A conjecture on product decompositions in simple groups

Martin W. Liebeck
Department of Mathematics
Imperial College
London SW7 2BZ, UK

Nikolay Nikolov
Department of Mathematics
Imperial College
London SW7 2BZ, UK

Aner Shalev
Institute of Mathematics
Hebrew University
Jerusalem 91904, Israel

May 24, 2010

Abstract

We propose a conjecture concerning decompositions of finite simple groups as products of conjugate subgroups, and prove it for a large class of maximal subgroups.

1 Introduction

In this paper we propose the following conjecture:
Conjecture There exists an absolute constant c such that if G is a finite simple group and H is any nontrivial subgroup of G, then G is a product of N conjugates of H for some $N \leq c \log |G| / \log |H|$.

Note that since a product of n conjugates of H has size at most $|H|^{n}$, the upper bound for N in the conjecture is best possible, up to the value of the constant c. The conjecture is in the spirit of the main result of [17], which shows that if C is a non-identity conjugacy class of the simple group G, then $G=C^{N}$ for some $N \leq c \log |G| / \log |C|$.

Our conjecture is a far reaching generalization of various recent results. For example, [15, Theorem 1] shows that if G is a simple group of Lie type in

[^0]characteristic p, then G is a product of at most 25 of its Sylow p-subgroups (see also [4] for a recent improvement from 25 to 5). Also [18] shows that every classical group over \mathbb{F}_{q} is a product of at most 200 conjugate subgroups of type $S L_{n}(q)$. These results support the special case of the conjecture where $|H|>|G|^{\epsilon}$ for some fixed $\epsilon>0$, and one has to show that G is a bounded product of conjugates of H. Particular results of this type are essential in the proof that simple groups can be made into expanders (see the announcement [8] and [14]).

In this paper we prove two results which go some way towards establishing the conjecture in the case where H is a maximal subgroup of G. The first is a proof of the conjecture in this case when G is a group of Lie type of bounded rank, and the second when $\log |G| / \log |H|$ is bounded.

Theorem 1 If G is a finite simple group of Lie type of rank r and H is a maximal subgroup of G, then G is a product of N conjugates of H for some $N \leq c \log |G| / \log |H|$, where $c=c(r)$ depends only on r.

Theorem 2 There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ and an absolute constant c such that the following holds. If $k \in \mathbb{N}$, and G is a finite simple group with a maximal subgroup H such that $\log |G| / \log |H| \leq k$ and $|G|>f(k)$, then G is a product of at most $c \log |G| / \log |H|$ conjugates of H.

In Theorem 1 the constant c is not explicit. Likewise the function f in Theorem 2 is not explicit; however our proof shows that the constant c can be taken to be less than 10^{8} provided the rank of G is sufficiently large.

Our proof of Theorem 1, given in Section 2, uses a variety of tools. For the case where $|H|$ is bounded (in terms of the rank r), we use results from [3] and [6] concerning diameters of Cayley graphs. If H is of unbounded order and is not a subfield subgroup $G\left(q_{0}\right)$ (where $G=G(q)$ and $\mathbb{F}_{q_{0}}$ is a subfield of \mathbb{F}_{q}), we use [13, Theorem 1.2], which relies heavily on model theory.

The proof of Theorem 2 is divided into the case of alternating groups (Section 3) and groups of Lie type (Section 4). The alternating case is based on combinatorial arguments. For the groups of Lie type, we need to consider only classical groups of large rank by Theorem 1, and for these our arguments are mostly constructive although we also use some character theoretic methods via recent results from [19] and [23].

2 Proof of Theorem 1

First we state a result taken from [19, Corollary 1] which will be useful at several points in this section and the next.

Lemma 2.1 Let G be a finite group and let k be the minimal degree of a nontrivial complex character of G. Suppose S is a subset of G such that $|S|>|G| / k^{1 / 3}$. Then $G=S^{3}$.

Now we begin the proof of Theorem 1 with a general result about maximal subgroups of groups of Lie type.

Lemma 2.2 There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $G=G_{r}(q)$ is a simple group of Lie type of rank r over \mathbb{F}_{q}, and H is a maximal subgroup of G, then one of the following holds:
(i) $|H|<f(r)$;
(ii) H is a subfield subgroup;
(iii) $|H| \geq q-1$;

Proof. For G of classical type this is well known, and we give a sketch proof. First, if H lies in one of the collections of Aschbacher subgroups \mathcal{C}_{i} defined in [2], then by inspection of these subgroups (see [9] for their explicit structure), one sees that (i),(ii) or (iii) holds. Otherwise, the main theorem of [2] shows that H is almost simple, and [10] implies that either (i) holds or $F^{*}(H) \in \operatorname{Lie}(p)$, where p is the characteristic of \mathbb{F}_{q}; say $F^{*}(H)=H\left(q_{0}\right)$. By [22, Corollary 6], we have either $q_{0} \geq q^{1 / 2}$ or $q_{0}=q^{1 / 3}$ and $H\left(q_{0}\right)={ }^{3} D_{4}\left(q_{0}\right)$; in either case $\left|H\left(q_{0}\right)\right|>q-1$ and (iii) holds.

Now suppose G is of exceptional Lie type. Write $G=\bar{G}_{\sigma}^{\prime}$, where \bar{G} is a simple adjoint algebraic group of the same type as G over the algebraic closure $\overline{\mathbb{F}}_{q}$ and σ is a Frobenius morphism of \bar{G}. Now [16, Corollary 8] states that if H is a maximal subgroup of G then either $|H|<c$ (an absolute constant), or H is a subfield subgroup, or $H=N_{G}\left(\bar{X}_{\sigma}\right)$ for some σ-stable closed connected subgroup \bar{X} of \bar{G} of positive dimension. In the latter case we establish that $|H| \geq q-1$. This is clear if H is parabolic, so we may assume that \bar{X} is reductive. If \bar{X} has a nontrivial simple factor then H contains a group of Lie type over \mathbb{F}_{q} by $[16,1.13]$, and this clearly has order greater than $q-1$. Otherwise, \bar{X} is a torus, and it is easily seen that the minimum possible order of a torus normalizer is at least $q-1$. This completes the proof.

For the case of bounded maximal subgroups in Theorem 1 (i.e. H as in case (i) of Lemma 2.2), we prove the following result, which is rather more general than what is required.

Proposition 2.3 Suppose G is a simple group of Lie type of rank r, let $1 \neq h \in G$ and let $S=\{1, h\}$. Then G is a product of N conjugates of S for some $N \leq c \log |G|$, where $c=c(r)$ depends only on r.

Proof. By [3] there exists $k \leq 7$ and $g_{1}, \ldots, g_{k} \in G$ generating G, such that the diameter of the Cayley graph of G with respect to these generators is at most $b \log |G|$, where b is an absolute constant. Also, by [6] (see also [11]), if $C=h^{G}$ then there exists $d \leq a r$ such that $G=C^{d}$, where a is an absolute constant.

For each i with $1 \leq i \leq k$, write $g_{i}=h_{i 1} \ldots h_{i d}$ and $g_{i}^{-1}=h_{i 1}^{\prime} \ldots h_{i d}^{\prime}$ with all $h_{i j}, h_{i j}^{\prime} \in C$. Consider the sequence $g_{1}, \ldots, g_{k}, g_{1}^{-1}, \ldots, g_{k}^{-1}$ repeated at least $b \log |G|$ times. By the above, every element of G is equal to a sub-product of elements in this sequence. Replacing each g_{i} by the sequence $h_{i 1}, \ldots, h_{i d}$ and likewise for g_{i}^{-1}, we see that each element of G is a sub-product of the resulting sequence. This means that G is a product of $2 k d b \log |G| \leq 14 a r b \log |G|$ conjugates of S. The result follows.

Note that the case of Theorem 1 where $|H|$ is bounded by a function of r follows immediately from Proposition 2.3, taking $1 \neq h \in H$.

Next we consider the maximal subgroups in case (iii) of Lemma 2.2, excluding subfield subgroups. The main ingredient here is [13, Theorem 1.2], which is proved using a substantial amount of model theory.

Proposition 2.4 Let $G=G(q)$ be a finite simple group of Lie type of rank r, and suppose that H is a maximal non-subfield subgroup of G of order at least $q-1$. Then G is a product of c conjugates of H, where $c=c(r)$ depends only on r.

Proof. Let X be the coset space G / H. Recall that an orbital graph is a graph with vertex set X, and edge set an orbit of G on the set of unordered pairs of elements of X; as G is primitive on X, all the orbital graphs are connected by a classical result of D.G. Higman.

By [13, Theorem 1.2], there is a constant $d=d(r)$ such that the diameters of all the orbital graphs are at most d. Each orbital consists of elements of X in double cosets $H g^{ \pm 1} H$ for some $1 \neq g \in G \backslash H$. It follows that for each $g \in G \backslash H$, every element $x \in G$ can be written as $x=h_{1} g^{\epsilon_{1}} \cdots h_{e} g^{\epsilon_{e}}$, where $h_{i} \in H, \epsilon_{i}= \pm 1$ and $e \leq d$. Hence G is the union of at most $\sum_{e=0}^{d} 2^{e}<2^{d+1}$ products of the form $H g^{\epsilon_{1}} \cdots H g^{\epsilon_{e}}$ with $e \leq d$. One of these products, say $H g^{\epsilon_{1}} \cdots H g^{\epsilon_{e}}$ therefore has size greater than $|G| / 2^{d+1}$. This implies that there is a product S of at most d conjugates of H such that $|S|>|G| / 2^{d+1}$.

We now use Lemma 2.1 to complete the proof: by [10], if q is large enough (as we may assume) then the minimal nontrivial character degree k of G satisfies $k>2^{3(d+1)}$, so for the set S in the previous paragraph, we have $G=S^{3}$. It follows that G is a product of at most $3 d$ conjugates of H.

It remains to prove Theorem 1 in the case where H is a subfield subgroup. For this we require the following result.

Lemma 2.5 Let \mathbb{F}_{q} be a field and let $\mathbb{F}_{q_{0}}$ be a subfield with $\left|\mathbb{F}_{q}: \mathbb{F}_{q_{0}}\right|=$ d. Let G be $S L_{2}(q), S z(q)$ or $S U_{3}(q)$, and let G_{0} be a subfield subgroup $S L_{2}\left(q_{0}\right), S z\left(q_{0}\right)$ or $S U_{3}\left(q_{0}\right)$, respectively. Then G is a product of at most $26 d$ conjugates of a subgroup G_{0}.

Proof. First consider $G=S L_{2}(q)$ and let G_{0} be a subgroup $S L_{2}\left(q_{0}\right)$. Take U, U_{0} to be Sylow p-subgroups of G, G_{0} respectively, and choose notation so that $U=\left\{u(\alpha): \alpha \in \mathbb{F}_{q}\right\}$ and $U_{0}=\left\{u(\alpha): \alpha \in \mathbb{F}_{q_{0}}\right\}$, where

$$
u(\alpha)=\left(\begin{array}{ll}
1 & \alpha \\
0 & 1
\end{array}\right)
$$

If $h(\lambda)=\operatorname{diag}\left(\lambda^{-1}, \lambda\right) \in G$, then $U_{0}^{h(\lambda)}=\left\{u\left(\lambda^{2} \alpha\right): \alpha \in \mathbb{F}_{q_{0}}\right\}$. Choose a basis $\lambda_{1}, \ldots, \lambda_{d}$ for \mathbb{F}_{q} over $\mathbb{F}_{q_{0}}$. Now every element of a finite field is a sum of two squares (since more than half of the field elements are squares). Expressing each λ_{i} as a sum of two squares, it follows that there is a spanning set $\alpha_{1}^{2}, \ldots, \alpha_{2 d}^{2}$ for \mathbb{F}_{q} over $\mathbb{F}_{q_{0}}$, where $\alpha_{i} \in \mathbb{F}_{q}$. Hence

$$
\begin{equation*}
U=U_{0}^{h\left(\alpha_{1}\right)} \cdots U_{0}^{h\left(\alpha_{2 d}\right)} \tag{1}
\end{equation*}
$$

By $[15$, Theorem D$], G$ is a product of 13 conjugates of U, and the result follows.

Next consider $G=S z(q)$. Again let U, U_{0} be Sylow p-subgroups of G, G_{0}. By [24] (see Section 4), we have $q=2^{2 k+1}$ and $U=\left\{(\alpha, \beta): \alpha, \beta \in \mathbb{F}_{q}\right\}$ with multiplication

$$
(\alpha, \beta)(\gamma, \delta)=\left(\alpha+\gamma, \alpha \gamma^{\theta}+\beta+\delta\right)
$$

where $\gamma^{\theta}=\gamma^{2^{k+1}}$. Also $U_{0}=\left\{(\alpha, \beta): \alpha, \beta \in \mathbb{F}_{q_{0}}\right\}$. Now $N_{G}(U)$ contains a subgroup $\left\{\phi(\zeta): \zeta \in \mathbb{F}_{q}^{*}\right\}$, where

$$
(\alpha, \beta)^{\phi(\zeta)}=\left(\zeta \alpha, \zeta^{1+\theta} \beta\right)
$$

If $\zeta_{1}, \ldots, \zeta_{d}$ is a basis for \mathbb{F}_{q} over $\mathbb{F}_{q_{0}}$, then as above we see that for any $\alpha \in \mathbb{F}_{q}$, there exists β such that (α, β) lies in the product $U_{0}^{\phi\left(\zeta_{1}\right)} \cdots U_{0}^{\phi\left(\zeta_{d}\right)}$. Also $1+\theta$ is surjective on $\mathbb{F}_{q}\left(\right.$ since $\left.\left(2^{2 k+1}-1,2^{k+1}+1\right)=1\right)$, so there is a basis for \mathbb{F}_{q} over $\mathbb{F}_{q_{0}}$ of the form $\eta_{1}^{1+\theta}, \ldots, \eta_{d}^{1+\theta}$, and any element $(0, \delta)$ $\left(\delta \in \mathbb{F}_{q}\right)$ lies in the product $U_{0}^{\phi\left(\eta_{1}\right)} \cdots U_{0}^{\phi\left(\eta_{d}\right)}$. Since $(\alpha, \beta)(0, \delta)=(\alpha, \beta+\delta)$, it follows that

$$
\begin{equation*}
U=U_{0}^{\phi\left(\zeta_{1}\right)} \cdots U_{0}^{\phi\left(\zeta_{d}\right)} \cdot U_{0}^{\phi\left(\eta_{1}\right)} \cdots U_{0}^{\phi\left(\eta_{d}\right)} \tag{2}
\end{equation*}
$$

a product of $2 d$ conjugates of U_{0}. Now the result follows from [15] as above.

Finally, let $G=S U_{3}(q)$. This is similar to the previous case. Here $d=\left|\mathbb{F}_{q}: \mathbb{F}_{q_{0}}\right|$ is odd, and from $[20$, p.255], a Sylow p-subgroup U of G can be taken as

$$
U=\left\{(\alpha, \beta): \alpha, \beta \in \mathbb{F}_{q^{2}}, \beta+\bar{\beta}+\alpha \bar{\alpha}=0\right\}
$$

where $\bar{\alpha}=\alpha^{q}$, and the multiplication is $(\alpha, \beta)(\gamma, \delta)=(\alpha+\gamma, \beta+\delta-\bar{\alpha} \gamma)$. Also $U_{0}=\left\{(\alpha, \beta): \alpha, \beta \in \mathbb{F}_{q_{0}^{2}}\right\} \in \operatorname{Syl}_{p}\left(G_{0}\right)$. For $\lambda \in \mathbb{F}_{q^{2}}^{*}, N_{G}(U)$ contains an element $k(\lambda)$ such that

$$
(\alpha, \beta)^{k(\lambda)}=\left(\lambda^{2} \bar{\lambda}^{-1} \alpha, \lambda \bar{\lambda} \beta\right)
$$

We can choose $\lambda_{1}, \ldots, \lambda_{d}$ such that $\lambda_{i}^{2} \bar{\lambda}_{i}^{-1}(1 \leq i \leq d)$ form a basis for $\mathbb{F}_{q^{2}}$ over $\mathbb{F}_{q_{0}^{2}}$. Hence for any $\alpha \in \mathbb{F}_{q^{2}}$, there exists β such that (α, β) lies in the product $U_{0}^{k\left(\lambda_{1}\right)} \cdots U_{0}^{k\left(\lambda_{d}\right)}$. Similarly there exist $\mu_{1}, \ldots, \mu_{d} \in \mathbb{F}_{q^{2}}$ such that any $(0, \delta)\left(\delta \in \mathbb{F}_{q^{2}}, \delta+\bar{\delta}=0\right)$ lies in the product $U_{0}^{k\left(\mu_{1}\right)} \cdots U_{0}^{k\left(\mu_{d}\right)}$. Hence

$$
\begin{equation*}
U=U_{0}^{k\left(\lambda_{1}\right)} \cdots U_{0}^{k\left(\lambda_{d}\right)} \cdot U_{0}^{k\left(\mu_{1}\right)} \cdots U_{0}^{k\left(\mu_{d}\right)} \tag{3}
\end{equation*}
$$

Now the result follows as in the previous cases.

Now we are able to prove Theorem 1 for subfield subgroups. The next result is slightly more general than we need, since it deals with arbitrary subfield subgroups, not just maximal ones.

Proposition 2.6 Let $G=G(q)$ be a finite simple group of Lie type of rank r, and let $H=G\left(q_{0}\right)$ be a subfield subgroup of G, where $\left|\mathbb{F}_{q}: \mathbb{F}_{q_{0}}\right|=d$. Then G is a product of at most $100 r^{2} d$ conjugates of H.

Proof. First consider the case where G is an untwisted group. As in [5], take G to be generated by root groups $U_{\alpha}=\left\{x_{\alpha}(t): t \in \mathbb{F}_{q}\right\}$ for α in the root system Φ of G, and H to be generated by subgroups $U_{\alpha}^{0}=$ $\left\{x_{\alpha}(t): t \in \mathbb{F}_{q_{0}}\right\}$. By [5, 5.3.3], we have $U=\prod_{\alpha \in \Phi^{+}} U_{\alpha} \in \operatorname{Syl}_{p}(G)$ and $U_{0}=\prod_{\alpha \in \Phi^{+}} U_{\alpha}^{0} \in \operatorname{Syl}_{p}\left(G_{0}\right)$, where the product is taken over positive roots in increasing order. Since U_{α} is a Sylow p-subgroup of the group $\left\langle U_{ \pm \alpha}\right\rangle \cong(P) S L_{2}(q)$, the equality (1) shows that U_{α} is a product of $2 d$ conjugates of U_{α}^{0}. It follows that U is a product of $2 d\left|\Phi^{+}\right|$conjugates of U_{0}, and hence by $[15$, Theorem D$], G$ is a product of at most $26 d\left|\Phi^{+}\right|$conjugates of G_{0}. Since $\left|\Phi^{+}\right|<2 r^{2}$, the result follows in the untwisted case.

Now suppose that G is a twisted group. Again let U, U_{0} be Sylow p subgroups of G, H respectively. Then [5, 13.6.1] shows that we can write $U=U_{1} \cdots U_{k}$, where $k \leq\left|\Phi^{+}\right|$and each U_{i} is a Sylow p-subgroup of one of the groups $(P) S L_{2}\left(q^{i}\right)(i \in\{1,2,3\}),(P) S U_{3}(q)$ or $S z(q)$, with a similar expression $U_{0}=U_{1}^{0} \cdots U_{k}^{0}$ for U_{0}. By (1), (2), (3), each U_{i} is a product of at most $2 d$ conjugates of U_{i}^{0}, and so U is a product of $2 d k$ conjugates of U_{0}.

Now [15, Theorem D] shows that G is a product of at most $50 d k$ conjugates of G_{0}. This completes the proof.

The proof of Theorem 1 is now complete.

3 Proof of Theorem 2 for alternating groups

Let $G=A_{n}, k \in \mathbb{N}$, and let H be a maximal subgroup of G with $|H| \geq$ $|G|^{1 / k}$.

Lemma 3.1 For n sufficiently large in terms of k, one of the following holds:
(i) $H=\left(S_{m} \times S_{n-m}\right) \cap G$ for some m (H intransitive)
(ii) $H=\left(S_{m} 2 S_{n / m}\right) \cap G$ for some proper divisor m of n (H imprimitive).

Proof. The only alternative to (i) and (ii) is that H is primitive on $\{1, \ldots, n\}$. If this is the case then $|H|<4^{n}$ by [21], which is not possible provided $4^{n k}<n!/ 2$.

The next lemma allows us to work with S_{n} instead of A_{n} in the proof of Theorem 2, which is convenient.

Lemma 3.2 Let H be a subgroup of S_{n} with $H \not 又 A_{n}$, and define $K=$ $H \cap A_{n}$. Suppose that $S_{n}=\prod_{i=1}^{t} H^{a_{i}}$ for some $a_{i} \in S_{n}$. Then, provided $n>2^{3 t}, A_{n}$ is a product of $3 t$ conjugates of K.

Proof. Note first that since by hypothesis H is normalized by an odd permutation, any S_{n}-conjugate of H is also an A_{n}-conjugate. Now pick an element $x \in H \backslash K$ so that $H=K \cup x K$. Then

$$
\prod_{i=1}^{t} H^{a_{i}}=\prod_{i=1}^{t}(K \cup x K)^{a_{i}}=\prod_{i=1}^{t}\left(K^{a_{i}} \cup x^{a_{i}} K^{a_{i}}\right)
$$

For any t-tuple $\mathbf{b}=\left(b_{1}, \ldots, b_{t}\right)$ with $b_{i} \in\left\{1, x^{a_{i}}\right\}$, define the set

$$
X_{\mathbf{b}}=\prod_{i=1}^{t} b_{i} K^{a_{i}}=b_{1} \cdots b_{t} \prod_{i=1}^{t} K^{g_{i}}
$$

where $g_{i}=a_{i} b_{i+1} \cdots b_{t}$.
Altogether we see that A_{n} is a union of the 2^{t-1} sets $X_{\mathbf{b}}$ as \mathbf{b} ranges over all possible t-tuples \mathbf{b} with an even number of terms $b_{j}=1$. By the
pigeonhole principle $\left|X_{\mathbf{b}}\right|>\left|A_{n}\right| / 2^{t}$ for at least one such \mathbf{b}. Put $X=X_{\mathbf{b}}$. Then by Lemma 2.1 and the fact that the minimal degree of a nontrivial complex representation of A_{n} is $n-1 \geq 2^{3 t}$, we have $A_{n}=X^{3}$, and it easily follows that A_{n} is a product of $3 t$ conjugates of K.

In view of Lemma 3.2, to prove Theorem 2 for alternating groups it is sufficient to express the symmetric group S_{n} as a product of the appropriate numbers of conjugates of the subgroups $H=S_{m} \times S_{n-m}$ and $H=S_{m}$ 乙 $S_{n / m}$ in Lemma 3.1.

In the following lemmas, the inclusions of the groups S_{k} and S_{k}^{t} in S_{n} are the natural ones: the S_{k} fixes $n-k$ points, and the S_{k}^{t} acts imprimitively on $k t$ points and fixes the rest.

Lemma 3.3 $S_{4 n}$ is a product of 6 conjugates of $S_{2 n}$. More generally if $k \leq n \leq 2 k$ then S_{n} is a product of at most 8 conjugates of S_{k}.

Proof. We will prove the first part of the statement; the proof of the second is similar. For $i=1, \ldots, 4$ define subsets X_{i} of $\{1,2, \ldots, 4 n\}$ as follows:

$$
\begin{aligned}
X_{1} & =\{1, \ldots, 2 n\}, \quad X_{2}=\{2 n+1, \ldots, 4 n\} \\
X_{3} & =\{1, \ldots, n, 2 n+1, \ldots, 3 n\} \\
X_{4} & =\{n+1, n+2, \ldots, 2 n, 3 n+1,3 n+2, \ldots, 4 n\}
\end{aligned}
$$

Let J_{i} be the copy of $S_{2 n}$ acting on the set X_{i} and fixing all points outside.
Let $g \in S_{4 n}$ and put $Y=g X_{1} \cap X_{2}, Z=g X_{2} \cap X_{1}$. Then $|Y|=|Z|$ and with an application of an element $h \in J_{1} J_{2}$ we can make $h Y$ and $h Z$ to be initial segments of X_{2} and X_{1} respectively. Now with an application of an element $h^{\prime} \in J_{3} J_{4}$ we can swap $h Y$ and $h Z$ fixing all the other elements and thus achieve that $h^{\prime} h g$ stabilizes X_{1} and X_{2} and so $h^{\prime} h g \in J_{1} J_{2}$. Therefore $g \in J_{1} J_{2} J_{3} J_{4} J_{1} J_{2}$.

Lemma 3.4 $S_{n m}=A B A$ where A is a conjugate of $\left(S_{n}\right)^{m}$ and B is a conjugate of $\left(S_{m}\right)^{n}$.

Proof. This is the content of Lemma 4 of [1].
Corollary 3.5 For an integer $t \geq 2$ the group $S_{n^{t}}$ is a product of $2 t-1$ conjugates of $\left(S_{n}\right)^{n^{t-1}}$.

Proof. Use induction on t. The case $t=1$ is trivial. If the result is true for some $t \geq 1$ apply Lemma 3.4 with $m=n^{t}$ to get that

$$
S_{n^{t+1}}=A B A, \quad A=S_{n}^{n^{t}}, \quad B \text { conjugate to } S_{n^{t}}^{n}
$$

and apply the induction hypothesis to B.

Proposition 3.6 Suppose that $n=m k$. Then S_{n} is a product of at most $16 \frac{\log n}{\log m}+24$ copies of $H=\left(S_{m}\right)^{k}$.

Proof. Let l be the largest integer such that $m^{l} \leq n$. Then $l \leq \frac{\log n}{\log m}$ and if $a=m^{l}$ then $a>k$. By Corollary 3.5, S_{a} is a product of $2 l-1$ conjugates of $\left(S_{m}\right)^{m^{l-1}}$. Let b be the largest integer such that $b a \leq n$. Then $a b \geq n / 2$ and also $b m^{l-1} \leq k$. Hence $\left(S_{m}\right)^{b m^{l-1}} \leq H$ and so $\left(S_{a}\right)^{b}$ is a product of $2 l-1$ conjugates of H.

Again using Lemma 3.4 we see that $S_{a b}$ is a product of two conjugates of $\left(S_{b}\right)^{a}$ and a conjugate of $\left(S_{a}\right)^{b}$. We saw that $\left(S_{a}\right)^{b}$ is contained in a product of at most $2 l-1$ conjugates of H and we claim that $\left(S_{b}\right)^{a}$ is contained in a product of at most 2 conjugates of H. To see this, observe that each copy of S_{m} contains the direct product of at least $[m / b] \geq m / 2 b$ copies of S_{b} and so $H=\left(S_{m}\right)^{k}$ contains the direct product of at least $k m /(2 b)=$ $n / 2 b \geq a b / 2 b=a / 2$ copies of S_{b}. Therefore $\left(S_{b}\right)^{a}$ is contained in at most 2 conjugates of H, proving the claim.

Therefore $S_{a b}$ is contained in the product of at most $2 l-1+4=2 l+3$ conjugates of H. Since $a b \geq n / 2$ it follows from Lemma 3.3 that S_{n} is a product of 8 conjugates of $S_{a b}$, which proves the proposition.

Proposition 3.7 For $2 \leq m \leq n$, the group S_{n} is a product of at most $320 t$ conjugates of S_{m}, where $t=\frac{n \log n}{m \log m}$.

Proof. Let n^{\prime} be the largest multiple of m which is less than or equal to n. Then $n^{\prime}>n / 2$ and so S_{n} is a product of at most 8 conjugates of $S_{n^{\prime}}$. Put $T=S_{m}^{n^{\prime} / m}$. By Proposition $3.6, S_{n^{\prime}}$ is in a product of at most $16 \log n^{\prime} / \log m+24$ conjugates of T, and T is a product of n^{\prime} / m copies of S_{m}. Altogether S_{n} is a product of at most

$$
8 \frac{n^{\prime}}{m}\left(16 \frac{\log n^{\prime}}{\log m}+24\right) \leq 8 \frac{n}{m}\left(\frac{16 \log n}{\log m}+24\right)<320 \frac{n \log n}{m \log m}
$$

conjugates of S_{m}.

Proposition 3.8 Suppose $n=m k$ for integers $m, k \in \mathbb{N}$. The group S_{n} is a product of at most $1280 t$ conjugates of $L=S_{m} \backslash S_{k}$, where $t=$ $\log \left|S_{n}\right| / \log |L|$.

Proof. In the case where $\left|S_{k}\right|<\left|S_{m}\right|^{k}$, we have

$$
\log |G| / \log |L|>\frac{1}{2} \log |G| / k \log \left|S_{m}\right| \geq \frac{1}{4} \log n / \log m
$$

and we can apply Proposition 3.6 with subgroup $H=S_{m}^{k}$. Otherwise, $\left|S_{k}\right| \geq\left|S_{m}\right|^{k}$, which gives

$$
\log |G| / \log |L| \geq \frac{1}{2} \log \left|S_{n}\right| / \log \left|S_{k}\right| \geq \frac{1}{4} \frac{n \log n}{k \log k}
$$

and we apply Proposition 3.7 with $H=S_{k}$.

As observed above, this proposition together with Lemmas 3.2 and 3.3 gives the bounds necessary to complete the proof of Theorem 2 for alternating groups.

4 Proof of Theorem 2 for groups of Lie type

Before embarking on the proof, we prove two lemmas we shall need concerning the generation of $S L_{n}(q)$. In the statement we abuse notation slightly by referring to the derived subgroup of a Levi subgroup of G also as a Levi subgroup.

Lemma 4.1 There is an absolute constant b such that if $G=S L_{n}(q)$ and K is a Levi subgroup $S L_{r}(q)$ of G, then G is a product of at most $b(n / r)^{2}$ conjugates of K.

Proof. Write $n=t r+k$ with $0 \leq k<r$. We first find a suitable product of conjugates of K containing all the upper unitriangular matrices in a Levi subgroup $S L_{t r}(q)$ of G. This is trivial if $t=1$, so assume $t \geq 2$.

We first get all the upper unitriangular matrices in a Levi subgroup $S L_{2 r}(q)$. Define

$$
l=\left(\begin{array}{cc}
I & I \\
0 & I
\end{array}\right) \in S L_{2 r}(q)
$$

Then for $d=\operatorname{diag}(a, I) \in K$ (where $\left.a \in S L_{r}(q)\right)$ we have

$$
d l d^{-1} l^{-1}=\left(\begin{array}{cc}
I & a-I \\
0 & I
\end{array}\right) .
$$

Thus the product $\left(K K^{l}\right)^{2}$ contains all matrices in $S L_{2 r}(q)$ of the form

$$
\left(\begin{array}{cc}
I & a+b-2 I \\
0 & I
\end{array}\right) \quad\left(a, b \in S L_{r}(q)\right) .
$$

Now we claim that an arbitrary matrix in $M_{r}(q)$ (the set of all $r \times r$ matrices over \mathbb{F}_{q}) can be expressed as a sum of 3 matrices of the form $a+b-2 I$ with $a, b \in S L_{r}(q)$. To see this, observe first that taking a to be upper unitriangular and b lower unitriangular, we can make $a+b-2 I$ equal to
any matrix with 0 's on the diagonal. If $q>2$, we can add a further matrix $a^{\prime}+b^{\prime}-2 I$ with a^{\prime}, b^{\prime} diagonal to make the first $r-1$ diagonal entries arbitrary; then we can adjust the last diagonal entry by adding a further diagonal matrix $a^{\prime \prime}+b^{\prime \prime}-2 I$. If $q=2$, let $a \in S L_{r}(q)$ be a monomial matrix with prescribed diagonal entries, and let $b=I$; then $a+b$ can have arbitrary diagonal entries. This proves the claim.

It follows from the previous paragraph that there is a product of 12 conjugates of K which contains all the matrices $\left(\begin{array}{cc}I & X \\ 0 & I\end{array}\right)$ in $S L_{2 r}(q)$. Adding two further conjugates to get the matrices $\operatorname{diag}(a, I), \operatorname{diag}(I, a)\left(a \in S L_{r}(q)\right)$, we see that there is a product of 14 conjugates of K containing all the upper unitriangular matrices in $S L_{2 r}(q)$.

To get to $S L_{3 r}(q)$ we repeat the above argument to get two further products of 12 conjugates of K containing the matrices

$$
\left(\begin{array}{ccc}
I & 0 & X \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right), \quad\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & I & X \\
0 & 0 & I
\end{array}\right)
$$

Similarly, to get $S L_{t r}(q)$ we choose products of 12 conjugates of K to get matrices as above with X in one of $\binom{t}{2}$ obvious $r \times r$ blocks, and a further t conjugates to get block diagonal matrices, to conclude that the group P of upper unitriangular matrices in $S L_{t r}(q)$ is contained in a product of $12\binom{t}{2}+t$ conjugates of K. By [15], $S L_{t r}(q)$ is a product of 25 conjugates of P (improved to 5 in [4]), hence of $60\binom{t}{2}+5 t$ conjugates of K.

Now let $s=[n / 2]$ and take a Levi subgroup $R=S L_{s}(q)$ in $S L_{t r}(q)$. By the above argument, a subgroup $S L_{2 s}(q)$ of G is contained in a product of $14 \cdot 5=70$ conjugates of R. If n is even then $S L_{2 s}(q)=G$; and if n is odd then by [18, Lemma 2], G is a product of 4 conjugates of $S L_{2 s}(q)$. We conclude that G is a product of

$$
4 \cdot 70 \cdot\left(60\binom{t}{2}+5 t\right)
$$

conjugates of K, giving the result.
Lemma 4.2 Let $G=S L_{n}(q)$ and write $k=[n / 2]$. Define T to be the subgroup

$$
\left\{\left(\begin{array}{ccc}
I & X & (0) \\
0 & I & (0) \\
(0) & (0) & (1)
\end{array}\right): X \in M_{k}(q)\right\}
$$

(where bracketed entries are present only if n is odd). Then G is a product of 152 conjugates of T.

Proof. It follows from [7, 2.1] that $S L_{2 k}(q)$ is a product of 38 conjugates of T. And if n is odd, [18, Lemma 2] implies that G is a product of 4 conjugates of $S L_{2 k}(q)$.

We now embark on the proof of Theorem 2 for G a simple group of Lie type. Let $k \in \mathbb{N}$ and let H be a maximal subgroup of G with $|H| \geq|G|^{1 / k}$. By Theorem 1 we may assume that the rank of G is large (in terms of k), so that G is a classical group. Write $G=C l_{n}(q)$, a classical group with natural module V of dimension n over $\mathbb{F}=\mathbb{F}_{q^{u}}$, where $u=2$ if G is unitary and $u=1$ otherwise.

By [2], the maximal subgroup H is either in one of the Aschbacher families $\mathcal{C}_{i}(1 \leq i \leq 8)$ or it lies in the collection \mathcal{S} of almost simple, irreducible subgroups (satisfying various other conditions); see [9] for descriptions of all these families.

In the following statement, we say a quantity is 'bounded' if it is bounded in terms of k.

Lemma 4.3 The maximal subgroup H is of one of the following types:
(i) a parabolic subgroup of G
(ii) the stabilizer of a nonsingular subspace of $V\left(G \neq L_{n}(q)\right)$
(iii) $H \in \mathcal{C}_{2}: C l_{a}(q)$ 乙 S_{b} with $a b=n$ and b bounded; or $G L_{n / 2}\left(q^{u}\right) \cdot 2$ $\left(G \neq L_{n}(q)\right)$
(iv) $H \in \mathcal{C}_{3}: C l_{a}\left(q^{b}\right)$ with $a b=n$ and b bounded; or $G U_{n / 2}(q) .2 \quad(G$ orthogonal or symplectic)
(v) $H \in \mathcal{C}_{4}: C l_{a}(q) \otimes C l_{b}(q)$ with $a b=n$ and b bounded
(vi) $H \in \mathcal{C}_{5}: C l_{n}\left(q^{1 / r}\right)$ with r bounded, or $S p_{n}(q), S O_{n}(q)$ (G unitary)
(vii) $H \in \mathcal{C}_{8}: S p_{n}(q), S O_{n}(q), S U_{n}\left(q^{1 / 2}\right)\left(G=L_{n}(q)\right)$, or $O_{n}(q) \quad(G=$ $S p_{n}(q), q$ even $)$.

Proof. This follows from inspection of [9, Chap. 4], noting that subgroups in families \mathcal{C}_{6} and \mathcal{C}_{7} do not contain subgroups of order larger than $|G|^{1 / k}$, and neither does family \mathcal{S}, by [12].

Lemma 4.4 Assume H is not a subfield subgroup $C l_{n}\left(q^{1 / r}\right)$. Then H contains a subgroup $S \cong S L_{r}\left(q^{u}\right)$ with the following properties:
(i) n / r is bounded
(ii) there is a Levi subgroup $L \cong S L_{s}\left(q^{u}\right)$ of G containing S
(iii) the embedding of S in L takes the form

$$
\psi: A \rightarrow \operatorname{diag}\left(A, \phi_{2}(A), \ldots, \phi_{t}(A), I_{l}\right) \quad\left(A \in S L_{r}\left(q^{u}\right)\right)
$$

where $s=r t+l$ and the ϕ_{i} are automorphisms of $S L_{r}\left(q^{u}\right)$.

Proof. This is clear from Lemma 4.3 when H is not as in 4.3(iv),(v). In case (iv) of 4.3 with H of type $C l_{a}\left(q^{b}\right)$, we take a large Levi subgroup of H of the form $S L_{r}\left(q^{b u}\right)$, and a subgroup $S=S L_{r}\left(q^{u}\right)$ of this; then S is embedded in the required fashion in a Levi $L=S L_{b r}\left(q^{u}\right)$ of G. Similarly in case (v), we take S to be a large Levi in the factor $C l_{a}(q)$ of H.

Lemma 4.5 Assume H is not a subfield subgroup $C l_{n}\left(q^{1 / r}\right)$, and let S be as in the previous lemma. Then there is a Levi subgroup $R \cong S L_{r}\left(q^{u}\right)$ of G, and an element $x \in L$, such that $\left(S S^{x}\right)^{3}$ contains R.

Proof. Let S, L be as in the previous lemma, and let $y \in S L_{r}\left(q^{u}\right)$ be a regular semisimple element. Define $x=\operatorname{diag}\left(y^{-1}, I_{s-r}\right) \in L$. Then for $\psi(A)=\operatorname{diag}\left(A, \phi_{2}(A), \ldots, \phi_{t}(A), I_{l}\right) \in S$ as in 4.4(iii), we have

$$
\psi(A)^{-1} \psi(A)^{x}=\operatorname{diag}\left(A^{-1} y A y^{-1}, I_{s-r}\right)
$$

Hence the product $S S^{x}$ contains all matrices $\operatorname{diag}\left(y^{A} y^{-1}, I_{s-r}\right) \in L$ for $A \in$ $S L_{r}\left(q^{u}\right)$. These matrices lie in a Levi subgroup $R \cong S L_{r}\left(q^{u}\right)$ of G. By [23, 2.3], if C is the class y^{R} then $C^{3}=R$, and hence also $\left(C y^{-1}\right)^{3}=R$. Hence $\left(S S^{x}\right)^{3}$ contains R.

Lemma 4.6 Assume H is not a subfield subgroup. Then Theorem 2 holds.
Proof. Let $R \cong S L_{r}\left(q^{u}\right)$ be as in the previous lemma, and choose a Levi subgroup L of G of type $S L$, maximal subject to containing R. Then $L \cong S L_{m}\left(q^{u}\right)$ with $m \geq \frac{1}{2} n-1$. By Lemma $4.1, L$ is contained in a product of $b(n / r)^{2}$ conjugates of R; by $4.5, R$ is contained in a product of 6 conjugates of H; and by [18, Theorem 1], G is a product of 200 conjugates of L. We conclude that G is a product of $1200 b(n / r)^{2}$ conjugates of H. As H contains $S \cong S L_{r}\left(q^{u}\right)$, we have $\log |G| / \log |H| \geq b^{\prime}(n / r)^{2}$ for some positive constant b^{\prime}, and the conclusion follows.

Lemma 4.7 Theorem 2 holds if H is a subfield subgroup.
Proof. Assume H is a subfield subgroup $C l_{n}\left(q^{1 / r}\right)$. We may choose a Levi subgroup $L \cong S L_{2 m}\left(q^{u / r}\right)$ of H with $2 m \geq \frac{1}{2} n-2$, and a Levi subgroup $L_{0} \cong S L_{2 m}\left(q^{u}\right)$ of G containing L. Define

$$
\begin{aligned}
& M=\left\{\left(\begin{array}{cc}
I_{m} & X \\
0 & I_{m}
\end{array}\right): X \in M_{m}\left(q^{u / r}\right)\right\} \leq L \\
& M_{0}=\left\{\left(\begin{array}{cc}
I_{m} & Y \\
0 & I_{m}
\end{array}\right): Y \in M_{m}\left(q^{u}\right)\right\} \leq L_{0}
\end{aligned}
$$

Write $k=\mathbb{F}_{q^{u / r}}, K=\mathbb{F}_{q^{u}}$. There is a set of $2 r$ squares $a_{1}^{2}, \ldots, a_{2 r}^{2}\left(a_{i} \in K\right)$ which span K over k. Define $\lambda_{i}=\operatorname{diag}\left(a_{i}^{-1} I_{m}, a_{i} I_{m}\right) \in L$. Then

$$
\left(\begin{array}{cc}
I_{m} & X \\
0 & I_{m}
\end{array}\right)^{\lambda_{i}}=\left(\begin{array}{cc}
I_{m} & a_{i}^{2} X \\
0 & I_{m}
\end{array}\right)
$$

and hence we see that the product $M^{\lambda_{1}} \ldots M^{\lambda_{2 r}}=M_{0}$. By Lemma 4.2, L_{0} is a product of 152 (actually the proof gives 38) conjugates of M_{0}. Finally, G is a product of 200 conjugates of L_{0} by [18]. It follows that G is a product of $2 r \cdot 38 \cdot 200$ conjugates of H. This completes the proof.

The proof of Theorem 2 is now complete.

References

[1] M. Abert, Symmetric groups as products of abelian subgroup, Bull. London Math. Soc. 34 (2002), 451-456.
[2] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), 469-514.
[3] L. Babai, W.M. Kantor and A. Lubotzky, Small diameter Cayley graphs for finite simple groups, Europ. J. Comb. 10 (1989), 507-522.
[4] L. Babai, N. Nikolov and L. Pyber, Expansion and product decompositions of finite groups: variations on a theme of Gowers, in preparation.
[5] R.W. Carter, Simple groups of Lie type, Wiley Interscience, 1972.
[6] E.W. Ellers, N. Gordeev and M. Herzog, Covering numbers for Chevalley groups, Israel J. Math. 111 (1999), 339-372.
[7] M. Kassabov, Universal lattices and unbounded rank expanders, Invent. Math. 170 (2007), 297-326.
[8] M. Kassabov, A. Lubotzky and N. Nikolov, Finite simple groups as expanders, Proc. Nat. Acad. Sci. USA 103 (2006), 6116-6119.
[9] P. Kleidman and M.W. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lecture Note Series 129, Cambridge Univ. Press, 1990.
[10] V. Landazuri and G.M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418-443.
[11] R. Lawther and M.W. Liebeck, On the diameter of a Cayley graph of a simple group of Lie type based on a conjugacy class, J. Comb. Theory Ser. A 83 (1998), 118-137.
[12] M.W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc. 50 (1985), 426-446.
[13] M.W. Liebeck, H.D. Macpherson and K. Tent, Primitive permutation groups of bounded orbital diameter, Proc. London Math. Soc. 100 (2010), 216-248.
[14] M.W. Liebeck, N. Nikolov and A. Shalev, Groups of Lie type as products of $S L_{2}$ subgroups, J. Algebra, to appear.
[15] M.W. Liebeck and L. Pyber, Finite linear groups and bounded generation, Duke Math. J. 107 (2001), 159-171.
[16] M.W. Liebeck and G.M. Seitz, On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc. 350 (1998), 3409-3482.
[17] M.W. Liebeck and A. Shalev, Diameters of finite simple groups: sharp bounds and applications, Annals of Math. 154 (2001), 383-406.
[18] N. Nikolov, A product decomposition for the classical quasisimple groups, J. Group Theory 10 (2007), 43-53.
[19] N. Nikolov, L. Pyber, Product decompositions of quasirandom groups and a Jordan type theorem, J. Europ. Math. Soc., to appear.
[20] M.E. O'Nan, A characterization of $U_{3}(q)$, J. Algebra 22 (1972), 254296.
[21] C.E. Praeger and J. Saxl, On the orders of primitive permutation groups, Bull. London Math. Soc. 12 (1980), 303-307.
[22] G.M. Seitz, Representations and maximal subgroups of finite groups of Lie type, Geom. Ded. 25 (1988), 391-406.
[23] A. Shalev, Word maps, conjugacy classes, and a non-commutative Waring-type theorem, Annals of Math. 170 (2009), 1383-1416.
[24] M. Suzuki, On a class of doubly transitive groups, Annals of Math. 75 (1962), 105-145.

[^0]: The third author acknowledges the support of an EPSRC Visiting Fellowship at Imperial College London

 2000 Mathematics Subject Classification: 20G40

