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Abstract
For a finite group H, let Irr(H) denote the set of irreducible char-

acters of H, and define the ‘zeta function’ ζH(t) =
∑
χ∈Irr(H) χ(1)

−t

for real t > 0. We study the asymptotic behaviour of ζH(t) for fi-
nite simple groups H of Lie type, and also of a corresponding zeta
function defined in terms of conjugacy classes. Applications are given
to the study of random walks on simple groups, and on base sizes of
primitive permutation groups.

1 Introduction

In this paper we prove some mainly asymptotic results concerning the ir-
reducible character degrees of finite groups of Lie type. Applications are
given to the study of the mixing time of random walks on these groups,
with certain conjugacy classes as generating sets. In various situations we
show that the mixing time is 2; this seems to be the first determination of
an exact bounded mixing time for random walks in groups of Lie type.

We also prove some ‘dual’ results concerning conjugacy class sizes in sim-
ple groups of Lie type, with an application concerning base sizes of primitive
actions of simple groups. More specifically, we show that, with some pre-
scribed exceptions, the base size is at most 3, thus providing a best possible
bound in a conjecture of Cameron.

One of our main focuses is on a ‘zeta function’ encoding the character
degrees, defined as follows. For a finite group H, let Irr(H) denote the set
of irreducible complex characters of H, and for real t > 0, define

ζH(t) =
∑

χ∈Irr(H)

χ(1)−t.

The second author acknowledges the support of an EPSRC grant and a Bi-National
Science Foundation United States-Israel grant 2000-053

1



This function, occurs naturally in several contexts. For example, ζH(t) is
studied for H simple in [31, 32], and used there in the proofs of various re-
sults on Fuchsian groups, coverings of Riemann surfaces, subgroup growth,
random walks and representation varieties. The study of the so-called repre-
sentation growth of certain infinite groupsK involves the same zeta function.
More specifically, for a positive integer n define rn(K) to be the number of
irreducible characters of K of degree n; then ζK(t) =

∑
n≥1 rn(K)n

−t. See

[1, 33, 23] for some recent results on rn(K) and ζ
K . We remark also that for

K a compact Lie group, the zeta function ζK plays a major role in various
geometric questions, as shown for example by Witten in [44, (4.72)].

Here we take this study further, proving various results concerning the
asymptotic behaviour of ζH(t) for H a finite group of Lie type. It is shown
in [32] that, if t > 1 and H is a finite simple group, then ζH(t) → 1 as
|H| → ∞. Here we prove more refined results, depending on the type of H,
which are essential for various applications.

We begin with the case where the rank of H is bounded. Recall that
the Coxeter number h of a simple algebraic group G is defined by h + 1 =
dimG/rank(G).

Theorem 1.1 Fix a (possibly twisted) Lie type L, and let h be the Coxeter
number of the corresponding simple algebraic group. Denote by L(q) a finite
quasisimple group of type L over Fq. Then for any fixed real number t > 2

h ,
we have

ζL(q)(t)→ 1 as q →∞.

Moroever, for t < 2
h , we have ζ

L(q)(t)→∞.

When t = 2
h , it can be shown that ζ

L(q)(t) is bounded away from 1 and
∞.

For unbounded ranks, we prove the following.

Theorem 1.2 Fix a real number t > 0. Then there is an integer r(t) such
that for quasisimple groups L = L(q) of rank r ≥ r(t), we have

ζL(t)→ 1 as |L| → ∞.

A similar result for alternating and symmetric groups was proved in [31],
following earlier work of Lulov [36] for the case t = 1. Combining this with
Theorem 1.1, we obtain

Corollary 1.3 Let H be a finite simple group different from L2(q), L3(q)
or U3(q). Then for t >

1
2 , we have

ζH(t)→ 1 as |H| → ∞.
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Another immediate application of the above results (and their proofs)
concerns the representation growth of finite simple groups, that is, the
growth of the function rn(H).

Corollary 1.4 (i) For a fixed Lie type L, with Coxeter number h, there is
a constant c = c(L) such that

rn(L(q)) < cn
2
h for all q.

Moreover, the exponent 2h is best possible.

(ii) Given any ε > 0, there exists r = r(ε), such that if H is either an
alternating group of degree at least r, or a classical group of rank at least r,
then

rn(H) < nε for all n.

(iii) There is an absolute constant c such that for any finite simple group
H different from L2(q), L3(q) or U3(q), we have rn(H) < c

√
n.

For a finite group H, define

Deg(H) = {χ(1) : χ ∈ Irr(H)},

the set of degrees of irreducible characters of H. This set has been much
studied, see for example [22, Chap. 12]. We make the following contributions
for simple groups H of Lie type, regarding the cardinality and structure of
the set Deg(H).

For a (possibly twisted) Lie type L, not 2B2,
2G2 or

2F4, define the rank
r = r(L) to be the untwisted Lie rank of L (that is, the rank of the ambient
simple algebraic group); and for L of type 2B2,

2G2 or
2F4, define r(L) =

1, 1, 2 respectively.

Theorem 1.5 Fix a Lie type L of rank r, and for each q let L(q) denote
a quasisimple group of type L over Fq. There is a function d(r) of r alone
such that

|Deg(L(q))| < d(r) for all q.

Moreover, the function d(r) = cr
5/6(log r)1/3 will do, where c is an absolute

constant.

We remark that the fact that |Deg(L(q))| is bounded by a function
of r alone follows quickly from Deligne-Lusztig theory - specifically, from
Lemmas 2.1 and 2.2 below, which easily yield |Deg(L(q)| < cr log r. However
more work is required to provide the subexponential bound in Theorem 1.5.
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It is known that the number of irreducible characters of L(q) is k(L(q)) ∼
qr (see Proposition 3.1). On the other hand Theorem 1.5 shows that the

number of irreducible character degrees of L(q) is at most cr
5/6(log r)1/3 . Thus

k(L(q))

|Deg(L(q))|
→ ∞ as |L(q)| → ∞,

and so the pigeonhole principle shows that as |L(q)| → ∞ we obtain un-
boundedly many characters of the same degree. In other words we have

Corollary 1.6 There is a function g such that if H is a finite simple group
of Lie type such that rn(H) ≤ b for all n, then |H| ≤ g(b).

It would be interesting to know whether the same result holds for alter-
nating groups.

For finite soluble groups H, the conclusion of Corollary 1.6 was proved
by Jaikin [24].

Our next result deals with the structure of the set Deg(L(q)) when L is
a fixed Lie type and q varies; it shows, roughly speaking, that the character
degrees, as well as the multiplicity of each degree, are given by polynomials
in q.

Theorem 1.7 Fix a Lie type L of rank r, and for each q let L(q) denote a
quasisimple group of type L over Fq. There are functions d = d(r), e = e(r)
of r such that the following hold.

(i) There are polynomials f1(x), . . . , fd(x) ∈ Q[x] such that for all q,

Deg(L(q)) ⊆ {f1(q), . . . , fd(q)}.

(ii) For 1 ≤ i ≤ d, there are polynomials gi1(x), . . . , gie(x) ∈ Q[x] such
that for all q,

|{χ ∈ Irr(L(q)) : χ(1) = fi(q)}| ∈ {gi1(q), . . . , gie(q)}.

(iii) For each q, there exist ji ∈ {1, . . . , e} for 1 ≤ i ≤ d, such that

ζL(q)(t) =
∑

1≤i≤d

fi(q)
−tgiji(q)

for any real t. Hence ζL(q) is given by boundedly many such “rational”
expressions in q.

The conclusions hold for the functions d(r) = cr
5/6(log r)1/3 and e(r) =

2c
√
r log r
, where c is an absolute constant.
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Theorems 1.1 and 1.2 can be applied to the study of random walks on
simple groups of Lie type. Let S be a generating set of a finite group G
with S = S−1, and consider the random walk on the corresponding Cayley
graph Γ(G,S) starting at the identity, and at each step moving from a vertex
g ∈ G to a neighbour gs, where s ∈ S is chosen at random. Let P t(g) be
the probability of reaching the vertex g after t steps.

In recent years there has been much work on understanding the distri-
bution P t as t gets larger, and its relation to the uniform distribution on G.
See Diaconis [10, 11] for background. The mixing time of the random walk
is the smallest integer t such that

||P t − U ||1 <
1

e

where ||f ||1 =
∑
|f(x)| is the l1-norm. Much attention has focussed on the

mixing time in the case where G = Sn and S is a conjugacy class of G. For
example, [12] deals with transpositions, [36] with cycle-shapes (ma) for fixed
m, and [37] with arbitrary classes of permutations having at least εn fixed
points (ε a positive constant).

Less in known about random walks on simple groups of Lie type, though
some results have been obtained, see [17, 20, 29]. Here we focus on the case
G = L, a simple group of Lie type, and S = xL ∪ (x−1)L, a union of one or
two conjugacy classes of L. In this case we denote the mixing time for the
random walk on Γ(L, S) by T (L, x).

Recall that an element x of a group of Lie type is called regular if its
centralizer in the corresponding simple algebraic group G is of minimal di-
mension, namely rank(G). For example, the regular elements of SLn are
those which have a single Jordan block for each eigenvalue. See [40, Chap-
ter III] for a detailed discussion.

Theorem 1.8 Let L 6= L2(q) be a simple group of Lie type and let x be
a regular element of L. Then for |L| sufficiently large, the mixing time
T (L, x) = 2.

For L = L2(q), our proof shows that T (L, x) = 2 unless q is odd and
x ∈ L is a transvection, in which case T (L, x) is at most 3.

Our methods also yield results on mixing times for more general classes.
One such result is the following.

Theorem 1.9 Let L = L(q) be a simple group of Lie type over Fq and fix
ε > 0 and an integer k ≥ 2. Then there is a function r = r(ε) such that if

L has rank at least r, and x ∈ L satisfies |CL(x)| < cq4r(1−
1
k
−ε), then the

mixing time T (L, x) is at most k.

In particular, if |CL(x)| < cq(2−ε)r and r is sufficiently large, then the
mixing time T (L, x) = 2.
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This greatly improves Theorem 1.13 in [29], which shows only that there
exists a function f such that |CL(x)| < q(2−ε)r implies T (L, x) ≤ f(ε).

Another such result for exceptional groups is given in Proposition 6.3.

These appear to be the first results giving exact bounded mixing times
for random walks on finite groups of Lie type.

Though our main focus is the character theoretic function ζH(t) and its
application above, it is also of interest to consider a corresponding function
defined in terms of conjugacy classes. For a finite group H, let C(H) be the
set of conjugacy classes of H, and for real t define

ηH(t) =
∑

C∈C(H)

|C|−t.

If cn(H) denotes the number of conjugacy classes of H of size n, then
ηH(t) =

∑
n≥1 cn(H)n

−t. We shall establish analogues of some of the above

results for ηH in the case where H is simple. See Section 5 for statements.
One such result is the following analogue of Theorems 1.1 and 1.2.

Theorem 1.10 Fix a Lie type L, and let hL be the Coxeter number of the
corresponding simple algebraic group. For each q denote by L(q) the finite
simple group of type L over Fq, and let H(q) be an almost simple group
lying between L(q) and Inndiag(L(q)), the group generated by all inner and
diagonal automorphisms of L(q).

(i) For a fixed Lie type L, and for any fixed real number t > 1
hL
, we have

ηH(q)(t)→ 1 as q →∞.

Moroever, for t < 1
hL
, we have ηL(q)(t)→∞.

(ii) Fix a real number t > 0. Then there is an integer r(t) such that for
almost simple groups H = H(q) of rank r ≥ r(t), we have

ηH(t)→ 1 as |H| → ∞.

Combining this result with a theorem of Burness [2], we shall prove a
sharp form of a conjecture of Cameron and Kantor concerning bases of al-
most simple primitive permutation groups. Recall that given a permutation
group H on a set Ω, a base for H is a sequence of points ω1, . . . , ωb ∈ Ω such
that only the identity element of H fixes ω1, . . . , ωb. The base size b(H) of
H is defined to be the minimal size of a base for H. This notion has been
studied for more than a century, in various contexts, such as bounding the
size of primitive groups, computational group theory, and others. See [30]
and the references therein for more background.

In 1990 Cameron [4] conjectured that, with some obvious prescribed ex-
ceptions, primitive almost simple groupsH have bounded base size. Cameron
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and Kantor [5] then made an even stronger conjecture, that for some ab-
solute constant c, a random choice of c points in the permutation domain
provides a base for such a groupH with probability tending to 1 as |H| → ∞,
and proved it for H = An, Sn with c = 2. The Cameron-Kantor conjecture
has been proved in [28] with an unspecified constant c. Excluding certain
low-rank groups, we can now prove the conjecture for groups of Lie type
with the best possible bound, namely 3:

Theorem 1.11 Let H be a finite almost simple group having socle a clas-
sical group with natural module of dimension greater than 15. Suppose H
acts primitively on a set Ω in a non-subspace action. Then the probability
that three randomly chosen points in Ω form a base for H tends to 1 as
|H| → ∞. In particular, for H sufficiently large we have b(H) ≤ 3.

See Section 7 for the exact definition of a subspace action. Since there are
infinitely many non-subspace actions for which |Hα| > |H|1/2 (e.g. Sp2n(q)
acting on the cosets of Spn(q) o C2), the number 3 in this result is indeed
best possible.

More detailed results about base sizes for primitive actions of groups of
Lie type, including the low rank cases excluded in Theorem 1.11, will appear
in a forthcoming paper [3].

The layout of this paper is as follows. In Section 2 we prove Theorem
1.1, and Theorem 1.2 is proved in Section 3. Section 4 is devoted to the
proof of Theorems 1.5 and 1.7. In Section 5 we study conjugacy class sizes
and prove various results including Theorem 1.10. Section 6 then deals with
applications to random walks, providing proofs of Theorems 1.8 and 1.9.
Section 7 is devoted to applications to base size and the proof of Theorem
1.11.

2 Groups of bounded rank

In this section we prove Theorem 1.1. In the proof we may assume that
L(q) is of universal type - that is, L(q) = Gσ where G is a simply connected
simple algebraic group over F̄p, and σ is a Frobenius morphism of G. Write
r for the rank of L(q), and set W =W (G), the Weyl group of G.

We shall make extensive use of the Deligne-Lusztig theory of irreducible
characters of L(q), as expounded in [13, 34, 35]. We summarise the main
points very briefly. For convenience we exclude the cases where Gσ is a
Suzuki or Ree group (of type 2B2,

2G2 or
2F4) from the discussion for the

time being, and prove the theorem for these cases separately. Let (G∗, σ∗)
be dual to (G, σ), as defined in [13, 13.10]; so in particular, G∗ is adjoint,
and of the same type as G, except that if G = Bn then G

∗ = Cn and
vice versa. The irreducible characters of Gσ are partitioned into Lusztig
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series E(Gσ, (s)), where (s) ranges over the conjugacy classes of semisimple
elements s ofG∗σ∗ . The characters in E(Gσ, (s)) are the irreducible characters
which occur as a constituent of some Deligne-Lusztig character RGT (θ), where
(T, θ) corresponds to (s) via the correspondence given by [13, 13.12].

The characters in E(Gσ, (1)) are called unipotent characters. There is
a bijection ψs from E(Gσ, (s)) to the set of unipotent characters of the
centralizer CG∗(s)σ∗ , and the degree of any character χ ∈ E(Gσ, (s)) is given
by the formula

χ(1) = |G∗σ∗ : CG∗(s)σ∗ |p′ ∙ (ψs(χ))(1). (1)

Lemma 2.1 For any class (s) as above, we have

|E(Gσ, (s))| ≤ |W |
2.

Proof By [13, 13.13], the number of pairs (T, θ) corresponding to (s),
as in the definition of E(Gσ, (s)) above, is bounded above by the number
of G∗σ∗-classes of σ

∗-stable maximal tori in CG∗(s), hence by |W | (see [13,
3.23]). Also, by [13, 11.15], the number of irreducible constituents of a
Deligne-Lusztig character RGT (θ) is at most |W |. The conclusion follows.

Lemma 2.2 (i) If s ∈ G∗σ∗ is a semisimple element, then CG∗(s) is a re-
ductive σ∗-stable subgroup of G∗ of maximal rank.

(ii) If C is a connected reductive σ∗-stable subgroup of G∗ of maximal
rank, then |NG∗(C)/C| is bounded above by a function of r.

(iii) The number of G∗σ∗-classes of reductive σ
∗-stable subgroups of max-

imal rank is bounded above by a function of r.

Proof This is well known. Part (i) follows from [40, II,4.1]. To prove (ii),
write N = NG∗(C) and let T be a maximal torus in C. If n ∈ N then Tn

is another maximal torus in C, hence Tn = T c for some c ∈ C. Therefore
nc−1 ∈ NN (T ), and it follows that N = CNN (T ), whenceN/C is isomorphic
to a section of W , establishing (ii). Finally, there are boundedly many G∗-
classes of connected reductive maximal rank subgroups (they correspond to
W -orbits of subsystems of the root system of G∗); if C lies in such a class,
then the number of Gσ∗-orbits on the σ

∗-stable members of this class is at
most N/C, by [40, 2.7].

Lemma 2.3 The number of classes (s) (with s ∈ G∗σ∗ semisimple), such
that CG∗(s)

0 has finite centre, is bounded above by a function of r.

Proof By Lemma 2.2, G∗ has boundedly many classes of connected sub-
groups of maximal rank. Those with finite centre are semisimple, and have
centres of order bounded in terms of r. The conclusion follows.
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Lemma 2.4 Fix a reductive σ∗-stable subgroup C of maximal rank in G∗, let
Z = Z(C0), and suppose Z0 is a torus of rank k ≥ 1. Write L = CG∗(Z

0),
a Levi subgroup of G∗, and denote by NL (resp. NG) the number of positive
roots in the root system of L′ (resp. G). Then there is a constant c depending
only on r such that the following hold:

(i) the number of semisimple elements s ∈ G∗σ∗ , such that CG∗(s) = C,
is at most cqk;

(ii) |G∗σ∗ : Cσ∗ |p′ ≥ cq
NG−NL .

Proof (i) If CG∗(s) = C then s ∈ C0, so the number in question is at most
|Zσ∗ |. Since |Z/Z0| is bounded by a function of r, and |Z0σ∗ | ≤ (q + 1)

k (see
[38, 2.4]), the conclusion of (i) follows.

(ii) Since C ≤ NG∗(L) and |NG∗(L)/L| is bounded, it is enough to
bound |G∗σ∗ : Lσ∗ |p′ from below. Denote by QL the unipotent radical of the
parabolic subgroup with Levi factor L. Then

|G∗σ∗ : Lσ∗ | ∼ q
2 dimQL = q2(NG−NL)

(where ∼ denotes equality up to a constant depending only on r). Hence

|G∗σ∗ : Lσ∗ |p′ ∼ |G
∗
σ∗ : Lσ∗ | ∙ q

−(NG−NL) ∼ qNG−NL ,

as required.

Lemma 2.5 Denote by Lk the set of Levi subgroups of G of semisimple
rank r − k. Then

max {
k

NG −NL
: L ∈ Lk, 1 ≤ k ≤ r} =

r

NG
.

Proof This amounts to proving that

NL
NG
≤
k

r
for all L ∈ Lr−k. (2)

For G of exceptional type, verifying (2) is a matter of routine inspection. So
assume that G is classical.

If G = Ar then L
′ =

∏
Aki with

∑
ki = k, and

NG = r(r + 1)/2, NL =
∑

ki(ki + 1)/2.

Clearly then NL ≤ k(k+1)/2, whence
NL
NG
≤ k(k+1)/r(r+1) ≤ k/r, giving

(2).

Likewise, if G = Br or Cr then L
′ = (

∏
Aki) ∙Bk0 or (

∏
Aki) ∙ Ck0 with

k0+
∑
ki = k. Then NL = k

2
0 +

∑
ki(ki+1)/2 ≤ k2, so

NL
NG
≤ k2/r2 ≤ k/r.

The argument for G = Dr is similar.
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Proof of Theorem 1.1

Fix a universal Lie type L, and for a prime power q write L(q) = Gσ as
above, with G of rank r. Assume L(q) is not of type 2B2,

2G2 or
2F4.

For 0 ≤ k ≤ r write

Ek =
⋃
{E(Gσ, (s)) : Z(CG∗(s)

0)0 is a torus of rank k},

and for t > 0 set
Δk(t) =

∑

χ∈Ek

χ(1)−t.

Thus

ζL(q)(t) =
r∑

k=0

Δk(t). (3)

By Lemma 2.3, the number of characters in E0 is bounded; apart from the
trivial character, each has degree at least cq, and it follows that

Δ0(t) = 1 +O(q
−t). (4)

For k ≥ 1, Lemmas 2.1, 2.2 and 2.4(i) show that the number of characters in
Ek is at most c1qk, where c1 depends only on r. By (1) and Lemmas 2.4(ii)
and 2.5, these characters have degree at least cqNGk/r. Hence

Δk(t) = O(q
k−

NGkt

r ) = O(qk(1−
NGt

r
)).

For t > r
NG
, it follows that

r∑

k=1

Δk(t) = O(q
−ε) (5)

for some ε > 0. Finally, observe that r
NG
= 2
h−1 , where h is the Coxeter

number of G. Now the conclusion of Theorem 1.1 follows from (3), (4) and
(5).

It remains to handle the excluded cases where L(q) is of type 2B2,
2G2

or 2F4. Here the discussion up to and including Lemma 2.1 remains valid.
Each of these groups L(q) is self-dual, and a convenient list of their semisim-
ple element classes and centralizers can be found in [9, Section 2]. Hence
we obtain the following crude information about the nontrivial irreducible
character degrees of these groups, which is easily sufficient for our purposes
(c denotes an absolute constant in the table):

L(q) nontrivial irred. character degrees
2B2(q) ∼ q of degree ≥ cq2
2G2(q) ∼ 1 of degree ≥ cq2,

∼ q of degree ≥ cq3
2F4(q) ∼ 1 of degree ≥ cq9,

∼ q of degree ≥ cq11,
∼ q2 of degree ≥ cq12
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Theorem 1.1 follows for these groups, noting that 2
h−1 =

1
2 ,
1
3 ,
1
6 for the

respective types.

This completes the proof of Theorem 1.1.

3 Groups of unbounded rank

In this section we prove Theorem 1.2.

We begin with a basic piece of information concerning the number k(L)
of conjugacy classes of a group of Lie type L, and also its character degrees.
Recall our definition of rank just before the statement of Theorem 1.5.

Proposition 3.1 There are absolute constants c, d > 0 such that for any
simple group L of Lie type of rank r over Fq, we have

(i) k(L) < cqr, and

(ii) χ(1) > dqr for any nontrivial irreducible character χ of L.

Proof Part (i) follows from [26, Theorem 1] for groups of bounded rank,
and from [16] for groups of unbounded rank (see also [15, 9.1]). Part (ii) is
immediate from [25].

We now embark on the proof of 1.2. Fix t > 0, and let L = Cln(q) denote
a classical simple group with natural module V of dimension n over Fqu
where u = 2 if L is unitary and u = 1 otherwise). Let p be the characteristic
of Fqu .

We continue to use the Deligne-Lusztig theory outlined in the previous
section. As before we can take L = Gσ with G a simple algebraic group of
simply connected type and σ a Frobenius morphism. Write L∗ for the dual
group G∗σ∗ .

Lemma 3.2 Fix a constant c > 0. Then there exist N = N(c), and absolute
constants d, d′, such that for n ≥ N the following hold, denoting by (s) a
class of semisimple elements in L∗:

(i) |{(s) : |L∗ : CL∗(s)|p′ < dqcn}| < d′qc.

(ii) if s is such that |L∗ : CL∗(s)|p′ < dqcn, then CL∗(s) has a factor of
the form Cln−a(q) with a ≤ 2c.

Proof Consider first the case where L = SLεn(q), so L
∗ = PGLεn(q). Let

s ∈ L∗ be semisimple, with preimage ŝ ∈ GLεn(q). Set K = F̄q, the algebraic
closure of Fq, let V̄ = V ⊗K, and as in [28], define

ν(s) = min {dim [V̄ , λŝ] : λ ∈ K∗}.
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If m = ν(s), then

CGLεn(q)(ŝ) = GL
δ
n−m(q

l)×
∏

GLδini(q
li) (6)

for some l, li, ni, δ, δi, where l(n−m) +
∑
lini = n and ni ≤ n−m for all i.

Assume now that |L∗ : CL∗(s)|p′ < dqcn, where d is some positive abso-
lute constant. Then it is clear from (6) that for sufficiently large n (in terms
of c), we must have m = ν(s) < 1

2n. Hence we see that

|sL
∗
|p′ = |ŝ

GLεn(q)|p′ ≥ |GL
ε
n(q) : GL

ε
n−m(q)×GL

ε
m(q)|p′ .

The right hand side is at least d0q
m(n−m) for a suitably chosen constant

d0, and we take the above constant d to be equal to d0. Hence q
m(n−m) <

qcn, which for sufficiently large n forces m = ν(s) ≤ c. This means that
ŝ = diag(In−[c], s0), where s0 ∈ GL

ε
[c](q). Part (ii) follows. Moreover, the

number of conjugacy classes of such s is at most k(GLε[c](q)), which by

Proposition 3.1 is at most d′q[c]. This yields the conclusion of (i).

This completes the proof in the case where L = SLεn(q). The proof for
symplectic groups is similar, and we give just a sketch. Suppose L = Spn(q),
so L∗ = SOn+1(q). Let s ∈ L∗ be semisimple with ν(s) = m, and assume
that |L∗ : CL∗(s)|p′ < dqcn. Here CL∗(s) is of the form Oa(q) × Ob(q) ×∏
GLmi(q

ai)×
∏
GUni(q

bi), where a+ b+ 2
∑
(aimi + bini) = n+ 1. Thus

for sufficiently large n we have m < 1
2n and

|L∗ : CL∗(s)|p′ ≥ |L
∗ : On+1−m(q)×Om(q)|p′ > d0q

m(n−m+1)/2.

This forces m ≤ 2c, whence s = diag(±In−[2c], s0) with s0 ∈ O[2c](q). The
number of conjugacy classes of such s is at most d′qc, by Proposition 3.1.

The proof for L orthogonal is similar and is left to the reader.

Next we prove a refinement of Lemma 2.1, for which we require a pre-
liminary observation.

Lemma 3.3 There is an absolute constant c1 such that the number of unipo-

tent characters of L∗ is at most c
√
n
1 .

Proof First consider L∗ = PGLεn(q). As described in [7, 13.8], the unipo-
tent characters are parametrised by partitions of n, hence their number is
P (n), and the conclusion follows. Similarly, for symplectic and orthogonal
groups the unipotent characters can be parametrised by certain pairs (αi),
(βj) of partitions, with

∑
αi+

∑
βj ≤ n (see [7, p.467]), and the conclusion

again follows.
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Lemma 3.4 Given any c > 0, there exist N = N(c), c2 = c2(c) and an
absolute constant d such that if n ≥ N and s ∈ L∗ is a semisimple element
satisfying |L∗ : CL∗(s)|p′ < dqcn, then

|E(Gσ, (s))| ≤ c
√
n
2 .

Proof As explained in Section 2, |E(Gσ, (s))| is equal to the number of
unipotent characters of CG∗(s)σ∗ . Write C = CG∗(s). Then |C/C0| ≤ n by
[40, II,4.4], and C0 is connected and reductive. The number of unipotent
characters of Cσ∗ is therefore at most n times the number for (C

0)σ∗ (see the
definition at the top of p.112 of [13]); moreover, by [13, 13.20], (C0)σ∗ has the
same number of irreducible characters as ((C0)′)σ∗ , which is a commuting
product of classical groups of dimensions ni, where

∑
ni ≤ n. The number of

unipotent characters of this product is at most the product of the numbers
of unipotent characters of the simple factors (cf. [7, p.380]). Hence by
Lemma 3.3, we conclude that

|E(Gσ, (s))| ≤
∏

i

c
√
ni
1 .

By Lemma 3.2(ii), there exists N(c) such that provided n ≥ N(c), some

ni is at least n − 2c. Consequently |E(Gσ, (s))| ≤ c
√
n
1 c2c1 , and the result

follows.

Proof of Theorem 1.2

Let t > 0, and take c = 2/t. Let N(c) and d be as in Lemma 3.4, and
take L = Cln(q) with n ≥ N(c). Define

I1 = {χ ∈ Irr(L), χ(1) < dqcn}, I2 = {χ ∈ Irr(L) : χ(1) ≥ dq
cn},

and write ζL(t) = ζ1(t) + ζ2(t), where

ζ1(t) =
∑

χ∈I1

χ(1)−t, ζ2(t) =
∑

χ∈I2

χ(1)−t.

We shall show that ζ1(t)→ 1 and ζ2(t)→ 0 as |L| → ∞.

First consider ζ1(t). By (1), if χ ∈ I1 then χ ∈ E(Gσ, (s)), where
|L∗ : CL∗(s)|p′ < dqcn. The number of such classes (s) is less than d′qc

by Lemma 3.2(i), and for each such (s) we have |E(Gσ, (s))| ≤ c2(c)
√
n by

Lemma 3.4. It follows that

|I1| < d′qcc
√
n
2 .

Since by Proposition 3.1 we have χ(1) > c3q
(n−1)/2 for all nontrivial χ ∈

Irr(L), it follows that

ζ1(t) ≤ 1 + c4q
cc
√
n
2 ∙ q

−t(n−1)/2,
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and hence, provided n is sufficiently large in terms of t, we have ζ1(t) → 1
as |L| → ∞.

Now consider ζ2(t). By Proposition 3.1, |I2| < c5q
n, so

ζ2(t) < c5q
n ∙ (dqcn)−t = c5d

−tqnq−2n,

whence ζ2(t)→ 0 as |L| → ∞.

This completes the proof of Theorem 1.2.

4 Proof of Theorems 1.5 and 1.7

As usual we can take L(q) = Gσ with G a simple algebraic group of simply
connected type of rank r, and σ a Frobenius morphism. Write L∗(q) for the
dual group G∗σ∗ , and let p be the characteristic of the field Fq.

We begin with a refinement of Lemma 2.2(iii).

Lemma 4.1 (i) The number of conjugacy classes of subgroups of L∗(q) of

the form CL∗(q)(s) with s ∈ L
∗(q) semisimple, is at most d1 = c

√
r log r
1 for

some absolute constant c1.

(ii) Moreover, there are polynomials h1(x), . . . , hd1(x) ∈ Q[x] such that
|L∗(q) : CL∗(q)(s)|p′ ∈ {hi(q) : 1 ≤ i ≤ d1} for all s, q.

Proof (i) If the rank r is bounded, this follows from Lemma 2.2(iii), so
assume r is unbounded, and in particular L(q) is classical.

Consider first the case where L∗(q) = PGLn(q). For a semisimple ele-
ment s ∈ L∗(q), with preimage ŝ ∈ GLn(q), we have

Cs = CGLn(q)(ŝ) =
n∏

b=1

Db,

where

Db =
n∏

i=1

GLi(q
b)nib ,

with nib ≥ 0 and
∑
ibnib = n. Moreover, CL∗(q)(s) contains the image of Cs

modulo scalars with index dividing n.

For 1 ≤ b ≤ n, define

mb =

n∑

i=1

inib, (7)

so that
∑
bmb = n. Given mb, the number of choices for (nib : 1 ≤ i ≤ n)

satisfying (7) is P (mb), the number of partitions of mb. Hence, given the
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sequence (mb : 1 ≤ b ≤ n), the number of choices for (nib : 1 ≤ i, b ≤ n) is
at most

n∏

b=1

P (mb) ≤
n∏

b=1

c
√
mb = c

∑√
mb (8)

for some absolute constant c.

We now claim that ∑√
mb ≤

√
n log n. (9)

To see this, write xb = (bmb)
1/2, so that

∑
x2b = n. By the Cauchy-Schwarz

inequality, it follows that
∑√

mb =
∑

xb ∙ b
−1/2 ≤ (

∑
x2b)
1/2 ∙ (

∑

b≤n

b−1)1/2.

The harmonic sum
∑
b≤n b

−1 is bounded above by log n, and the claim (9)
follows.

Combining (8) with (9), we see that given (mb : 1 ≤ b ≤ n), the number
of choices for (nib : 1 ≤ i, b ≤ n) is at most c

√
n logn. Finally, the number of

choices for (mb : 1 ≤ b ≤ n) with
∑
bmb = n is P (n), and hence the total

number of choices for the nib is at most

P (n) ∙ c
√
n logn < c

√
n logn
1 .

The conclusion of (i) follows for the case L∗(q) = PGLn(q).

The case where L∗(q) = Cln(q) is unitary, symplectic or orthogonal is
similar: here CL∗(q)(s) has a subgroup of index dividing n which is the image
modulo scalars of

Cs = Cla1(q
b1)× Cla2(q

b2)×
∏

GLmi(q
ci)×

∏
GUnj (q

dj ), (10)

where for the unitary case a1 = a2 = 0,
∑
mici +

∑
njdj = n, and for the

symplectic and orthogonal cases, a1b1+a2b2+2(
∑
mici+

∑
njdj) = n (see

for example [6]). The conclusion of (i) follows arguing as above.

(ii) Fix the type of L. There is a polynomial l(x) ∈ Z[x] such that
|L∗(q)|p′ = l(q) for all q. Moreover, for s ∈ L∗(q) semisimple, the centralizer
CL∗(q)(s) is of the form Cσ∗ , where C

0 is reductive and |C/C0| ≤ r; as in
(i) the number of possibilities for C up to L∗(q)-conjugacy is at most d1. It
follows that there are polynomials k1(x), . . . , kd1(x) ∈ Z[x] such that for all
q we have

{|CL∗(q)(s)|p′ : s semisimple} ⊆ {vki(q) : 1 ≤ i ≤ d1, 1 ≤ v ≤ r},

and moreover for each i, ki(q) divides l(q) for infinitely many values of q.
It follows easily that ki(x) divides l(x) with quotient hi(x) ∈ Q[x]. Since

rd1 < c
√
r log r
2 for a suitable constant c2, the conclusion follows.
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Lemma 4.2 Let s be a semisimple element of L∗(q). Then the number

of degrees of unipotent characters of CL∗(q)(s) is at most d2 = cr
5/6(log r)1/3 ,

where c is an absolute constant. Moreover, there are polynomials e1(x), . . . , ed2(x) ∈
Q[x] such that the set of degrees of unipotent characters of CL∗(q)(s) is con-
tained in {ei(q) : 1 ≤ i ≤ d2} for all q.

Proof Write C = CG∗(s), so CL∗(q)(s) = Cσ∗ . We use some of the
information in the proof of Lemma 3.4. We have |C/C0| ≤ r, and C0 is
reductive. The degrees of unipotent characters of Cσ∗ are therefore products
of those of (C0)σ∗ by integers at most r. Moreover, by [13, 13.20], the degrees
of unipotent characters of (C0)σ∗ are the same as those of ((C

0)′)σ∗ ; writing
(C0)′ = C1 . . . Ca, a product of simple factors, these degrees are products of
degrees of unipotent characters of the factors (

∏
i∈ΔCi)σ∗ for Δ an orbit of

σ∗ on the Ci.

The unipotent character degrees of groups of Lie type of rank l over Fq
are given in [7, 13.8]: they are rational polynomials in q, and by Lemma 3.3

there are at most c
√
l
1 of them.

The conclusion follows from the above if the rank r of L∗(q) is bounded,
so assume it is unbounded. Thus L∗(q) is classical. As in the previous proof,
we begin with the case L∗(q) = PGLn(q). Here (C

0)σ∗ is the image modulo
scalars of a group of the form D =

∏
GLni(q

li), where
∑
lini = n. Rewrite

this as

D =
n∏

b=1

n∏

i=1

(GLi(q
b))nib ,

where nib ≥ 0 and moreover, writing mb =
∑
i inib, we have

∑
b bmb = n.

Set Db =
∏n
i=1(GLi(q

b))nib , and write Nu(Db) for the number of disctinct
degrees of unipotent characters of Db, with similar notation for other groups.

We have Nu(GLi(q
b)) ≤ di = c

√
i
1 .

We claim first that

Nu((GLi(q
b))nib) ≤ cm

2/3(logm)1/3 , where m = inib. (11)

To see this, set l = nib, and observe that Nu((GLi(q
b))l) is the number of

distinct products χ1(1) . . . χl(1) of degrees in Nu(GLi(q
b)), which is at most

the number of monomials in di variables of total degree l. Hence

Nu((GLi(q
b))l) ≤

(
di + l − 1
di − 1

)

≤ dli = c
√
il
1 = c

m/
√
i

1 .

If i ≥ (m/ logm)2/3, then (11) holds, so suppose i < (m/ logm)2/3.

At this point we require some detailed information about the degrees
of unipotent characters of GLi(q

b), taken from [7, 13.8]. Set Q = qb. The
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degrees of unipotent characters of GLi(Q) have the form

Qa0
i∏

j=1

(Qj − 1)aj , (12)

where aj are integers, 0 ≤ a0 < i2 and |aj | < i for j ≥ 1. It follows that the
degrees of unipotent characters of GLi(q

b))l also take the form (12), with
0 ≤ a0 < li3 and |aj | < li for j ≥ 1. Hence the number of choices for the
latter i-tuple (a0, . . . , ai) is at most li

3 ∙ (2li)i. Recalling that m = li, we
therefore have

Nu(GLi(q
b))l) ≤ li3 ∙ (2li)i = mi+1 ∙ 2ii2 < ci logm

for some absolute constant c. This is bounded by cm
2/3(logm)1/3 since i <

(m/ logm)2/3. Thus (11) is proved.

Next we establish

Nu(Db) ≤ c
m
5/6
b (logmb)

1/3
. (13)

To show this, let {i : nib 6= 0} = {i1, . . . , ik}, where i1 < ∙ ∙ ∙ < ik, and for
1 ≤ j ≤ k let xj = ijnijb. Then

∑k
j=1 xj =

∑
i inib = mb. By (11),

Nu(Db) ≤ c
∑
j x
2/3
j (log xj)

1/3

.

Write
∑
j x
2/3
j (log xj)

1/3 = Σ1 +Σ2, where

Σ1 =
∑

j :xj≤m
1/2
b

x
2/3
j (log xj)

1/3, Σ2 =
∑

j :xj>m
1/2
b

x
2/3
j (log xj)

1/3.

Since xj ≥ ij ≥ j, we have

Σ1 ≤
∑

j≤m1/2b

m
1/3
b (logmb)

1/3 ≤ m5/6b (logmb)
1/3.

Next,

Σ2 ≤
∑

j

xj(logmb)
1/3

x
1/3
j

≤
(logmb)

1/3

m
1/6
b

∑

j

xj ≤ m
5/6
b (logmb)

1/3.

Now (13) follows.

Finally, we show that

Nu(D) ≤ c
n5/6(logn)1/3 . (14)
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Indeed, since D =
∏
bDb, we have Nu(D) ≤ c

x where

x =
∑

b:mb>0

m
5/6
b (logmb)

1/3.

Set I = {b : mb > 0}, and for b ∈ I let yb = bmb. Then
∑
yb = n and

x ≤
∑
(ybb

−1)5/6(log n)1/3. By the Cauchy-Schwarz inequality,

∑
(ybb

−1)5/6 ≤ (
∑

y
5/3
b )

1/2 ∙ (
∑

b−5/3)1/2 ≤ (n5/3)1/2 ∙ c2 = c2n
5/6,

where c2 is an absolute constant. Hence x ≤ c2n
5/6(log n)1/3, and (14)

follows.

This completes the proof for the case where L∗(q) = PGLn(q). The
proof for the other types is similar, using the centralizer structure given in
(10).

Lemma 4.3 Let h(x) be one of the polynomials hi(x) ∈ Q[x] in the con-
clusion of Lemma 4.1. Then there are polynomials g1(x), . . . , gd(x) ∈ Q[x],
where d ≤ cr for some absolute constant c, such that for all q,

|{(s) : |L∗(q) : CL∗(q)(s)|p′ = h(q)}| ∈ {g1(q), . . . , gd(q)}.

Proof This follows quickly from the results and methods in [8, Section
3]. These show that if we fix a maximal rank subgroup C of L∗(q), then
the number of L∗(q)-classes of semisimple elements having centralizer con-
jugate to C is equal to pC(q), where pC is a polynomial which depends only
on the congruence class of q modulo c1r, for some absolute constant c1.
Moreover, |CL∗(q)(s)|p′ is a product of cyclotomic polynomials in q with an
integer at most r; for q > c2r, two such expressions can be equal only if the
corrsponding polynomials are identical.

It follows that for q > cr (c an absolute constant), the expression

|{(s) : |L∗(q) : CL∗(q)(s)|p′ = h(q)}|

is a sum of the above polynomials pC over a fixed collection of maximal rank
subgroups C. The result follows.

Lemma 4.4 For every class (s), the number of unipotent characters of
CL∗(q)(s) is at most c

r, where c is an absolute constant.

Proof We adopt the notation of the proof of Lemma 4.2. If the rank
r is bounded the result is clear by the argument of the first paragraph of
that proof, so assume the rank is unbounded. Begin with the case L∗(q) =
PGLn(q), and take (C

0)σ∗ to be the image modulo scalars of the group

D =
∏

GLni(q
li),
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where
∑
lini = n. The number of unipotent characters of CL∗(q)(s) is at

most n times the number of unipotent characters of D, which by Lemma 3.3

is at most
∏
i c
√
ni
1 . The conclusion follows for PGLn(q), and for the other

classical groups by a similar argument.

Proof of Theorems 1.5 and 1.7

Theorem 1.5 and part (i) of Theorem 1.7 follow from Lemmas 4.1 and
4.2, using the degree formula (1).

To prove part (ii) of 1.7, let f(x) be one of the polynomials fi(x) in part
(i). If χ ∈ Irr(L(q)) satisfies χ(1) = f(q), then by (1),

f(q) = χ(1) = |L∗(q) : CL∗(q)(s)|p′ ∙ χu(1),

where s is a semisimple element of L∗(q) and χu is a unipotent character
of CL∗(q)(s). By Lemma 4.1 the first factor is of the form hi(q) for some
i ≤ d1; and given hi, the second factor is determined as f(q)/hi(q). Next,
Lemma 4.3 shows that the number of (s) such that |L∗(q) : CL∗(q)(s)|p′ =
hi(q) is equal to gji(q) for some ji ≤ d, while by Lemma 4.4, if ni is the
number of χu such that χu(1) = f(q)/hi(q) then ni ≤ cr. We conclude that

|{χ ∈ Irr(L(q)) : χ(1) = f(q)}| =
∑

i≤d1

nigji(q),

which is one of at most crdd1 polynomials in q. This yields the conclusion of
(ii).

Finally, part (iii) of Theorem 1.7 follows immediately from the other
parts.

5 Conjugacy classes

In this section we prove various results concerning the function

ηH(t) =
∑

C∈C(H)

|C|−t,

where H is a finite almost simple group, and C(H) denotes the set of con-
jugacy classes of H.

We begin with the proof of Theorem 1.10 stated in the Introduction.

Proof of Theorem 1.10

First we prove part (i) of the theorem. This is quite similar to the proof
of Theorem 1.1, and we give just a sketch.

As in the hypothesis let L be a fixed Lie type of rank r with Coxeter
number h = hL, and let L(q) be the simple group of type L over Fq. Write
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L(q) = G′σ, whereG is a simple algebraic group and σ a Frobenius morphism.
Then the group generated by inner and diagonal automorphisms of L(q) is
Gσ. Let H = H(q) satisfy L(q) ≤ H(q) ≤ Gσ.

Consider a class xH with x ∈ Gσ. Write x = su where s and u are
commuting semisimple and unipotent elements of Gσ. By Lemma 4.1(i),
the number of possibilities for C = CH(s) up to conjugacy is bounded above
by a function f(r) of the rank r. Also the number of unipotent classes of C
is bounded above by a function g(r). For 0 ≤ k ≤ r, define Ck to be the set
of semisimple classes sH such that Z(CG(s)

0)0 is a torus of rank k, and set

ηk(t) =
∑

x=su,s∈Ck

|xH |−t.

Then ηH(t) =
∑r
k=0 ηk(t).

Since the number of classes in C0 is bounded by a function h(r) (see
Lemma 2.3), and all classes have size at least q, we have

1 ≤ η0(t) ≤ 1 + h(r)g(r)q
−t. (15)

For k ≥ 1, the number of classes sH in Ck is at most cqk (see Lemma 2.4(i));
moreover, CGσ(s) lies in a Levi subgroup Lσ of semisimple rank r − k, and
|Gσ : Lσ| ≥ c1q

2(NG−NL) (see Lemma 2.4(ii)). Hence, using Lemma 2.5 we
have

ηk(t) ≤
∑

L∈Lk

cqkg(r)

(c1q2(NG−NL))t
= O(qk−

2NGkt

r ).

Therefore for t > r
2NG
, we have

r∑

k=1

ηk(t) = O(q
−ε) (16)

for some ε > 0. Since r
2NG

= 1
h−1 , the conclusion of Theorem 1.10(i) now

follows from (15) and (16).

Now we prove part (ii) of Theorem 1.10. This closely follows the proof
of Theorem 1.2, and we give a brief sketch. Write L = L(q) = Cln(q), a
classical group of dimension n. First, using the argument of Lemma 3.2,
we show that the number of semisimple classes sL of size less than dqcn is
at most d′qc, and for every such class, CL(s) has a factor Cln−a(q) with
a ≤ 2c. Next observe that the number of unipotent classes of L is at most
c
√
n (see [26, 1.4]). Using this we show as in Lemma 3.4 that if s ∈ L satisfies

|sL| < dqcn, then the number of unipotent classes of CL(s) is at most c
√
n.

Now the proof of Theorem 1.10(ii) goes through just as in the argument for
1.2 given after 3.4.

The following two results are obvious consequences of Theorem 1.10.
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Corollary 5.1 Let H be a finite simple group different from L2(q), L3(q)
or U3(q). Then for t >

1
4 , we have

ηH(t)→ 1 as |H| → ∞.

Recall that cn(H) denotes the number of conjugacy classes of H of size
n.

Corollary 5.2 (i) For a fixed Lie type L, with Coxeter number h, there is
a constant c = c(L) such that

cn(L(q)) < cn
1
h for all q.

Moreover, the exponent 1h is best possible.

(ii) Given any ε > 0, there exists r = r(ε), such that if H is either an
alternating group of degree at least r, or a classical group of rank at least r,
then

cn(H) < nε for all n.

(iii) There is an absolute constant c such that for any finite simple group
H different from L2(q), L3(q) or U3(q), we have cn(H) < cn1/4.

We conclude this section with an analogue for ηH of Theorems 1.5 and
1.7. Denote by CS(H) the set of conjugacy class sizes of a finite group H.

Theorem 5.3 Fix a Lie type L of rank r, and for each q let L(q) denote a
quasisimple group of type L over Fq. There are functions d = d(r), e = e(r)
of r alone such that the following hold.

(i) |CS(L(q))| < d(r) for all q.

(ii) There are polynomials f1(x), . . . , fd(x) ∈ Q[x] such that for all q,

CS(L(q)) ⊆ {f1(q), . . . , fd(q)}.

(iii) For 1 ≤ i ≤ e, there are polynomials gi1(x), . . . , gie(x) ∈ Q[x] such
that for all q,

|C ∈ C(H) : |C| = fi(q)}| ∈ {gi1(q), . . . , gie(q)}.

(iv) For each q, there exist ji ∈ {1, . . . , e} for 1 ≤ i ≤ e, such that

ηL(q)(t) =
∑

1≤i≤e

fi(q)
−tgiji(q)

for any real t. Hence ηL(q) is given by boundedly many such “rational”
expressions in q.

The conclusions hold for the functions d(r) = cr
5/6(log r)1/3 and e(r) =

2c
√
r log r
, where c is an absolute constant.
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Proof The proof follows along the lines of that of Theorem 1.7 given in
Section 4. The only changes are as follows. Instead of Lemma 4.2 we need
the analogue for classes, stating that the number of unipotent class sizes
of CL∗(q)(s) is at most d2 = cr

5/6(log r)1/3 , and they are given by at most
d2 polynomials in q; the proof of this is exactly the same as that of 4.2,
noting that the unipotent class sizes of GLi(Q) are of the form (12) with
0 ≤ a0 < i2 and |aj | < i for j ≥ 1. Next, we need a version of Lemma 4.3 of
the form

|{(s) : |L∗(q) : CL∗(q)(s)| = h(q)}| ∈ {g1(q), . . . , gd(q)}.

This follows from the proof of 4.3. Finally, instead of 4.4 we need the fact
that the number of unipotent classes of CL∗(q)(s) is at most c

r.

6 Applications I: Random walks

In this section we prove Theorems 1.8 and 1.9. Consider a random walk on
Γ(L, xL ∪ (x−1)L) as described in the Introduction, and for y ∈ L let P k(y)
be the probability of arriving at y after k steps. Let U denote the uniform
distribution on L, and let || || be the l1 norm. Then the upper bound lemma
of Diaconis and Shashahani [12] shows that

||P k − U ||2 ≤
∑

χ∈Irr(L),χ 6=1

|
χ(x)

χ(1)
|2kχ(1)2. (17)

We shall require information on irreducible characters of small degree
of classical groups, taken mainly from [41]. First we identify a collection of
irreducible Weil characters of certain classical groups.

The group SLn(q) (n ≥ 3) has q−1 irreducible Weil characters, denoted
τi (0 ≤ i ≤ q − 2). The character τ0 has degree (qn − q)/(q − 1) and is
equal to π − 1, where π is the permutation character of SLn(q) on the set
of 1-spaces of the natural module. For i ≥ 1, the character τi has degree
(qn − 1)/(q − 1) and takes values specified as follows. Let δ be a primitive
(q − 1)th root of 1 (in Fq and in C). Then for g ∈ SLn(q),

τi(g) =
1

q − 1

q−2∑

j=0

(δijqdimKer(g−δ
j)),

where Ker(x) denotes the kernel of x on the natural module for SLn(q).
This formula is well known, and can be found, for example, as formula (1)
in [19].

Next, SUn(q) (n ≥ 3) has q+1 irreducible Weil characters ξi (0 ≤ i ≤ q),
with ξ0 of degree (q

n+(−1)nq)/(q+1) and ξi of degree (qn− (−1)n)/(q+1)

22



for i ≥ 1. If ω denotes a primitive (q+1)th root of 1 (in Fq2 and in C), then
for any g ∈ SUn(q) and any i ≥ 0 we have (see [42, 4.1])

ξi(g) =
(−1)n

q + 1

q∑

k=0

ωik(−q)dimKer(g−ω
k).

Finally, the symplectic group Sp2n(q) (n ≥ 2, q odd) has four irreducible
Weil characters α1, α2, β1, β2, with αi of degree (q

n − 1)/2 and βi of degree
(qn + 1)/2. We can label the subscripts so that α1 + β1 = ρ, the (Weil)
representation of degree qn that arises from the action of Sp2n(q) on a group
of symplectic type of order q2n+1 (see [21]). For g ∈ Sp2n(q), we have

|ρ(g)| = q
1
2
dimKer(g−1), |ρ(gz)| = q

1
2
dimKer(g+1), where the kernels are taken

on the natural 2n-dimensional module and z denotes the central involution.
It follows that

α1(g) =
1
2(a.q

1
2
dimKer(g−1) + b.q

1
2
dimKer(g+1)),

β1(g) =
1
2(a.q

1
2
dimKer(g−1) − b.q

1
2
dimKer(g+1)),

for some complex numbers a, b of modulus 1. Similar formulae hold for the
values of α2, β2.

WriteW for the collection of all the irreducible Weil characters τi, ξi, αi, βi
introduced above.

Lemma 6.1 Let L = SLεn(q) (n ≥ 3) or Sp2n(q) (n ≥ 2, q odd), and let
χ ∈ W.

(i) Suppose x ∈ L is a regular element. Then |χ(x)| ≤ min(n, q) if
L = SLεn(q), and |χ(x)| ≤ q

1/2 if L = Sp2n(q).

(ii) There is an absolute constant d such that, if x ∈ L satisfies CL(x) ≤
qcn, then |χ(x)| < q

√
cn+d.

Proof (i) First consider x a regular element in L = SLn(q). Write x = su
with s, u commuting semisimple and unipotent elements. For λ ∈ F∗q denote
by Vλ the λ-eigenspace of s on V = Vn(q). Then u acts as a single Jordan
block on each Vλ, and hence dimKer(x − λ) ≤ 1 for all λ ∈ F∗q . Hence
|τi(x)| ≤ q for all i by the above formulae for the values of τi. Moreover, since
there are at most n eigen values for s, the same formulae (and the equation∑q−2
j=0 δ

ij = 0 for i 6= 0) easily imply |τi(x)| ≤ n. A similar argument applies
for L = SUn(q).

For L = Sp2n(q), observe with the above notation that u acts as a single
Jordan block on the eigenspaces V1 and V−1, so dimKer(x± 1) ≤ 1 and the
conclusion follows from the above formula for the values of αi, βi.

(ii) Consider first L = SLn(q), assume |CL(x)| ≤ qcn, and write x = su

as above. For λ ∈ F∗q again let Vλ be the λ-eigenspace of s on V , and write
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nλ = dimVλ. Fix λ and let u act on Vλ with niλ Jordan blocks of size i for
1 ≤ i ≤ nλ. Then

∑

i

iniλ = nλ,
∑

i

niλ = dimKer(x− λ) = kλ.

By [43, p.34], we have

|CGL(Vλ)(u)| ∼ q
2
∑
i<j iniλnjλ+

∑
i in

2
iλ .

Writing fλ for the exponent of q in the previous line, we have

fλ = (
∑

i

niλ)
2 +

∑

i

(i− 1)n2iλ + 2
∑

i<j

(i− 1)niλnjλ ≥ (
∑

i

niλ)
2 = k2λ.

It follows that for some absolute constant c1 > 0 and for all λ ∈ F∗q we have

qcn+1 > |CL(x)|(q − 1) ≥ |CGL(Vλ)(u)| ≥ c1q
k2λ .

We conclude that there is an absolute constant d such that cn+ d > k2λ
for all λ ∈ F∗q . From the formula for χ(x), we therefore obtain

|χ(x)| ≤
1

q − 1

∑

λ∈F∗q

qkλ < q
√
cn+d,

as required.

The proof for L = SUn(q) is entirely similar. As for L = Sp2n(q),
writing kε = dimKer(x− ε) for ε = ±1, we can again deduce using [43] that
cn + d > k21, k

2
−1 for some constant d, and the conclusion follows from the

above formula for χ(x).

Proposition 6.2 Let L = L(q) be a quasisimple group of Lie type over Fq
of rank r and Coxeter number h, and let 1 6= χ ∈ Irr(L). Then there is an
absolute constant c > 0 such that one of the following holds:

(i) χ(1) > max (cq3r/2, cq2r−3);

(ii) L/Z(L) = Lεr+1(q) or PSp2r(q) (q odd), and χ ∈ W;

(iii) L, and a lower bound for χ(1), are as in Table 1 below.

In particular, assuming that χ 6∈ W and L/Z(L) 6∈ {L2(q), Lε3(q), L
ε
4(q)}, we

have χ(1) > cqαr, where α > h−1
h−2 .

Table 1

L/Z(L) L2(q) Lε3(q) Lε4(q) Dε4(q) Dε5(q)

χ(1) > cq cq3 cq4 cq5 cq7
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Proof For L of exceptional type this follows from [25], and for L classical
it follows from the results of [41].

Proof of Theorem 1.8

Let L = L(q) be a simple group of fixed Lie type of rank r over Fq,
and let x be a regular element of L. As described above, let P k denote the
probability distribution on L after k steps of the random walk on Γ(L, xL ∪
(x−1)L). Then by the upper bound (17),

||P 2 − U ||2 ≤
∑

χ∈Irr(L),χ 6=1

|χ(x)|4

χ(1)2
. (18)

Write the sum on the right hand side of (18) as Σ1 +Σ2, where

Σ1 =
∑

χ∈W

|χ(x)|4

χ(1)2
, Σ2 =

∑

χ 6∈W

|χ(x)|4

χ(1)2

(where W is the empty set for L 6= Lεn(q) or PSp2r(q) (q odd)).

If L = Lεn(q) (n ≥ 3) then by Lemma 6.1(i), we have Σ1 ≤ (q +
1)n4/(cqn−1)2; and if L = PSp2r(q) (r ≥ 2) with q odd, 6.1(i) gives Σ1 ≤
4(q1/2)4/(cqr)2. Hence in either case we have

Σ1 → 0 as |L| → ∞. (19)

We now consider Σ2. Assume first that L 6∈ {L2(q), Lε3(q), L
ε
4(q)}. As

x is a regular element of L, there is a constant c such that |CL(x)| < cqr.
Hence |χ(x)| < c1q

r/2 for any χ ∈ Irr(L), and so

Σ2 < c2q
2r
∑

χ 6∈W

χ(1)−2.

By Proposition 6.2, for χ 6∈ W we have χ(1) > cqαr, where α > h−1
h−2 . Then

q2r < c3χ(1)
2/α, and so

Σ2 < c4
∑

χ 6∈W

χ(1)−2(1−
1
α
) < c4 ∙ (ζ

L(2− 2/α)− 1).

Since 2− 2/α > 2/(h− 1), it follows from Theorem 1.1 that

Σ2 → 0 as |L| → ∞. (20)

By (19), (20) and (18) we have ||P 2−U || → 0 as |L| → ∞, and the conclusion
of Theorem 1.8 follows for L of fixed Lie type, not Lεn(q) (n ≤ 4).

The case of unbounded rank is covered by Theorem 1.9 proved below, so
to complete the proof of 1.8 it only remains to deal with L = Lεn(q), n ≤ 4.
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For L = Lε4(q), it is easy to see using the Deligne-Lusztig theory de-
scribed in Section 2 that L has at most cq irreducible characters of degree
less than c′q4, and all other irreducible characters have degree at least c′′q5.
Write Σ2 = Σ

′
2 +Σ

′′
2 where

Σ′2 =
∑

χ 6∈W,1<χ(1)<cq4

|χ(x)|4

χ(1)2
, Σ′′2 =

∑

χ(1)>c′q5

|χ(x)|4

χ(1)2
.

As |χ(x)| < cq3/2 and |Irr(L)| < cq3, we have Σ′2 < cq ∙ q6/q8, and Σ′′2 <
cq3 ∙ q6/q10. It follows from this and (19) that ||P 2 − U || → 0 as q →∞.

Next consider L = Lε3(q). The full character table of L is given in [39].
From this we deduce that there is a set Δ of at most 9 irreducible characters
of L such that |χ(x)| is bounded for χ ∈ Irr(L)\Δ; moreover, for χ ∈ Δ
we have χ(1) ∼ q3 and |χ(x)| < cq. It now follows easily from (18) that
||P 2 − U || → 0 as q →∞.

This completes the proof of Theorem 1.8.

Finally, to justify the remark made after Theorem 1.8 for L = L2(q), the
character table of L is given in [14]. If x is not unipotent, or if q is even,
then |χ(x)| is bounded for all χ, and (18) gives mixing time 2 for large q;
and if q is odd and x is unipotent then |χ(x)| < cq1/2 for all χ, and (18)
gives mixing time at most 3 for large q.

Proof of Theorem 1.9

Let L = L(q) be a simple classical group of rank r over Fq, fix ε > 0 and

k ≥ 2, and let x ∈ L be such that |CL(x)| < cq4r(1−
1
k
−ε). As above, let P k

denote the probability distribution on L after k steps of the random walk
on Γ(L, xL ∪ (x−1)L). Then by (17),

||P k − U ||2 ≤ Σ1 +Σ2, (21)

where

Σ1 =
∑

χ∈W

|χ(x)|2k

χ(1)2k−2
, Σ2 =

∑

χ 6∈W

|χ(x)|2k

χ(1)2k−2
.

For χ ∈ W , Lemma 6.1 gives |χ(x)| < q
√
4r+d for some constant d, while

χ(1) > cqr by Proposition 3.1. Hence

Σ1 <
cq ∙ q2k

√
4r+d

qr(2k−2)
,

which tends to 0 as |L| → ∞ provided r is sufficiently large.

Now consider Σ2. For a nontrivial irreducible character χ not in W, we
have χ(1) > c1q

2r−3 by Proposition 6.2(i), and hence

χ(1)2k−2−ε > q(2r−3)(2k−2−ε)−c2k = q4r(k−1)−2rε−6k+6+3ε−c2k ≥ q4r(k−1)−2εr−c3k,
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where ci are some absolute constants. On the other hand we have

|CL(x)|
k < ckq(4r(1−

1
k
−ε))k ≤ q4k(r−1)−4εkr+c4k.

Choose r ≥ (c3 + c4)/(2ε). Then −4εkr + c4k ≤ −2εkr − c3k ≤ −2εr − c3k,
and this yields

|CL(x)|
k < χ(1)2k−2−ε.

Since |χ(x)|2k ≤ |CL(x)|k, it follows that for such r, and for χ 6∈ W , we have

|χ(x)|2k

χ(1)2k−2
< χ(1)−ε,

and so
Σ2 <

∑

χ 6∈W

χ(1)−ε ≤ ζL(ε)− 1.

We are now in a position to apply Theorem 1.2 and conclude that Σ2 → 0
as |L| → ∞ provided r is sufficiently large. Theorem 1.9 now follows from
(21).

We conclude the section with a similar result on mixing times for ex-
ceptional groups of Lie type, proved as above using the lower bounds on
character degrees given by [25].

Proposition 6.3 Let L = L(q) be an exceptional simple group of Lie type,
and fix k ≥ 2 and ε > 0. Suppose x ∈ L satisfies |CL(x)| < qAk−ε, where Ak
is defined as follows:

L E8 E7 Eε6 F4
2F4

3D4 G2
2G2

2B2
Ak 58− 66

k
34− 41

k
22− 28

k
16− 20

k
11− 13

k
10− 14

k
6− 8

k
4− 5

k
3− 4

k

Then for sufficiently large q, the mixing time T (L, x) ≤ k.

Note that Ak is just 2A − (2A + r)/k where A is the exponent of q in
the bound given by [25].

7 Applications II: Base size

In this section we prove Theorem 1.11. This relies on Theorem 1.10, together
with the following result of Burness [2]. To state this we need some notation.
Let H be a finite almost simple group with socle H0, a classical group with
natural module V over a field of characteristic p. We say that a maximal
subgroup M of H is a subspace subgroup if either M ∩ H0 is reducible on
V , or M ∩ H0 is an orthogonal group SO(V ) embedded in the symplectic
group H0 = Sp(V ) with p = 2. A subspace action of H is a primitive action
of H on a set Ω where a point stabilizer is a subspace subgroup.
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Proposition 7.1 ([2]) Let H be an almost simple classical group as above,
with n = dimV > 15, and let M be a maximal subgroup of H which is not
a subspace subgroup. Then for any element x ∈ H of prime order, we have

|xH ∩M | < |xH |1/2+1/n+1/(n−2).

This is a consequence of a more general result in [2] which covers all
dimensions.

We shall also require the following technical result concerning classes of
outer automorphisms of prime order of simple groups of Lie type.

Proposition 7.2 Let H = L(q) be a simple group of Lie type, and let
x1, . . . , xm be a set of representatives of the H-classes of automorphisms
of H of prime order not lying in Inndiag(H). Then for any t > 0,

m∑

i=1

|xHi |
−t → 0 as |H| → ∞.

Proof Each such automorphism is of one of the following types: field,
graph-field and graph automorphisms (see [18, p.60]). The classes of such
automorphisms are analysed in detail in [18, Chapter 4]: there are at most
cr log log q classes (where c is a constant and r is the rank of L(q)), and each
class has size greater than c1q

r. Hence

m∑

i=1

|xHi |
−t ≤ (c2r log log q) ∙ q

−rt,

which tends to 0 as |H| → ∞.

Proof of Theorem 1.11

The argument follows the proof of [28, Theorem 1.3]. Let H be a classical
almost simple group of dimension greater than 15 acting primitively on a set
Ω in a non-subspace action. For b ≥ 1, define Q(H, b) to be the probability
that a randomly chosen b-tuple of points in Ω is not a base for H. Let P be
the set of elements of prime order in H, and xi (1 ≤ i ≤ k) be representatives
of the H-conjugacy classes of elements in P .

The probability that a randomly chosen b-tuple is fixed by an element
x ∈ H is (fix(x)/|Ω|)b. This is equal to (|xH ∩M |/|xH |)b. Moreover, if a
b-tuple is not a base, then it is fixed by some element x ∈ P . Hence

Q(H, b) ≤
∑

x∈P

(|xH ∩M |/|xH |)b =
k∑

i=1

|xHi | ∙ (|x
H
i ∩M |/|x

H
i |)
b.
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By Proposition 7.1,

|xHi | ∙ (|x
H
i ∩M |/|x

H
i |)
b ≤ |xHi |

1−41b/112.

Together with Proposition 7.2, this yields

Q(H, b) ≤
k∑

i=1

|xHi |
1−41b/112 ≤ ηH(41b/112− 1)− 1 + o(1).

Thus Q(H, 3) ≤ ηH(11/112) − 1 + o(1). Since dimV > 15 we have h ≥ 14
(where h is the Coxeter number of H), and so by Theorem 1.10(i), we have
Q(H, 3)→ 0 as |H| → ∞. Theorem 1.11 follows.
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