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Abstract

We present a black-box polynomial-time Monte Carlo algorithm

which, given as input a quasisimple group of Lie type, finds its char-

acteristic.

1 Introduction

In this paper we present an algorithm which, given as input an arbitrary

black-box representation of a group G of Lie type, determines its defining
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characteristic. Knowledge of the characteristic of G is necessary if we wish

to apply the algorithms of [5] and [20], which identify the name of G and

construct an isomorphism between G and its standard copy respectively.

We develop our algorithm in the general context of black-box groups.

Babai & Szemerédi [7] introduced the black-box group model, where group

elements are represented by bit-strings of uniform length. The only group

operations permissible are multiplication, inversion, and checking for equal-

ity with the identity element. Seress [34, p. 17] defines a black-box algorithm

as one which does not use specific features of the group representation, nor

particulars of how group operations are performed; it can only use the oper-

ations listed above. However, a common assumption is that certain oracles

are available. One such is an order oracle to compute the order of an element

of a group.

Both permutation groups and matrix groups defined over finite fields are

covered by the standard black-box model. We discuss in Section 5 how a

suitable order oracle can be realised for these groups.

A Monte Carlo algorithm is a randomized algorithm which may return

an incorrect answer to a decision question, the probability of this event being

less than some specified value. A Las Vegas algorithm is one which never

returns an incorrect answer, but may report failure with probability less

than some specified value.

We present a black-box Monte Carlo algorithm which, given as input a

quasisimple group G of Lie type, determines the characteristic of G. Recall
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that a finite group G is quasisimple if G is perfect and G/Z(G) is a non-

abelian simple group.

If the elements of a black-box group G are represented by bit-strings of

uniform length n, then n is the encoding length of G and |G| ≤ 2n. If G is

described by a bounded list of generators, then the size of the input to a

black-box algorithm is O(n). If G also has Lie rank r and is defined over a

field of size q, then |G| > qr
2
, so r = O(

√
n) and log q = O(n).

Our algorithm assumes that we can construct random elements of a finite

group. Babai [2] presents a black-box Monte Carlo algorithm to construct

in polynomial time nearly uniformly distributed random elements of a finite

group. The product replacement algorithm of Celler et al. [14] also runs

in polynomial time [31]. For a discussion of both algorithms, we refer the

reader to [34, pp. 26-30].

Our principal result is the following.

Theorem 1.1 There is a black-box polynomial-time Monte Carlo algorithm

to determine the characteristic of a quasisimple group G of Lie type, subject

to the existence of an oracle to compute the order of elements in G. If G has

a black-box encoding of length n, then the characteristic can be determined

by choosing a sample of size O(n) of uniformly distributed random elements.

We prove Theorem 1.1 by exhibiting the algorithm. Here is a brief

outline. The algorithm proceeds by constructing centralizers of involutions

in G. The structure of centralizers of involutions in groups of Lie type is

well-known, and we can construct such centralizers efficiently. In particular,

3



few such groups have solvable involution centralisers C. Otherwise, in odd

characteristic, C(∞) (the last term of the derived series of C) is a commuting

product of a small number (at most four) of groups of Lie type having

the same characteristic as G; and in characteristic 2, C(∞) has in general

a non-central normal 2-subgroup. Our algorithm detects the presence or

otherwise of such a normal 2-subgroup. If there is such a 2-subgroup, we

conclude that the characteristic is 2, and stop; if not, the characteristic is

odd and we construct an involution centralizer within a quasisimple factor

of C(∞), and repeat. Ultimately we obtain either a known group which we

can explicitly identify, or (P )SL2(q) for q odd. We can readily deduce the

latter’s characteristic from knowledge of its two largest element orders.

If the quasisimple group G is given to us represented as a linear group

defined over a finite field, then, as we demonstrate in Section 5, we no

longer require an order oracle for G; instead we require such an oracle only

for (P )SL2(q).

The structure of the paper is as follows. In Section 2 we discuss key

concepts, and consider the context of the problem and other approaches to

its solution. In Section 3 we prove the key results on groups of Lie type

which underpin our algorithm and its analysis. We present the algorithm in

Section 4 and consider its complexity in Section 5. Finally we report on our

implementation of the algorithm, which is publicly available in Magma [8].
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2 Background and motivation

We now discuss how our work contributes to the ongoing “matrix recogni-

tion” project, which seeks to develop effective well-understood algorithms

for linear groups. We refer the reader to [30] for background and concepts

related to this work.

Much of the focus of research activity is naturally on (quasi)simple

groups. Two classes of algorithms for their study are under development:

• non-constructive algorithms, which name the non-abelian composition

factor of a given quasisimple group;

• constructive recognition algorithms, which construct an explicit iso-

morphism between a quasisimple group G of known type and a “stan-

dard” (or natural) representation of G, and exploit this isomorphism

to write an arbitrary element of G as a word in its defining generators.

Neumann & Praeger [28] present a Monte Carlo algorithm which decides

whether or not a given subgroup of GLd(q) contains SLd(q). Niemeyer &

Praeger [29] answer the analogous question with SLd(q) replaced by an

arbitrary classical group in its natural representation. In the black-box

context, Babai et al. [5] obtain the following result.

Theorem 2.1 ([5]) Given a black-box group G which is isomorphic to a

simple group of Lie type of known characteristic, the standard name of G

can be computed using a polynomial-time Monte Carlo algorithm.
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Malle and O’Brien developed an implementation of this algorithm which

is distributed with Magma [8]; their implementation used an “involution

centralizer” approach to determine the characteristic when it is odd.

Kantor & Seress [20] prove the following.

Theorem 2.2 ([20]) There is a Las Vegas algorithm which, when given

as input a black-box quasisimple group G, where G/Z(G) is isomorphic to

a classical simple group C of known characteristic, produces a constructive

isomorphism G/Z(G) 7−→ C. The running time of the algorithm is polyno-

mial in the size of the input and the field size.

Brooksbank [10, 11] and Brooksbank & Kantor [12, 13] have further

developed and refined this work to produce better constructive recognition

algorithms for black-box classical groups.

All of this cited work assumes that the defining characteristic of a given

group of Lie type is known. It is here that Theorem 1.1 makes an important

contribution: it determines the characteristic.

A very different algorithm to determine the characteristic was developed

by Kantor & Seress [21]. Here is a brief outline. Let G be a finite simple

group of Lie type of characteristic p. Define a graph Γ(G) as follows. Its

vertices are those prime powers ra (r 6= p prime, a > 0) which occur as the

order of some element of G. Two vertices having labels ra, sb are joined by

an edge if and only if G has an element of order lcm(ra, sb). Let Δ(G) be

the quotient graph subject to the equivalence relation that two vertices are

equivalent if they have the same neighbours. They prove the following.
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Theorem 2.3 ([21]) Let G and H be two finite simple groups of Lie type

such that Δ(G) ' Δ(H). Then G ' H, with a small (explicit) list of

exceptions.

This theorem provides the theoretical underpinning for their Monte Carlo

algorithm to determine the characteristic of a finite simple simple group G

of Lie type. Its proof relies on testing for all prime powers q less than N ,

a function of the input length, whether G is a group of Lie type defined

over the field of q elements. This is done by repeated invocations of the

constructive recognition algorithm of Theorem 2.2. (Observe that in this

application, the field size is bounded as a function of the size n of the input

strings.) If this algorithm identifies the group, then the characteristic is

now known. Otherwise the graph Δ(G) can be constructed, G identified,

and so its characteristic determined. While polynomial-time, subject to the

existence of an order oracle, the algorithm is not obviously practical: the

bound N is max{d5.4× 1013 log ne, d144n3/2 log ne} where G has black-box

encoding length n.

Yet another algorithm is being developed by Seress: it aims to deduce

the characteristic of a group of Lie type from its two largest element orders.

3 Key results

Let b, e be positive integers with b > 1. A prime r dividing be − 1 is a

primitive prime divisor of be − 1 if r does not divide bi − 1 for 1 ≤ i < e.

By [37], be − 1 has a primitive prime divisor unless either (b, e) = (2, 6), or
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e = 2 and b+ 1 is a power of 2.

For a finite group G and a prime p, let μp(G) and μp′(G) denote the

proportions of p-singular and p-regular elements in G, respectively. (Recall

that g ∈ G is p-singular if its order is divisible by p, and p-regular if not.) If

S ⊆ G, let μp(S) be the proportion of p-singular elements in S.

Let G(q) denote a quasisimple group of Lie type over the field Fq of size

q = pe (p prime). Denote by rank(G(q)) the untwisted Lie rank of G(q),

that is, the Lie rank of the overlying simple algebraic group. Let qk denote

a primitive prime divisor of pek − 1.

We consider first the case of L2(q).

Lemma 3.1 There is a black-box polynomial-time Monte Carlo algorithm to

determine the characteristic of a quasisimple group G with G/Z(G) ∼= L2(q),

subject to the existence of an oracle to compute the order of elements in G.

If G has a black-box encoding of length n, then the characteristic can be

determined by choosing a sample of size O(log n) of uniformly distributed

random elements.

Proof. Consider first G = SL2(q). The conjugacy classes of G are well-

known; see, for example, [16, p. 228]. The proportions of elements of order

q + 1, q − 1 are each at least 1/ log log q. If q = pk for k > 1, these are the

two largest orders of elements; whereas if q = p there are also elements of

order 2p and p, the proportions of which are O(1/p).

Hence, with high probability, an investigation of a random sample of

O(log n) elements will return either q+1, q− 1 or 2p, p+1 or p+1, p as the
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two largest orders (the latter two cases only if q = p is small). In all cases

we can easily deduce the value of p.

For L2(q) with q odd, again an investigation of a random sample of

O(log n) elements for the two largest orders will, with high probability, re-

turn either (q+1)/2, (q−1)/2 or p, (p+1)/2, and again we deduce the value

of p.

Our algorithm constructs involutions and their centralizers in G(q); the

next few results are important in the analysis of these tasks.

Lemma 3.2 Let G = G(q) be a quasisimple group of Lie type over Fq.

(i) If q is odd, then μ2(G) > 1/4.

(ii) If q is even, then μ2(G) >
2
5q .

(iii) If q is even, then μ2(G) <
3
q−1 +

2
(q−1)2 .

Proof. Part (i) follows from [19, 5.2], part (ii) from [19, 10.1], and part

(iii) from [18, 1.1].

Lemma 3.3 Let G = G(q) and let r 6= p be a prime which divides |G|.

Then

(i) μr(G) ≥ 1
h(1−

1
r ), where h is the Coxeter number of G;

(ii) if G is classical with natural module of dimension d, then μr′(G) >

1/2d;
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(iii) if G is exceptional, then μr′(G) > 1/15.

Proof. Part (i) is [19, 5.1], and parts (ii), (iii) are taken from [6].

Lemma 3.4 Let G = G(q) be quasisimple, and suppose that G contains an

involution t such that CG(t) is solvable. Then one of the following holds:

(i) q is even, and G/Z(G) is one of L2(q), L
ε
3(q), Sp4(q),

2B2(q);

(ii) q = 2 and G/Z(G) is one of Lεn(2) (n = 4, 5, 6), Un(2) (n = 7, 8, 9),

Spn(2) (n = 6, 8, 10), Ω
ε
n(2) (n = 8, 10),

3D4(2),
2F4(2)

′, F4(2),
2E6(2);

(iii) q = 3 and G/Z(G) is one of Lε3(3), L
ε
4(3), PSp4(3), Ω7(3), PΩ

+
8 (3),

G2(3);

(iv) q is odd and G = L2(q).

Proof. For q even, the involution classes and centralizers in G are deter-

mined in [1], and the conclusion follows by inspection of these results. For

q odd, the conclusion follows from [17, 4.5.1].

Lemma 3.5 Let G = G(q) with q odd, and suppose G has an involution t

such that CG(t) is not solvable. Then CG(t)
(∞) is a central product of at

most four quasisimple groups, each of Lie type over an extension field of Fq

of degree at most 3.

Proof. This follows from [17, 4.5.1].
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A critical component of our algorithm is the ability to construct involu-

tion centralizers in G = G(q). We use an algorithm of Bray [9] to construct

the centralizer CG(t) of an involution t in a black-box group G having an

order oracle.

The following step produces an element of CG(t). Construct a conjugate

tg of t, where g is a random element of G. Let n be the order of the element

ttg = [t, g], and let D be the dihedral group of order 2n generated by t and

tg. If n is odd, then D contains an element m such that tm = tg. Hence

mg−1 is an element of CG(t).

Lemma 3.6 ([9]) If g is uniformly distributed among the elements of G for

which [t, g] has odd order, say 2n + 1, then g[t, g]n is uniformly distributed

among the elements of CG(t).

Lemma 3.7 Let G = G(q) of rank r with q odd, and let t be an involution

in G.

(i) There is an absolute constant c1 > 0 such that the proportion of g ∈ G

with [t, g] of odd order is at least c1/r.

(ii) Suppose that CG(t)
(∞) 6= 1. There is an absolute constant c2 > 0

such that the proportion of pairs of elements of CG(t) which generate

a subgroup containing CG(t)
(∞) is at least c2.

Proof. Part (i) is proved in [32]. For (ii), denote by P (H) the probabil-

ity that a randomly chosen pair of elements of a finite group H generates
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a subgroup containing H(∞). It is well known that P (H) > 0 for every

non-abelian finite simple group H; moreover, for almost simple groups H,

P (H)→ 1 as |H| → ∞, by [25, Theorem]. It follows that P (H) is bounded

away from 0 for almost simple groups H. Now (ii) follows easily from this

fact together with Lemma 3.5.

Lemmas 3.6 and 3.7 show that if q is odd, then in O(r) random selec-

tions we obtain, with high probability, a generating set for an involution

centralizer CG(t) (or at least a subgroup between CG(t)
(∞) and CG(t)) in

G = G(q).

The situation in even characteristic is not so clear-cut. The next result

will allow us to focus on a particular class of involutions for groups of even

characteristic. Recall that a long root element of a group of Lie type is a

non-identity element in the centre of a long root subgroup.

Theorem 3.8 Let G = G(q) with q even, and let r = rank(G). The pro-

portion of elements of G which have a power equal to a long root element is

at least 1/(2rq).

Proof. First consider the case when G/Z(G) = L2(q), L
ε
3(q) or

2B2(q).

Then G has only one class of involutions, namely long root elements, and

the conclusion follows from Lemma 3.2(ii); in particular μ2(G) = 1/q for

G = L2(q).

For G = 2F4(q)
′, there are two classes of involutions, and the calculation

in [19, p. 177] gives lower bounds for the number of elements of G powering
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into each class. Both lower bounds are at least 1/8q.

Now assume G is not one of these groups. Let U be a long root subgroup

of G, and t a long root element in U . The structure of CG(t) is well-known,

and can for example be extracted from [1]. Writing C = CG(t), we have

C = QL, where Q = O2(CG(t)) and Q,L are as in Table 1. Note that the

entry in the last column of the table is only valid under the assumption that

C(∞) 6= 1, i.e. L is non-solvable. The superscripts in the second column

indicate the Fq-dimensions of the L-composition factors in Q. We have also

included an entry in the table for 2F4(q) for use in Theorem 3.9; the relevant

information is taken from [33].

Define F to be the set of elements of odd order in L which act fixed

point freely on the non-identity elements of Q/U . For l ∈ F the element

tl has a power equal to t, and CQ(tl) = U . It follows that the number of

elements of G which have a power equal to t is at least |F| ∙ |Q/U |, and

hence the proportion of elements of G which have a power equal to a long

root element is at least

|F| ∙ |Q/U | ∙ |tG|
|G|

=
|F|
q|L|
.

Hence, to complete the proof, it remains to show that |F|/|L| > 1/2r. To do

this, we specify in Table 2 a certain product NL of primitive prime divisors

of |L|.

We assert that every element of L of order divisible by NL must lie in F ,

except in the cases marked with (†) in Table 2, when this assertion requires

some qualifications which will be made clear in the justification below.
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Table 1: Structure of CG(t)

G Q L Q′ Z(C(∞))

(assuming C(∞) 6= 1)

SLεn(q) (n ≥ 4) q1+2(n−2) SLεn−2(q).(q − ε) U U

Spn(q) (n ≥ 4) q1+(n−2) Spn−2(q) 1 U

Ωε2m(q) (m ≥ 4) q
1+2(2m−4) SL2(q)× Ωε2m−4(q) U U

G2(q) (q > 2) q1+4 SL2(q) U U

3D4(q) q1+8 SL2(q
3) U U

2F4(q) q1+4+1+4 Sz(q) q1+4 q

F4(q) q1+6+8 Sp6(q) U U

Eε6(q) q1+20 Aε5(q) U U

E7(q) q1+32 D6(q) U U

E8(q) q1+56 E7(q) U U

When G = SLn(q), the structure of Q/U as an Fq-module for L =

GLn−2(q) is Vn−2(q) ⊕ Vn−2(q)∗, the sum of the natural module and its

dual. Clearly every element of L of order divisible by qn−2 (if it exists) has

odd order and acts fixed point freely on Q/U , and so is in F . The only case

where qn−2 does not exist is (n, q) = (8, 2): now every element of L of order

divisible by 7 and having two composition factors of dimension 3 on V6(2)

is in F .

The same argument applies when G = Spn(q).

14



Table 2: Conditions on primitive prime divisors

G NL conditions

SLn(q) (n ≥ 4) qn−2 (n, q) 6= (8, 2)

7 (†) (n, q) = (8, 2)

SUn(q) (n ≥ 4) q2(n−2) n odd

qn−2q(n−2)/2 n even, n > 4, (n, q) 6= (8, 2), (14, 2)

q2 (†) n = 4

7, 13 (n, q) = (8, 2), (14, 2)(resp.)

Spn(q) (n ≥ 4) qn−2 (n, q) 6= (8, 2)

7 (n, q) = (8, 2)

Ωε2m(q) (m ≥ 4) q2 (†)

G2(q) q2 q 6= 2

3D4(q), F4(q), E
ε
6(q) q6q2 q 6= 2

21 q = 2

E7(q) q8q4

E8(q) q7 or q14

If G = SUn(q) then as an FqL-module, Q/U is Vn−2(q2) ⊕ Vn−2(q2)∗

realised over Fq. If n is odd the assertion is clear. If n is even, n > 4

and (n, q) 6= (8, 2), (14, 2), then every element of L of order divisible by

qn−2q(n−2)/2 must lie in a subgroup GL(n−2)/2(q
2) of L, and hence is in F .

If n = 4, the same is true of elements of order divisible by q2 which have no

eigenvalue 1 on the natural module. The exceptional cases (8, 2), (14, 2) are
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easy.

Now suppose G = Ωε2m(q). Here L = SL2(q) × Ω
ε
2m−4(q), and as an

FqL-module, Q/U is V2(q) ⊗ V2m−4(q), the tensor product of the natural

modules for the factors. Every element (x, y) ∈ L, where x ∈ SL2(q) has

order divisible by q2 and y ∈ Ωε2m−4(q) has odd order not divisible by q2, is

in F .

The arguments for the remaining cases are similar. When G = 3D4(q),

L = SL2(q
3), the FqL-module Q/U is V2 ⊗ V

(q)
2 ⊗ V (q

2)
2 realised over Fq,

where V2 = V2(q
3) is the natural L-module. When G = F4(q), Q/U has

composition factors V6 and V8, natural and spin modules for L = Sp6(q).

When G = Eε6(q), Q/U
∼= ∧3V6, the triple wedge of the natural module V6

for L = Aε5(q) (realised over Fq when ε = −). When G = E7(q), Q/U ∼= V32,

a spin module for L = D6(q). When G = E8(q), Q/U is the irreducible 56-

dimensional module for L = E7(q) of high weight λ7. In all but the last case

it is clear that elements of order divisible by NL lie in F . In the last case,

elements of L = E7(q) of order divisible by q7 or q14 lie in a maximal rank

subgroup SL8(q) or SU8(q), and the restriction of Q/U to these subgroups

is ∧2(V8)⊕ ∧2(V8)∗. Hence these elements are in F .

This proves our assertion. It remains to show that the proportion of ele-

ments of L of order divisible by NL (with the restrictions indicated above in

the (†) cases) is greater than 1/2r. For the cases where L is a classical group

or a product of such (i.e. all cases except for G = E8(q)), this is immediate

from [29, Theorem 5.7] and its proof, with obvious small modifications in
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the cases where NL is the product of more than one prime and also in the

(†) cases. Finally, when G = E8(q), we need to show that the proportion

of elements of E7(q) of order divisible by q7 or q14 is greater than 1/16; but

this follows immediately from the main result of [6].

The next theorem ensures that we can construct the centralizer of a long

root element using the method of Lemma 3.6.

Theorem 3.9 If G = G(q) with q even, and t is a long root element of G

such that CG(t) is not solvable, then the proportion of g ∈ G such that [t, g]

has odd order is at least 1/4.

Proof. Assume that G 6= 2F4(q). Let U be a long root subgroup of G

containing t, and let S ∼= SL2(q) be a fundamental SL2 in G generated by

U and its opposite root group. The centralizers of S and of its elements are

well-known, and can be found for example in [23, 1.2]. First, CG(S) = L

where L is listed in Table 1 of Theorem 3.8. Let x ∈ S be a non-identity

element of order q+1 which is inverted by t, and letD be a dihedral subgroup

of S of order 2(q + 1) containing x. Then for every 1 6= y ∈ 〈x〉 we have

CG(y) = 〈x〉 × L and NG(〈y〉) = D × L.

Now all involutions in D are conjugate to t, and the product of any

two distinct such involutions is a non-identity element of 〈x〉. Hence the

number of ordered pairs of G-conjugates of t whose product is conjugate to

a non-identity power of x is at least

(# of pairs in D)×(# of conjugates of 〈x〉) = (q+1)∙q∙|G : DL| = q|G : L|/2.
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On the other hand, the total number of ordered pairs of conjugates of t is

|G : CG(t)|
2 = |G : QL|2,

where Q is as in Table 1. The proportion of pairs with product of (odd)

order dividing q + 1 is therefore at least the ratio of these two numbers,

which is q|Q|2|L|/2|G|. Arguing in exactly the same way with elements of

order dividing q−1 in S, we see that the proportion of pairs of conjugates of

t with product of order dividing q− 1 is at least (q− 2)|Q|2|L|/2|G|. Hence

the total proportion of pairs of conjugates of t having product of odd order

is at least the sum of these two numbers, namely

ν =
(q − 1)|Q|2|L|

|G|
.

The possibilities for Q and L are given by Table 1 in Theorem 3.8, and in

all cases ν ≥ 1/4.

Finally, consider the case where G = 2F4(q). Note that q > 2 by our

hypothesis that CG(t) is not solvable. Observe that the involution t lies in

a Levi subgroup S ∼= Sz(q) of G, and CG(S) = T ∼= Sz(q) (see [26]). As

in the above proof, we use x ∈ S of order q − 1 which is inverted by t. Let

D = 〈x, t〉, a dihedral group of order 2(q−1). For every 1 6= y ∈ 〈x〉 we have

CG(y) = 〈x〉× T and NG(〈y〉) = D× T . Hence, as before, the proportion of

pairs of conjugates of t with product of order dividing q − 1 is at least

(q − 1)(q − 2)|G : DT |
|G : CG(t)|2

=
(q − 2)q10

2(q6 + 1)(q3 + 1)(q2 − 1)
.

This is greater than 1/4, completing the proof.
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Lemma 3.10 Let t be a long root element of G = G(q) with q even, and

suppose that CG(t)
(∞) 6= 1. There is an absolute constant c > 0 such that

the proportion of pairs of elements of CG(t) which generate a subgroup con-

taining CG(t)
(∞) is at least c.

Proof. Write C = CG(t) = QL with Q,L as in Table 1. It follows from

the fact that all simple groups are 2-generator that L(∞) is 2-generator, and

hence so is C(∞). By [25], the proportion of pairs of elements of C which,

modulo Q, generate a subgroup containing C(∞), tends to 1 as |C| → ∞.

Moreover, the proportion of such pairs which lie in some complement of Q

tends to 0, and the conclusion follows.

We now prove a key theorem which will allow us to detect the presence

of a normal 2-subgroup of an involution centralizer in characteristic 2.

Theorem 3.11 Let G = G(q) with q even, let r = rank(G), and let t be

a long root element of G. Assume CG(t) is non-solvable, and write C =

CG(t)
(∞), Q = O2(C). Then the proportion of c ∈ C such that a power of c

is an element of order 2 or 4 in Q\Z(C) is at least 1/2rq3 if G 6= 2F4(q),

and is at least 1/2q5 if G = 2F4(q).

Proof. Assume first that G 6= 2F4(q). The structure of C is given in Table

1 in the proof of Theorem 3.8. Following the notation used there, C = QL′,

and in all cases Q′ ≤ U = Z(C).

Let J be the set of x ∈ L′ of odd order such that CQ(x) 6= Z(C). Choose
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x ∈ J , of odd order m, say, and choose y ∈ CQ(x)\Z(C). Define

S1 = {u ∈ Q : (ux)
m ∈ Z(C)}, S2 = {u ∈ Q : (ux)

m 6∈ Z(C)}.

If u ∈ S1, then (ux)m = z ∈ Z(C), so (yux)m = ymzv for some v ∈ Q′, and

hence yu ∈ S2. Therefore yS1 ⊆ S2, and it follows that |S2| ≥ 1
2 |Q|.

Since Q has exponent dividing 4, the proportion of c ∈ C such that a

power of c is an element of order 2 or 4 in Q\Z(C) is at least |J |/2|L′|. We

shall show that this is at least 1/2rq3.

Suppose first that G = SLn(q), L
′ = SLn−2(q), so that n ≥ 4 and

(n, q) 6= (4, 2), (4, 3). Here L′ has a cyclic subgroup C of order qn−3 −

1, (in a subgroup GLn−3(q)), and C has a unique subgroup C0 of order

(qn−3 − 1)/(q − 1) (in SLn−3(q)) fixing a nonzero vector of the natural

module Vn−2(q). Note that NL′(C) = C.(n − 3) if n ≥ 5, C.2 if n = 4.

Assume the primitive prime divisor qn−3 exists. Then every non-identity

x ∈ C0 of order divisible by qn−3 has centralizer C. Of course |J | is at least

the number of L′-conjugates of such elements x, which is at least

|C0|(1−
1

qn−3
) ∙ |L′ : NL′(C)| ≥

|L′|
2(n− 3)(q − 1)

(1−
1

qn−3
),

and hence |J |/2|L′| > 1/2rq3, as required. The only case where qn−3 does

not exist is (n, q) = (9, 2), in which case we apply the above argument, but

count elements of order divisible by 21 rather than qn−3.

Now consider G = SUn(q), L
′ = SUn−2(q). The conclusion is trivial

when n = 4, since then |L′| < q3, so assume n ≥ 5. If n is even, we apply

the argument of the previous paragraph, with C of order qn−3 + 1 (in a
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subgroup GUn−3(q)), C0 of order (q
n−3+1)/(q+1), counting elements x of

order divisible by q2(n−3) (by 3 if (n, q) = (6, 2)). If n is odd, we take a cyclic

subgroup C of order qn−3 − 1 (in a subgroup GL(n−3)/2(q
2) of GUn−3(q)),

a subgroup C0 of order |C|/(q + 1), and count elements x of order divisible

by a product qn−3q(n−3)/2 (with suitable modifications when (n, q) = (9, 2)

or (15, 2)).

When G = Sp2m(q), L
′ = Sp2m−2(q), the argument is slightly different.

Again the conclusion is clear if m = 2, since then |L′| < q3, so assumem ≥ 3.

Take a cyclic subgroup C0 of order q
m−2 +1 in a subgroup Sp2m−4(q) of L

′

(so elements of C0 lie in J ). Then CL′(C0) = C0 × Sp2(q) and NL′(C0) =

(C0×Sp2(q)).(m−2). Hence, counting conjugates of elements of C0 of order

divisible by q2m−4 (by 9 if (m, q) = (5, 2)), we see that

|J |
|L′|
≥

1

|Sp2(q)|(m− 2)
(1−

1

q2m−4
),

which is at least 1/mq3, as required.

When G = Ωε2m(q), L
′ = SL2(q) × Ωε2m−4(q) and as an FqL

′-module,

Q/U is V2 ⊗ V2m−4, a tensor product of natural modules. If d ∈ SL2(q) is

semisimple (of order dividing q − δ, δ = ±1), then d ∈ Ωδ2(q); so relative

to a suitable basis ex = diag(d, x) ∈ Ωε2m−4(q) for every x ∈ Ω
δε
2m−6(q), and

provided x has odd order, ex is in J . Counting such elements ex yields the

conclusion.

The case G = G2(q) is trivial, since here |L′| = |SL2(q)| < q3.

For G = 3D4(q) we have L
′ = SL2(q

3) and an FqL′-module, Q/U is

V2 ⊗ V
(q)
2 ⊗ V (q

2)
2 realised over Fq, where V2 = V2(q3) is the natural L′-
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module. Take C to be a cyclic subgroup of order q3 − 1 in L′, and C0 a

subgroup of C of order q2 + q + 1. Then x ∈ C0 lie in J , and if x has order

divisible by q3, then CL′(x) = C. Now counting conjugates of such elements

x gives the result in the usual way.

The case where G = F4(q), L
′ = Sp6(q) is handled by the argument

given for G = Sp2m(q).

Now consider G = Eε6(q), L
′ = Aε5(q). Here Q/U

∼= ∧3V6 (realised over

Fq), where V6 is the natural L′-module. Hence L′ has a subgroup Aε2(q)A
ε
2(q)

fixing nonzero vectors in Q/U . Now counting elements of J in this subgroup

(for example those of order divisible by q3 if ε = +, by q6 if ε = −) yields

the result.

If G = E7(q), L
′ = D6(q) then Q/U is a 32-dimensional spin module

for L′, and L′ has a subgroup A5(q) fixing nonzero vectors (see [24, 2.6]).

Counting elements of order divisible by q6 (by 7 if q = 2) in this subgroup

gives the result.

Now consider G = E8(q), L
′ = E7(q), so that Q/U is the 56-dimensional

module for L′ of high weight λ7. Then L
′ has a subgroup E = E6(q), for

which the restriction of Q/U is the sum of two 27-dimensional and two

trivial modules. For x ∈ E of order divisible by q9, we have |CL′(x)| =

(q6 + q3 + 1)(q − 1) (see [27]), and |NL′(C) : C| = 18. Hence counting

conjugates x in the usual way yields the conclusion.

To complete the proof, we consider the case where G = 2F4(q). Observe

that the number of elements in Q having a power of order 2 or 4 in Q\Z(C)
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is at least 12 |Q| (this can easily be seen using [33]). The conclusion follows,

since |Q| = |C|/|L| = |C|/|Sz(q)| > |C|/q5.

Remark In practice, in characteristic 2 our algorithm will often construct

an involution which is not a long root element. Theorem 3.8 enables us to

ignore such involutions in the analysis of the algorithm. However it should

be possible (though not necessary for our algorithm) to use [1] to prove that

the centralizers of such elements share the desirable properties of long root

element centralizers established in Theorems 3.9 and 3.11.

4 The algorithm

Let G be a quasi-simple group of Lie type having a black-box encoding of

length n. We now present the algorithm to find the defining characteristic p

of G. In Section 5 we comment in more detail on the steps of the algorithm,

where appropriate justify them, and comment on their cost.

1. Choose a sample S, of size O(
√
n), of random elements of G and

determine the proportion of elements of even order in S. If μ2(S) <

1/5, conclude that p = 2 from Lemma 3.2(i) and terminate.

2. We may now assume that μ2(S) is at least 1/5. Hence if q is even,

then q ≤ 16 by Lemma 3.2(iii). Let L denote the list of groups from

parts (i)-(iii) of Lemma 3.4. Let e(H) denote the largest element order

for H ∈ L.
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3. By powering elements of even order in S, obtain involutions inG\Z(G).

If none exists, conclude that G = SL2(q) with q odd, find p using

Lemma 3.1, and terminate.

4. Now we have a sample of involutions t ∈ G\Z(G). We process each t

in turn as follows.

(a) Construct first CG(t) and then C = CG(t)
(∞). This is justified

by Lemma 3.7 for q odd and by Theorem 3.9 and Lemma 3.10

for q even.

(b) If C = 1, then by Lemma 3.4, either G = L2(q) with q odd, or

G ∈ L.

If max{|s| : s ∈ S} 6= e(H) for all H ∈ L, conclude that G is

L2(q), find p using Lemma 3.1, and terminate.

Otherwise, G is one of a known list of finite groups of bounded

order. We construct its composition factors, so determine its

characteristic, and terminate.

(c) Otherwise C 6= 1.

Among a sample of size O(
√
n) random elements of C, search

for elements v of order 2 or 4 in C\Z(C). If we find such v,

then set K = 〈vC〉. Decide if K is a 2-group by investigating

whether each of a sample of size O(
√
n) random elements of K

has 2-power order. If so, conclude that p = 2 by Theorem 3.11,

and terminate.
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5. If, for all the involutions t in our sample, we fail to construct a 2-group

as the normal closure of a non-central element of order 2 or 4 in the

associated C, then we conclude that p is odd.

6. We may now assume that p is odd. Let C = CG(t)
(∞) for some

involution t from Step (4). We know by Lemma 3.5 that C is a central

product of at most four groups of Lie type in characteristic p.

Repeat the following sequence of steps until C = 1:

(a) construct a quasisimple factor C1 of C;

(b) search for an involution u ∈ C1\Z(C1);

(c) if none is found, deduce that C1/Z(C1) = L2(q), find p using

Lemma 3.1 and terminate;

(d) otherwise, replace C by CC1(u)
(∞).

7. Conclude from Lemma 3.4 that the last non-trivial factor C1 has cen-

tral quotient isomorphic to one of the following:

(a) Lε3(3), L
ε
4(3), PSp4(3), Ω7(3), PΩ

+
8 (3), G2(3);

(b) L2(q) for q odd.

8. Let T be a sample of O(log n) random elements in C1. If max{|t| :

t ∈ T} 6= e(H) for all H having central quotient in Step (7a), then

conclude C1/Z(C1) = L2(q), find p using Lemma 3.1, and terminate.

Otherwise, C1 is one of the groups listed in Step (7a). Construct its

composition factors, so learning its characteristic. This determines p
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since there are no isomorphisms between simple groups of Lie type in

two different odd characteristics.

5 The complexity of the algorithm

We now analyze the complexity of various subtasks performed by the al-

gorithm and verify that it completes in time polynomial in the size of the

input. Recall that the input group G has a black-box encoding of length n;

if G has Lie rank r and is defined over a field of size q, then r = O(
√
n) and

log q = O(n).

Step 1. Lemma 3.2 implies that it suffices to choose a bounded sample of

random elements in G. However, if G is defined over a field of characteristic

2 and size at most 16, then we must ensure that the sample of involutions

considered at Step 4 contains a long root element. Hence Theorem 3.8

implies that we choose an initial sample S of size O(
√
n) random elements

in G.

Step 3. The standard divide-and-conquer algorithm [34, p. 16] allows us

to compute the mth power of an element of G in log2(m) group multiplica-

tions.

Step 4. Recall that q is either odd or at most 16 when we construct

CG(t) in Step (4a). Lemmas 3.7 and 3.10 and Theorem 3.9 imply that

it suffices to choose in Step (4a) a sample of O(
√
n) random elements in

G. Similarly Theorem 3.11 and Lemma 3.3 imply that samples of O(
√
n)

random elements in C and K suffice in Step (4c).
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Step 4a. Babai et al. [4] present a Monte Carlo polynomial-time algo-

rithm to construct the derived series of a black-box group. Seress [34, pp.

38-40] describes a more practical alternative, which includes a black-box nor-

mal closure algorithm. In our application, the derived series of an involution

centralizer has length at most 6.

Step 6a. The proportions of r-regular elements in G(q) reported in

Lemma 3.3 underpin a black-box Monte Carlo polynomial-time algorithm

[3, Claim 5.3] to obtain one of the direct factors of a semisimple group. We

summarize this algorithm briefly here. Let G = H1 × H2 × . . . × Hk be

semisimple. Choose a random element g = (g1, . . . , gk) and let |g| divide m.

If t is a prime dividing m, then t divides |g`| for some `. Lemma 3.3 implies

that, with probability at least 1/
√
n, |gi| is not divisible by t for i 6= `. If

so, then g(m/t) = (h1, . . . , hk) where h` 6= 1 and hi = 1. Babai & Beals

[3, Claim 5.3] prove that it suffices to consider a sample of O(
√
n) random

elements of G to construct with high probability one direct factor. Lemma

3.5 shows that the number of such factors is at most 4.

Step 6. We recursively descend through a chain of involution centralizers.

The depth of this recursion is potentially O(
√
n); to obtain a quasisimple

factor in each case, we sample O(
√
n) random elements.

Steps 4b, 8. Since the list L arising from Lemma 3.4 is finite, the identi-

fication of individual groups on L has no impact on the overall complexity

of the algorithm.

There are just ten coincidences between e(H) for H ∈ L and e(L2(q)) for

27



q odd, or q ≤ 16; the largest such q is 257. Further, e(L2(13)) = e(SL3(3)) =

13, the only coincidence among groups in the lists of Step (7a) and (7b).

A case-by-case analysis shows that the proportion of elements of largest

order in each group H ∈ L is at least 1/33. Further O = {e(H) : H ∈ L}

has cardinality 27 and maximum 273. Thus we can decide by powering if

an element of G or C1 has an order in O. If G has central quotient L2(q),

then the proportion of elements of largest order is O(log n). Hence we can

readily estimate the largest element order of G and C1 in Steps (4b) and

(8), respectively.

Hence, subject to the existence of a order oracle, the algorithm runs

in time polynomial in the size of the input, requiring a sample of O(n)

uniformly distributed random elements.

5.1 The order oracle

Theorem 1.1 assumes the existence of an order oracle: it is used to determine

μ2(S) in Step (1) and is also required by Lemma 3.1.

AssumeG is a black-box group. If a multiplicative upper-bound B for the

order of g ∈ G is available, and if the set of primes dividing B is known, then

Babai & Beals [3, Claim 3.5] prove that |g| can be determined in polynomial

time. If we simply know B, then we can learn in polynomial time the

exact power of 2 (or of any specified prime) which divides |g|. By repeated

division by 2, we write B = 2mb where b is odd. Now we compute h = gb,

and determine (by powering) its order which divides 2m. In particular, we
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can deduce if g has even order.

In practice, black-box groups arise as permutation groups or linear groups.

Since an order oracle can be readily realised for the former, we do not con-

sider this case further.

Celler & Leedham-Green [15] provide an algorithm to compute the order

of g ∈ GLd(s), where s = tk, t prime. It first computes a multiplicative

upper bound B for |g|. To obtain B, we determine and factorise the minimal

polynomial f(x) of g: let f(x) =
∏n
i=1 fi(x)

mi where deg(fi) = di. Then

take β = dlogtmaxmie and

B = lcm(sd1 − 1, . . . , sdn − 1)× tβ . (1)

The minimal polynomial of a d × d matrix defined over Fs can be com-

puted [35] in O(d3 log s) field operations, and factored [36, Theorem 14.14]

in O(d2 log s) field operations. If we know a factorisation of B, then the cost

of the order algorithm is O(d3 log s log log sd) field operations.

Hence, if G(q) is supplied as a subgroup of GLd(s), we exploit the mul-

tiplicative upper bound B from (1), and so estimate μ2(S) in Step (1) in at

most O(d4) operations, without an order oracle.

Hence, for linear groups, we require an order oracle only for groups having

central quotient L2(q): in applying Lemma 3.1, we must know the precise

orders of elements.
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6 Implementation and performance

We have implemented our algorithm in Magma [8]. It takes as input a

quasisimple group, represented either as a linear or as a permutation group.

We use the product replacement algorithm [14] to generate random ele-

ments. We use the algorithm of [15] to determine the order of a matrix, and

the variation discussed in Section 5 to determine μ(S) for linear groups.

Leedham-Green & O’Brien [22] present Monte Carlo algorithms to gen-

erate random elements of the normal closure of a subgroup, and to determine

membership in a normal subgroup of a black-box group having an order or-

acle. A consequence is a Monte Carlo algorithm to prove that a black-box

group G is perfect: we prove that every generator of G is an element of its

derived group. These algorithms are used with [34, pp. 38-40] to construct

C(∞), and with (a version of) of [3, Claim 5.3] to construct one of the direct

factors of a semisimple group.

The maximum order of elements of each H ∈ L are recorded. Since q is

small, the groups in L can be identified directly. We use (variations of) the

Schreier-Sims algorithm [34, p. 64] to construct a base and strong generating

set for H ∈ L and so learn its composition factors.

The computations reported in Table 3 were carried out using Magma

V2.12 on a Pentium IV 2.8 GHz processor. The input to the algorithm is

a quasisimple group of Lie type given as a subgroup of GLd(r
k). In the

column entitled “Step”, we identify the step in the algorithm where the

defining characteristic is deduced. In the column entitled “Time”, we list
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the CPU time in seconds taken for this computation.

Table 3: Performance of implementation for a sample of groups

Input d rk Step Time

SL15(2
8) 15 28 (1) 0.5

L2(29) 14 22 (4b) 0.3

L3(11) 132 21 (6c) 15.3

L6(2) 61 31 (4c) 5.7

G2(5) 124 21 (6c) 6.7

O−8 (2) 51 51 (4c) 6.4

O+18(11
4) 18 114 (6c) 7.6

Sz(8) 14 72 (4c) 0.7

E6(3) 27 31 (8) 21.5

E6(5
7) 27 57 (6c) 21.5

SU25(5
6) 25 56 (6c) 258.9
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