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Abstract

These notes accompany a 4 lecture mini course on the nonlinear stability of the Schwarzschild family of
black holes, given as part of the General Relativity Programme at the Centre of Mathematical Sciences
and Applications, Harvard University, from 29th March – 1st April 2022. The lectures concern the
following topics:

• Lecture 1: The Schwarzschild and Kerr families, statement of the theorem, boundedness and decay
of linear waves on a fixed Schwarzschild background;

• Lecture 2: The Einstein equations in double null gauge and the linear stability of Schwarzschild;

• Lecture 3: The nonlinear stability of Schwarzschild;

• Lecture 4: Conclusions and outlook.
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1 Introduction

The Schwarzschild family of static black holes,

gM = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2), M > 0, (1.1)

constitutes the most famous family of solutions of the vacuum Einstein equations

Ric(g) = 0. (1.2)

The family was discovered in 1915, shortly after Einstein’s final formulation of (1.2), though it was only
understood much later that each member describes a static black hole, and the parameter M > 0 has the
interpretation of the mass of the black hole as measured by observers at infinity.

More precisely, for each M > 0 the local coordinate form (1.1) gives rise to a spherically symmetric,
static, asymptotically flat, 3 + 1 dimensional Lorentzian manifold (M, gM ) which solves (1.2). A complete
future null infinity I+ can be attached toM, whose causal past is not the entirety ofM, but is bounded to
the future by a complete event horizon H+ at r = 2M . Observers can live forever in the black hole exterior
region {r > 2M}.

The most fundamental question one can ask about the Schwarzschild family is whether the exterior of the
black hole region is nonlinearly stable as a solution of (1.2). These lectures concern the following theorem,
obtained jointly with M. Dafermos, G. Holzegel, and I. Rodnianski [20].

Theorem 1.1 (The full finite co-dimension nonlinear asymptotic stability of Schwarzschild [20]). The
Schwarzschild exterior is nonlinearly asymptotically stable, as a solution of (1.2), to a codimension 3 set of
perturbations.

More precisely, for vacuum initial data sets—with no symmetry assumed—sufficiently close to appropriate
Schwarzschild initial data, the resulting maximal Cauchy development

(i) possesses a complete future null infinity I+ whose past J−(I+) is bounded to the future by a regular
future complete event horizon H+,

(ii) remains globally close to Schwarzschild (1.1) in its exterior,

(iii) asymptotes back to a member of the Schwarzschild family as a suitable notion of time goes to infinity,
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Figure 1: Nonlinear asymptotic stability of Schwarzschild: spacetimes satisfying (i)–(iii).

provided that the initial data set itself lies on a codimension 3 “submanifold” of the moduli space of vacuum
initial data. See Section 5.2 for a more precise version of Theorem 1.1.

The codimension 3 restriction is a necessary condition for the asymptotic stability statement (iii). Indeed,
as is well known, the Schwarzschild family (1.1) is contained as the a = 0 subcase of a larger family of
stationary solutions, the Kerr family of uniformly rotating black holes, discovered much later [42], in 1963.
In Boyer–Lindquist coordinates the Kerr metric takes the form

ga,M = −∆

%2
(dt− a sin2 θdφ)2 +

%2

∆
dr2 + %2dθ2 +

sin2 θ

%2
(adt− (r2 + a2)dφ)2, |a| ≤M, M > 0, (1.3)

where
∆ = r2 − 2Mr + a2, %2 = r2 + a2 cos2 θ.

Outside of this codimension 3 submanifold, one expects solutions to necessarily asymptote to a Kerr so-
lution with a 6= 0, since the dimension of linearised Kerr solutions fixing the mass is equal to 3 in our
parametrisation.

The proof of Theorem 1.1 is based on a robust understanding of corresponding linear problems. Indeed,
many of the most fundamental aspects of the proof of Theorem 1.1 appear already in the study of the
scalar wave equation on a fixed Schwarzschild background, a problem for which much technology has been
developed in recent years [7, 24, 6, 26, 25]. See Section 2. The necessary starting point for Theorem 1.1 is
a robust understanding of the linear stability of the Schwarzschild family. Such an understanding was first
achieved by Dafermos–Holzegel–Rodnianski [19]. See Section 4 for further discussion.

In the absence of symmetry assumptions, the only previous nonlinear stability works on asymptotically
flat solutions of (1.2) concern the stability of Minkowski space, first addressed by Christodoulou–Klainerman
[15]. Much previous work on nonlinear stability has considered various symmetric reductions, starting from
work of Christodoulou on the Einstein-scalar field system in spherical symmetry [11], followed by [23, 16, 36],
and most recently, work of Klainerman–Szeftel [47] for polarised axisymmetric spacetimes, which is a first
work beyond 1 + 1 dimensional systems. Note also the work of Hintz–Vasy [35] on the stability of the slowly
rotating Kerr–de Sitter family, as solutions of the vacuum Einstein equations with a positive cosmological
constant Λ > 0. The reader is referred to [20] for a further discussion of relevant previous works.

The goal of the lectures is to provide a brief description of some of the mains steps in the proof of Theorem
1.1. A brief outline is as follows:

• Lecture 1: Boundedness and decay of linear waves on a fixed Schwarzschild background;

• Lecture 2: The Einstein equations in double null gauge and the linear stability of Schwarzschild;

• Lecture 3: The nonlinear stability of Schwarzschild;

• Lecture 4: Conclusions and outlook.

3



Acknowledgements

I am grateful to M. Dafermos, G. Holzegel, and I. Rodnianski for helpful discussions regarding the preparation
of these notes and lectures. I have made extensive use of [20], as well as the lecture notes [26] and [37]. I
acknowledge support through Royal Society Tata University Research Fellowship URF\R1\191409.

2 Linear waves on a fixed Schwarzschild exterior

Many of the most fundamental aspects of the proof of Theorem 1.1 arise already in the problem of showing
boundedness and decay of solutions of

�gMψ = 0, (2.1)

arising from smooth localised initial data ψ|Σ0 , ∂tψ|Σ0 (for some appropriate initial hypersurface Σ0), in the
Schwarzschild exterior. Here �g denotes the wave operator associated to the Lorentzian metric g,

�gψ =
1√
− det g

∂µ
(
gµν
√
−det g∂νψ

)
,

which can be appropriately viewed as a “poor man’s linearisation” of Ric around g. The problem of showing
boundedness and decay of solutions of (2.1) can thus appropriately be viewed as a poor man’s version of the
problem of linear stability of Schwarzschild.

Beyond statements about fixed mode solutions, the study of this problem was initiated by Wald [66] in
1979, and has seen an intense level of research over recent years, culminating in the work [27] which addresses
this poor man’s linear stability problem for Kerr in the entire subextremal range |a| < M .

The discussion here follows [24] and [26]. See [26] for more details and further references.

2.1 Geometric properties of Schwarzschild

Central to the proof of boundedness and decay of solutions of (2.1) is a quantitative understanding of three
geometric properties of Schwarzschild:

1. The redshift effect: Given a null geodesic γ : (a, b) → M and a uniformly timelike vector field
N ∈ X(M), one defines the energy of γ with respect to N to be the inner product

−g(γ̇, N).

(Note that, if N is a Killing vector then this energy is conserved along γ.) Taking γ to be an affine pa-
rameterisation of one of the null generators of the event horizon of Schwarzschild, written in (t∗, r, θ, φ)
coordinates defined below in Section 2.5 as

γ(s) = (t∗(s), r(s), θ(s), φ(s)) = (κ−1 log s, 2M, θ0, φ0),

where κ = 1
4M is the surface gravity of Schwarzschild, then one see that the energy with respect to the

timelike vector N = −(dt∗)] satisfies

−g(γ̇, N) =
1

κ
e−κt

∗
,

i.e. the energy of γ is exponentially decaying. The ratio

−g(γ̇, N)|t∗=t2
−g(γ̇, N)|t∗=t1

= e−κ(t2−t1),

has the interpretation of the frequency shift of signals sent by an observer crossing the event horizon
at time t∗ = t1, as received by an observer crossing the event horizon at the later time t∗ = t2. This
exponential redshift has a damping effect on waves.

4



2. Trapped null geodesics: The null geodesic γ : (−∞,∞)→M defined in (t, r, θ, φ) coordinates by

γ(s) = (t(s), r(s), θ(s), φ(s)) =
(
s, 3M,

π

2
,

s√
27M

)
,

neither escapes to infinity nor crosses the event horizon, but remains trapped at r = 3M for all time.
In fact, {r = 3M} is spanned by null geodesics and, for any point p ∈ M with r > 2M , there exists
a codimension 1 subset of future directed null vectors whose corresponding null geodesics approach
r = 3M . Since high frequency waves can localise around null geodesics for long times, the presence
of such trapped null geodesics is a potential obstruction to the decay of waves. Any proof of decay of
solutions of the wave equation must take advantage of the fact that such trapped null geodesics are
unstable.

3. Superradiance (relevant only in Kerr with a 6= 0): The Killing vector field T describing the station-
arity of Kerr (the vector field ∂t in Boyer–Lindquist coordinates (1.3)) is spacelike close to the event
horizon, in the ergoregion, when a 6= 0. There are null geodesics γ whose (conserved) energy with
respect to T is negative, i.e. −g(T, γ̇) < 0. In the context of the wave equation, the conserved energy
associated to T fails to have a sign close to the event horizon, thus allowing for the existence of waves
which travel towards the black hole, divide into a piece with negative energy which falls into the black
hole, and a piece with greater positive energy which is reflected. From the point of view of a distant
observer, such a wave would be seen to have been sent towards the black hole and then returned with
more energy than it began with. A priori, one could also even imagine the existence of waves which are
sent towards the black hole with finite energy, and return with infinite energy. In showing boundedness
and decay of solutions of the wave equation on Kerr with a 6= 0, one must quantitatively control how
much more energy such a wave can return with (which in particular precludes the existence of the
latter type of wave, which returns with infinite energy).

These geometric phenomena are captured and adapted to the study of (2.1) via appropriate vector field
multipliers and commutators.

2.2 The energy momentum tensor

Given a Lorentzian manifold (M, g) and a function ψ : M → R, one defines the energy momentum tensor
T = T[ψ] of ψ

T[ψ]µν = ∂µψ∂νψ −
1

2
gµνg

αβ∂αψ∂βψ.

The energy momentum tensor has the divergence property

∇µT[ψ]µν = ∂νψ�gψ,

and in particular is divergence free if ψ solves the wave equation �gψ = 0.
Given a vector field X ∈ X(M), one defines the associated energy current

JX [ψ]µ = T[ψ]µνX
ν .

Note that
∇µJX [ψ]µ = Xψ�gψ + T[ψ]µν

(X)πµν , (2.2)

where
(X)πµν =

1

2
(LXg)µν ,

is the deformation tensor of X. In particular, if X is Killing and �gψ = 0, then one obtains the conservation
law ∇µJX [ψ]µ = 0. One refers to such a vector field X, when used in (2.2), as a vector field multiplier.
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Given moreover a function w : M→ R, one defines the modified current

JX,w[ψ]µ = JX [ψ]µ + wψ∇µψ −
1

2
ψ2∇µw, (2.3)

which satisfies

∇µJX,w[ψ]µ = (Xψ + wψ)�gψ + T[ψ]µν
(X)πµν + w∇µψ∇µψ −

ψ2

2
�gw. (2.4)

Given a spacetime region R ⊂M, integrating (2.4) over R leads to the associated energy identity∫
R

(Xψ + wψ)�gψ =

∫
∂R

JX,w[ψ]µn
µ
∂R −

∫
R

(T[ψ]µν
(X)πµν + w∇µψ∇µψ −

ψ2

2
�gw), (2.5)

where n∂R is an appropriate normal vector to ∂R, and the integrals are taken with respect to appropriate
volume forms (note that appropriate orientations have to be chosen on spacelike and null components of ∂R
depending on whether the component lies to the future or past of R, and there is no unit normal or induced
volume form on the null components . . . ). For solutions ψ of the wave equation, �gψ = 0, the left hand side
of (2.5) of course vanishes.

It is particularly useful to consider timelike multipliers X in regions R enclosed between spacelike hyper-
surfaces (whose normal vectors are timelike) in view of the following positivity property.

Proposition 2.1 (Positivity property of T). The energy momentum tensor T has the following positivity
property: for any two future directed timelike vector fields X,Y ∈ X(M), the quantity T[ψ](X,Y ) is positive
definite in dψ, i.e. in any local coordinate system {xα} there is a constant C = C(X,Y ) > 0 such that

C−1
3∑

α=0

(∂xαψ)2 ≤ T[ψ]µνX
µY ν ≤ C

3∑
α=0

(∂xαψ)2.

Moreover, if X,Y ∈ X(M) are two causal vectors, then T[ψ](X,Y ) is non-negative definite, i.e.

T[ψ]µνX
µY ν ≥ 0.

Proof. The proof is left as an exercise.

2.3 The Dafermos–Rodnianski rp method

Dafermos–Rodnianski [25] introduced a robust energy based method for showing decay of solutions of wave
equations on asymptotically flat spacetimes. The method is modelled on the wave equation

�mψ = 0, (2.6)

on Minkowski space, (R3+1,m), where m = −dt2 + (dx1)2 + (dx2)2 + (dx3)2 is the Minkowski metric, but
generalises to a large class of asymptotically flat spacetimes including the Schwarzschild and Kerr exteriors.
The approach is particularly well suited to isolating and localising the geometric properties of Schwarzschild
described in Section 2.1.

The method applies to stationary spacetimes (M, g) which are suitably asymptotically flat, to allow for
an appropriate hierarchy of r-weighted energy identities in the asymptotically flat region (these r-weighted
energy identities arise from applying (2.4) with multiplier X = rp∂v, w = rp−1 for 0 ≤ p ≤ 2 in an
appropriate asymptotic region). The method also takes as an input the following ingredients, to be satisfied
by all solutions of �gψ = 0:

1. Uniform boundedness of a non-degenerate energy:∫
Σt2

JNµ [ψ]nµΣt2
.
∫

Σt1

JNµ [ψ]nµΣt1
, (2.7)

for all t2 ≥ t1, where {Σt} is an appropriate foliation of M and N is a uniformly timelike vector field
(so that the associated energy JNµ [ψ]nµΣt is non-degenerate — see Proposition 2.1);
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2. An integrated local energy decay statement of the form:∫ ∞
t

∫
r≤R

JNµ [ψ]nµ ≤ CR
K∑
k=0

∫
Σt

JNµ [Nkψ]nµΣt , (2.8)

for some K ≥ 0 and all R sufficiently large.

Remark 2.2.

• The estimate (2.7) is manifestly a boundedness statement. The estimate (2.8), on the other hand,
should be viewed as a “weak decay” statement for the local energy confined to the compact spatial
region {r ≤ R}.

• Note that (2.8) may “lose derivatives” (i.e. more derivatives of ψ may appear on the right hand side
than on the left). Some form of such a loss is necessary in Schwarzschild in view of the presence of
the trapped null geodesics, described in Section 2.1 (see [64]).

Indeed, the uniform boundedness (2.7) and integrated local energy decay (2.8) statements lead to decay
of solutions of �gψ = 0. In the case of Minkowski space (2.6), this decay takes the form

|r 1
2ψ| . D

1 + |t− r|
, |rψ| . D

1 + |t− r| 12
, (2.9)

where D is an appropriate (higher order, r weighted) initial energy of ψ. The reader is referred to [25] for
more details.

Many of the most fundamental aspects of Schwarzschild arise in establishing these two ingredients (2.7)
and (2.8) and so, in the interests of time, it is only these two ingredients which will be discussed.

2.4 Linear waves on Minkowski space

First, it is illustrative to discuss (2.7) and (2.8) in the simpler setting of Minkowski space.
Recall that Minkowski space is the manifold R3+1 together with the Minkowski metic m, expressed in

Cartesian coordinates as
m = −dt2 + (dx1)2 + (dx2)2 + (dx3)2.

In addition to the Cartesian (t, x1, x2, x3) coordinates on R3+1 it is helpful to also consider (t, r, θ, φ), where
(r, θ, φ) are corresponding polar coordinates on R3, in which the Minkowski metric takes the form

m = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2).

We will consider here (2.7) with hypersurfaces Στ = {t = τ}.1
It is assumed that ψ : R3+1 → R is a smooth solution of

�mψ = 0, (2.10)

which decays suitably as r →∞.
The boundedness statement (2.7) is straightforward to obtain, in view of the fact that Minkowski space

admits a uniformly timelike Killing vector field T = ∂t.

Proposition 2.3 (Uniform boundedness of non-degenerate energy for linear waves on Minkowski space).
Let ψ : R3+1 → R solve (2.10). Then ψ satisfies∫

{t=t2}
JTµ [ψ]nµ .

∫
{t=t1}

JTµ [ψ]nµ, (2.11)

1In fact, the method [25] requires a different foliation, through which the energy decays. For example, one could choose Στ
to coincide with {t = τ} for r ≤ R, and with {t− r = τ −R} for r ≥ R, for some R large, as in [25]. In order to introduce the
main ideas in the simplest possible setting, the hypersurfaces {t = τ} are considered here.
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or, equivalently, ∫
{t=t2}

(
(∂tψ)2 + |∇xψ|2

)
dx .

∫
{t=t1}

(
(∂tψ)2 + |∇xψ|2

)
dx,

for all t2 ≥ t1 where, in Cartesian coordinates, T = n = ∂t.

Proof. The estimate (2.11) is in fact an equality. One sees this easily by noting that

JTµ [ψ]nµ = T[ψ]tt =
1

2

(
(∂tψ)2 + |∇xψ|2

)
,

and differentiating

∂t

(∫
R3

(
(∂tψ)2 + |∇xψ|2

)
(t, x)dx

)
= 2

∫
R3

(
∂tψ∂

2
t ψ +∇xψ · ∇x∂tψ

)
(t, x)dx

= 2

∫
R3

∂tψ
(
∂2
t ψ −∆xψ

)
(t, x)dx = 0.

A more illuminating version of the proof involves considering (2.4) with X = T , w = 0, and noting that
T is a Killing vector of Minkowski space

(T )π =
1

2
LTm = 0.

Considering the region R = [t1, t2]× R3 ⊂ R3+1, the identity (2.5) then implies that∫
{t=t2}

JTµ [ψ]nµ =

∫
{t=t1}

JTµ [ψ]nµ.

The integrated local energy decay statement (2.8) follows from another choice of vector field multiplier.2

Proposition 2.4 (Integrated local energy decay for linear waves on Minkowski space). Let ψ : R3+1 → R
solve (2.10). Then ψ satisfies, for any δ > 0,∫ ∞

t

∫
R3

(1

r
| /∇ψ|2 +

1

1 + r1+δ
|∂tψ|2 +

1

1 + r1+δ
|∂rψ|2 +

1

1 + r3+δ
|ψ|2

)
(t′, x)dxdt′ .

∫
R3

JTµ [ψ]nµ(t, x)dx,

(2.12)
for all t ≥ 0 where, in Cartesian coordinates, T = n = ∂t.

Again, the right hand side of (2.12) can be replaced by∫
R3

(
(∂tψ)2 + |∇xψ|2

)
(t, x)dx.

Proof. Consider some T1 > t and the region R = [t, T1] ×
(
R3 r B(0, ε)

)
. The multiplier X = ∂r, w = 1

r
gives rise to a current (2.3) satisfying

∇µJX,wµ =
1

r

(
(∂tψ)2 − (∂rψ)2

)
+

1

r
∇µψ∇µψ =

1

r
| /∇ψ|2.

Noting that the boundary terms at times t and T1 arising in the energy identity (2.5) can be controlled by
JTµ [ψ]nµ (or, equivalently, by (∂tψ)2 + |∇xψ|2), and that the terms on [t, T1] × ∂B(0, ε) vanish in the limit
as ε→ 0, the energy boundedness (2.11) implies that∫ T1

t

∫
R3

1

r
| /∇ψ|2(t′, x)dxdt′ .

∫
R3

JTµ [ψ]nµ(t, x)dx.

2The multiplier in fact provides a slightly stronger statement than (2.8), in which the compact set r ≤ R is replaced by R3

and appropriate decaying weights in r are included (see (2.12)), from which (2.8) trivially follows.
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Figure 2: Level hypersurfaces of t∗ on a fixed Schwarzschild background.

After letting T1 → ∞, this completes the proof for the /∇ψ term. The remaining terms are controlled
similarly by considering (2.3) with X = 1

(1+r)δ
∂r, w = 1

r(1+r)δ
and noting that

∇µJX,wµ = − δ

2(1 + r)1+δ
(∂tψ)2 − δ

2(1 + r)1+δ
(∂rψ)2 − δ(1 + δ)

2r(1 + r)2+δ
ψ2 +

( 1

r(1 + r)δ
+

δ

2(1 + r)1+δ

)
| /∇ψ|2.

The details are left as an exercise.

2.5 Linear waves on a Schwarzschild exterior

The (t, r, θ, φ) coordinate system featuring in the familiar expression (1.1) is often inconvenient in practice,
due to its degeneration at r = 2M (note the blow up of the coefficient of dr2 in (1.1) at r = 2M). Accordingly,
define

t∗ = t+ 2M log(r − 2M),

and note that, in the resulting (t∗, r, θ, φ) coordinate system,

gM = −
(

1− 2M

r

)
(dt∗)2 +

4M

r
dt∗dr +

(
1 +

2M

r

)
dr2 + r2(dθ2 + sin2 θ dφ2), (2.13)

Note moreover that T = ∂t∗ is a Killing vector field, which is timelike for r > 2M , but becomes null on the
even horizon r = 2M . Accordingly, the energy arising from the T multiplier is not coercive but becomes
degenerate at r = 2M (and in particular does not give rise to boundedness of a non-degenerate energy of
the form (2.7)).

Consider the manifold with cornersM = [0,∞)× [2M,∞)×S2 equipped with the metric (2.13), and let
dVS2 denote the volume form on the unit round sphere. In the standard (θ, φ) coordinates

dVS2 = sin θdθdφ.

It is convenient to consider (2.7) and (2.8) now with hypersurfaces Στ = {t∗ = τ}× [2M,∞)×S2 ⊂M (see
Figure 2). Let

dVΣτ =

(
1 +

2M

r

) 1
2

r2dVS2dr,

denote the volume form on Στ .
It is assumed that ψ : M→ R is a smooth solution of

�gMψ = 0, (2.14)

which decays suitably as r →∞.

Proposition 2.5 (Boundedness of degenerate energy for linear waves on Schwarzschild). Let ψ : M → R
solve (2.14). Then ψ satisfies∫

Σt2

(
(∂t∗ψ)2 + | /∇ψ|2 +

(
1− 2M

r

)
(∂rψ)2

)
dVΣt2

.
∫

Σt1

(
(∂t∗ψ)2 + | /∇ψ|2 +

(
1− 2M

r

)
(∂rψ)2

)
dVΣt1

,

(2.15)
for all t2 ≥ t1 ≥ 0.
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Proof. The proof follows from considering (2.4) with X = T = ∂t∗ , w = 0, and recalling that T is a Killing
vector

(T )π =
1

2
LT gM = 0.

Considering the region R = [t1, t2]× [2M,∞)× S2 ⊂M, the identity (2.5) then implies that∫
Σt2

JTµ [ψ]nµ +

∫
H+(t1,t2)

JTµ [ψ]Tµ =

∫
Σt1

JTµ [ψ]nµ,

where n denotes the unit future directed normal to the Σt hypersurfaces, and H+(t1, t2) = [t1, t2]×{2M}×
S2 ⊂ H+ denotes the portion of the event horizon between Σt1 and Σt2 . The proof then follows from
computing JTµ [ψ]nµ and noting that∫

H+(t1,t2)

JTµ [ψ]Tµ =

∫
H+(t1,t2)

(∂t∗ψ)2,

has a good sign (which can also be inferred from the positivity property, Proposition 2.1).

Remark 2.6. Note that (2.15) falls short of (2.7) in view of the degenerate 1 − 2M
r factor of the (∂rψ)2

term or, equivalently, in view of the fact that the energy density JTµ [ψ]nµ is measured with respect to a vector
field T which is not uniformly timelike.

Though the estimate (2.15) contains a lot of information (in particular it provides good control over the
energy of ψ on Σt2 ∩ {r ≥ 2M + δ}, for all δ > 0), it is entirely consistent with solutions of (or, rather,
transverse derivatives of solutions of) �gMψ = 0 growing along the event horizon r = 2M .3 In order to
remove the degeneracy in (2.15) at r = 2M , one has to exploit a further property of Schwarzschild. The
most convenient way is to capture the redshift property, discussed in Section 2.1, via a multiplier vector
field.

Proposition 2.7 (The redshift vector field [26]). There exists r1 > r0 > 2M and a uniformly timelike,
future directed vector field N on (M, gM ) which is t∗ invariant (i.e. the Lie derivative along T satisfies
LTN = 0) such that

N = T, for r ≥ r1,

and the associated current satisfies

bJNµ [ψ]Nµ ≤ ∇µJNµ [ψ], for 2M ≤ r ≤ r0, (2.16)

for some constant b > 0, for all solutions of �gMψ = 0.

The proof is an exercise, or see Section 3 of [26]. The existence of such a vector field does not rely on
many properties of Schwarzschild itself. See Section 7 of [26] for a general construction on appropriate black
hole spacetimes with positive surface gravity.

The vector field N of Proposition 2.7 is called the redshift vector field. Note that N is necessarily
not Killing (in view of the fact that there are no globally uniformly timelike Killing vector fields on the
Schwarzschild exterior), but the property (2.16) means that the additional terms arising in the resulting
energy identity have a good sign close to r = 2M ! The additional terms will not, in general, have a good
sign in the region r0 ≤ r ≤ r1, but in this region the degenerate energy estimate (2.15) of Proposition 2.5
already provides good control.

3Conservation of such an energy and blow up of such derivatives in fact occurs in extremal black holes. See the discussion
of the Aretakis instability in Section 6.4.
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Proposition 2.8 (Uniform boundedness of non-degenerate energy for linear waves on Schwarzschild). Let
ψ : M→ R solve (2.14). Then ψ satisfies∫

Σt2

(
(∂t∗ψ)2 + (∂rψ)2 + | /∇ψ|2

)
r2dVΣt2

.
∫

Σt1

(
(∂t∗ψ)2 + (∂rψ)2 + | /∇ψ|2

)
r2dVΣt1

, (2.17)

for all t2 ≥ t1 ≥ 0.

Proof. The proof follows from considering (2.4) with X = N , w = 0, on the region R = [t1, t2]× [2M,∞)×
S2 ⊂M, and considering the above sign properties of the resulting bulk term∫

R
T[ψ]µν

(N)πµν =

∫
R
∇µJNµ [ψ],

(namely the property (2.16) in 2M ≤ r ≤ r0, the presence of the estimate (2.15) of Proposition 2.5 in the
region r0 ≤ r ≤ r1, and the fact that N = T and hence T[ψ]µν

(N)πµν = ∇µJNµ [ψ] = 0 for r ≥ r1). The
details are left as an exercise, or alternatively see [26]. One in fact moreover has∫

H+(t1,t2)

(∂t∗ψ)2 + | /∇ψ|2 .
∫

Σt1

(
(∂t∗ψ)2 + (∂rψ)2 + | /∇ψ|2

)
r2dVΣt1

,

where H+(t1, t2) = [t1, t2] × {2M} × S2 ⊂ H+ denotes the portion of the event horizon between Σt1 and
Σt2 .

Consider now the integrated local energy decay estimate (2.8). Unlike in Minkowski space (see Proposition
2.4), such an integrated local energy decay statement which does not lose derivatives (i.e. a statement of the
form (2.8) with K = 0) necessarily degenerates at r = 3M in view of the presence of trapped null geodesics
in the Schwarzschild exterior, discussed in Section 2.1.

Proposition 2.9 (Degenerate integrated local energy decay for linear waves on Schwarzschild). Let ψ : M→
R solve (2.14). Then ψ satisfies, for any δ > 0,∫ ∞

t

∫
Σt∗

1

r3+δ
ψ2 +

1

r1+δ

(
1− 3M

r

)2(
(∂t∗ψ)2 + (∂rψ)2 + | /∇ψ|2

)
dVΣt∗dt

∗ .
∫

Σt

JNµ [ψ]nµdVΣt , (2.18)

for all t ≥ 0.

Remark 2.10. In addition to (2.18), one moreover has∫ ∞
t

∫
Σt∗

1

r1+δ
(Rψ)2dVΣt∗dt

∗ .
∫

Σt

JNµ [ψ]nµdVΣt ,

i.e. an integrated local energy decay estimate for the normal derivative

R = (dr)] =
2M

r
∂t∗ +

(
1− 2M

r

)
∂r,

to the level hypersurfaces of r, which does not degenerate at r = 3M .

Proof of Proposition 2.9. The proof is simpler in (t, r∗, θ, φ) coordinates, where

r∗ = r + 2M log(r − 2M)− 3M − 2M logM,

in which the Schwarzschild metric takes the form

gM =
(

1− 2M

r

)
(−dt2 + dr∗2) + r2(dθ2 + sin2 θ dφ2).
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One considers (2.5) with the multiplier

X = f(r)∂r∗ , w =
(

1− 2M

r

)(f ′(r)
2

+
f(r)

r

)
,

and the region R = [t∗, T ]× [2M,∞)× S2, for T large. The divergence (2.4) takes the form

∇µJX,w[ψ]µ = f ′(r)(∂r∗ψ)2 +
f(r)

r

(
1− 3M

r

)
| /∇ψ|2 − 1

2
ψ2�gMw,

and thus, if f(r) is chosen to be a bounded monotonically increasing function, so that f(r) ∼ r − 3M near
r = 3M , (�gMw)(r = 3M) < 0, |�gMw| . r−3−δ, and |f ′(r)| ≥ cr−1−δ, the estimate (2.5) yields∫

R

( 1

r1+δ
(∂r∗ψ)2 +

1

r

(
1− 3M

r

)2

| /∇ψ|2 + χ(r)ψ2
)
.
∫
∂R

∣∣JX,w[ψ]µn
µ
∂R
∣∣+

∫
R∩{|r−3M |>ε}

1

r3+δ
ψ2,

for some small ε > 0, where χ(r) ≥ 0 is non-vanishing in a neighbourhood of r = 3M . If one assumes ψ is
supported on spherical harmonics ` ≥ L, for some L sufficiently large, then

1

r2

∫
S2

ψ2 ≤ 1

L(L+ 1)

∫
S2

| /∇ψ|2,

and so, if L is sufficiently large, the boundedness estimate of Proposition 2.8 implies that∫
R

( 1

r1+δ
(∂r∗ψ)2 +

1

r

(
1− 3M

r

)2

| /∇ψ|2 +
1

r3+δ
ψ2
)
.
∫

Σt

JNµ [ψ]nµdVΣt .

The remaining (∂tψ)2 term can be estimated by considering (2.5) with

X = 0, w =
1

r1+δ

(
1− 2M

r

)(
1− 3M

r

)2

.

One then considers a separate multiplier for the ` < L spherical harmonics. See Section 4.1.1 of [26], or
Section 4.1.2 of [26] for an alternative proof which does not rely on a spherical harmonic decomposition. To
remove the degeneration at r = 2M , one revisits the redshift multiplier of Proposition 2.7.

Clearly (2.18) does not constitute an integrated local energy decay estimate of the form (2.8) in view of
the degeneration at r = 3M . This degeneration can be removed by “losing a derivative”. In view of the
spherical symmetry of Schwarzschild, there is a basis of Killing vector fields Ωi, for i = 1, 2, 3, spanning the
Lie algebra so(3), known as the angular momentum operators.

Proposition 2.11 (Non-degenerate integrated local energy decay for linear waves on Schwarzschild). Let
ψ : M→ R solve (2.14). Then ψ satisfies, for any δ > 0,∫ ∞

t

∫
Σt∗

1

r1+δ

(
(∂t∗ψ)2 + (∂rψ)2 + | /∇ψ|2

)
dVΣt∗dt

∗ .
1∑
k=0

∫
Σt

JNµ [Nkψ]nµdVΣt +

3∑
i=1

∫
Σt

JNµ [Ωiψ]nµdVΣt ,

(2.19)

for all t ≥ 0, where N = ∂t∗ .

Proof. Note the presence of the zeroth order ψ2 term in (2.18), which does not have a degenerate factor at
r = 3M . The proof follows by exploiting the good commutation properties of the equation �gMψ = 0 with
T and the angular momentum operators Ωi, for i = 1, 2, 3 (namely that if ψ solves (2.14) then so does Tψ
and Ωiψ). One repeats the above steps for Tψ and Ωiψ and exploits the presence of this zeroth order term.
One then revisits the redshift vector field of Proposition 2.7 to remove remaining degeneracy at r = 2M .
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Remark 2.12. Note that, if ψ solves (2.14), then an elliptic estimate implies that

3∑
i=1

∫
Σt

JNµ [Ωiψ]nµdVΣt .
1∑
k=0

∫
Σt

JNµ [Nkψ]nµdVΣt ,

and so it is not necessary to include the latter term on the right hand side of (2.19). Such an elliptic estimate
can, in fact, be exploited to prove a version of Proposition 2.11 without commuting with Ω1,Ω2,Ω3.

The r weights in the boundedness and integrated local energy decay estimates are further improved for
certain derivatives via the rp hierarchy, described in Section 2.3. Moreover, in order to arrive at pointwise
decay statements of the form (2.9), analogues of (2.7) and (2.8) for suitable higher order derivatives of ψ are
obtained. See [25] and [26] for further details.

Remark 2.13. Though it is the non-degenerate integrated local energy decay estimate of Proposition 2.11
which is used to obtain decay statements of the form (2.9), the existence of the integrated local energy decay
estimate of Proposition 2.9, which does not “lose derivatives”, is important for applications to the nonlinear
stability problem. The degeneration of this integrated local energy decay estimate complicates the analysis of
nonlinear terms close to r = 3M . See the discussion in Section 5.6 below.

3 The Einstein equations in double null gauge

Due to the general covariance of the vacuum Einstein equations (1.2), one has to fix a gauge in order to
reduce (1.2) to a well posed system of partial differential equations. The proof [20] of Theorem 1.1 employs
a double null gauge, intimately related to the Newman–Penrose formalism [57] widely studied in the physics
literature, which has a number of desirable features:

• Linear features of double null gauge: gauge invariant quantities in the linearisation of (1.2) around
Schwarzschild in double null gauge satisfy decoupled Bardeen–Press equations, which generalise to
Kerr in the form of Teukolsky equations. See Section 4.4.

• Nonlinear features of double null gauge: the crucial null structure present in the nonlinearity of (1.2),
familiar already from the stability of Minkowski space, is well captured in double null gauge. See
Section 5.1 and Section 5.6. Moreover, the event horizon of each solution of Theorem 1.1 is captured
as a smooth hypersurface, and the familiar laws of gravitational radiation, along with nonlinear effects
such as Christodoulou memory [12], are immediately understood a posteriori. See Section 6.1.

Though the formalism of double null gauge can seem burdensome to the uninitiated, an additional
benefit is that the present work can be seen in a unified context with a host of other recent works in general
relativity where double null gauge has been successfully employed to describe a wide range of phenomena
[14, 46, 45, 53, 52, 21, 18]. In particular, the notation and the form of the equations described below are
familiar from these works.

In Section 3.1 a double null gauge of a given spacetime is introduced. In Section 3.2 the Einstein equations
are decomposed with respect to double null gauge and recast as a coupled system of elliptic, transport, and
hyperbolic equations. The reader is referred to Chapter 1 of [14] for a more detailed discussion.

3.1 Double null gauge

In a given Lorentzian manifold (M, g), a double null gauge is a coordinate system u, v, θ1, θ2 forM in which
the metric takes the form

g = −4Ω2dudv + /gAB(dθA − bAdv)(dθB − bBdv). (3.1)

In such a coordinate system the level hypersurfaces of u and v, denoted Cu and Cv respectively, are null
with respect to g, and intersect in spacelike 2-spheres Su,v, on which θ1, θ2 are coordinates. Here Ω is a
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function on M, b is a vector field on each Su,v, and /g is the induced metric on Su,v, which is assumed to be
Riemannian (so that the spheres Su,v are spacelike).

If g takes the double null form (3.1) then the angular coordinates θ1, θ2 are moreover constant along the
generators of the incoming null hypersurfaces Cv. There is an obvious alternative form of (3.1) in which the
angular coordinates θ1, θ2 are constant along the generators of the outgoing null hypersurfaces Cu.

It is left as an exercise to the reader to show that, if the metric g takes the form (3.1), then the level
hypersurfaces of u and v are null.

Note that any Lorentzian metric g on a manifoldM can locally be put in the form (3.1). The Schwarzschild
exterior can globally be put in the form (3.1) (modulo the standard degeneration of any coordinate system
θ1, θ2 on S2).

Example 3.1 (Schwarzschild in double null gauge). The Schwarzschild exterior can be written in double
null form (3.1) with respect to Eddington–Finkelstein double null coordinates u, v, where the exterior region
r > 2M is parameterised by (−∞,∞)× (−∞,∞)× S2. The metric takes the form

gM = −4

(
1− 2M

r

)
dudv + r2γ, (3.2)

where r = r(u, v) is determined implicitly by the relation(
1− 2M

r

)
r

2M
exp

( r

2M

)
= exp

(
v − u
2M

)
, (3.3)

and γ is the unit round metric on S2, so that, adding a ◦ subscript to denote Schwarzschild quantities,

Ω2
◦ = 1− 2M

r
, b◦ = 0, /g◦ = r2γ.

This double null form (3.2) of Schwarzschild can be obtained from the more familiar (1.1) by setting

r∗ = r + 2M log(r − 2M)− 3M − 2M logM, u =
1

2
(t− r∗), v =

1

2
(t+ r∗).

Though the Eddington–Finkelstein double null gauge only parameterises the black hole exterior r > 2M ,
the event horizon H+ can be formally parameterised by {∞} × (−∞,∞)× S2.

See also the Kruskal double null form of Schwarzschild,

gM = −32M3

r
e−

r
2M dUdV + r2γ, (3.4)

related to the Eddington–Finkelstein double null u, v by

U = −e− u
2M , V = e

v
2M ,

which covers the entire maximally extended Schwarzschild manifold. Now the function r = r(U, V ) in the
expression (3.4) is defined implicitly by the relation(

1− 2M

r

)
r

2M
exp

( r

2M

)
= −UV. (3.5)

In practice, in the proof of Theorem 1.1, the double null form of Schwarzschild of Example 3.1 is the
most convenient representation (despite its degeneration at r = 2M).

Note that the Kerr exterior can also be put in the double null form (3.1). See Pretorius–Israel [59].
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Figure 3: A sphere S in a spacetime (M, g) and foliations of its corresponding cones C and C.

Remark 3.2 (Residual double null freedom). The condition that the level hypersurfaces of u and v are null,
or equivalently that the metric takes the double null form (3.1), does not determine u, v, θ1, θ2 completely.
In fact, in any given spacetime (M, g) in which g can be expressed as (3.1), there is an entire infinite
dimensional family of diffeomorphisms Φ: M → M which preserve the double null form (3.1) of g. The
presence of this large degree of residual freedom adds a considerable complication to the proof of Theorem
1.1. See Section 4 (in particular, the discussion in Section 4.5.3) and Section 5.5 below.

This residual double null freedom can be parameterised as follows. First, one chooses arbitrarily a
spacelike 2-sphere S. The boundary of the causal future of S consists of an incoming null cone C and an
outgoing null cone C. One then chooses speeds at which C and C are to be foliated. These speeds then
locally induce foliations of C and C respectively by spacelike 2-spheres. See Figure 3. The boundaries of the
causal futures of these spheres then locally define a spacetime double null foliation. Functions v and u can
then be chosen so that their level hypersurfaces coincide with these incoming and outgoing null hypersurfaces
respectively, and can be completed to a coordinate system (u, v, θ1, θ2) by defining coordinates (θ1, θ2) on S
and extending along the appropriate null generators of these cones. Such a procedure locally defines a double
null gauge. Note the infinite dimensional freedom in choosing both S and the speeds at which C and C are
to be foliated.

Associated to any double null gauge is a normalised double null frame

e3 =
1

Ω
∂u, e4 =

1

Ω
(∂v + bA∂θA), eA = ∂θA , A = 1, 2. (3.6)

The frame is normalised so that

g(e3, e4) = −2, g(e3, e3) = g(e3, e4) = g(e3, eA) = g(e4, eA) = 0, A = 1, 2.

The Ricci coefficients of this double null frame are denoted

χAB := g(∇eAe4, eB), χ
AB

:= g(∇eAe3, eB), (3.7)

ηA := −1

2
g(∇e3eA, e4), η

A
:= −1

2
g(∇e4eA, e3), (3.8)

ω̂ :=
1

2
g(∇e4e3, e4), ω̂ :=

1

2
g(∇e3e4, e3), (3.9)

with χ and χ further decomposed into their trace and trace free parts as

trχ := /g
ABχAB , trχ := /g

ABχ
AB
, χ̂AB := χAB −

1

2
trχ/gAB , χ̂

AB
:= χ

AB
− 1

2
trχ/gAB ,

and the curvature components are denoted

αAB := R(eA, e4, eB , e4), αAB := R(eA, e3, eB , e3), (3.10)

βA :=
1

2
R(eA, e4, e3, e4), β

A
:=

1

2
R(eA, e3, e3, e4), (3.11)

ρ :=
1

4
R(e4, e3, e4, e3), σ :=

1

4
∗R(e4, e3, e4, e3). (3.12)
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Here, R denotes the Riemann curvature tensor of g, defined as usual by

R(W,Z,X, Y ) = g(R(X,Y )Z,W ) = g(∇X∇Y Z −∇Y∇XZ − [X,Y ]Z,W )

and ∗ denotes the Hodge star operation. Note that trχ, trχ, ω̂, ω̂, ρ, σ are spacetime functions, η, η, β, β
are one forms on the spheres Su,v, and χ̂, χ̂, α, α are symmetric trace free (0, 2) tensor fields on the spheres
Su,v.

Example 3.3 (Geometric quantities of Schwarzschild in double null gauge). In the Eddington–Finkelstein
double null gauge of Schwarzschild, described in Example 3.1, along with the metric quantities

Ω2
◦ = 1− 2M

r
, b◦ = 0, /g◦ = r2γ, (3.13)

the non-vanishing Ricci coefficients take the form

(Ωtrχ)◦ =
2

r

(
1− 2M

r

)
, (Ωtrχ)◦ = −2

r

(
1− 2M

r

)
, (Ωω̂)◦ =

M

r2
, (Ωω̂)◦ = −M

r2
, (3.14)

and the only non-vanishing curvature component takes the form

ρ◦ = −2M

r3
. (3.15)

3.2 The reduced Einstein equations

In order to geometrically capture the analytic content of the vacuum Einstein equations, in double null gauge
the Ricci coefficients and curvature components, described in Section 3.1, are considered as the unknowns.
The reduced Einstein equations consist of the null components of the structure equations, satisfied by the
Ricci coefficients, and the null Bianchi equations satisfied by the curvature components.

Consider a spacetime (M, g) together with a double null gauge, as described in Section 3.1. Let ξ denote
a (0, k) Su,v-tensor field, i.e. a (0, k) tensor field on M such that

ξ(X1, . . . , Xk) = 0,

whenever Xi ∈ {e3, e4} for some i = 1, . . . , k. One defines /∇3ξ and /∇4ξ to be the restriction of ∇e3ξ and
∇e4ξ respectively to Su,v tangent vectors V1, . . . , Vk ∈ TpSu,v. One moreover defines /∇ to be the Levi-Civita
connection of the spheres (Su,v, /g).

The null components of the relations

∇XY −∇YX = [X,Y ], [∇X ,∇Y ]Z −∇[X,Y ]Z = R(X,Y )Z, (3.16)

together with the vacuum Einstein equations (1.2), provide relations between the null Ricci coefficients
(3.7)–(3.9) and the null curvature components (3.10)–(3.12). Examples are

/∇4χ̂+ trχ χ̂− ω̂ χ̂ = −α, /divχ̂ =
1

2
χ̂] ·

(
η − η

)
− 1

2
trχη +

1

2Ω
/∇
(
Ωtrχ

)
+ β. (3.17)

The former of (3.17) can be viewed as a transport equation for χ̂, while the latter can be viewed as an elliptic
equation for χ̂ on the spheres Su,v.

Recall that, in any Lorentzian manifold (M, g), the second Bianchi identity leads to the relation

∇αRαβγδ = ∇γRicβδ −∇δRicβγ .

It follows that, for any solution of (1.2), the Riemann curvature tensor is divergence free

∇αRαβγδ = 0. (3.18)
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The null components of (3.18) lead to a further set of relations between the null curvature components
(3.10)–(3.12) and the null Ricci coefficients (3.7)–(3.9). Examples are

/∇3α+
1

2
trχα+ 2ω̂α = −2/D∗2β−3χ̂ρ−3∗χ̂σ+

1

2

(
9η − η

)
⊗̂β, /∇4β+ 2trχβ− ω̂β = /divα+η] ·α. (3.19)

Here −2/D∗2 and /div denote the symmetric trace free gradient and divergence with respect to /g respectively,
defined below in (3.22) and (3.20) respectively. This system of Bianchi equations is to be viewed as a
hyperbolic system for the null curvature components.

Remark 3.4 (Hyperbolicity of the Bianchi equations). Indeed, considering the examples (3.19), one notes
that, for any Su,v one form ξ and any Su,v trace free (0,2) tensor ϑ,∫

Su,v

(ξ, /divϑ)/g =

∫
Su,v

(/D∗2ξ, ϑ)/g,

i.e. /D∗2 is the formal L2(Su,v, /g) adjoint of /div. This fact leads to an energy estimate for the pair (α, β).
Indeed, for simplicity suppose α and β are Su,v tensors on a fixed Minkowski background (on which e3 = ∂u,
e4 = ∂v). If

/∇3α = −2/D∗2β + . . . , /∇4β = /divα+ . . . ,

then

1

2
∂u(|α|2) + ∂v(|β|2) = α · /∇3α+ 2β · /∇4β = −2α · /D∗2β + 2β · /divα+ . . . = 2 /div(α · β) + . . . .

Integrating over a spacetime region of the form [u1, u2]× [v1, v2]×S2, for some u2 > u1, v2 > v1 then yields
an energy identity

1

2

∫
u=u2

|α|2 +

∫
v=v2

|β|2 =
1

2

∫
u=u1

|α|2 +

∫
v=v1

|β|2 + . . . .

The full list of null structure and Bianchi equations is stated here for convenience.
For totally symmetric covariant Su,v-tensors φ of rank s+ 1, define the covariant rank s Su,v-tensors

( /divφ)A1···As := /g
BC /∇BφCA1···As (3.20)

( /curlφ)A1···As := /ε
BC /∇BφCA1···As . (3.21)

For Su,v-tangent 1-forms ξ define the operator

/D∗2ξ = −1

2

(
/∇ξ + /∇T ξ − /divξ/g

)
, (3.22)

where /∇T ξ denotes the transpose of /∇ξ,

( /∇T ξ)AB = /∇BξA. (3.23)

In addition to the above differential operators, define the following algebraic operations on Su,v-tensors.

Let ϑAB and ϑ̃AB be symmetric covariant Su,v-tangent (0,2)-tensors and ξA, ξ̃A be covariant Su,v-tangent
1-forms. Define

(ϑ× ϑ̃)BC := /g
ADϑABϑ̃DC

(ϑ, ϑ̃) := /g
AC
/g
BDϑABϑ̃CD

(ξ, ξ̃) := /g
ABξAξ̃B

(ξ⊗̂ξ̃)AB := ξAξ̃B + ξB ξ̃A − /gCDξC ξ̃D/gAB
ϑ ∧ ϑ̃ := /ε

AB
/g
CDϑAC ϑ̃BD.
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For totally symmetric covariant Su,v-tensors of rank s+ 2 define

(trφ)A1...As := /g
BCφBCA1...As .

For Su,v-tangent 1-forms ξA and symmetric covariant Su,v-tangent 2-tensors ϑAB define the Hodge duals
∗ξA and ∗ϑAB by the expressions

∗ξA := /gAC/ε
CBξB ,

∗ϑAB := /gBD/ε
DCϑAC .

For a (not necessarily symmetric) 2-covariant Su,v-tensor field ϑAB and an Su,v-tangent 1-form ξA, recall
the musical isomorphisms

ϑ] CA = ϑAB/g
BC , ξ] C = ξA/g

BC ,

defining Su,v-tangent (1, 1) and (1, 0) tensors, respectively.
For a (0, k) Su,v-tensor T , consider also the coercive expression

|T |2/g := /g
A1B1 · · · /gAkBkTA1...AkTB1...Bk . (3.24)

Proposition 3.5 (Null structure and Bianchi equations). The null structure equations (3.16) in full take
the form

/∇3χ̂+ trχ χ̂− ω̂ χ̂ = −α, /∇4χ̂+ trχ χ̂− ω̂ χ̂ = −α, (3.25)

/∇3trχ+
1

2

(
trχ
)2 − ω̂trχ = −

(
χ̂, χ̂

)
, /∇4trχ+

1

2
(trχ)

2 − ω̂trχ = − (χ̂, χ̂) . (3.26)

/∇3χ̂+
1

2
trχ χ̂+ ω̂ χ̂ = −2/D∗2η −

1

2
trχ χ̂+ η⊗̂η, (3.27)

/∇4χ̂+
1

2
trχ χ̂+ ω̂ χ̂ = −2/D∗2η −

1

2
trχ χ̂+ η⊗̂η, (3.28)

/∇3trχ+
1

2
trχtrχ+ ω̂trχ = −

(
χ̂, χ̂

)
+ 2 (η, η) + 2ρ+ 2 /divη , (3.29)

/∇4trχ+
1

2
trχtrχ+ ω̂trχ = −

(
χ̂, χ̂

)
+ 2

(
η, η
)

+ 2ρ+ 2 /divη, (3.30)

/∇3η +
1

2
trχη =

1

2
trχη + χ̂] ·

(
η − η

)
+ β, /∇4η +

1

2
trχη =

1

2
trχη − χ̂] ·

(
η − η

)
− β, (3.31)

/∇4η + trχη =
2

Ω
/∇(Ωω̂) + β − 2χ̂ · η, (3.32)

/∇3η + trχη =
2

Ω
/∇(Ωω̂)− β − 2χ̂ · η, (3.33)

Ω−1 /∇4 (Ωω̂) = 2
(
η, η
)
− |η|2 − ρ, Ω−1 /∇3 (Ωω̂) = 2

(
η, η
)
− |η|2 − ρ, (3.34)

/curlη = −1

2
χ̂ ∧ χ̂+ σ, /curlη =

1

2
χ̂ ∧ χ̂− σ, (3.35)
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/divχ̂ = −1

2
χ̂] ·

(
η − η

)
− 1

2
trχη +

1

2Ω
/∇ (Ωtrχ)− β, (3.36)

/divχ̂ =
1

2
χ̂] ·

(
η − η

)
− 1

2
trχη +

1

2Ω
/∇
(
Ωtrχ

)
+ β, (3.37)

K = −1

4
trχtrχ+

1

2

(
χ̂, χ̂

)
− ρ, (3.38)

where K denotes the Gauss curvature of (Su,v, /g), the Bianchi equations (3.18) take the form

/∇3α+
1

2
trχα+ 2ω̂α = −2/D∗2β − 3χ̂ρ− 3∗χ̂σ +

1

2

(
9η − η

)
⊗̂β, (3.39)

/∇4β + 2trχβ − ω̂β = /divα+ η] · α, (3.40)

/∇3β + trχβ + ω̂β = /∇ρ+ ∗ /∇σ + 3ηρ+ 3∗ησ + 2χ̂] · β, (3.41)

/∇4ρ+
3

2
trχρ = /divβ +

1

2

(
η + 3η, β

)
− 1

2

(
χ̂, α

)
, (3.42)

/∇4σ +
3

2
trχσ = − /curlβ − 1

2

(
η + 3η

)
∧ β +

1

2
χ̂ ∧ α, (3.43)

/∇3ρ+
3

2
trχρ = − /divβ − 1

2

(
3η + η, β

)
− 1

2
(χ̂, α) , (3.44)

/∇3σ +
3

2
trχσ = − /curlβ − 1

2

(
3η + η

)
∧ β − 1

2
χ̂ ∧ α, (3.45)

/∇4β + trχβ + ω̂β = − /∇ρ+ ∗ /∇σ − 3ηρ+ 3∗ησ + 2χ̂] · β, (3.46)

/∇3β + 2trχβ − ω̂β = − /divα− η] · α, (3.47)

/∇4α+
1

2
trχα+ 2ω̂α = 2/D∗2β − 3χ̂ρ+ 3∗χ̂σ − 1

2

(
9η − η

)
⊗̂β. (3.48)

and one moreover has the following equations satisfied by the metric components

/∇3/g = /∇4/g = 0, (3.49)

∂ub
A = 2Ω2

(
ηA − ηA

)
, (3.50)

η + η = 2 /∇ log Ω, ω̂ = /∇4 log Ω, ω̂ = /∇3 log Ω. (3.51)

Proof. The proof is left as an exercise. Alternatively, see Chapter 1 of [14] for a detailed derivation.

Equations (3.26) are known as the Raychaudhuri equations. Equations (3.36) and (3.37) constitute the
Codazzi equations, and equation (3.38) the Gauss equation.

A solution trχ, trχ, χ̂, χ̂, ω̂, ω̂, η, η, α, α, β, β, ρ, σ, Ω, b, /g of (3.25)–(3.51) moreover gives rise to a
solution of the vacuum Einstein equations (1.2) in double null gauge. In the remainder, it is this reduced
system (3.25)–(3.51) (or its linearisation around Schwarzschild) which is studied.

4 The linear stability of the Schwarzschild family

In this section the problem of the linear stability of the Schwarzschild family in double null gauge is discussed.
The problem concerns boundedness and decay properties of the reduced Einstein equations in double null
gauge (3.25)–(3.51) linearised around the Schwarzschild solution (or more precisly the Schwarzschild solution
in the Eddington–Finkelstein double null gauge described in Example 3.3). The first full resolution of this
problem is due to Dafermos–Holzegel–Rodnianski [19].
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Theorem 4.1 (Dafermos–Holzegel–Rodnianski [19]). The Schwarzschild exterior is linearly stable as a so-
lution of the vacuum Einstein equations (1.2).

See Section 4.3 below for a more precise formulation of the linear stability theorem.
A version of Theorem 4.1 has also, more recently, been shown in a generalised harmonic gauge [41]. See

also [38, 39] and, for some results on Kerr, see [1, 34].
This full linear stability problem contains all of the difficulties of the poor man’s linear stability problem,

described in Section 2, and is further complicated by the following facts:

• A decoupled wave equation, which can be analysed using the methods described in Section 2, does
not directly emerge from the linearisation of the reduced equations (3.25)–(3.51). See Section 4.4 for a
discussion of the decoupled Teukolsky equation, and the Chandrasekhar transformations employed in
[19] to arrive at such a wave equation which can be studied using the insights described in Section 2.

• The linearised equations admit families of non-decaying solutions. The existence of such solutions can
be inferred in view of the presence of other nearby members of the Kerr family (1.3), and the infinite
dimensional residual double null freedom described in Remark 3.2. See Section 4.2 below for a further
description of these non-decaying solutions of the linearised equations.

In Section 4.1 the linearised vacuum Einstein equations in double null gauge around the Schwarzschild are
discussed. In Section 4.2 the two families of non-decaying solutions are introduced. In Section 4.3 the linear
stability theorem, Theorem 4.1, is stated more precisely, and in Sections 4.4 and 4.5 the proof is discussed.

4.1 The linearised equations

The system (3.25)–(3.51) of reduced Einstein equations in double null gauge is formally linearised around the
Schwarzschild solution in Eddington–Finkelstein double null gauge (3.13)–(3.15) as follows. One considers
the Eddington–Finkelstein double null parameterisation of the Schwarzschild exterior M = (−∞,∞) ×
(−∞,∞)× S2 (see Example 3.1), and a one parameter family of metrics in double null form

g(ε) = −4Ω2(ε)dudv + /gAB(ε)(dθA − bA(ε)dv)(dθB − bB(ε)dv),

on this background, such that g(0) is the Schwarzschild metric in Eddington–Finkelstein double null form

g(0) = −4

(
1− 2M

r

)
dudv + r2γ.

One considers the associated Ricci coefficients and curvature components (3.7)–(3.12) and formally Taylor
expands around the corresponding Schwarzschild quantities

Ω(ε) = Ω◦ + ε
(1)

Ω +O(ε2),

/g(ε) = /g◦ + ε
(1)

/g +O(ε2),

Ωtrχ(ε) = Ωtrχ◦ + ε
(1)

(Ωtrχ) +O(ε2),

Ωtrχ(ε) = Ωtrχ◦ + ε
(1)(

Ωtrχ
)

+O(ε2),

Ωω̂(ε) = Ωω̂◦ + ε
(1)

ω +O(ε2),

Ωω̂(ε) = Ωω̂◦ + ε
(1)

ω +O(ε2),

ρ(ε) = ρ◦ + ε
(1)

ρ+O(ε2),

for appropriate
(1)

Ω,
(1)

/g, etc., where the ◦ subscript denotes the Schwarzschild quantities of Example 3.3, along
with the quantities which vanish in Schwarzschild in Eddington–Finkelstein gauge

b(ε) = ε
(1)

b+O(ε2), χ̂(ε) = ε
(1)

χ̂+O(ε2), χ̂(ε) = ε
(1)

χ̂+O(ε2), η(ε) = ε
(1)

η +O(ε2), η(ε) = ε
(1)

η +O(ε2),
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and

α(ε) = ε
(1)

α+O(ε2), α(ε) = ε
(1)

α+O(ε2), β(ε) = ε
(1)

β +O(ε2), β(ε) = ε
(1)

β +O(ε2), σ(ε) = ε
(1)

σ +O(ε2).

Here
(1)

Ω,
(1)

(Ωtrχ),
(1)(

Ωtrχ
)
,

(1)

ω,
(1)

ω,
(1)

ρ,
(1)

σ,
(1)

K are spacetime functions,
(1)

η,
(1)

η,
(1)

β,
(1)

β are Su,v 1-forms,
(1)

b is an Su,v vector

field,
(1)

/g is an Su,v (0, 2) tensor, and
(1)

χ̂,
(1)

χ̂,
(1)

α,
(1)

α are symmetric trace free Su,v (0, 2) tensor fields, of the fixed
Schwarzschild background with respect to the Eddington–Finkelstein double null gauge of Example 3.1. The
function r featuring in the Schwarzschild quantities is, as usual, the function r(u, v) defined by (3.3).

The linearised induced metric
(1)

/g is further decomposed into its trace and trace free parts, with respect to
the round metric, as

(1)

/gAB =
(1)

/̂gAB +
1

2
(/g◦)AB · tr/g◦

(1)

/g, where tr/g◦

(1)

/g = /g
CD
◦

(1)

/gCD.

One then inserts these expansions into the null structure and Bianchi equations (3.25)–(3.51). The
resulting system is satisfied to zeroth order in ε in view of the fact that Schwarzschild in Eddington–
Finkelstein double null gauge is a solution. The linearised equations consist of the order ε part of the
resulting system, and takes the following form. The linearised structure equations for the Ricci coefficients
(3.25)–(3.38) take the form

/∇4

(1)(
Ωtrχ

)
= Ω◦

(
2 /div

(1)

η + 2
(1)

ρ+ 4ρ◦ Ω−1
◦

(1)

Ω
)
− 1

2
trχ◦

(
(1)(

Ωtrχ
)
−

(1)

(Ωtrχ)

)
, (4.1)

/∇3

(1)

(Ωtrχ) = Ω◦

(
2 /div

(1)

η + 2
(1)

ρ+ 4ρ◦Ω−1
◦

(1)

Ω
)
− 1

2
trχ◦

(
(1)(

Ωtrχ
)
−

(1)

(Ωtrχ)

)
, (4.2)

/∇4

(1)

(Ωtrχ) = −trχ◦
(1)

(Ωtrχ) + 2ω̂
(1)

(Ωtrχ) + 2trχ◦
(1)

ω, /∇3

(1)(
Ωtrχ

)
= −trχ◦

(1)(
Ωtrχ

)
+ 2ω̂◦

(1)(
Ωtrχ

)
+ 2trχ◦

(1)

ω,

(4.3)

/∇3

(
Ω−1
◦

(1)

χ̂
)

+ Ω−1
◦ trχ◦

(1)

χ̂ = −Ω−1
◦

(1)

α , /∇4

(
Ω−1
◦

(1)

χ̂
)

+ Ω−1
◦ trχ◦

(1)

χ̂ = −Ω−1
◦

(1)

α , (4.4)

/∇3

(
Ω◦

(1)

χ̂
)

+
1

2

(
Ωtrχ

)
◦

(1)

χ̂+
1

2
(Ωtrχ)◦

(1)

χ̂ = −2Ω◦ /D
∗
2

(1)

η , (4.5)

/∇4

(
Ω◦

(1)

χ̂
)

+
1

2
(Ωtrχ)◦

(1)

χ̂+
1

2

(
Ωtrχ

)
◦

(1)

χ̂ = −2Ω◦ /D
∗
2

(1)

η . (4.6)

/∇3
(1)

η =
1

2
trχ◦

(
(1)

η − (1)

η
)

+
(1)

β, /∇4
(1)

η = −1

2
trχ◦

(
(1)

η − (1)

η
)
−

(1)

β, (4.7)

/∇4
(1)

η = −1

2
trχ◦

(1)

η +
(1)

β +
2

Ω◦
/∇ (1)

ω, /∇3
(1)

η = −1

2
trχ◦

(1)

η −
(1)

β +
2

Ω◦
/∇ (1)

ω, (4.8)

/∇4
(1)

ω = − (1)

ρ− 2ρ◦Ω
−1
◦

(1)

Ω , /∇3
(1)

ω = − (1)

ρ− 2ρ◦Ω
−1
◦

(1)

Ω , (4.9)

/div
(1)

χ̂ = −1

2
trχ◦

(1)

η +
(1)

β +
1

2Ω◦
/∇

(1)(
Ωtrχ

)
, /div

(1)

χ̂ = −1

2
trχ◦

(1)

η −
(1)

β +
1

2Ω◦
/∇

(1)

(Ωtrχ) , (4.10)
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/curl
(1)

η =
(1)

σ, /curl
(1)

η = −(1)

σ , (4.11)

(1)

K = − (1)

ρ− 1

4

trχ◦
Ω◦

(
(1)(

Ωtrχ
)
−

(1)

(Ωtrχ)

)
+

1

2
trχ◦trχ◦Ω

−1
◦

(1)

Ω , (4.12)

the linearised Bianchi equations for the curvature components (3.39)–(3.48) take the form

/∇3
(1)

α+
1

2
trχ◦

(1)

α+ 2ω̂◦
(1)

α = −2/D∗2
(1)

β − 3ρ◦
(1)

χ̂ , (4.13)

/∇4

(1)

β + 2trχ◦
(1)

β − ω̂◦
(1)

β = /div
(1)

α , (4.14)

/∇3

(1)

β + trχ◦

(1)

β + ω̂◦
(1)

β = /∇ (1)

ρ+ ∗ /∇(1)

σ + 3ρ◦
(1)

η , (4.15)

/∇4
(1)

ρ+
3

2
trχ◦

(1)

ρ = /div
(1)

β − 3

2

ρ◦
Ω◦

(1)

(Ωtrχ) , (4.16)

/∇3
(1)

ρ+
3

2
trχ◦

(1)

ρ = − /div
(1)

β − 3

2

ρ◦
Ω◦

(1)(
Ωtrχ

)
, (4.17)

/∇4
(1)

σ +
3

2
trχ◦

(1)

σ = − /curl
(1)

β , (4.18)

/∇3
(1)

σ +
3

2
trχ◦

(1)

σ = − /curl
(1)

β , (4.19)

/∇4

(1)

β + trχ◦
(1)

β + ω̂◦
(1)

β = − /∇ (1)

ρ+ ∗ /∇(1)

σ − 3ρ◦
(1)

η , (4.20)

/∇3

(1)

β + 2trχ◦

(1)

β − ω̂◦
(1)

β = − /div
(1)

α , (4.21)

/∇4
(1)

α+
1

2
trχ◦

(1)

α+ 2ω̂◦
(1)

α = 2/D∗2
(1)

β − 3ρ◦
(1)

χ̂ , (4.22)

and the linearised equations for the metric components (3.49)–(3.51) take the form

e3

(
tr/g◦

(1)

/g
)

= 2
(1)(

Ωtrχ
)
, e4

(
tr/g◦

(1)

/g
)

= 2
(1)

(Ωtrχ)− 2 /div
(1)

b , (4.23)

√
/g◦Ω◦e3

 (1)

/̂gAB√
/g◦

 = 2Ω◦
(1)

χ̂AB ,
√
/g◦ Ω◦e4

 (1)

/̂gAB√
/g◦

 = 2Ω◦
(1)

χ̂AB + 2
(
/D∗2

(1)

b
)
AB

, (4.24)

∂u
(1)

bA = 2Ω2
◦
(

(1)

ηA − (1)

ηA
)
, (4.25)

(1)

ω = e4

(
Ω−1
◦

(1)

Ω
)
,

(1)

ω = e3

(
Ω−1
◦

(1)

Ω
)
,

(1)

η +
(1)

η = 2 /∇
(

Ω−1
◦

(1)

Ω
)
. (4.26)

See Section 5 of [19] for more details of the formal linearisation procedure. Finally, it is noted that
the linearised system (4.1)–(4.26) admits a well posed Cauchy and characteristic initial value problem. See
Theorem 8.1 of [19].
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4.2 Residual pure gauge and linearised Kerr families of solutions

The problem of linear stability of Schwarzschild involves showing that solutions of the linearised system
(4.1)–(4.26) remain uniformly bounded and decay in time. The problem is complicated by the existence of
two special non-decaying families of solutions.

The first non-decaying family is infinite dimensional, and arises from the infinite dimensional family of
residual freedom in double null gauge (see Remark 3.2). This family is thus called the family of pure gauge
solutions.

Proposition 4.2 (A family of pure gauge solutions). For any functions f3(u, θ1, θ2), f4(v, θ1, θ2), the
linearised metric quantities

2Ω−1
◦

(1)

Ω = ∂uf
3 + ∂vf

4 − 2M

r2
(f3 − f4),

(1)

/̂g = −4

r
r2 /D∗2 /∇f4, tr/g◦

(1)

/g =
4Ω2
◦
r

(f4 − f3) +
4

r
r2 /∆f4,

(1)

b =
(
2Ω2
◦ /∇(f3 + f4) + 2r /∇∂vf4

)]
,

the linearised Ricci coefficients

(1)

χ̂ = −2Ω◦ /D
∗
2 /∇f3,

(1)

χ̂ = −2Ω◦ /D
∗
2 /∇f4,

(1)

(Ωtrχ) =
2Ω2
◦
r
∂vf

4 + 2Ω2
◦ /∆f

3 +
2Ω2
◦

r2

(
1− 4M

r

)
(f3 − f4),

(1)(
Ωtrχ

)
= −2Ω2

◦
r
∂uf

3 + 2Ω2
◦ /∆f

4 − 2Ω2
◦

r2

(
1− 4M

r

)
(f3 − f4),

(1)

η = /∇∂uf3 + (2Ωω̂◦ −
1

2
Ωtrχ◦)

/∇f3 +
1

2
Ωtrχ◦ /∇f4,

(1)

η = /∇∂vf4 + (2Ωω̂◦ −
1

2
Ωtrχ◦) /∇f4 +

1

2
Ωtrχ◦

/∇f3,

(1)

ω =
1

2
∂2
vf

4 +
M

r2
∂vf

4 +
2M

r3
Ω2
◦(f

3 − f4),
(1)

ω =
1

2
∂2
uf

3 − M

r2
∂uf

3 − 2M

r3
Ω2
◦(f

3 − f4),

and the linearised curvature components

(1)

α = 0,
(1)

α = 0,
(1)

β = −6MΩ◦
r3

/∇f3,
(1)

β =
6MΩ◦
r3

/∇f4,
(1)

ρ =
6MΩ2

◦
r4

(f4 − f3),
(1)

σ = 0,

define a solution of the linearised system (4.1)–(4.26), called a pure gauge solution.

See Section 6 of [19] for the most general family of pure gauge solutions (the pure gauge solutions of
Proposition 4.2 correspond to those of Lemma 6.1.1 and Lemma 6.1.2 of [19]). One arrives at the expressions
of Proposition 4.2 by noting that transformations of the form

uε = u+ εf3(u, θ1, θ2), vε = v + εf4(v, θ1, θ2), θAε = θA + ε2r/g
AB∂Bf

4(v, θ1, θ2),

preserve the double null form of the metric to linear order, and computing the change in linearised metric
components, Ricci coefficients, and curvature components with respect to such a change.

The second non-decaying family is finite dimensional, and arises from the presence of members of the
Kerr family (1.3). This non-decaying family of solutions of the linearised equations can be divided into a
one dimension family of linearised Schwarzschild solutions, and a three dimensional family of fixed mass
linearised Kerr solutions.4

4Given that Kerr is a two parameter family of solutions of (1.2), one might expect the linearised Kerr family to be two
dimensional. The high degrees of symmetry possessed by Schwarzschild, however, mean that, in order to parameterise smoothly,
it is convenient to over count. One can view the numerology as arising from the fact that, given a member of Schwarzschild,
to describe a nearby member of the Kerr family one not only needs to choose a mass and angular momentum parameter, but
also an axis around which the Kerr member is rotating. The mass and angular momentum parameters, together with the axis
of rotation, constitute four parameters in total.
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Proposition 4.3 (The family of linearised Kerr solutions). For any parameter m, the quantities

2Ω−1
◦

(1)

Ω = −m,
(1)

/g = −2m/g◦,
(1)

ρ = −2M

r3
m,

(1)

K =
m

r2
, (4.27)

(1)

β =
(1)

(Ωtrχ) =
(1)(

Ωtrχ
)

=
(1)

ω =
(1)

ω =
(1)

σ =
(1)

η =
(1)

η =
(1)

β =
(1)

β =
(1)

χ̂ =
(1)

χ̂ =
(1)

α =
(1)

α = 0, (4.28)

define a spherically symmetric solution of the linearised system (4.1)–(4.26), called a linearised Schwarzschild
solution. For any parameters a−1, a0, a1, the quantities

(1)

σ =

1∑
m=−1

am
6

r4
Y `=1
m ,

(1)

η = −(1)

η =

1∑
m=−1

am
3

r2
∗ /∇Y `=1

m ,
(1)

b =

1∑
m=−1

am
4

r
∗ /∇Y `=1

m , (4.29)

(1)

β = −Ω◦

1∑
m=−1

am
3

r3
∗ /∇Y `=1

m ,
(1)

β = Ω◦

1∑
m=−1

am
3

r3
∗ /∇Y `=1

m , (4.30)

(1)

Ω =
(1)

/g =
(1)

ρ =
(1)

K =
(1)

(Ωtrχ) =
(1)(

Ωtrχ
)

=
(1)

ω =
(1)

ω =
(1)

χ̂ =
(1)

χ̂ =
(1)

α =
(1)

α = 0, (4.31)

define a solution of the linearised system (4.1)–(4.26), called a fixed mass linearised Kerr solution. Here
Y `=1
−1 , Y `=1

0 , Y `=1
1 denote the ` = 1 spherical harmonics. In (θ, φ) coordinates,

Y `=1
−1 (θ, φ) =

√
3

4π
sin θ sinφ, Y `=1

0 (θ, φ) =

√
3

4π
cos θ, Y `=1

1 (θ, φ) =

√
3

4π
sin θ cosφ.

Note that the linearised Schwarzschild family (4.27)–(4.28) is supported on the ` = 0 spherical harmonic,
and the fixed mass linearised Kerr family (4.29)–(4.31) is supported on the ` = 1 spherical harmonics.
(See Section 4.4.2 of [19] for a discussion of what it means for Su,v-1 forms and symmetric trace free (0, 2)
Su,v-tensors to be supported on ` = 0 and ` = 1.)

Linear stability of Schwarzschild then involves showing that solutions of the linearised system (4.1)–(4.26)
remain uniformly bounded, and moreover decay in time to a member of the family of pure gauge solutions,
plus a member of the family of linearised Kerr solutions.

4.3 The linear stability theorem

Theorem 4.1 can now be more precisely stated as follows. Consider the initial hypersurfaces C0 = {u = 0}
and C0 = {v = 0} in Schwarzschild, defined with respect to the Eddington–Finkelstein double null gauge.

Theorem 4.4 (Linear stability of Schwarzschild in double null gauge [19]). For any initial data for the
linearised Einstein equations (4.1)–(4.26) on C0∪C0, which satisfies appropriate initial gauge conditions on
C0 ∪ C0 (see Definition 9.1 of [19]), the resulting solution

1. Remains uniformly bounded in the exterior by initial data;

2. Decays, at an inverse polynomial rate, to a member of the linearised Kerr family, after adding a residual
pure gauge solution.

Moreover, the residual pure gauge solution which is added is uniformly controlled by initial data.

The boundedness and decay of Theorem 4.4 hold up to and including the event horizon H+, and the
decay to the linearised Kerr solution in particular holds along I+ and H+.

Recall (see the brief discussion in Section 1) that the notion of a black hole is teleological. The black
hole exterior of a spacetime is characterised as the causal past of an appropriate complete future null infinity
I+. In the context of Theorem 1.1, this means that, at the level of initial data, it is impossible in general
to a priori characterise the black hole exterior exactly (assuming that the resulting solution indeed contains
a black hole) as it in general depends on how the solution behaves in evolution. By a miracle of linear
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theory, however, the linearised analogue of the black hole exterior of the linear perturbations of Theorem
4.4 can be characterised explicitly in terms of initial data (see Section 4.5 below for a further discussion).
Moreover, the member of the linearised Kerr family to which the solution in Theorem 4.4 decays is also
explicitly characterised. Contrast with Theorem 1.1, in which the black hole exterior and the codimension
3 submanifold are characterised teleologically as part of the proof. See the discussion in Section 5 below for
the resulting additional complications in the proof of Theorem 1.1.

In contrast, the characterisation of the normalisation of the residual pure gauge freedom required to
decay to Schwarzschild in the Eddington–Finkelstein double null gauge of Example 3.1 is already teleological
in the linearised setting of Theorem 4.4. See Section 4.5 below for a discussion of the dependence of the pure
gauge solution of Theorem 4.4 on the behaviour of the solution in evolution.

In view of the fact that every solution of Theorem 4.4 decays to a member of the linearised Kerr family, it
is perhaps more appropriate to call Theorem 4.4 the linear stability of the Kerr family around Schwarzschild.
Since the member of the linearised Kerr family to which the solution decays is determined explicitly in terms
of initial data, one can immediately infer the following Corollary of Theorem 4.4, which should be viewed as
the linearised analogue of Theorem 1.1.

Corollary 4.5 (Full finite codimension stability of linearised Schwarzschild family around Schwarzschild).
There exists a codimension-3 subspace of initial data for the linearised Einstein equations (4.1)–(4.26) for
which the resulting solution decays to a member of the linearised Schwarzschild family.

In the remainder of this section the proof of Theorem 4.4 is outlined.

4.4 Boundedness and decay for solutions of the Teukolsky equation

The first advantage of double null gauge at the linear level is that it allows one to apply insights from the
Newman–Penrose formalism [57]. Indeed, a natural starting point in the analysis of the linearised system
(4.1)–(4.26) is the curvature components

(1)

α and
(1)

α. As was first observed by Bardeen–Press [5], these curvature
components satisfy decoupled wave equations.

Proposition 4.6 (Teukolsky equations). Consider a solution of the linearised system (4.1)–(4.26). The
linearised curvature component

(1)

α satisfies the decoupled equation

− Ω◦ /∇4Ω◦ /∇3(rΩ2
◦
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◦

(1)

α = 0, (4.32)

and the curvature component
(1)

α satisfies
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◦
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◦
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(
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r

)
rΩ2
◦

(1)

α = 0. (4.33)

Proof. Consider first equation (4.32). Note the commutation relations

[Ω◦ /∇3,Ω◦ /∇4] = [Ω◦ /∇3, r /D
∗
2] = [Ω◦ /∇4, r /D

∗
2] = 0, (4.34)

and the fact that

∂ur = −
(

1− 2M

r

)
, ∂vr =

(
1− 2M

r

)
. (4.35)

Equations (4.13), (4.14) and the latter of (4.4) can be rewritten

r4

Ω4
◦

Ω◦ /∇3(rΩ2
◦

(1)

α) = −2r /D∗2(r4Ω−1
◦

(1)

β) + 6Mr2Ω−1
◦

(1)

χ̂, (4.36)

Ω◦ /∇4(r4Ω−1
◦

(1)

β) = r4 /div
(1)

α, (4.37)

Ω◦ /∇4

(
r2Ω−1

◦
(1)

χ̂
)

= −r2 (1)

α, (4.38)
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respectively. Applying Ω◦ /∇4 to (4.36), it follows that

Ω◦ /∇4

(
Ω−4
◦ r4Ω◦ /∇3(rΩ2

◦
(1)

α)
)

= −2r5 /D∗2 /divα− 6Mr2α.

Equation (4.32) follows from noting that

∂v(Ω
−4
◦ r4) =

r4

Ω4

4

r

(
1− 3M

r

)
,

and

/D∗2 /div
(1)

α = −1

2
/∆

(1)

α+
1

r2

(1)

α.

Equation (4.33) follows similarly, using now equations (4.21), (4.22), and the former of (4.4).

Analogous decoupled wave equations to (4.32) and (4.33) can be derived for the linearised Einstein
equations around Kerr (provided

(1)

α and
(1)

α are defined with respect to an appropriate algebraically special
frame), as was shown by Teukolsky [65]. Equations (4.32) and (4.33) are thus referred to as the Teukolsky
equations.

Moreover,
(1)

α and
(1)

α are gauge invariant, meaning that they remain unchanged under the addition of a
residual pure gauge solution of Proposition 4.2 or linearised Kerr solution of Proposition 4.3 (and, conversely,
any admissible solution with

(1)

α =
(1)

α = 0 is necessarily the sum of a pure gauge and linearised Kerr solution),
and thus they can be studied independently of how the residual double null freedom is normalised.

It is difficult to analyse solutions of the Teukolsky equations (4.32) and (4.33) directly, in view of their
first order terms. It was not known how to show boundedness and decay properties of solutions, beyond
statements about fixed frequency solutions, until the work [19].

Theorem 4.7 (Boundedness and decay for solutions of the Teukolsky equation [19]). Solutions of the
Teukolsky equations (4.32) and (4.33) on the Schwarzschild exterior, arising from regular localised initial
data, remain uniformly bounded, and decay in time at an inverse polynomial rate.

The reader is referred to Theorem 2 of [19] for a more precise statement (which in particular includes
top order boundedness without loss of derivatives). Theorem 4.7 has moreover been generalised to Kerr in
the very slowly rotating |a| �M case [17], [54], and to the full subextremal range |a| < M [62].

The proof of Theorem 4.7 proceeds by considering the following transformed quantities

(1)

P = −1

2
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◦
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α)). (4.39)

These quantities satisfy the Regge–Wheeler equation.

Proposition 4.8 (Regge–Wheeler equation). For any solutions
(1)

α and
(1)

α of the Teukolsky equations (4.32),

(4.33), the quantities
(1)

P and
(1)

P defined by (4.39) satisfy the Regge–Wheeler equation
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P )−
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r2
− 6M
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r

)
r5

(1)

P = 0. (4.40)

Proof. The proof uses the commutation relations (4.34) and the fact (4.35), and is left as an exercise to the
reader. See also Section 3.4 of [20] for the analogous derivation in a nonlinear setting.

Equation (4.40) first arose in the work of Regge–Wheeler [60] in the context of the so-called metric
perturbations approach, where it governed, however, only “half” of the gauge invariant part of the pertur-
bations. It is remarkable that the very same equation is satisfied by the higher order quantities (4.39). The
relations (4.39) are physical space reformulations of fixed frequency transformations originally discovered by
Chandrasekhar [9].

In contrast to the Teukolsky equations (4.32) and (4.33), the Regge–Wheeler equation can be analysed
in much the same way as the standard linear wave equation (2.1) (note in particular the absence of terms

involving first order derivatives of
(1)

P in (4.40)). In particular, the methods described in Section 2 yield
appropriate boundedness and decay statements for solutions of (4.40). The proof of Theorem 4.7 concludes
by inverting the transformations (4.39) to obtain boundedness and decay properties of

(1)

α and
(1)

α.
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4.5 Boundedness and decay for the remainder of the linearised system

The remainder of the proof of Theorem 4.4 concerns the remaining, gauge dependent, part of the linearised
system (4.1)–(4.26).

4.5.1 The initial gauge normalisation and fixed Kerr modes

In the study of this gauge dependent part of the system, the first task is to normalise the residual double
null freedom to initial data. In linear theory this normalisation corresponds to adding a pure gauge solution,
so that certain quantities are fixed initially. For example, one can arrange to fix the quantity

(1)

(Ωtrχ)|S∞,0 = 0, (4.41)

at the initial sphere (u, v) = (∞, 0) of the event horizon H+. It turns out that this condition is then preserved
along H+ under evolution by the linearised system (4.1)–(4.26). The condition (4.41) can thus be thought
of as ensuring that the “location of the event horizon” of the linear perturbation coincides with the location

of the event horizon of the background Schwarzschild spacetime. Since the vanishing of
(1)

(Ωtrχ) along all of
H+ can be achieved with an initial normalisation, in contrast to the nonlinear problem of Theorem 1.1, the
characterisation of the black hole exterior is not teleological in linear theory.

The ` = 0 and ` = 1 spherical harmonic modes of the linearised solution play an anomalous role in
Theorem 4.4, and in particular in the initial gauge normalisation. It turns out that solutions supported only
on ` = 0 and ` = 1 can be written as the sum of a pure gauge solution (see Proposition 4.2) and a linearised
Kerr solution (see Proposition 4.3).5 Thus, by adding a pure gauge solution so as to fix certain quantities
at the initial sphere (u, v) = (∞, 0) of H+, for example

Ω−2
◦

(1)(
Ωtrχ

)
`=0,1
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S∞,0

= 0, (
(1)

ρ+ /div
(1)

η)`=1
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S∞,0

= 0, (4.42)

the ` = 0 and ` = 1 part of the linearised solution will consist only of a linearised Kerr solution. This is
precisely the linearised Kerr solution of Theorem 4.4, which can thus be explicitly determined by initial data.
Thus, in contrast to the nonlinear problem of Theorem 1.1, the linearised Kerr solution of Theorem 4.4, or
the codimension-3 subspace of Corollary 4.5, are not teleological.

See Definition 9.1 of [19] for a complete list of initial gauge conditions, which include the conditions (4.41)
and (4.42).

4.5.2 Boundedness of the remaining quantities in the initial normalised gauge

If one considers the linearised curvature components
(1)

α and
(1)

α as given inhomogenous terms in the linearised
system (4.1)–(4.26), then (4.1)–(4.26) can be viewed as a coupled system of transport and elliptic equations
for the remaining part of the linearised solution. Moreover, there is a hierarchical structure present, which
means that the system effectively decouples. For example, if

(1)

α is considered as a given inhomogenous term

then the former of equation (4.4) can be viewed as a transport equation for the quantity
(1)

χ̂. If one then

additionally considers
(1)

χ̂ as an inhomogeneous term, then equation (4.22) can be viewed as an elliptic equation

for the curvature component
(1)

β, and so on.
The boundedness part of Theorem 4.4 involves integrating these transport equations, in this hierarchical

manner, forwards from the initial hypersurfaces C0∪C0, where the initial normalisation, discussed in Section
4.5.1, provides appropriate initial conditions. In general, without teleologically renormalising the residual
pure gauge freedom, this bounded statement is sharp, i.e. the solution does not decay. This fact can be

illustrated already in the first step of the hierarchy when
(1)

χ̂ is controlled.

5Note that the quantities
(1)

α and
(1)

α, which parameterise the gauge invariant part of the linearised solution, are symmetric
trace free (0, 2) Su,v-tensors, and can thus appropriately be viewed as having vanishing ` = 0 and ` = 1 spherical harmonics.
See Proposition 4.4.1 of [19].
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Recall equation (4.4) satisfied by
(1)

χ̂. There is already an issue in obtaining boundedness of
(1)

χ̂ in view of
the fact that the appropriate integrating factor for equation (4.4), yielding
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◦
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χ̂) = −r2Ω−1
◦
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α,

would require one to estimate r2
(1)

χ̂ initially, which is however in general unbounded along the initial cone C0.
One resolves this issue by introducing an auxiliary renormalised quantity
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2
r3Ω−3

◦ /∇4(rΩ2
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which can be shown to be bounded initially, and satisfies a transport equation without integrating factor
and with integrable right hand side

/∇3
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2
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◦ /∇4(rΩ2
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α) + 3MΩ−1
◦ r

(1)

α. (4.43)

Integration of (4.43) from C0 now indeed gives rise to a finite bound for
(1)

Y , and thus for
(1)

χ̂, but this bound

is dominated at large v values by a flux associated to
(1)

α which in general will be non-zero. Thus
(1)

Y , and

consequently
(1)

χ̂, does not, in general, decay in this initial normalised gauge.
See [19] for a discussion of further difficulties which arise in establishing the boundedness part of Theorem

4.4, including the fact that the outgoing sheer χ̂ is subject to a blueshift, and thus further properties of the
redshift effect discussed in Section 2.1 have to be exploited.

4.5.3 Decay of the remaining quantities in the teleological gauge

In order for
(1)

Y , and hence
(1)

χ̂, to decay, one must renormalise the residual double null freedom in way dependent
on how the solution has behaved in evolution. In the context of the linear theory, such a teleological
normalisation amounts to adding a pure gauge solution related to the original solution (i.e. in the “initial
data normalised gauge”) by its value somewhere to the future, so as to normalise certain quantities to vanish
there.

It turns out to be sufficient for our purposes here to require that the linearised metric quantity Ω−1
◦

(1)

Ω
vanish identically along the entire event horizon H+:

Ω−1
◦

(1)

Ω = 0, on H+. (4.44)

Relation (4.44) can indeed be arranged by adding a pure gauge solution (at the expense of relaxing a
previous similar normalisation along the initial cone Cout). Moreover, in view of the boundedness statement
just obtained, the pure gauge solution that must be added is itself quantitatively bounded from initial data.

One can now revisit the integration of the transport equation (4.43) for
(1)

Y and integrate backwards, with
the condition (4.44) along H+ ensuring that the future boundary terms are controlled. This allows one to
indeed inherit decay properties from those already obtained for the gauge invariant quantities.

Combining the process again with the rp-weighted energy hierarchy of [25], this allows one to obtain
inverse polynomial decay for all quantities, completing the proof of Theorem 4.4.

Finally, it should be emphasised that the fact that the added pure gauge solution which assured (4.44) can
itself be quantitatively bounded is fundamental for the nonlinear stability proof to be discussed in Section 5.

5 The nonlinear stability of the Schwarzschild family

The strategy of the proof of Theorem 1.1 is, in its broad outline, an adaptation of the linear stability analysis
of [19] described in Section 4. Insights developed in the previous study of nonlinear problems, most notably
the stability of Minkowski space [15], are adapted to control nonlinear terms. In addition, there are a number
of nonlinear difficulties specific to Theorem 1.1. Examples of such difficulties are:
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• Identification of the codimension 3 submanifold: The perturbations of Theorem 1.1 are confined to
live on a codimension 3 “submanifold” of the moduli space of initial data. This codimension 3 “sub-
manifold” consists of initial data which contain exactly the amount of angular momentum that the
corresponding solutions radiate in evolution. In general there is no a priori way to determine how much
angular momentum a solution will radiate in evolution (contrast with the linear theory of Section 4)
and thus the “submanifold” is only characterised teleologically. See Section 5.3 below.

• Further normalisation of the residual gauge freedom: As in the linear theory of Section 4, in order
for the solution to converge to Schwarzschild in the Eddington–Finkelstein gauge of Example 3.1, the
residual double null freedom must be normalised teleologically. The proof of Theorem 5.2 in fact
employs two distinct double null gauges, corresponding to a “near” region, where the redshift effect is
relevant, and a “far” region, where the null condition is paramount. The null condition is a special
structure in the nonlinearity of the Einstein equations (1.2), which one crucially has to exploit in
nonlinear stability problems. See the discussion of the stability of Minkowski space in Section 5.1.

• Estimating nonlinear terms: In view of the degeneration of the top order integrated local energy decay
estimates around the r = 3M (see Proposition 2.9) and the discussion of the null condition in Section
5.1 below, estimating nonlinear terms is particularly nontrivial around the photon sphere and towards
future null infinity. See Section 5.6 below.

5.1 The null condition and the nonlinear stability of Minkowski space

Before proceeding to describe the proof of Theorem 1.1, the relevant aspects of the stability of Minkowski
space are briefly reviewed. In short, the proof of the stability of Minkowski space in 3 + 1 dimensions relies
crucially on exploiting the very special null condition present in the nonlinearity of the vacuum Einstein
equations (1.2). Exploiting the null condition is also a fundamental aspect of Theorem 1.1.

Theorem 5.1 (Christodoulou–Klainerman [15]). Minkowski space is nonlinearly asymptotically stable as a
solution of the vacuum Einstein equations (1.2).

Recall that, in harmonic gauge, the vacuum Einstein equations (1.2) take the form of a quasilinear system
of wave equations

�ggµν = Qµν(g, ∂g), (5.1)

which linearise around Minkowski space to the standard linear wave equation

�mψ = 0, (5.2)

for each linearised component ψ =
(1)

gµν . In n+ 1 dimensions, solutions decay at the sharp rate

|ψ(t, x)| . 1

(1 + t)
n−1
2

.

In 3 + 1 dimensions this rate of (1 + t)−1, which just fails to be globally integrable, is exactly critical for
upgrading to nonlinear stability. Indeed, in 3+1 dimensions, the trivial solution of (5.1) fails to be nonlinearly
stable for the typical nonlinearity Qµν . One can only hope for nonlinear stability if there is special structure
present in Qµν .

The situation is best exemplified by two model equations

�mψ = −(∂tψ)2, �mψ = −(∂tψ)2 + |∇xψ|2. (5.3)

It was shown by John [40] that ψ ≡ 0 fails to be nonlinearly stable for the former of (5.3), while for the latter
of (5.3) a transformation due to Nirenberg (see [43]) immediately yields global existence. The situation was
clarified with the formulation of the null condition of Klainerman [44], which identifies a wide class of “good”
nonlinearities for which global existence holds.
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Figure 4: Schwarzschild as a Cauchy development of characteristic data.

One sees the difference between the two nonlinearities of (5.3) by noting the decay rates of derivatives
of solutions of (5.2) with respect to the standard double null gauge of Minkowski space

|∂uψ(t, x)| . 1

1 + t
, |∂vψ(t, x)| . 1

(1 + t)2
, | /∇ψ(t, x)| . 1

(1 + t)2
,

expanding the nonlinearities in double null gauge

−(∂tψ)2 = −1

4

[
(∂vψ)2 + (∂uψ)2 + 2∂uψ∂vψ

]
, −(∂tψ)2 + |∇xψ|2 = −∂uψ∂vψ + | /∇ψ|2,

and noting the presence of the quadratic term in the slowest decaying decay derivative (∂uψ)2 in the former
of (5.3), and its absence in the latter.

The null condition of [44] is not satisfied by the reduced Einstein equations in harmonic gauge (5.1)
(there is, however, a weaker form of the null condition present, as identified and exploited by Lindblad–
Rodnianski [51]). The approach taken in [15] was to completely abandon harmonic gauge, and introduce
an appropriate geometric formulation, closely related to the double null gauge discussed in Section 3, of the
vacuum Einstein equations (1.2), in which an analogue of the null condition is now captured. The double
null gauge formulation also captures this null condition.

5.2 The nonlinear stability of Schwarzschild theorem

Before the proof of Theorem 1.1 is outlined, a more precise formulation is given as follows.
In order to define initial data it is convenient to consider a representation of Schwarzschild which is

regular beyond the event horizon H+. Accordingly, consider the Kruskal manifold MK =WK × S2, where

WK = {(U, V ) ∈ R2 | UV < 1},

equipped with the Kruskal form of the Schwarzschild metric (3.4) (with r = r(U, V ) defined implicitly by the
relation (3.5)). Note that the future event horizon of Schwarzschild is described in this Kruskal representation
by the set H+ =MK ∩ {U = 0} ∩ {V ≥ 0}. To formulate the theorem consider first the region

MK ∩ {δ ≥ U ≥ −1} ∩ {1 ≤ V <∞}, (5.4)

for some small δ > 0. See Figure 4.
The above region (5.4) may be viewed as the unique maximal future Cauchy development of Schwarzschild

characteristic initial data for (1.2) posed on the null hypersurfaces

Cout = {−1} × [1,∞)× S2, C in = [−1, δ]× {1} × S2. (5.5)

See [28, 10] for the general notion of maximal Cauchy development and [61] for the characteristic initial
value problem.

Note that S = {δ}×{1}×S2 is a trapped sphere in Schwarzschild in view of the inequalities ∂Ur(δ, 1) < 0,
∂V r(δ, 1) < 0. It is the above data which will be perturbed, i.e. characteristic data sets for (3.25)–(3.51)
defined on the initial hypersurfaces (5.5) which are assumed suitably close to Schwarzschild initial data will
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be considered. In particular, for all data considered, the cone Cout will be future complete and asymptotically
flat, “terminating” at null infinity I+, while the terminal sphere S of C in will again be trapped. See Chapter
5 of [20] for a more detailed discussion of initial data.

Theorem 1.1 can be more precisely stated as follows.

Theorem 5.2 (The nonlinear asymptotic stability of Schwarzschild in full co-dimension [20]). For all char-
acteristic initial data prescribed on (5.5), assumed sufficiently close to Schwarzschild data with mass Minit

and lying on a codimension-3 “submanifold” Mstable of the moduli space M of initial data, the maximal
Cauchy development M contains a region R which can be covered by appropriate (teleologically normalised)
global double null gauges (3.1) and which

(i) possesses a complete future null infinity I+ such that R ⊂ J−(I+), and in fact the future boundary of
R in M is a regular, future affine complete “event horizon” H+. Moreover,

(ii) the metric remains close to the Schwarzschild metric with mass Minit in R (moreover, measured with
respect to an energy at the same order as a suitable “initial” energy), and

(iii) asymptotes, inverse polynomially, to a Schwarzschild metric with mass Mfinal ≈ Minit as u → ∞ and
v →∞, in particular along I+ and H+.

Note that the celebrated weak cosmic censorship conjecture (see [13]) says that for generic asymptotically
flat data, the Cauchy evolution possesses a complete future null infinity I+. Statement (i) can thus be
thought of as showing “weak cosmic censorship” in a neighbourhood of Schwarzschild, statement (ii) can be
thought of as the orbital stability of the Schwarzschild exterior, while statement (iii) represents the asymptotic
stability of the Schwarzschild family—all restricted to the codimension-3 “submanifold” Mstable of data, to
be discussed further in Section 5.3 below.

For a yet more precise statement of Theorem 1.1, see Theorem 6.1 of [20].

5.3 The 3-parameter families of initial data

Instead of considering the Cauchy evolution of one fixed initial data set, the issue of identifying the codi-
mension 3 “submanifold” is resolved by considering the evolution of an entire 3-parameter family of initial
data sets.

The objects which can freely be prescribed as characteristic initial data — i.e., for a given mass Minit > 0
and a given small ε0 > 0, the objects which parameterise the moduli space of initial data in a neighbourhood
of Schwarzschild M(Minit, ε0) — embed naturally into a vector space. One considers three reference fixed
mass linearised Kerr sets

K−1, K0, K1,

(which, in linear theory, give rise to the 3 dimensional fixed mass linearised Kerr family of solutions of
Definition 4.3). For each appropriate reference initial data set S0, and for parameters λ = (λ−1, λ0, λ1) ∈ R3,
one defines

S0(λ) = S0 +

1∑
m=−1

λmKm.

The moduli space of initial data M(Minit, ε0) is then decomposed into 3-parameter families

Lε0S0 := {S0(λ) : λ ∈ [−cε0, cε0]3 ⊂ R3}, (5.6)

parameterised by appropriate S0 ∈M(Minit, cε0), where c > 0 is a fixed small constant, with the disjointness
property

S0 6= S ′0 =⇒ Lε0S0 ∩ L
ε0
S′0

= ∅.

As S0 is varied in a suitable space, these families Lε0S0 cover M(Minit, ε0).
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Denoting by (M(λ), g(λ)) the maximal Cauchy development of initial data S0(λ), the aim is to show that,
for each S0, there exists a λfinal ∈ [−cε0, cε0]3 for which (M(λfinal), g(λfinal)) asymptotes to a Schwarzschild
metric as described in the statement of Theorem 5.2. The asymptotically stable “submanifold” will then be
defined to be the union

Mstable =
⋃
S0∈M0

S0(λfinal)

for the above λfinal (which itself depends on S0). It is in this sense that the “submanifold” of Theorem 5.2
can be naturally viewed as codimension 3.

See Chapter 5 of [20] for more details regarding the moduli space M(Minit, ε0) and its decomposition into
the 3-parameter families Lε0S0 .

5.4 The logic of the proof

The proof of Theorem 5.2 proceeds by a continuity argument. In order to deal with the aforementioned
nonlinear aspects of the problem, several features of the continuity argument are slightly non-standard.

Indeed, consider a given reference seed data set S0 and its associated 3-parameter family (5.6). At each
stage of the continuity argument, governed by a final retarded time uf , one considers

• A subset R(uf ) ⊂ R3 of λ parameter space;

• For each λ ∈ R(uf ) a certain bootstrap region of the corresponding maximal development (M(λ), g(λ));

• Two distinct double null gauges, corresponding to a “near” region and a “far” region, covering the
bootstrap region, which are normalised to its future boundaries;

• Bootstrap assumptions for the geometric quantities of these double null gauges (for example the Ricci
coefficients (3.7)–(3.9) and curvature components (3.10)–(3.12)), on the bootstrap region.

The set of parameters R(uf ) is a closed set in R3 such that the “total angular momentum” of the
corresponding solutions, at retarded time u = uf , is less than or equal to ε0u

−1
f , with equality holding on

the boundary ∂R(uf ). This “total angular momentum” is defined as the norm of a vector J associated to
appropriate ` = 1 modes of the curvature component β at retarded time uf .

The bootstrap assumptions involve comparing the solution to a member of the Schwarzschild family in
the Eddington–Finkelstein double null gauge (see Definition 3.3) whose mass Mf is chosen on the basis of
the ` = 0 mode of the appropriately weighted curvature component ρ at retarded time uf . As is usual in a
continuity argument, the statement that the bootstrap assumptions can be improved is the main difficulty
of the proof. See Section 5.6 below.

The bootstrap region, and the two double null gauges which cover it, are discussed in Section 5.5 below.
See Chapter 7 of [20] for more details on the logic of the proof.

5.5 The bootstrap region and the two teleologically normalised gauges

As in [19], in order for the solution to converge to Schwarzschild in the standard double null gauge of Example
3.1, it is necessary to normalise the residual double null gauge freedom (see Remark 3.2) teleologically. The
proof of Theorem 5.2 in fact employs two distinct double null gauges corresponding to:

• A near region, covered by the “H+ gauge”, where the redshift effect, discussed in Section 2.1, is relevant.
In the context of the linear wave equation, discussed in Section 2, the redshift effect is a helpful property
of Schwarzschild – it has a damping effect on waves. From the backwards viewpoint, however, this
redshift effect becomes a blueshift and has the opposite effect. If the residual gauge freedom is only
normalised in a region far from the event horizon (e.g. if one extended the I+ gauge, discussed below,
to the entire exterior) then this blueshift would cause certain quantities to grow exponentially as they
approach the event horizon H+. The H+ gauge employed in the proof of Theorem 5.2 is closely related
to the teleological gauge employed in [19], discussed in Section 4.5.
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Figure 5: The two teleological double null gauges and the two auxiliary double null gauges near data.

• A far region, covered by the “I+ gauge”, where the null condition, discussed in Section 5.1, is
paramount. The essential usefulness of such a normalisation “to I+” here is that it allows for better
control of the decay towards I+, important for capturing the null condition necessary for controlling
nonlinear terms error terms (see Section 5.6 below). Though one could have considered the analogue
of the normalisations specific to the I+ gauge already in [19], it was not necessary in view of the fact
that there were no nonlinear terms in the equations to control. It should be remarked again that an
additional bonus of this normalisation is that the ultimate I+ gauge is Bondi (see Section 6.1) and
thus the familiar laws of gravitational radiation (see [8, 63] and [15]), along with nonlinear effects such
as Christodoulou memory [12], can be immediately understood.

Given a final retarded time uf and λ ∈ R(uf ), the bootstrap region of (M(λ), g(λ)) is defined to be
the intersection of the past of a particular “late” outgoing null cone Cuf and the past of a particular “late”
ingoing null cone Cv∞ , with v∞ → ∞ as uf → ∞, intersecting at the sphere Suf ,v∞ . In both gauges,
defined by double null coordinates (uH+ , vH+) and (uI+ , vI+) respectively, the final outgoing cone Cuf is
a hypersurface of constant uH+ , respectively uI+ , common in the region where the two gauges overlap,
anchoring the two gauges together. See Figure 5 for a schematic depiction of the two double null gauges.

The proof of Theorem 5.2 moreover utilises an “initial data region”, covered by a double null gauge in
which appropriate local theory (which in fact already requires exploiting the null condition) guarantees that
the associated geometric quantities can be made arbitrarily close to their Schwarzschild values by imposing
suitable smallness on the initial data. This region is the lighter shaded region in Figure 5.

5.5.1 The normalisation of the H+ and I+ gauges

The H+ gauge is normalised on the “late” outgoing null cone Cuf and an initial ingoing cone CH
+

v−1
defined

by vH+ = v−1. This initial cone does not coincide with the initial data cone C in but remains within a fixed
distance from C in independently of uf . The gauge will only be considered in a region r ≤ R2, where r is a
function of (uH+ , vH+).

The I+ gauge admits the cone Cv∞ as a vI+ = v∞ hypersurface, and the geometry of the cones is

normalised on the final ingoing cone Cv∞ and the “initial” outgoing cone CI
+

u−1
defined by uI+ = u−1. As

before, this initial cone does not coincide with the initial data cone Cout but remains within a fixed distance
from Cout independently of uf . The gauge will only be considered in a region r ≥ R−2, with R−2 < R2,
where r is a function of (uI+ , vI+). The two r functions are close and the gauges thus have a nontrivial
overlap region (the darker shaded region in Figure 5).

The normalisations are determined by a series of requirements on the spheres Suf ,v−1 and Suf ,v(R,uf ),

for an R−2 < R < R2, and on the cones Cuf , CH
+

v−1
in the case of the H+ gauge, and on the sphere Suf ,v∞

and the cones CI
+

u−1
, Cvf in the case of the I+ gauge. For example, part of the defining properties of the I+
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gauge are the requirements

Ωtrχ− (Ωtrχ)◦ = 0, Ω−1trχ− (Ω−1trχ)◦ = 0 on Suf ,v∞ (5.7)

and
µ`≥1 = 0 on Cv∞ . (5.8)

Here (Ωtrχ)◦, (Ω−1trχ)◦ denote the Schwarzschild quantities of Example 3.3, and the Ricci coefficient µ
denotes the mass-aspect function, defined by

µ = /divη + ρ− 1

2
(χ̂, χ̂).

See the common proof of Proposition 9.2.2–9.2.4 of [19] for the motivation for (5.7)–(5.8). These normalisa-
tions ensure that as (uf , v∞) → (∞,∞), the normalisation of the I+ gauge becomes Bondi, and moreover,
we have vanishing of the quantity Σ+ = limuI+→∞ limvI+→∞ r2χ̂(u, v) = 0 (see also Section 6.1 below). In
this limit the bootstrap region becomes the black hole exterior.

Similar conditions to (5.7)–(5.8) appeared as the relations determining the spheres foliating the spacelike
hypersurface Σ∗ of [47].

Note again that the two gauge normalisations are non-trivial at the linearised level and differ in their
overlap already in linear theory. See Chapter 2 of [20] for more details on the normalisations of the H+ and
I+ gauges.

Part of the proof of Theorem 5.2 involves the construction of the H+ and I+ gauges achieving these
normalisations. The existence is shown using an implicit function theorem style argument. See Section 16.1
of [20] for more details.

5.5.2 Diffeomorphism functions relating gauges and boundedness of initial norms

Recall the above setting of Section 5.5.1, and recall in particular that the “initial hypersurface” CI
+

u−1
of the

I+ gauge does not coincide with the hypersurface Cout, but lies within a fixed distance from it. Similarly

for the hypersurface CH
+

v−1
of the H+ gauge. As in [19], the starting point of the analysis is the quantities

α and α (see Section 5.6 below). As these quantities are associated to the future normalised I+ and H+

gauges (and are no longer gauge invariant but only “almost gauge invariant”, or gauge invariant to linear

order), the “initial norms” on the hypersurfaces CI
+

u−1
and CH

+

v−1
are not equal to the corresponding norms

of the α and α of the initial gauge (on which the smallness assumption is made), but are equal only up
to nonlinear terms. These nonlinear terms involve the diffeomorphism functions relating the corresponding
gauges to the initial gauge, which thus have also to be controlled as part of the proof of Theorem 5.2 (see
also the underlined statement in Theorem 4.4 for the analogue of such control in linear theory).

The general idea for estimating the diffeomorphisms connecting the various gauges is to use relations
expressing the difference of curvature or Ricci coefficients in the two gauges, in which derivatives of the
gauge functions appear. For instance, one can write schematically the relation for the difference of the
curvature component β expressed in two gauges

Ωβ − Ω̃β =
6M

r3

(
1− 2M

r

)
/∇f3 + · · · ,

where nonlinear terms are omitted and f3 here denotes one component of the diffeomorphism connecting the
gauges (see Chapter 4 of [20] for a complete list of such relations, and compare with the pure gauge solutions
of the linearised equations of Definition 4.2). From the above, estimates on curvature components like Ωβ

and Ω̃β, to be discussed below, lead to estimates on f3. It is necessary to exploit a form of null condition
(see Section 5.1) in the omitted nonlinear terms when estimating the diffeomorphisms relating the I+ gauge
to the initial gauge. See Chapter 10 of [20] where the procedure for estimating these diffeomorphisms, along
with the “initial norms” of αI+ and αH+ , is implemented in full.
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5.6 The main estimates

As in [19], the starting point of the analysis is the curvature components α and α (see (3.10)). The quantity
α now satisfies wave equation of the form

− Ω /∇4Ω /∇3(rΩ2α) + Ω2 /∆(rΩ2α)− 4

r

(
1− 3M

r

)
Ω /∇3(rΩ2α)− 2Ω2

r2

(
1 +

3M

r

)
rΩ2α = E [α], (5.9)

where r = r(u, v) is again defined implicitly via the relation (3.3) (but no longer has the interpretation as the
area radius of the spheres of the double null foliations). In fact, since there are two separate gauges — the
I+ gauge and the H+ gauge — there is a separate α associated to each, denoted αI+ and αH+ respectively.
Each satisfy equation (5.9) with respect to their corresponding gauges. Equation (5.9) is analogous to the
linear Teukolsky equation (4.32), but now couples to the other geometric quantities of the system via the
term E [α], which can be written schematically as

E [α] = Ω2
∑

p1+p2≥6

∑
k1≤1
k2≥2

r−p1 · (Dk1Φp2)k2 , (5.10)

where Φp is a schematic notation encompassing both Ricci coefficients Γp and curvature components Rp, but
now for differences of quantities from their Schwarzschild values (defined with respect to each double null
gauge via the Schwarzschild expressions of Example 3.3). The p indices are used to encode appropriate r
behaviour of the various geometric quantities. See Chapter 3 of [20] for a precise definition of this schematic
notation. The error E [α] is quadratic is such differences (encoded in (5.10) by the fact that k2 ≥ 2) and thus
can be viewed as a nonlinear error term. The fact that p1 + p2 ≥ 6 in each of these nonlinear error terms
encodes the fact that E [α] decays in r (in an appropriate sense) at the fast rate of r−6, thus exhibiting an
appropriate version of the null condition discussed in Section 5.1. (The fact that k1 ≤ 1 in (5.10) encodes
the fact that at most one derivative of the Ricci coefficients or curvature components can appear in each
term.)

As in Section 4.4, defining

P = − 1

2r3Ω
/∇3(r2Ω−1 /∇3(rΩ2α)),

one sees that P satisfies a nonlinear analogue of the Regge–Wheeler equation (4.40), namely

− Ω /∇4Ω /∇3(r5P ) +

(
1− 2M

r

)
/∆(r5P )−

(
4

r2
− 6M

r3

)(
1− 2M

r

)
P = E [P ], (5.11)

where E [P ] takes the schematic form

E [P ] = Ω2
∑

p1+p2≥2

∑
k1≤3
k2≥2

r−p1 · (Dk1Φp2)k2 . (5.12)

Again, there is a P associated to each of the I+ and H+ gauges, denoted PI+ and PH+ respectively, neither
of which are defined on the entire bootstrap region, but only on the regions covered by the I+ and H+

gauges respectively (see Section 5.5). The analysis for
(1)

P carried out in [19], described in the context of the
wave equation in Section 2, is then repeated to obtain decay estimates for P , accounting for the following
differences:

• The “initial norms” of PI+ and PH+ , defined on the hypersurfaces CI
+

u−1
and CH

+

v−1
, are not equal to the

corresponding norms of the P associated to the initial gauge (but are only equal to linear order). In
order to relate these norms to the smallness parameter ε0, the control of the diffeomorphisms discussed
in Section 5.5.2 is exploited.
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• There is no “global” P defined on the entire bootstrap region. Accordingly, PI+ is estimated to the
right of an appropriate timelike hypersurface B, and PH+ is estimated to the the left of B. In view of
the fact that P is “almost gauge invariant”, the corresponding boundary terms on B cancel to linear
order. In order to control the nonlinear terms, the procedure outlined in Section 5.5.2 is repeated to
control the diffeomorphisms relating the I+ and H+ gauges in the region on which they overlap. The
timelike hypersurface B is chosen by a suitable averaging procedure, as in [25], and thus depends on
both the solution, and the bootstrap time uf , in a non-continuous manner in general.

• There are nonlinear error terms on the right hand side of (5.11) to estimate. In the context of energy-
type estimates (as discussed in Section 2), after commutation N −3 times by suitable operators D, the
error E [P ] (see (5.12)) produces terms which are cubic and higher, e.g. terms of the form

DN−2P ·DNΦ · Φ (5.13)

in schematic notation, which must be integrated over spacetime with weights. The highest order terms
DN−2P and DNΦ (an example of the latter are highest order commuted curvature terms like DNα),
must typically be estimated in the energy norm, whereas lower order terms Φ in (5.13) must be taken
in a higher Lp norm, say L∞. The most difficult regions for controlling these non-linear terms are
near null infinity I+ and near the Schwarzschild photon sphere r = 3M . For it is in these two regions
where it cannot be ensured that the spacetime integral of the highest order terms is controlled by
the natural (weighted) integrated local energy decay estimates (recall the discussion in Section 2.5).
Thus, in general, to obtain spacetime integrability of the terms (5.13) one must exploit some sort of
time-decay for the lower order terms.

– Error terms near null infinity I+: In this region the null condition, described in Section
5.1, is relevant. The null condition is exhibited in the nonlinear error term E [P ] in the fact that
p1 + p2 ≥ 2 in each term in (5.12), encoding decay in r (in an appropriate sense) of E [P ] at the
fast rate of r−2.

– Error terms around the Schwarzschild photon sphere r = 3M : When terms of the form
(5.13) are integrated over spacetime, they can typically be controlled using boundedness of the
lower order quantity Φ, and integrated decay estimates (see Section 2) for the higher order quan-
tities ∫ ∫

|DN−2P ·DNΦ · Φ|dxdt . sup |Φ|
∫ ∫

|DN−2P |2 + |DNΦ|2dxdt.

Such a scheme is problematic, at top order, around r = 3M however, in view of the degeneration
of the integrated decay estimates due to the presence of trapped null geodesics. See Proposition
2.9. Instead, one must exploit the boundedness of the energy of the two higher order terms, and
decay of the lower order term∫ ∫

|DN−2P ·DNΦ · Φ|dxdt .
∫

sup
x
|Φ|dt sup

t

∫
|DN−2P |2 + |DNΦ|2dx.

It would seem that decay strictly faster than t−1 is necessary for the lower term in order to make
the above integral finite. In fact, such faster decay is only required in an averaged sense, of the
form ∫ ∞

t

|Φ|2dt′ . 1

t1+δ
.

See Section 11.7.1 of [20] for more details.

The analysis of α and α described above is completed in detail in Chapters 11–13 of [20]. Once α
and α are viewed as given, the remainder of the system (3.25)–(3.51) can again be viewed as a system of
transport and elliptic equation, which are now nonlinear. They admit a hierarchical structure, as discussed in
Section 4.5, which now only effectively decouples the system to linear order. The remainder of the geometric
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quantities are estimated by exploiting gauge conditions and integrating this system of transport equations
backwards in this hierarchical manner in each of the I+ and H+ gauges. See Chapter 14 and Chapter 15 of
[20] respectively for more details.

5.7 The completion of the continuity argument

Recall the logic of the proof, described in Section 5.4. Once the bootstrap assumptions are improved, one
aims to show that, for some fixed u0

f , the set B ⊂ [u0
f ,∞) of “allowed” final retarded times uf (i.e. the set B

of uf such that an appropriate region R(uf ) of λ parameter space exists, the I+ and H+ gauges described
in Section 5.5 can be constructed for each corresponding solution, and such that the bootstrap assumptions
indeed hold for each solution) is a non-empty, open and closed subset of [u0

f ,∞), and thus B = [u0
f ,∞).

The standard structure for such an argument is to appeal to Cauchy stability to obtain that u0
f ∈ B

and then to the improvement of the bootstrap assumptions, together with an appropriate local existence
theorem, to show that one can extend the bootstrap region. The present setup, however, requires two
additional slightly non-standard features, related to the finite codimensionality nature of the result and the
teleological nature of the gauge:

• Finite codimensionality: Recall that there is now a varying set of parameters R(uf ). The definition
of the sets R(uf ) and appropriate estimates for the geometric quantities result in the monotonicity
statement

u′f > uf =⇒ R(u′f ) ⊂ R(uf ), R(u′f ) ∩ ∂R(uf ) = ∅. (5.14)

By a strengthening of Cauchy stability type arguments, the original region R(u0
f ) can be seen to be

a closed disc and the map J0 : R(u0
f ) → B defined by J0(λ) := (λ, u0

f ), mapping to an appropriate

closed ball B ⊂ R3, can be seen to have degree 1 on ∂R(u0
f ). A topological argument applied to an

appropriately defined map Juf can then be used to show that R(uf ) indeed remains non-empty for all
uf > u0

f . See Section 16.2 of [20] for more details.

• Teleological normalisation of the gauge: Enlarging the bootstrap region requires an appeal to
an iteration argument around the analogous linearised construction in order to select the new “final”
sphere Su′f ,v′∞ of an enlarged region and achieve the gauge normalisations such as (5.7)–(5.8) described

in Section 5.5. By continuity of the gauge renormalisation procedure, the bootstrap assumptions remain
improved in the enlarged region, provided the region is enlarged by a sufficiently small amount.

Once it has been established that B = [u0
f ,∞), one obtains in view of (5.14) that there exists λfinal =

(λfinal
−1 , λfinal

0 , λfinal
1 ), such that λfinal ∈ R(uf ) for all uf ≥ u0

f , and a solution (M, g) := (M(λfinal), g(λfinal))

generated by data S := S0(λfinal), with an Mf tending to the final Schwarzschild mass Mfinal and with “final
total angular momentum” zero. It is therefore this collapsing of the 3-parameter family (5.6) which leads to
the codimension-3 statement of Theorem 5.2.

6 Conclusions and outlook

The proof of Theorem 1.1 immediately yields conclusions concerning the familiar laws of gravitational radi-
ation (see [8, 63] and [15]), and nonlinear effects such as Christodoulou memory [12], along with properties
of the event horizon H+. These conclusions are described in Section 6.1.

Though the codimension-3 “submanifold” of Theorem 1.1 is only characterised teleologically (cf. the
discussion at the beginning of Section 5), there are infinite codimension subfamilies which can be characterised
explicitly. Such a family is identified in a corollary of Theorem 1.1, stated in Section 6.2.

The remainder of this section concerns three conjectures, concerning the nonlinear stability of the Kerr
family in the full subextremal range, a discussion of extremal black holes and the Aretakis instability, and
the black hole interiors of the solutions of Theorem 1.1, in Sections 6.3, 6.4, and 6.5 respectively.
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6.1 Properties of I+ and H+

For the solutions of Theorem 1.1, statements about the properties of null infinity I+, as well as the existence
and regularity of the event horizon H+, are easily obtained a posteriori as a result of the proof.

Consider a given solution of Theorem 1.1 and recall that (see Section 5.5), for each bootstrap time uf ,
there is a bootstrap region which is covered by appropriate I+ and H+ gauges. One obtains the existence of
limiting I+ and H+ gauges, satisfying limiting analogues of the gauge conditions defining I+ and H+ gauges,
by an Arzela–Ascoli argument. By taking the limit of the estimates obtained in the bootstrap regions, one
moreover has good estimates for the geometric quantities of these gauges.

The limiting I+ gauge is Bondi, meaning that

• The spheres of the double null foliation become round at infinity:

lim
v→∞

r−2
/gAB(u, v, θ1, θ2) = γAB(θ1, θ2),

for all u, θ1, θ2, where γ denotes the unit round metric on S2;

• The foliation by the level hypersurfaces of u becomes affine at I+:

lim
v→∞

Ω(u, v, θ1, θ2) = 1,

for all u, θ1, θ2.

Since this limiting I+ gauge is defined for all u ∈ [0,∞), it immediately follows that future null infinity I+

is complete in the sense of Christodoulou [13].
The estimates of the limiting I+ gauge allow the existence of appropriate limiting quantities, regarded

as tensor fields on [0,∞)× S2, to be concluded. For example, one has the existence of the limits

ΞAB(u, θ) = lim
v→∞

r−1χ̂
AB

(u, v, θ), ΣAB(u, θ) = lim
v→∞

χ̂AB(u, v, θ),

and

M(u) = lim
v→∞

√
Area(Su,v)

16π

(
1 +

1

16π

∫
Su,v

trχtrχdA

)
.

The quantity Ξ is known as the Bondi news function, and the function M is known as the Bondi mass
(defined as the limit of Hawking masses). These quantities moreover satisfy familiar laws of gravitation such
as

∂Σ

∂u
= −Ξ,

and the Bondi mass loss law
d

du
M(u) = − 1

8π

∫
S2

|Ξ(u, θ)|2dµγ .

Moreover, the quantity Σ has vanishing future limit

Σ+(θ) := lim
u→∞

Σ(u, θ) = 0. (6.1)

Note that the quantity Σ features in the celebrated Christodoulou memory effect [12] in which Σ+(θ)−Σ(0, θ)
is related to the total displacement of test masses in gravitational wave experiments. The normalisation (6.1)
is a necessary consequence of the requirement to obtain decay for all quantities (in particular χ̂) at constant
r. One moreover has

Mfinal = lim
u→∞

M(u),

i.e. the final Bondi mass coincides with the final Schwarzschild parameter.
The uniform estimates in the asymptotic H+ normalised gauge, together with the presence of a trapped

surface in the initial data which provides a barrier, allow one to extract a limiting, regular hypersurface H+.
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Another appeal to local existence of the characteristic initial value problem ensures that H+ is indeed in the
maximal development (M, g) (and thus also a neighbourhood of I+). It is clear moreover that H+ is the
future boundary of J−(I+), when the latter is interpreted in the obvious way, i.e. H+ is indeed the event
horizon of the black hole region of (M, g). The future completeness of H+, together with decay along H+

for various quantities, follows directly from the estimates.
See Section 7.7 and Chapter 17 of [20] for more details on the properties of I+ and H+.

6.2 Axisymmetric solutions with vanishing angular momentum

It is well known that under the assumption of axisymmetry, vacuum solutions cannot radiate angular mo-
mentum to null infinity. This fact can be shown using the conservation of the Komar angular momentum
J (S) associated to a 2-surface S (see [67]), and leads easily to the following corollary of Theorem 1.1.

Corollary 6.1 (Nonlinear stability of Schwarzschild under axisymmetric perturbations with vanishing ini-
tial angular momentum). All characteristic initial data prescribed on (5.5), assumed sufficiently close to
Schwarzschild data with mass Minit, which are moreover axisymmetric and have vanishing Komar angular
momentum, are contained in the codimension-3 “submanifold” Mstable of Theorem 5.2. Thus, consequences
(i), (ii) and (iii) apply to such data.

Even though the full codimension-3 “submanifold” Mstable of Theorem 5.2 can only be characterised
teleologically, Corollary 6.1 identifies a further infinite-codimension submanifold which can indeed be ex-
plicitly identified examining only initial data, namely axisymmetric solutions with vanishing Komar angular
momentum.

6.3 The nonlinear stability of the Kerr exterior

For completeness, a statement of the full non-linear stability of the Kerr exterior is given. To compare with
Theorem 5.2, the problem is stated in double null gauge. (Recall that the paper [59] exhibits the Kerr metric
itself in precisely such a gauge (for the full subextremal range |a| < M).) Fixing parameters, we consider
then the subregion of Kerr given as the maximal Cauchy development of the union of two null hypersurfaces
C in ∪ Cout of the double null gauge, where as before C in crosses the event horizon, while Cout is future
complete and terminates at null infinity.

Conjecture 6.2 (Nonlinear stability of the Kerr exterior). For all characteristic data prescribed as above,
assumed sufficiently close to Kerr with parameters |ainit| < Minit, the maximal Cauchy development M
contains a region R which can be covered by appropriate global double null foliations (3.1) and which (i)
possesses a complete future null infinity I+ such that R ⊂ J−(I+), and in fact the future boundary of R in
M is a regular future affine complete “event horizon” H+. Moreover (ii) the metric remains close to Kerr
in R and (iii) asymptotes, inverse polynomially, to a Kerr metric with parameters |afinal| < Mfinal where
afinal ≈ ainit, Mfinal ≈Minit, as u→∞ and v →∞, in particular along I+ and H+.

Moreover, for any given 0 < |afinal| < Mfinal, the set of initial data above attaining these final parameters
is codimension-2 in the space of all data, the set of initial data attaining afinal = 0 for some Mfinal is
codimension-3, and the set of initial data attaining afinal = 0 and a fixed Mfinal is codimension-4. In
particular, for generic initial data, afinal 6= 0, while the set of solutions afinal = 0 corresponds precisely to the
solutions constructed in Theorem 5.2.

The difference in dimensionality in the afinal = 0 case arises from the enhanced symmetry of Schwarzschild
in comparison to Kerr.

In view of the recent [17, 62], the path is now open to obtaining Conjecture 6.2 following the approach
of [20], although, at a technical level, the Kerr case introduces new complications related to the necessity
of applying frequency localisation to deal with the issues related to trapping. In this sense, one of the
appealing features of having a complete, self-contained physical space treatment of the Schwarzschild case as
described here is that that one may understand the essence of the above conjecture without this additional,
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largely technical, complication. For further remarks on the Kerr problem, see recent work of Klainerman–
Szeftel [48, 49] and references therein.

One might also consider a restricted version of Conjecture 6.2 in which |ainit| �Minit is small, in which
case aspects of the Schwarzschild theory can be perturbed. This is work in progress of several groups,
including recent and forthcoming work of Klainerman–Szeftel, Giorgi–Klainerman–Szeftel, Shen [33], [50].

6.4 Extremality and the Aretakis instability

Note that the extremal case |ainit| = Minit is excluded from Conjecture 6.2. In fact, a basic understanding
of solutions of the linear wave equation on a fixed extremal Kerr background (cf. the discussion of the wave
equation on Schwarzschild in Section 2) is still lacking. It is known, however, that all stationary extremal
black holes are subject—at the very least—to the Aretakis instability [4] along their event horizon, according
to which higher order translation invariant derivatives of solutions to the wave equation generically blow up
polynomially. It is interesting to understand whether the most basic geometric features of these black hole
spacetimes can still be nonlinearly stable despite this higher order instability phenomenon associated to their
event horizons, or, rather, whether this growing “hair” leads at the nonlinear level to some worse type of
blowup, for instance the formation of so-called “naked singularities”, resulting in a future incomplete I+

(i.e. already violating the analogue of statement (i) of Theorem 5.2). So far, this question has only been
probed numerically for toy models under spherical symmetry [56].

In order to disentangle the Aretakis instability from other difficulties associated to extremal Kerr, it is
natural to first consider the electrovacuum Reissner–Nordström metrics (see for instance [67]), a spherically
symmetric family of solutions to the Einstein–Maxwell system with parameters Q and M . (Note that
this family contains the Schwarzschild family as the subfamily Q = 0.) One expects that the analogue of
Theorem 5.2 for the sub-extremal case 0 ≤ Q < M of Reissner–Nordström is a more or less straightforward
adaptation of the results of the present paper, in view of the recent [31] and [32], where a linear stability
proof is carried out explicitly for the subextremal Reissner–Nordström family, adapting the methods of [19]
and [47]. The interesting case to consider further is thus the extremal case Q = M .

To set up the problem, fix null hypersurfaces C in∪Cout in background extremal Reissner–Nordström with
parameters Minit = Qinit, analogous to (5.5), where the terminal sphere of C in lies in the black hole interior.
(Note that, in contrast to the Schwarzschild case, this terminal sphere is no longer trapped.) Consider now
the moduli space M of nearby data defined on C in ∪ Cout, suitably normalised. Note that we may identify
the following families of initial data corresponding to explicit solutions:

(a) a 1-parameter family corresponding to extremal Reissner–Nordström metrics with charge Q = M ;

(b) a 1-parameter family corresponding to Reissner–Nordström metrics with fixed M = Minit, parametrised
by Q,

(c) a 3-parameter family corresponding to extremal Kerr–Newman metrics (see [55]) with charge Qinit.

Note that (b) contains both subextremal Q < Minit and superextremal Q > Minit Reissner–Nordström data
on C in ∪Cout. The latter lead to spacetimes such that C in ⊂ J−(I+), i.e. spacetimes that fail to form black
holes.

For the extremal Reissner–Nordström family (a) itself, then, in view of the above, the best one can hope
is for the existence of a codimension-4 asymptotically stable “submanifold” Mstable ⊂ M, where moreover
the asymptotic stability statement is suitably relaxed along H+ (compared to that of Theorem 5.2), so as to
accommodate the growing horizon “hair” associated to the Aretakis instability. This suggests the following:

Conjecture 6.3 (Asymptotic stability of extremal Reissner–Nordström but with growing horizon “hair”).
For all characteristic initial data for the Einstein–Maxwell system prescribed on (5.5), assumed sufficiently
close to extremal Reissner–Nordstrom data with mass Minit and Qinit = Minit and lying on a codimension-4
“submanifold” Mstable of the moduli space M of initial data, the maximal Cauchy development M contains
a region R which can be covered by appropriate (teleologically normalised) global double null gauges (3.1) and
where the analogues of (i), (ii) and (iii) of Theorem 5.2 are satisfied with an extremal Reissner–Nordström
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metric with parameters Mfinal = Qfinal in the place of Schwarzschild. Along H+, however, one has decay to
extremal Reissner–Nordström only in a weaker sense, in particular, for generic data lying on Mstable, suitable
higher order quantities in the arising solution blow up polynomially along H+(growing horizon “hair”).

Given a positive resolution of the above, one would moreover expect that the “submanifold” Mstable itself
lies on a larger codimension-1 submanifold M′stable of M consisting of data leading to solutions asymptoting
to a very slowly rotating extremal Kerr–Newman, again with growing horizon hair. Moreover, one could hope
to prove that this larger submanifold M′stable delimits the boundary signifying a phase transition between two
very different open regions of moduli space M: (1) the set of data leading to spacetimes failing to collapse
(i.e. those for which Cin ⊂ J−(I+)) and (2) the set of data leading to a black hole exterior settling down
to a very slowly rotating subextremal Kerr–Newman spacetime. (Of course, one can already conjecture the
analogue of Conjecture 6.3 for extremal Kerr as a family of the Einstein vacuum equations; it is emphasised,
however, that the dynamics near this phase transition in that case may be considerably more complicated!)

In order to prove Conjecture 6.3, one must confront a fundamental new difficulty compared to the present
work: In the extremal case, the stabilising mechanism of the redshift effect (see Section 2.1), exploited heavily
here, degenerates at H+. Moreover, in view of the expected growing horizon hair, it would seem that in order
to control the nonlinearities, one must identify and exploit a suitable null condition, not just near null infinity
I+ as before (cf. Section 5.1), but now also in the region near the event horizon H+. See the recent [2] where
such structure is indeed exploited to show global stability results on a fixed extremal Reissner–Nordström
background for a nonlinear scalar wave equation whose nonlinearities satisfy the null condition. We hope
that the work [20] described in the present lectures, with its set-up for proving finite-codimensional stability
statements and with one of its teleological gauges normalised at the event horizon H+, may provide a suitable
general framework to try to address Conjecture 6.3.

6.5 Strong cosmic censorship and the black hole interior

Returning to the subextremal case, Conjecture 6.2 can be applied together with the following theorem to
obtain the C0 stability of the Kerr Cauchy horizon:

Theorem 6.4 (C0 stability of the Kerr Cauchy horizon [21]). Consider general characteristic initial data for
the Einstein vacuum equations on H+∪C in such that H+ is future complete and the data along H+ approach
that of a sub-extremal rotating Kerr solution (with 0 < |a| < M) along its event horizon at a suitable inverse
polynomial rate. Then restricting to a sufficiently short C in, the maximal Cauchy development can be covered
by a global double null foliation and can be extended continuously beyond a non-trivial Cauchy horizon CH+.

In particular, for initial data as in Conjecture 6.2, then as long as afinal 6= 0 (which would be true
generically!), it would follow from the conjecture and the above paragraph that the maximal Cauchy develop-
ment is extendible beyond a non-trivial Cauchy horizon located in the black hole interior. In particular, the
C0-formulation of strong cosmic censorship (see [13]) is false.

In fact, if one considers now two-ended Kerr initial data Σ as depicted in Figure 6, then a further extension
of Theorem 6.4, see the upcoming [22], implies that the entire Kerr Penrose diagram depicted above is stable,
in particular, spacetime is globally extendible as a C0 metric across a bifurcate null Cauchy horizon such
that all future inextendible causal geodesics pass into the extension.

The above result is surprising in view of the presence of a well-known blue-shift instability [58] associated
with the Cauchy horizon, which provided the original evidence for the conjecture of strong cosmic censorship.
The theorem is still compatible, however, with the possibility that for generic initial data, the boundary CH+

be singular in a weaker sense, specifically, that the metric in particular fails to be H1
loc in any extension of the

maximal Cauchy development. (This is related to the Christodoulou formulation of strong cosmic censorship
and has been discussed in [14].) Proving this is in turn related to obtaining a suitable lower bound on the
rate of approach to Kerr on H+ in the statement of Conjecture 6.2 for generic initial data. See [21] for
further discussion.

Ironically, it is precisely for data lying on the codimension-3 “submanifold” Mstable constructed in The-
orem 1.1 satisfying afinal = 0 for which there is no general analogue of the understanding of the black hole
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Figure 6: Kerr with 0 < |a| < M : The Cauchy development of characteristic data superimposed on the
Cauchy development of two-ended spacelike data.

interior provided by the above theorem. This case is harder from the perspective of the interior because of the
strongly singular nature of the exact Schwarzschild boundary. In the special case of polarised axisymmetry
studied in [47], for which in particular afinal = 0, this spacelike singular boundary has very recently been
shown to be globally stable [3] in a suitable sense. This result relies heavily on the polarised assumption,
however, and the precise results proven are not expected to carry over outside of the symmetry class. The
most basic question one can ask is whether afinal = 0 necessarily means that, in contrast to the afinal 6= 0
case, there can never exist a Cauchy horizon emanating from “timelike infinity”. Thus, it would already be
interesting to prove simply:

Conjecture 6.5 (Black hole interiors of Mstable solutions). For the initial data of Theorem 5.2, the max-
imal Cauchy development (M, g) will necessarily contain a terminal indecomposable past set (TIP) whose
intersection with Cout ∪ C in has compact closure.

For the definition of TIPs, see [30]. Informally, one can view the existence of such a TIP as the existence
of a “spacelike piece of singularity”. A positive resolution of the above would in particular show that the set
of vacuum initial data leading to a TIP whose intersection with spacelike initial data has compact closure, if
not open in moduli space, is at least a set of finite codimension. (In contrast, the largest class of examples
produced so far, namely the symmetric solutions of [3] discussed above, as well as previous examples due
to [29], produced by a scattering construction, are manifestly of infinite codimension in the moduli space.)
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