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Abstract

We show that the set of natural numbers which are dimensions of

irreducible complex representations of finite quasisimple groups (ex-

cluding the natural representations of alternating groups) has density

zero. We also determine the exact asymptotics for this set, showing

that it has (7 + o(1)) xlog x elements less than x. Our tools combine

representation theory and number theory. An application to finite

subgroups of classical Lie groups is given.
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1 Introduction

In 1982, Cameron, Neumann and Teague [2] studied the set S of degrees

of finite primitive permutation groups excluding An and Sn in their nat-

ural actions. They showed that S has density zero in N, and indeed that

|S ∩ [1, x]| = 2π(x) + O(x1/2), where π(x) is the number of primes in the

interval [1, x]. The core of their proof is the case of almost simple groups,

where they count indices of maximal subgroups. This was extended in [5],

where the asymptotic behaviour of the set of indices of arbitrary subgroups

of almost simple groups is determined.

In this paper we study a linear analogue of these problems. In this

context it is natural to consider quasisimple groups, namely perfect groups

G such that G/Z(G) is simple.

The alternating group An has an irreducible complex representation ρn

of dimension n − 1 (the nontrivial irreducible constituent of the natural

permutation representation). Define D to be the set of dimensions dim ρ

of irreducible complex representations ρ of finite quasisimple groups with

ρ 6= ρn for any n. Let

D(x) = |D ∩ [1, x]|.

Our main result is

Theorem 1.1 We have

D(x) = 2π(2x) + 3π(x) +O(
x

log2 x
).

2



Consequently

D(x) = 7
x

log x
+O(

x

log2 x
) = (7 + o(1))

x

log x
.

The second estimate follows from the first using the Prime Number The-

orem π(x) = x
log x +O(

x
log2 x

).

The leading term 2π(2x) + 3π(x) of D(x) comes from the 5 character

degrees p± 1, (p± 1)/2, p of the groups SL2(p) (p a prime). It is intriguing

that the error term relies on classical bounds, going back to Selberg and

others, for the number of twin primes, and also the number of solutions of

equations 2p1 + b = p2 with pi prime and b ∈ {±1,±3} (see [4, Chapter 3]).

The main part of our proof of Theorem 1.1 is to show that the quasisimple

groups apart from SL2(p) contribute only marginally to D(x); indeed, we

show that they contribute 2
√
2x1/2+O( x

1/2

log x). This leads to an upper bound

on D(x) which is sharper than that stated in the theorem, namely

D(x) ≤ 2π(2x) + 3π(x) + 2
√
2x1/2 + c

x1/2

log x
(1)

where c is an absolute constant.

Corollary 1.2 For almost all positive integers n, the only irreducible com-

plex representation of dimension n of any finite quasisimple group is the

representation ρn+1 of An+1.

Here, “for almost all n” means “for all n in some density 1 subset of N”,

where the density of a subset B of N is defined to be lim sup |B ∩ [1, x]|/x.

The corollary is immediate from Theorem 1.1, since this shows that D has

density zero.
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Theorem 1.1 also has an application to the theory of finite subgroups

of classical Lie groups. Define a Lie primitive subgroup of a simple alge-

braic group over C to be a subgroup which is contained in no proper closed

subgroup of positive dimension.

Corollary 1.3 For almost all positive integers n, SLn(C) has no finite Lie

primitive subgroups.

In fact, we show that the set of n for which there exist finite Lie primitive

subgroups of SLn(C) is contained in D. The proof is given at the end of

the paper, where analogous results for the other classical groups over C are

also discussed.

Notation For any subset B of N, define B(x) = |B ∩ [1, x]|. For a finite

group G, write k(G) for the number of conjugacy classes of G, and Irr(G) for

the set of irreducible (complex) characters of G. In particular k(Sn) = p(n),

the partition function, and p(n) < c
√
n for some constant c (see [1, 6.3]).

Throughout the paper ci are absolute constants.

2 Proofs

For a finite group G and a positive integer d, denote by rd(G) the number of

irreducible complex representations of G of dimension d (up to equivalence).

There has been considerable recent interest in studying the representation

growth (i.e. the behaviour of the function rd(G)) for both finite and infinite

groups, with diverse applications – see [13],[10],[11],[12],[6]. Set

Rd(G) =
d∑

k=1

rk(G),
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the number of irreducibles of dimension at most d. Define DAlt (DLie) to be

the subset of D consisting of the dimensions of irreducibles of alternating

groups (simple groups of Lie type, resp.) and their covers.

We first study the function DAlt(x), starting with a result which may be

of independent interest. It was shown in [10, 1.1] that rd(Sn) = d
o(1). Here

we improve this by proving a better bound on the larger function Rd(Sn).

Proposition 2.1 There is an absolute constant c such that for any n, d ∈ N,

Rd(Sn) ≤ c
√
log d.

Proof. For a partition λ = (λ1, . . . , λr) of n, let χλ be the corresponding

irreducible character of Sn, and λ
′ = (λ′1, . . . , λ

′
s) the conjugate partition.

Recall that χλ′ = χλ ⊗ sgn. We may therefore count characters χ = χλ of

degree at most d, assuming that λ1 ≥ λ′1.

Let χ = χλ be an irreducible character of degree at most d.

Suppose first that λ1 ≤ 2n/3. Then by [10, 2.4], χλ(1) > cn1 , where

c1 > 1. Hence n ≤ c2 log d. Therefore the contribution of such χλ to Rd(Sn)

is at most

k(Sn) ≤ c
√
n
3 ≤ c

√
c2 log d
3 = c

√
log d
4 . (2)

Now suppose that λ1 > 2n/3, and let k = n − λ1 < n/3. Then by [10,

2.1], we have (assuming that n is large)

d ≥ χλ(1) ≥

(
n− k
k

)

≥ 2k.

Hence k ≤ log d. Given k, the number of possible λ with λ1 = n− k is p(k).
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Therefore the contribution of such χλ to Rd(Sn) is at most

∑

k≤log d

p(k) ≤ log d ∙ c
√
log d
3 ≤ c

√
log d
5 . (3)

The result follows from (2) and (3).

The bound in Proposition 2.1 is almost tight – indeed, for d = (n!)1/2

we have Rd(Sn) = p(n) ≥ c
√
log d/ log log d.

In the next result, 2An denotes the double cover of An.

Corollary 2.2 There is an absolute constant c such that for any n, d ∈ N,

Rd(An) ≤ Rd(2An) ≤ c
√
log d.

Proof. For each irreducible character χ of Sn, either χ ↓ An is irre-

ducible, or χ ↓ An = χ1 + χ2, a sum of two irreducible characters of degree

χ(1)/2. All irreducible characters of An occur in this way. Hence

Rd(An) ≤ 2R2d(Sn).

By [15], every faithful irreducible character of 2An has degree at least

2(n−log2 n−2)/2 ≥ cn6 , where c6 > 1. So the contribution of such characters to

Rd(2An) is at most

k(2An) ≤ 2k(An) ≤ 4p(n) ≤ c
√
n
7 ≤ c

√
log d
8 .

The result follows from this, together with Proposition 2.1.

The next result determines the contribution of the alternating groups to
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D(x).

Proposition 2.3 We have

DAlt(x) = 2
√
2x1/2 +O(x1/3).

Proof. Let χ ∈ Irr(2An) with χ(1) ≤ x, and suppose that χ(1) > n−1

(so that χ is not the character of the representation ρn referred to in the

Introduction). It follows from [7, Theorem 5] (see also [14]) for An, and from

[15] for 2An, that either χ(1) ∈ {12n(n− 3),
1
2(n− 1)(n− 2)}, or χ(1) is one

of three cubic polynomials in n, or χ(1) > c9n
4 with c9 > 0.

The numbers 12n(n − 3),
1
2(n − 1)(n − 2) are the degrees of the char-

acters χ(n−2,2), χ(n−2,12) (note these remain irreducible for An). There are
√
2x+O(1) values of n with χ(n−2,2)(1) ≤ x and similarly for χ(n−2,12)(1) ≤

x. Also χ(n−2,2)(1) 6= χ(m−2,12)(1) for any m,n ≥ 5. Hence the contribution

of these characters to DAlt(x) is 2
√
2x1/2 +O(1).

Similarly, the contribution of the characters of cubic degree is O(x1/3).

Now consider characters χ with x ≥ χ(1) > c9n4. There are O(x1/4)

choices for n. Fixing n, we apply Corollary 2.2, which shows that the con-

tribution of such character degrees of 2An to DAlt(x) is at most c
√
log x.

Putting everything together, we deduce that

DAlt(x) = 2
√
2x1/2+O(1) +O(x1/3) +O(x1/4c

√
log x) = 2

√
2x1/2+O(x1/3),

as required.

The next results determine the contribution of the groups of Lie type to

D(x). Our main tool is the following result from [12].
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Lemma 2.4 ([12, Theorem 1.5]) There is an absolute constant c such that

every finite quasisimple group of Lie type of rank r has at most d(r) =

cr
5/6(log r)1/3 distinct irreducible character degrees.

Notice that this bound does not depend on the field over which the group

is defined, and is sub-exponential in the rank.

Write

DLie = ELie ∪ FLie,

where ELie is the set of dimensions of irreducible complex representations

of groups SL2(p) (p ≥ 5 prime), and FLie is the corresponding set for all the

other groups of Lie type.

Proposition 2.5 We have

FLie(x) = O(
x1/2

log x
).

Proof. Let G = Xr(q) be a group of universal Lie type of untwisted

rank r over Fq, and assume G 6= SL2(p). Let χ be an irreducible character

of G with χ(1) ≤ x.

Suppose first that the rank r ≥ 3. Then χ(1) ≥ c10qr ≥ c10q3 by [8],

so r ≤ c11 log x and q < c12x1/3. Given q and r, there are at most 10

possibilities for Xr(q), and each contributes at most d(r) ≤ d(c11 log x) to

FLie(x). The number of possibilities for (r, q) is at most c11 log x ∙ c12x1/3 ≤

c13x
1/3 log x. Hence the total contribution of groups of rank r ≥ 3 to FLie(x)

is at most

c14 ∙ x
1/3 ∙ log x ∙ c(c11 log x)

5/6(log(c11 log x))1/3 = o(x1/3+ε)
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for any positive ε.

Now suppose r ≤ 2 and G 6= SL2(q), 2B2(q). Then x ≥ χ(1) ≥ c15q2

by [8]. Given q, there are at most c16 possible character degrees (see

Lemma 2.4). The number of possibilities for the prime power q ≤ c17x1/2 is

bounded by O(x1/2/ log x) by the Prime Number Theorem, and this is also

the contribution to FLie(x).

Finally suppose G = SL2(q) or
2B2(q). In the latter case we have x ≥

χ(1) ≥ c18q3/2 by [8], and q is a power of 2, so the contribution to FLie(x)

is O(log x). And for G = SL2(q), we have q = p
a with a ≥ 2 (since q 6= p by

the definition of FLie(x)), and x ≥ χ(1) ≥ (q− 1)/2; hence the contribution

to FLie(x) is O(x
1/2/ log x). The result follows.

Proposition 2.6 (i) ELie(x) ≤ 2π(2x) + 3π(x) +O(1).

(ii) ELie(x) ≥ 2π(2x) + 3π(x)−O( x
log2 x

).

Proof. The nontrivial character degrees of SL2(p) (p ≥ 5) are

(p− 1)/2, (p+ 1)/2, p− 1, p, p+ 1

(see [3]). The number of degrees (p ± 1)/2 ≤ x is at most 2π(2x) + O(1),

and the number of degrees p, p±1 ≤ x is at most 3π(x)+O(1). This proves

(i).

For part (ii), we need to estimate the number of coincidences between

the above expressions for different values of p. Write f1(p), . . . , f5(p) for

(p−1)/2, . . . , p+1 respectively. We require upper bounds for the number of

solutions to fi(p1) = fj(p2) with p1, p2 primes. For example, for i, j = 1, 2

or 3, 5, this equation says that p1, p2 are twin primes. A classical number
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theoretic result [4, 3.12] shows that the number of twin primes less than or

equal to x is O( x
log2 x

), and that a similar bound holds for equations of the

form p2 = ap1 + b with a and b fixed integers. These estimates prove part

(ii).

Proof of Theorem 1.1 By the classification of finite simple groups,

D(x) ≤ DAlt(x) + ELie(x) + FLie(x) +O(1).

Combining 2.3, 2.5 and 2.6(i), the upper bound in Theorem 1.1 follows,

as does (1). The lower bound in Theorem 1.1 follows from the inequality

D(x) ≥ ELie(x) and 2.6(ii).

Proof of Corollary 1.3 Let n be a positive integer, and suppose that

SLn(C) has a finite Lie primitive subgroup G. We aim to show that n is

in the set D defined in the Introduction. The result will then follow from

Theorem 1.1.

According to [9, Theorem 1], either G is contained in a member of a

certain family C of proper closed subgroups of SLn(C), or G has a unique

quasisimple normal subgroup E(G) which is irreducible on V = Cn. In the

former case, inspection shows that all the members of the family C have

positive dimension except those in the sub-family C5, which only exist when

the dimension n is a prime power. Any prime power q is in the set D: indeed,

it is the dimension of an irreducible representation of SL2(q) when q ≥ 5,

and 2,3,4 are dimensions of irreducibles for covers of A5, A6. We conclude

that n ∈ D in this case.

Now consider the second case, in which E(G) is quasisimple and ir-

reducible on Cn. By definition of D, this means that either n ∈ D, or
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E(G) = An+1 and the representation of E(G) on Cn is the nontrivial ir-

reducible constituent of the natural permutation representation. However,

the latter representation embeds An+1 in On(C), an orthogonal subgroup of

SLn(C), contradicting the Lie primitivity of G. Hence n ∈ D in this case as

well, completing the proof.

Remark As far as the other classical Lie groups are concerned, the above

proof gives the same conclusion for the symplectic groups: namely, if Sp2n(C)

has a finite Lie primitive subgroup then 2n ∈ D. However, for any n ≥ 4 the

orthogonal group On(C) has finite Lie primitive subgroups An+1 and also

O1(C) wr Sn = 2n.Sn, as well as various subgroups of the latter.
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