(q) or C4(q) (q odd);

(iii) G′σ = E7(q) and H(q) = 3D4(q) (with M as in Theorem 1(b)).



This is proved in [5, Theorem 3] assuming that q > 2, and in [13] for q = 2. The
maximal subgroups in part (iii) were omitted in error in [5]. They arise when M is
the maximal closed subgroup (22×D4).Sym3 in Theorem 1(b) and σ acts on M as
σqw, where σq is the standard field morphism and w ∈ Sym3 has order 3 (so that
Mσ = 3D4(q).3).

For the reader’s convenience, we now present a compendium result which sum-
marises almost all of the work above on maximal subgroups of Gσ.

Theorem 8 Let H be a maximal subgroup of the finite exceptional group Gσ over
Fq, q = pa. The one of the following holds:

(I) H = Mσ where M is maximal closed σ-stable of positive dimension in G; the
possibilities are as follows:

(a) M (and H) is a parabolic subgroup;

(b) M is reductive of maximal rank: the possibilities for H are determined
in [6];

(c) G = E7, p > 2 and H = (22 × PΩ+
8 (q).22).Sym3 or 3D4(q).3;

(d) G = E8, p > 5 and H = PGL2(q)× Sym5;

(e) M is as in Table 1, and H = Mσ as in Table 3 below.

(II) H is of the same type as G;

(III) H is an exotic local subgroup;

(IV) G = E8, p > 5 and H = (Alt5 ×Alt6).22;

(V) F ∗(H) = H0 is simple, and not in Lie(p): the possibilities for H0 are given
up to isomorphism by [10] (see also Theorem 4 above);

(VI) F ∗(H) = H(q0) is simple and in Lie(p); moreover rk(H(q0)) ≤ 1
2rk(G),

and one of the following holds:

(a) q0 ≤ 9;

(b) H(q0) = Aε2(16);

(c) q0 ≤ t(G) and H(q0) = A1(q0), 2B2(q0) or 2G2(q0).

In cases (I)-(IV), H is determined up to Gσ-conjugacy.



Table 3

G′σ possibilities for F ∗(Mσ),M in Table 1

G2(q) A1(q) (p ≥ 7)
F4(q) A1(q) (p ≥ 13), G2(q) (p = 7), A1(q)×G2(q) (p ≥ 3, q ≥ 5)
Eε6(q) Aε2(q) (p ≥ 5), G2(q) (p 6= 7), C4(q) (p ≥ 3), F4(q),

Aε2(q)×G2(q) ((q, ε) 6= (2,−))
E7(q) A1(q) (2 classes, p ≥ 17, 19), Aε2(q) (p ≥ 5), A1(q)×A1(q) (p ≥ 5),

A1(q)×G2(q) (p ≥ 3, q ≥ 5), A1(q)× F4(q) (q ≥ 4), G2(q)× C3(q)
E8(q) A1(q) (3 classes, p ≥ 23, 29, 31), B2(q) (p ≥ 5), A1(q)×Aε2(q) (p ≥ 5),

G2(q)× F4(q), A1(q)×G2(q)×G2(q) (p ≥ 3, q ≥ 5),
A1(q)×G2(q2) (p ≥ 3, q ≥ 5)

We remind the reader that, as mentioned before, the above results apply more
generally to maximal subgroups of all almost simple groups whose socle is a finite
exceptional group of Lie type.

Bounds for the orders of maximal subgroups of finite groups of Lie type have
proved useful in a variety of applications. For exceptional groups, the first such
bounds appeared in [4]; using some of the above results, these were improved as
follows in [14].

Theorem 9 ([14, 1.2]) Let H be a maximal subgroup of the finite exceptional group
Gσ over Fq, q = pa. Assume that |H| ≥ 12aq56, 4aq30, 4aq28 or 4aq20, according
as G = E8, E7, E6 or F4, respectively. Then H is as in conclusion (I)(a),(b) or (e)
of Theorem 8.

It should be possible to improve these bounds substantially.

Despite the progress reported above, there remain some substantial problems
to tackle in the theory of maximal subgroups of finite exceptional groups. The
most obvious ones are the determination of the conjugacy classes of non-generic
simple subgroups (Theorem 8(IV)), and of generic simple subgroups over small
fields (Theorem 8(V)). Of these, perhaps the most challenging and important is to
reduce substantially the t(G) bound for subgroups of rank 1 in Theorem 8(V(c)),
especially for G = E8, where t(G) is currently unknown (and in any case is known
to be quite large).
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