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Abstract. In this article we investigate the effect on synchrony
of adding feedback loops and adaptation to a large class of feedfor-
ward networks. We obtain relatively complete results on synchrony
for identical cell networks with additive input structure and feed-
back from the final to the initial layer of the network. These re-
sults extend previous work on synchrony in feedforward networks
by Aguiar, Dias and Ferreira [1]. We also describe additive and
multiplicative adaptation schemes that are synchrony preserving
and briefly comment on dynamical protocols for running the feed-
forward network that relate to unsupervised learning in neural nets
and neuroscience.
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1. Introduction

This paper is about the effect on synchrony of adding feedback loops
and adaptation to feedforward networks and is part of a study of dy-
namics and bifurcation in feedforward and functional networks devel-
oping out of prior work of Aguiar et al. [1] and Bick et al. [4, 5].

1.1. Background on feedforward networks. Dynamicists typically
regard a network of dynamical systems as modelled by a graph with
vertices or nodes representing individual dynamical systems, and edges
(usually directed) codifying interactions between nodes. Usually, evolu-
tion is governed by a system of ordinary differential equations (ODEs)
with each variable tied to a node of the graph. Examples include the
ubiquitous Kuramoto phase oscillator network, which models weak cou-
pling between nonlinear oscillators [24, 20], and coupled cell systems
as formalised by Golubitsky, Stewart et al. [37, 16, 15].
Feedforward networks play a well-known and important role in net-

work theory and appear in many applications ranging from synchro-
nization in feed-forward neuronal networks [14, 34], to the modelling of
learning and computation—data processing (see below). Yet feedfor-
ward networks often do not fit smoothly into the dynamicists lexicon for
networks. Feedforward networks, such as artificial neural nets (ANNs)
and network models for visualization and learning in the brain, usually
process input data sequentially and not synchronously as is the case in
a dynamical network. More precisely, a feedforward network is divided
into layers—the (hidden) layers of an ANN—and processing proceeds
layer-by-layer rather than simultaneously across all layers as happens
with networks modelled by systems of differential equations. The way
in which data is processed—synchronously or sequentially—can have a
major impact on both dynamics and output (see Example 1.2 below).
An additional feature of many feedforward networks is that they have
a function, represented by going from the input layer to the output
layer. Optimization of network function typically requires the network
to be adaptive.

Example 1.1 (Artificial Neural Nets & Supervised Learning). The
interest in ANNs lies in their potential for approximating or represent-
ing highly complex and essentially unknown functions. For example,
a map from a large set of facial images to a set of individuals with
those facial images (facial recognition) or from a large set of drawn or
printed characters to the actual characters (handwriting recognition).
An approximation to the required function is obtained by a process of
training and adaptation. No attempt is made to derive an “analytic”
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form for the function. We sketch only the simplest model and refer the
reader to the extensive literature for more details, greater generality
and related methods [7, 18, 19, 35, 17].
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Figure 1. (a) Perceptron or Sigmoid neuron, (b) Model
for Artificial Neural Net.

In Figure 1(a), we show the abstract building block for an ANN—
the perceptron, first described by Rosenblatt [33] in 1958. There is
no limit on the number of inputs—in the figure we show a perceptron
with three inputs denoted x, y, z. Each input connection has a weight,
denoted a, b, c in the figure. Here we assume inputs and weights are
positive real numbers though negative numbers can be allowed. Assume
a threshold T > 0. If ax+ by + cz ≥ T , the output is 1, else it is 0.
In Figure 1(b), we show an ANN built from perceptrons. Data from

the input layer is successively processed by the hidden layers accord-
ing to the perceptron rules to yield a data set in the output layer. In
supervised learning—training of the network— data sets are repeat-
edly processed by the network and the output data set is compared
with the true output set. For example, inputs might be facial images
and the true output data set would be the actual individuals with the
given facial image. Algorithms based on gradient descent and back
propagation are used to adjust weights to reduce the error between the
computed output data and true output data. For this to work, the
model has to be smoothed so that gradient methods can work. To this
end, the perceptron is replaced by a sigmoid neuron. The output of
the sigmoid neuron in response to the input ax+ by+ cz will be of the
form 1/(1 + exp (−σ(ax+ by + cz))) ∈ (0, 1), where σ > 0 (for large σ
the output of the sigmoid neuron closely approximates that of the per-
ceptron). Apart from allowing the use of gradient methods, the output
of the sigmoid neuron, unlike that of the perceptron, will depend con-
tinuously on the inputs. Adaptation is crucial for the performance of
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artificial neural networks: Minsky and Papertin showed in their 1969
book [30] that, without adaptation, ANNs based on the perceptron
could not perform some basic pattern recognition operations.
From a dynamical point of view, an ANN can be regarded as a com-

posite of maps—one for each layer—followed by a map acting on weight
space. Note that the processing is layer-by-layer and not synchronous.
In particular, an artificial neural net is not modelled by a discrete dy-
namical system—at least in the conventional sense.
The inspiration for artificial neural nets comes from neuroscience

and learning. In particular, the perceptron is a model for a spiking
neuron. The adaptation, although inspired by ideas from neuroscience
and Hebbian learning, is global in character and does not have an
obvious counterpart in neuroscience.

There does not seem to be a natural or productive way to replace the
nodes in an ANN with continuous dynamical systems—at least within
the framework of supervised learning. Indeed, the supervised learning
model attempts to construct a good approximation to a function that
acts on data sets. This is already a hard problem and it is not clear
why one would want to develop the framework to handle data sets
parametrised by time1. However, matters change when one considers
unsupervised learning. In this case there are models from neuroscience
involving synaptic plasticity, such as Spike-Timing Dependent Plastic-
ity (STDP), which involve dynamics and asynchronous or sequential
computation. In the case of STDP, learning and adaptation are con-
trolled by relative timings of spike firing (we refer to [13, 31, 8] for
more details, examples and references and note that adaptive rules for
a weight typically depend only on states of neurons at either end of the
connection—axon). It has been observed that adaptive models using
STDP are capable of pattern recognition in noisy data streams (for
example, [27, 28, 29]).
As a possible application of this viewpoint, one can envisage data

processing of a continuous data stream by an adaptive feedforward
network comprised of layers consisting of continuous dynamical units.
Here the output would reflect dynamical structure in the data stream—
for example, periodicity or quantifiable chaotic behaviour. The pro-
cessing could be viewed as a dynamic filter and the approach can be
contrasted with reconstruction techniques based on the Takens embed-
ding theorem.

1In dynamical systems theory there are methods based on the Takens embedding
theorem [38] that allow reconstruction of complex dynamical systems from time
series data. However, these techniques seem not to be useful in data processing.
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1.2. Objectives and Motivation. Dynamical feedforward networks
may be viewed as relatively primitive networks, at least from an evolu-
tionary viewpoint. It is natural to consider how the network structure
can evolve so as to optimise network function (for example, pattern
recognition). One way of doing this is to consider the effect of adding
feedback loops to the network. Perhaps surprisingly, the addition of
feedback to a feedforward network can lead to dramatic bifurcation in
the synchrony structure of the network. Specifically, the addition of
feedback loops can enrich the synchrony structure and result in, for ex-
ample, periodic synchrony patterns that do not occur for feedforward
networks without feedback. The existence of a rich synchrony structure
is an indicator for the potential of the network in learning applications
(for example, pattern recognition). In this case, rather than internal
synchronization between nodes, the objective is to synchronize some
nodes with components of the incoming data stream2. As an illustra-
tion of this phenomenon, we cite the mechanism of STDP which can
lead to synchronization of a small subset of nodes with a repeating
component in a noisy data stream [27] or, via similar mechanisms, lead
to direction location [13]. Our objective here is more modest and di-
rected towards gaining a better understanding of how the synchrony
structure of a feedforward network changes when feedback is added to
the network. The determination of the synchrony structure of the net-
work needs to be done in a way that is compatible with adaptation.
That is, aside from describing how adaptation should work, there is a
need to identify types of adaptation that will not destroy the synchrony
structure of the network.
Although the main focus of this article is on synchrony and the dy-

namics of adaptation, it is helpful to say a little more about some of
the issues involving dynamics and bifurcation. First, it is well-known
that the addition of feedback loops may have deleterious effects on the
dynamics and functionality of a network—for example, in transport
networks containing loops overlapping other routes (for example, the
Circle line in the London underground system [32]) or the Bullwhip
effect in stock-inventory control systems [25]. It is natural to describe
bifurcation of dynamics that can occur with the addition of feedback
loops to a feedforward network. In particular, from an evolutionary
point of view, dynamic bifurcation is significant in the context of op-
timising network function (see also the discussions in [5, §6], [4, §1.6]).

2For effective and efficient implementation of this approach, it is expedient to
introduce some intra-layer inhibitory structure (for example [28, 26]).
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There is also the question of whether the network processes data syn-
chronously or asynchronously (for example, see [5] and the example
following) and the effect this may have on the computational effective-
ness and dynamics of running a feedforward dynamical network. In
a companion paper [2] we give more detailed results and examples on
dynamics. For now we give some numerics that illustrate the rich dy-
namics that can occur in feedforward networks with feedback and how
the way the network is run can have unexpected and dramatic effects
on the output.

Example 1.2 (A feedforward network of theta neurons). The dynam-
ics of a theta neuron [11] are given by

θ′ = (1− cos(2πθ)) + η(1 + cos(2πθ)), θ ∈ R/Z.

If η > 0 (excitable case), dynamics is periodic; if η < 0, there are two
equilibria, one of which is attracting.
Following Chandra et al. [9], we consider a network N of 50 theta

neurons with dynamics of node i, 1 ≤ i ≤ 50, given by

θ′i = (1− cos(2πθi)) + (1 + cos(2πθi))(ηi + Ii),(1.1)

Ii = si
∑

j∈50

wijP (θj),(1.2)

where P (θ) = 26(6!)2

12!
(1 − cos(2πθ))6 is a ‘bump function’, wij ∈ R are

weights, and si is a scaling constant defined below. Suppose that N
is a feedforward network with 4 layers consisting of 10, 15, 10 and 15
nodes respectively. We assume there is all to all coupling from layer j
to layer j + 1, for j = 1, 2, 3, and no-self loops (wii = 0, for all nodes
i). The scaling constants si depend only on the layer and, apart from
layer 1, are the reciprocals of the in-degrees of nodes in the layer. We
have s1 = 1, s2 = s4 = 1/10, s3 = 1/15. The constants ηi will all be
chosen equal to −0.1 (non excitable case).
We initialize the network in the following way. Initial states are

chosen randomly and uniformly on the circle; initial weights are chosen
randomly and uniformly in [0.3, 0.8]. Weights are assumed positive and
constrained to lie in [0, 2]. Adaptation is multiplicative (see section 3)
and, for wij ∈ [0, 2), weight dynamics is given by

w′
ij = wij(0.3− 0.75ρ(θi, θj)),

where ρ(θ, φ) = min{|θ−φ|, 1−|θ−φ|} is arc length on the circle R/Z.
Taking account of the constraint, wij = max{0,min{2, wij}}.
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When the network is run, with or without adaptation, dynamics
converges to the fully synchronized equilibrium state. This is not sur-
prising since the individual neurons are not excitable.

Figure 2. Dynamics in a feedforward network with
feedback. (a) No adaptation & synchronous dynamics,
(b) Adaptation & synchronous dynamics, (c) Adapta-
tion & asynchronous dynamics—successive switching on
of layers.

Matters are much more interesting with the addition of feedback
loops. We add loops from the first node of layer 4 (node 36 of the
network) back to all nodes in layer 1. This leads to new equations

(1.3) θ′i = (1−cos(2πθi))−(0.1+2.7P (θ36))(1+cos(2πθi)), 1 ≤ i ≤ 10,
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for the nodes in layer 1 (we continue to assume the constants ηi =
−0.1). The weight −2.7 is fixed in what follows and is not subject to
adaptation. In Figure 2 we show numerical simulations of the dynam-
ics under various assumptions but always using 4th order Runge-Kutta
(Euler for the adaptation). In Figure 2(a), we show dynamics for the
network (with feedback) under the assumption that weights are con-
stant (no adaptation). In this case, after an initial transient, there is
rapid convergence to a steady state solution in all layers. We show the
first 4.07 seconds of time evolution (time step 0.002). In Figure 2(b),
we show dynamics for the network with feedback and adaptation. The
results are now quite different and all layers are approximately peri-
odic. Exactly the same initialization is used as in (a) (we show the first
4.07 seconds of time evolution, time step 0.002). In Figure 2(c), with
the same initialization as in (a,b), we run the dynamics asynchronously
and with adaptation. First we switch on level 1, then add level 2, then
level 3 and finally, level 4. Each step was run for 2.035 seconds (time
step of 0.001). The result is surprising—when level 4 is switched on
the network shows strong periodic behaviour though this collapses at
the end of the run and converges to an equilibria state as in case (a).
Finally, we ran the network sequentially with adaptation: layer 1 first,
then layer 2 only, concluding with layer 4. In this case, the eventual
outcome (not shown) is the same as in Figure 2(a), though with shorter
transients. In both cases (a,b), we see that the feedforward structure
can amplify transients—typically undesirable behaviour. Even if we
run the network partially asynchronously, as in (c), there may still be
unexpected periodic behaviour. Only in the fourth case when we run
the network sequentially, do we avoid periodic behaviour. Of course,
from the point of data or image processing, there seems to be little
advantage in running the network synchronously: all the transient dy-
namics generated by each layer is fed immediately into the following
layer.
Different initializations of network and weights, as well as variation

in the adaptation rules, can lead to different outcomes. For example, it
is possible in case (c) for the outcome to be periodic (as in Figure 2(b)
above) or for the adaptive synchronous case to converge eventually to
an equilibrium. As it is, the long term dynamics shown in Figure 2(b)
converges to a periodic solution with exact synchronization in layers.
See Figure 3.
In certain cases, where exact synchronization is not obtained, long-

term dynamics is reminiscent of chimeras. We discuss these and related
matters in more detail in [2].
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Figure 3. Periodicity and exact synchronization for
adaptive dynamics shown in Figure 2(b): 1.0175 seconds
of time evolution shown after after 28.49 seconds of time
evolution. Time step 0.0005.

As indicated above, the solutions of the network equations (1.1) were
computed using 4th order Runge-Kutta, time steps in the range 0.0005
to 0.002. Adaptation used Euler with the same timestep as used for
the network equations. Precision was long double. Initialization data
used for the simulations is available on request from the authors.
We emphasise that what we have described above are the common

responses of the network; different initializations can and do lead to
different responses.

1.3. Main results and outline of paper. After a description of the
class of dynamical networks with additive input structure, we review
the notions of synchrony and synchrony subspace. The presentation
is relatively brief and self-contained and does not require significant
background or familiarity with the theory or formalism of coupled cell
systems [15]. We introduce the concept of network compatibility which
is a condition on the network topology but not on the weights. Network
compatibility is designed to be used with adaptive systems and avoid
degenerate synchrony classes. It is related to the notion of “spurious
synchrony” introduced in Aguiar et al. [1]. In Section 3, we give basic
definitions and results needed for extending adaptation to the class
of networks with additive input structure. We define adaptation of
additive, multiplicative and mixed type and indicate the relationship to
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adaptation and learning rules used in neuroscience. Theorem 3.3 gives
conditions for synchrony preservation; in particular that synchrony is
always preserved under multiplicative adaptation. In Section 4, we
review the definition of layered structure and feedforward networks [1]
and define a feedback structure on a feedforward network—for us, this
will almost always be a set of connections from the last layer to the first
layer of the network. Theorem 4.15 gives a description of the possible
synchrony for a feedforward network with feedback structure under the
assumption that there are no self-loops (the network is not recurrent—
an FFNN in the terminology of [1]). A consequence of this result is that
it is possible for synchrony to have a periodic structure across layers
which cannot happen if there is no feedback [1]. Theorem 4.29 describes
the possible synchrony for a feedforward network with feedback if we
allow self-loops in the first layer (an AFFNN [1]). We conclude with
some remarks on more general feedback structures with feedback from
the last layer to intermediate layers.

2. A class of networks with additive input structure

2.1. Dynamical networks with additive input structure. We
consider a class of dynamical networks N consisting of k interacting
dynamical systems, where k ≥ 2. We label the individual dynamical

systems, or nodes, in N , by k
def
= {1, . . . , k}. Thus i ∈ k will denote

the ith node of the network. We assume that the uncoupled nodes
have identical dynamics and phase space. Specifically, each node will
have phase space M (a differential manifold, possibly with boundary),
and there will exist a C1 vector field f on M such that the intrinsic
dynamics on node i is given by

ẋi = f(xi), i ∈ k.

Note our convention that the state of node i is denoted by xi. In
our examples, M will be [0, 1], R, T = R/Z, or S1 = R/2πZ (unit
circle). This gives the simplification that we can regard the dynamics
and coupling as being given by real valued functions since in these cases
the tangent bundle is trivial: TM = M × R.
Associated to the network N there will be a k× k adjacency matrix

A = A(N ) = [Aij ]. Each Aij ∈ {0, 1} and the matrix A defines a
unique directed graph Γ = Γ(N ) on the nodes k according to the rule
that j→i is a connection from j to i if and only if Aij = 1. If i 6= j and
Aij = 1, i, j are adjacent nodes. We always assume that Γ is connected
in the sense that we cannot write Γ = Γ1 ∪ Γ2 where Γ1,Γ2 are graphs
on complementary proper subsets of k. Define a = aA =

∑

(i,j)∈k2 Aij
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and note that k − 1 ≤ a ≤ k2 (the first inequality follows since Γ is
connected). We say that N has no self-loops if Aii = 0 for all i ∈ k. If
Aii = 1, then node i has a self-loop.
The space M(k) of k× k real matrices may be identified with Rk2—

map [mij ] to (mij) = (m11,m12, . . . ,m1k,m21, . . . ). Using this identifi-
cation, the adjacency matrix A naturally defines a subspace

W = W (A) = {w = (wij) | wij = 0 if Aij = 0}

of Rk2 . Obviously, dim(W ) = aA. We refer to W as the weight space
for the adjacency matrix A. Note that wij may be zero if Aij = 1 but
that wij is always zero if Aij = 0.
Fix a C1 coupling function φ : M2→TM satisfying φ(x,y) ∈ TyM

for all x,y ∈ M . Note that if M is a subset of Rm or Tm, we may
assume φ : M2→Rm.
Under the assumption of constant weights, dynamics on N will be

defined by the system

(2.4) ẋi = f(xi) +
k

∑

j=1

wijφ(xj,xi), i ∈ k,

where w = (wij) ∈ W—the weight space for A.

Remark 2.1. System (2.4) has an additive input structure [12, 4, 1].
In particular, we can naturally add and subtract connections without
destroying the underlying network structure and dynamics. This is
crucial here where weights may evolve and become zero—effectively
changing the adjacency matrix. We remark that the assumption of
linear input structure is needed for the reduction of weakly coupled non-
linear oscillators to the Kuramoto phase oscillator equations [24, 20].
Indeed, without that assumption, the reduced model is easily seen not
to be a network of phase oscillators with diffusive coupling (see for
example [3]).

2.2. Synchrony subspaces. Let P = {Pa | a ∈ s} be a partition of k.
We refer to the subsets Pa as parts of P . Let pa denote the cardinality
of Pa, a ∈ s. If s = k, we refer to P as the asynchronous partition—all
parts of P are singletons—and denote the partition by A. If P is not
asynchronous, then pa ≥ 1 for all a ∈ s, and s < k (so that at least
one part contains more than one element). After a relabelling of nodes,
we may assume that P1 = {1, . . . , p1}, P2 = {1 + p1, . . . , p1 + p2} and
so on up to Ps = {1 +

∑s−1
i=1 pi, . . . , k =

∑s

i=1 pi}. We often make this
assumption in proofs.
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Definition 2.2. Suppose network dynamics given by (2.4) (M , f and
φ are completely general, but the weights and adjacency matrix A
are fixed). Let P = {Pa | a ∈ s} be a partition of k. For a, b ∈ s
define the local valency function νP

a,b = νa,b : Pa→R and local in-degree

ρPa,b = ρa,b : Pa→N by

νa,b(i) =
∑

j∈Pb

wij, ρa,b(i) =
∑

j∈Pb

Aij, i ∈ Pa.

If s = 1 and P = {k}—the fully synchronous partition—set ν1,1 =
ν : k→R, ρ1,1 = ρ : k→Z+

0 and refer to ν and ρ as the valency and
in-degree.

Given the partition P , define the subspace ∆P(M) of Mk by

∆P(M) =

{

{(x1, . . . ,xk) | xi = xj if i, j ∈ Pa, some a ∈ s}, P 6= A.

Mk, if P = A.

In the coupled cell network literature [37, 16, 15], ∆P(M) is usually
called a polydiagonal subspace of Mk. Polydiagonal subspaces are the
natural class of subspaces to consider for the study of exact synchro-
nization. Specifically, if∆P(M) is an invariant subspace for the dynam-
ics of (2.4), then every solution X(t) = (x1(t), . . . ,xk(t)) of (2.4) with
initial condition in∆P(M), will consist of s groups of synchronized tra-
jectories: for all a ∈ s, the trajectories xi(t), i ∈ Pa, will be identical.
After relabelling of nodes (see above), we may writeX = (xp1

1 , . . . ,xps
s ),

where xp ∈ ∆(Mp) is shorthand for x repeated p times.
If, given w ∈ W , ∆P(M) is an invariant subspace for all choices

of f and φ in (2.4), we call P a synchrony class of N and ∆P(M) a
synchrony subspace (of Mk). We emphasise that we do not vary the
weights (yet).

Remark 2.3. In the coupled cell literature, it is common to regard each
part Pa ∈ P as being associated to a colour. With this convention,
nodes are synchronized if and only if they have the same colour, that
is belong to the same part. The convention in this work is that nodes
lie in the same part if and only if they are synchronous ; nodes that are
not synchronous are asynchronous.

We want to give a necessary and sufficient condition for a partition
to be a synchrony class. As this will be a little different from what is
given in [1]—we need to allow for variation in the weights—we prefer
to avoid the generality of the coupled cell network formalism [15], and
instead give a brief presentation that requires minimal prerequisites.
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Proposition 2.4. (Notation and assumptions as above.) Given w ∈
W , the partition P = {Pa}a∈s is a synchrony class of N iff each local
valency function νa,b is constant.

Proof. Sufficiency. Let ta,b denote the constant value of νa,b. Let N (P)
denote the network with s nodes and dynamics given by

(2.5) ẏa = f(ya) +
∑

b∈s

ta,bφ(yb,ya), a ∈ s,

where each node has state space M (as in (2.4)). Clearly every solution
of (2.5) determines a solution to (2.4) lying in ∆P(M) and with initial
condition (yp1

1 (0), . . . ,yps
s (0)) ∈ ∆P(M). It follows by uniqueness of

solutions that every solution X(t) of (2.4) with initial condition X(0) ∈
∆P(M) is of this form and so X(t) ∈ ∆P(M) for all t.
Necessity. Suppose that να,β is not constant for some pair (α, β) ∈ s2.

Necessarily pα > 1. It suffices to find a specific equation of the form
(2.4) for which ∆P(M) is not an invariant subspace. For this, take
M = R, f ≡ 0. Taking xa = a, a ∈ s, choose any smooth φ : R2→R

such that φ(x, y) = 1, for (x, y) near (α, β), and φ(x, y) = 0 for values
of (x, y) near (a, b) 6= (α, β). Pick i, j ∈ Pα such that να,β(i) 6= να,β(j).
Suppose xi(0) = xj(0) = α. The equations for xi,xj near t = 0 are

ẋi = να,β(i), ẋj = να,β(j).

It follows from our assumptions on φ and choice of i, j that xi(t) 6= xj(t)
for t close to zero, t 6= 0. Hence P cannot be a synchrony class. �

Remark 2.5. In the coupled cell literature [16, 15], the network (2.5) is
referred to as a quotient network of (2.4). The quotient network gives
dynamics on the synchrony subspace.

2.3. Network compatibility.

Definition 2.6. The partition P is network compatible if for all a, b ∈ s,
either ρa,b ≡ 0 or ρa,b is non-vanishing on Pa. Let ncp(N ) denote the
set of all network compatible partitions for N .

Remarks 2.7. (1) Henceforth we always assume partitions are network
compatible. Note that the asynchronous partition A ∈ ncp(N ).
(2) Our definition of network-compatible is related to, but not the same
as, the notion of spurious synchrony [1, Definition 2.9]. We emphasize
that network compatibility depends on the network topology and not
on the choice of weight vector.

The asynchronous partition is the finest network compatible par-
tition. The next lemma shows that there is a coarsest partition in
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ncp(N ). This partition gives the maximally synchronous subspace of
Mk that can be defined by a network compatible partition.

Proposition 2.8. If T is the partition associated to the polydiagonal
subspace

⋂

P∈ncp(N )

∆P(M),

then T ∈ ncp(N ).

Proof. Let T = {Ta | a ∈ s}. Then c, d ∈ Ta if and only if we can find
a sequence c = c0, c1, . . . , cr = d such that for each i ∈ r, there exist
P ∈ ncp(N ), P ∈ P , such that ci−1, ci ∈ P . Since each partition P is
network compatible, it follows easily from this characterisation of the
parts of T , that T is network compatible. �

Remark 2.9. In more abstract terms, Proposition 2.8 follows from the
existence of a complete lattice structure on ncp(N ). See Stewart [36]
for the lattice structure on synchrony classes in coupled cell systems
and Davey and Priestley [10] for background on lattices. In terms of
the lattice structure on ncp(N ), T is the top (maximal) element and A
is the bottom (minimal) element. In our context, it straightforward to
define the join operation in terms of operations on partitions (what is
used in the proof of Proposition 2.8 to obtain the top element) and we
do not have to be concerned about the definition of the meet operation
which does not generally correspond to the intersection operation on
partitions.

For w ∈ W , define

sync(N ,w) = {P ∈ ncp(N ) | P is a synchrony class}.

Note that A ∈ sync(N ,w) and that sync(N ,w) will generally be a
proper subset of ncp(N ).

Lemma 2.10. Given w ∈ W ,

V (w) = {u ∈ W | sync(N ,u) ⊇ sync(N ,w)},

is a vector subspace of W .

Proof. Obvious. �

Remark 2.11. If u ∈ V (w), then we may have sync(N ,u) ) sync(N ,w).
For example, if u = 0. On the other hand, sync(N ,u) = sync(N ,w)
for u in an open dense subset of V (w).
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Suppose P = {Pa}a∈s ∈ ncp(N ). For a, b ∈ s, let W (a, b) denote the
(
∑

i∈a,j∈b Aij)-dimensional subspace of W corresponding to all possible

weights wa,b = (wij), with i ∈ Pa, j ∈ Pb. If w ∈ W , let wa,b ∈ W (a, b)
denote the projection of w in W (a, b). For t ∈ R, define

W (a, b)(t) = {wa,b ∈ W (a, b) | νa,b(i) =
∑

j∈Pb

wij = t, all i ∈ Pa}.

Lemma 2.12. Let P = {Pa}a∈s ∈ ncp(N ). For all a, b ∈ s, t ∈ R,
W (a, b)(t) 6= ∅.

Proof. The network compatibility condition on P implies that if the
local in-degree ρa,b 6≡ 0, then for all t ∈ R, i ∈ Pa,

∑

j∈Pb
wij = t has

solutions. �

Definition 2.13. Let P = {Pa}a∈s ∈ sync(N ,w). The local valencies
νa,b are non-degenerate if νa,b is non-vanishing whenever ρa,b is not
identically zero.

Theorem 2.14. Let ε > 0 and w ∈ W be a weight vector for N .

(1) If P = {Pa}a∈s ∈ sync(N ,w), P 6= A, then we can choose
weight vectors w′,w′′ such that
(a) ‖w − w′‖ < ε, the local valencies νa,b for w′ are non-

degenerate, and P ∈ sync(N ,w′).
(b) All weights w′′

ij, with Aij = 1, are strictly positive and P ∈
sync(N ,w′′).

(2) We may choose weight vectors w′, w′′ such that
(a) sync(N ,w′) = sync(N ,w), ‖w−w′‖ < ε, and local valen-

cies for w′ are non-degenerate.
(b) sync(N ,w′′) = sync(N ,w), and w′′ is strictly positive

(w′′
ij > 0, if Aij = 1).

Remark 2.15. Theorem 2.14 shows that for network compatible par-
titions P , we can always perturb the weights so that P is a non-
spurious synchrony class—the local valencies are non-degenerate [1].
Note that if the weight vector is strictly positive, as in (1,2)(b), then
the non-identically zero local valencies are strictly positive and so non-
degenerate.

Proof of Theorem 2.14 (1) Both statements follow easily from
Lemma 2.12. We indicate the proof of (1b). For each a, b ∈ s, i ∈ a,
j ∈ b, define

w′′
ij =

{

0 if ρa,b ≡ 0
1

ρa,b(i)
otherwise.
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For this choice of w′′, the non-identically zero local valencies νP
a,b are

all constant, equal to 1.
(2) Since not being a specific synchrony class is an open property on
the set of weights, we may choose an open neighbourhood U of w such
that for all u ∈ U , sync(N ,u) ⊆ sync(N ,w) (see Lemma 2.10 and
note that if u ∈ V (w) ∩ U , then sync(N ,u) = sync(N ,w)).
Let T ∈ ncp(N ) be the partition given by Proposition 2.8. Apply-

ing the argument of the proof of (1b) with P = T , choose a strictly
positive weight vector w⋆ such that the local valencies νT

a,b are all non-
degenerate. Since every P ∈ ncp(N ) is a refinement of T , the local
valencies νP

a,b for w
⋆ are non-degenerate for all P ∈ sync(N ,w). Con-

sider the weight vector w⋆
λ = w⋆ + λw, λ ∈ R. By Lemma 2.10,

sync(N ,w⋆
λ) ⊇ sync(N ,w), for all λ ∈ R. For sufficiently large λ,

sync(N ,w⋆
λ) = sync(N ,w) (since λ−1w⋆ + w ∈ U). Consequently,

sync(N ,w⋆
λ) = sync(N ,w), λ 6= 0. Hence we can choose λ0 ∈ R so

that sync(N ,w⋆
λ0
) = sync(N ,w), local valencies are non-degenerate

and w⋆
λ0

is strictly positive. Take w′′ = w⋆
λ0

to complete the proof of
(2b). For (2a), choose µ0 ∈ [0, ε/‖w⋆‖) so that w′ = w + µ0w

⋆ ∈ U
and local valencies are non-degenerate. �

Example 2.16. If N is a network with an all-to-all coupling adjacency
matrix (no self-loops), then all partitions are network compatible. Here
it is easy to see that if all weights are equal, then all partitions are
synchrony classes.

Remark 2.17. For network compatible partitions, we allow zero local
valency when the local in-degree is non-zero. It follows from Theo-
rem 2.14(2) that network compatibility allows us to choose a synchrony
preserving perturbation of the weight vectors making all local valencies
non-degenerate.

Examples 2.18. (1) The partition P = {{A,B}, {C,D}, {E,F}},
and assigned weight vectors, shown in Figure 4, define an invariant
subspace ∆P(M). However, there are no connections from nodes C,D
to E and so the partition is not network compatible and does not give a
synchrony class according to our definition. Note that it is not possible
to choose weights wFC , wFD which do not sum to zero and preserve the
synchrony class.
(2) Suppose that row i of the adjacency matrix ofN is zero and that row
j is non-zero. Then the nodes i and j are asynchronous. In particular,
it is not possible for all the nodes in N to be synchronous ({k} is not
a synchrony class).

We have the following restatement of Proposition 2.4
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1 1 2 w −w

A B C D

E F

Figure 4. “Spurious” synchrony in a network with 6
nodes. Here P = {{A,B}, {C,D}, {E,F}}.

Proposition 2.19. Let P = {Pa}a∈s be a partition and w ∈ W . Then
P is a synchrony class of N , with weight vector w, iff for all a, b ∈ s,
there exist ta,b ∈ R such that wa,b ∈ W (a, b)(ta,b).

As a simple corollary of Proposition 2.19, we have

Proposition 2.20. (1) There is an open and dense subset W0 of
W for which N has only the asynchronous synchrony class.

(2) If P = {Pa}a∈s is a partition of k, then

{w ∈ W | P is a synchrony class}

is a vector subspace of W of codimension
∑

a∈s δa(pa−1) where
δa is the cardinality of the set {b ∈ s : ρa,b 6≡ 0}.

(3) If Aij = 1 for all i.j such that i 6= j, (all-to-all coupling),
and no nodes have self loops, then all partitions are synchrony
classes iff the non-diagonal weights wij are all equal. If there
are self-loops, the same result holds provided that the diagonal
weights wii are all equal. Conversely, if N has no self-loops and
does not have all-to-all coupling, then there exists at least one
partition which is not a synchrony class.

3. Adaptation and Weight Dynamics

We use an adaptive scheme for weight dynamics which is natural for
the analysis of synchronization. We refer the reader to the remarks at
the end of this section for connections with learning in neuroscience
and limitations on the model.
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First, assume weights and dynamics evolve according to

ẋi = f(xi) +
k

∑

j=1

wijφ(xj,xi), i ∈ k,(3.6)

ẇij = ϕ(wij,xi,xj), (i, j) ∈ N,(3.7)

where N = {(i, j) ∈ k2 | Aij = 1}, (3.6) satisfies the conditions for
(2.4), and ϕ : R×M2→R is C1. This model for dynamics and adapta-
tion assumes that the evolution of the weight wij depends only on wij

and the states of the nodes i and j.
In what follows, we assume for simplicity that solutions of (3.6,3.7)

are defined for all t ≥ 0.

Definition 3.1. The system (3.6,3.7) preserves synchrony if given a
partition P and weight initialization w0 ∈ W such that P is a syn-
chrony class of (3.6) with w = w0, then for every solution (x(t),w(t))
of (3.6,3.7) with initialization x(0) ∈ ∆P(M), w(0) = w0, we have
x(t) ∈ ∆P(M), all t ≥ 0.

Of course, without further conditions, (3.6,3.7) will not preserve syn-
chrony.

Definition 3.2. (1) Adaptation is multiplicative if there is a C1

map Φ : M2→R such that

ϕ(w,x,y) = wΦ(x, y), (w, (x,y)) ∈ R×M2.

(2) Adaptation is additive if there is a C1 map Φ : M2→R such
that

ϕ(w,x,y) = Φ(x, y), (w, (x,y)) ∈ R×M2.

(3) Adaptation is of mixed type if there are distinct C1 maps Φ,Ψ :
M2→R and C 6= 0 such that

ϕ(w,x,y) = wΦ(x,y) + (C − w)Ψ(x,y), (w, (x,y)) ∈ R×M2.

Theorem 3.3. (Notation and assumptions as above.)

(1) If adaptation is multiplicative, then (3.6,3.7) preserves syn-
chrony.

(2) If adaptation is additive or of mixed type, then (3.6,3.7) pre-
serves a synchrony class {Pa}a∈s provided that the local in-
degree functions ρa,b are constant for all a, b ∈ s.

Proof. The proof is similar to that of Proposition 2.4. We give details
for (1). Suppose that for the weight vector w0, P is a synchrony class
for (3.6). Necessarily νa,b will be constant functions for all a, b ∈ s for
(3.6) (no adaptation). Fix x0 ∈ ∆P(M).
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Initialize (3.6,3.7) at w0 and x0 ∈ ∆P(M).
Consider the ‘quotient’ system

ẏa = f(ya) +
∑

b∈s
Va,bφ(yb,ya), a ∈ s,(3.8)

V̇a,b = Va,bΦ(yb,ya), a, b ∈ s,(3.9)

ẇij = wijΦ(yb,ya), a, b ∈ s, i ∈ Pa, j ∈ Pb,(3.10)

where ya ∈ M , a ∈ s, and Va,b : R→R, a, b ∈ s. Observe that if we
initialize weights with w0, and set Va,b(0) = νa,b =

∑

j∈Pb
w0

ij, where i ∈
Pa, a, b ∈ s, then the solution to (3.9) is given by Va,b(t) =

∑

j∈Pb
wij(t),

a, b ∈ s, any i ∈ Pa.
Suppose x0 = (x̃p1

1 , . . . , x̃ps
s ) ∈ ∆P(M). Initialize (3.8,3.9,3.10) at

y0 = (x̃1, . . . , x̃s) ∈ M s, w0, and Va,b(0) = νa,b, a, b ∈ s. Then x(t) =
(yp1

1 (t), . . . ,yps
s (t)), (wij(t)) will solve

ẋi = f(xi) +
∑

b∈s

(
∑

j∈b

wijφ(xj,xi)), i ∈ k,(3.11)

ẇij = wijΦ(xi,xj), (i, j) ∈ N.(3.12)

We showed above that the solution to (3.9) is given by Va,b(t) =
∑

j∈Pb
wij(t), a, b ∈ s, for any i ∈ Pa and so, by Proposition 2.4,

∑

j∈b wij = Va,b is independent of i ∈ Pa for all a, b ∈ s. Hence syn-
chrony is preserved. �

Remarks 3.4. (1) The models we have used for weight dynamics are
partly motivated by models for (unsupervised) learning in neuroscience
—most notably Hebbian learning rules [8, 7]: “neurons that fire to-
gether wire together”—and related models for synaptic plasticity such
as Spike-Timing Dependent Plasticity [13, 8, 31]. These models are
local in the sense that the dynamics of a weight depends only on the
weight and the nodes at the end of the associated connection and do
not optimise or constrain a ‘global’ quantity such as

∑

ij wij (as is done,

for example, in the work of Ito & Kaneko [23, 21, 22]).
(2) In practice, it is customary to assume weights are positive and so
weight dynamics will be constrained to the positive orthant Ra

+. This
is no problem for adaptation which is multiplicative or of mixed type
(with appropriate conditions). However, for additive adaptation, hard
lower and upper bounds are typically required. If weights saturate,
synchrony is usually lost. If we restrict to positive weights, then there
are no issues with spurious synchrony (see [1] and note also Theo-
rem 2.14(2b)). If the local in-degrees are all constant with the same
value, we can make all weights strictly positive and preserve synchrony
by a weight translation wij→wij + C, C independent of i, j. If we
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allow negative weights then a local valency νa,b which is zero will be
preserved under adaptation of multiplicative type and so, following [1],
spurious synchrony is conserved. This is not generally so for adaptation
of mixed type and almost never true for adaptation of additive type.
Since weight dynamics, with multiplicative or additive adaptation, of-
ten leads, in the limit, to zero weights, and hence zero local valencies,
we prefer not to impose restrictions on spurious synchrony other than
to require partitions are network compatible; rather, we identify when
synchrony results because of a zero local valency.

4. Layered structure and feed forward networks

We continue to follow the notational conventions and terminology
developed in section 2. Thus N will be a connected network consisting
of k nodes, an adjacency matrix A, an associated connected network
graph Γ and weight vector w ∈ W . Dynamics will be given according
to (2.4).

Definition 4.1 ([1, Definition 3.1]). The network N has a layered
structure L = {Lt}t∈ℓ if we can partition k as k = ∪ℓ

t=1Lt, where

(a) ℓ > 1.
(b) The only connections to nodes in L1 are self-loops.
(c) If i ∈ Lt, t > 1, then Aiu = 1 only if u ∈ Lt−1. In particular,

no node receives a connection from a node in Lℓ.
(d) Every node in ∪ℓ

t=2Lt receives at least one input.
(e) Every node in ∪ℓ−1

t=1Lt has at least one output.

We refer to Lt as the tth layer of N .

Suppose that the network N has a layered structure with layers
L1, . . . ,Lℓ. Following [1], N is a Feed-Forward Neural Network—FFNN
for short—if nodes in L1 have no self-loops, andN is an Auto-regulation
Feed-Forward Neural Network—AFFNN for short—if at least one node
in L1 has a self-loop. A description of synchrony classes for (A)FFNNs,
with examples, is given in [1, §§3,4].
If N is an (A)FFNN and the partition P is a synchrony class, we

have induced partitions Pt = P ∩ Lt, t ∈ ℓ. It follows from [1] that if
N is an FFNN, there is no pair of induced partitions with synchronous
nodes. That is, for an FFNN synchronization occurs within but not
between layers.

Proposition 4.2. (Notation and assumptions as above.) Suppose that
N is an adaptive (A)FFNN with layers L1, . . . ,Lℓ and that the partition
P is a synchrony class for the initial weight vector w0. Set Pt = Lt∩P,
t ∈ ℓ.
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(1) If adaptation is multiplicative, then the synchrony will be pre-
served within layers. That is, the induced partitions Pt are pre-
served for all t ∈ ℓ.

(2) If adaptation is of mixed or additive type and the local in-degrees
ρa,b are constant on layers, then synchrony will be preserved
within layers.

Proof. (1) follows from Theorem 3.3. (2) uses Theorem 3.3 and an easy
induction on layers. �

Remarks 4.3. (1) We consider dynamics on adaptive (A)FFNNs in part
2 [2]. As part of this we will consider both synchronous dynamics—
dynamical evolution of the network in the standard way—and asyn-
chronous evolution. For this we successively switch on layers when
threshold conditions are met on previous layers. This is both similar
to the way a discrete artificial neural net works and analogous to the
way production and inventory control networks are operated (we refer
to [4, 5] for details on asynchronous and functional networks).
(2) From an evolutionary point of view, a feedforward network can be
considered as a relatively primitive object. Under evolutionary pres-
sure, the network will optimise a function. This may entail the appear-
ance of feedback loops in the network. The bifurcations resulting from
the addition of feedback loop(s) to a feedforward network are subtle
and related to phenomena such as the bull-whip effect in production
and inventory control [25]. For the remainder of this work, we consider
how feedback loops affect synchrony in feedforward networks. In part
2 [2], we investigate bifurcation and dynamics for both non-adaptive
and adaptive networks of feedforward type.

4.1. Notation and assumptions. Throughout this section, N will
denote a network with layered structure L = {Lt}t∈ℓ.

Definition 4.4. A transversal (for N ) is a path n1→n2→ . . .→nℓ in
the network graph Γ such that nt ∈ Lt, t ∈ ℓ. The network N is
feedforward connected if there is a transversal joining any node in L1

to any node in Lℓ.

Remark 4.5. Since every node in N r L1 has at least one input (Defi-
nition 4.1(d)), it follows (Definition 4.1(c,e)) that if j ∈ N , then j lies
on at least one transversal through N .

4.2. Feedback structures on an (A)FFNN. Henceforth assume
that N is a feedforward connected (A)FFNN.

Definition 4.6. Let N have layers {Lt}t∈ℓ and J be a non-empty
subset of {1, . . . , ℓ − 1}. A J-feedback structure F on N consists of
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a non-empty set of connections from nodes in Lℓ to nodes in ∪t∈JLt,
together with a corresponding weight vector u lying in the associated
weight space U for the feedback loops.

Remark 4.7. Here we focus almost exclusively on {1}-feedback struc-
tures and henceforth refer to a {1}-feedback structure as a feedback
structure. At the end of the section there are some comments on
{2, . . . , ℓ− 1}-feedback structures.

Definition 4.8. Let F be a feedback structure on N .

(1) F is of type A if every node in L1 receives at least one connection
from a node in Lℓ.

(2) F is of type B if every node in Lℓ is connected to at least one
node in L1.

(3) F is of type C if it is of type A and B.

If F is a feedback structure on N , let N ⋆ denote the associated
network. Note that N and N ⋆ have the same node set. If F is of type
A, we say N ⋆ is of type A. Similarly for types B and C.

Lemma 4.9. Let F be a feedback structure on N . There exists a
maximal feedforward connected subnetwork Nc of N such that

(1) F is a feedback structure of type B on Nc.
(2) i ∈ k is a node of Nc iff there is a transversal (in N ) containing

i and ending at a node in Lℓ connected to a node in L1.
(3) i→j is a connection for Nc iff i→j is a segment of a transversal

(in N ) containing i, j and ending at a node in Lℓ connected to
a node in L1.

(4) If N ⋆ is of type A, then N ⋆
c will be of type C and the node set

of Nc contains all nodes in L1.

Proof. Define the network graph of Nc ⊂ N to be the union of all
transversals joining nodes in L1 to nodes in Lℓ which connect to nodes
in L1. Obviously, Nc is feedforward connected, satisfies (2,3), and F
defines a feedback structure of type B on Nc. �

Remark 4.10. For FFNNs (as opposed to AFFNNs), we usually assume
feedback structures are of type A. It follows from Lemma 4.9, that for
the study of feedback induced synchrony on networks N ⋆ of type A, it
is no loss of generality to assume N ⋆ of type C. Indeed, once we have
synchrony for N ⋆

c , it is easy to extend to N ⋆ as the extension will not
be constrained by the feedback structure.

Lemma 4.11. (Notation and assumptions as above.) Suppose F is a
feedback structure of type C on N . Given i ∈ Lt, j ∈ Lu, there exists
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a path γ : i = i0→i1→ . . .→ip = j in the network graph of N ⋆. The
minimal length p of γ is dℓ + u − t, where d ∈ {0, 1, 2}, if u ≥ t, and
d ∈ {1, 2} otherwise.

Proof. A straightforward computation using feedforward connectedness
and Remark 4.5. �

4.3. Synchrony for FFNNs with feedback structure. We con-
tinue with the assumptions and notation of the previous section and
emphasize that N is always assumed feedforward connected.

Definition 4.12. Let P = {Pa}a∈s be a synchrony class for N ⋆ and
suppose d ∈ [1, ℓ−1] is a factor of ℓ and P 6= {k}—the fully synchronous
partition.

(1) P is layer d-periodic (or layer periodic, period d) if, for all a ∈ s,
and t, u ∈ ℓ.

Pa ∩ Lt 6= ∅ =⇒ Pa ∩ Lu 6= ∅, t ≡ u, mod d.

(d is assumed minimal for this property.)
(2) If P is layer 1-periodic, P is layer complete.

Remark 4.13. If P is layer periodic, then each node in Lt will be syn-
chronized with nodes in other layers. If P is layer complete, then each
node in Lt will be synchronized with nodes in every other layer. In
particular, since a layer complete partition is not the fully synchronous
partition, each layer of N contains at least two nodes.

Examples 4.14. (1) In Figure 5 we show two examples of layer peri-
odic synchrony classes for feedforward connected FFNNs with feedback
structure. Connections are labelled with weights and weights are arbi-
trary real numbers with the proviso that weights with the same symbol
must have the same value.
In Figure 5(b), if we move the outputs from the top node in L4

labelled A to the other node labelled A in L4, P is still layer com-
plete. However, the feedback structure is no longer of type B. As in
Lemma 4.9, we can remove the node without outputs and the two nodes
labelled B in the first row, together with associated 6 connections, to
arrive at a 9-node network. The resulting feedback structure is of type
C and the network is layer complete.
(2) Figure 6(a) gives an example of layer complete synchrony P such
that there are no adjacent synchronous nodes: if the weight sums a+e,
b + d and c + f are distinct, then nodes labelled A,B,C are pairwise
asynchronous and so there are no edges between synchronous nodes.
Figure 6(b) gives an example of layer 2-periodic synchrony such that
no transversal consists of synchronous nodes.
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Figure 5. Both networks shown are feedforward con-
nected FFNNs with feedback structure of type C.
Weights are denoted α, β, . . . ∈ R and nodes with same
letter are synchronized. (a) Layer 2-periodic network
synchrony class. (b) Layer complete network synchrony
class.

Theorem 4.15. (Notation and assumptions as above.) Suppose N
has feedback structure F of type B. If P is a synchrony class for N ⋆

such that there exists P ∈ P containing nodes from different layers,
then

(1) If P contains nodes i, j from adjacent layers, P is layer complete
or the fully synchronous partition. If, in addition, P contains
an edge i→j, then P contains a transversal.

(2) If P only contains nodes from non-adjacent layers, then P is
layer d-periodic, d > 1.

(3) F is of type A.

Conversely, if P is a synchrony class then either (a) P is layer periodic,
or (b) only nodes in the same layer can synchronize, or (c) all nodes
are synchronous, or (d) all nodes are asynchronous. In cases (a,c), F
must be of type A; in cases (b,d) F may or may not be of type A.

The proof of Theorem 4.15 depends on a number of subsidiary results
of interest in their own right.

Lemma 4.16. Let N have feedback structure F and P be a synchrony
class for N ⋆. If there exists P ∈ P which contains nodes i, j, with
i→j, then there exists a transversal consisting entirely of nodes in P .
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Figure 6. Feedforward connected FFNNs with feed-
back structure of type C. Synchronous nodes are la-
belled with same letter and connections with the same
weight have the same arrowhead. (a) Layer complete
synchrony containing no transversal with adjacent syn-
chronous nodes. (b) Layer 2-periodic synchrony with all
transversals consisting of asynchronous nodes.

We may require that the transversal ends at a node in Lℓ connected to
a node in L1. (The transversal may, or may not, contain i, j.)

Proof. Suppose i ∈ Lt, j ∈ Lt+1. Since i→j and i, j are synchronous,
i must receive an input from a node i′ ∈ Lt−1 ∩ P (if t = 1, i′ ∈ Lℓ).
Proceeding by backwards iteration, we obtain a path

i1→i2→ . . .→iℓ→ . . .→i→j

in P with i1 ∈ L1 and iℓ ∈ Lℓ. The required transversal path is
i1→i2→ . . .→iℓ. �

Remark 4.17. We often use the “backward iteration” technique of the
proof of Lemma 4.16. This method may fail if there are nodes with
self-loops but no other inputs. In particular, no edge in a path should
be a self-loop. This will be important later when we consider AFFNNs
with feedback structures.

Next a useful definition and result.

Definition 4.18. Let N have feedback structure F and P = {Pa}a∈s
be a synchrony class. Let γ be a path i0→i1→ . . .→iL of length L in
N ⋆ and suppose that iu ∈ Pau , u = 0, . . . , L. A synchrony translate of
γ is a path j0→j1→ . . .→jL such that ju ∈ Pau , u = 0, . . . , L.
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Lemma 4.19. Let N have feedback structure F and P = {Pa}a∈s be a
synchrony class. Let γ be a path i0→i1→ . . .→iL in N ⋆ with ip ∈ Pap,
0 ≤ p ≤ L.

(1) If jL ∈ PaL, there is a synchrony translate j0→j1→ . . .→jL with
jp ∈ Pap, 0 ≤ p ≤ L.

(2) If a0 = aL, there is a synchrony translate j0→j1→ . . .→jL of γ
with jL = i0. Necessarily, j0 ∈ Pa0.

Proof. (1) follows using the standard synchrony based backward itera-
tion argument. Statement (2) is a special case of (1). �

Proposition 4.20. Let N have feedback structure F of type B and
P = {Pa}a∈s be a synchrony class for N ⋆ with s > 1. Suppose there
exist a ∈ s and nodes i, j ∈ Pa lying in adjacent layers. Then:

(1) If i→j then Pa contains a transversal.
(2) F is of type A.
(3) P is layer complete or the fully synchronous partition.

Proof. (1) By Lemma 4.16, Pa contains a transversal γ.
(2) F is of type B and feedforward connected. Suppose that i ∈ Lp,
j ∈ Lp+1, where i, j ∈ Pa. Take a transversal containing i and let
i′ ∈ Ll ∩ Pb denote the end node of the transversal. Take a synchrony
translate of this transversal through node j and note that there is a
node in j′ ∈ Pb ∩ L1 belonging to this translate. Suppose there is
one node k ∈ L1 not receiving at least one connection from a node
of Ll. Take a transversal from k to i′. The synchrony class of node
k should be different from any synchrony class of the other nodes in
that transversal. Indeed, since k has no inputs, the synchrony class
of k can only occur in the first layer. Take a synchrony translate of
this transversal leading to j′. Then there is a node in L2 in the same
synchrony class as k, a contradiction. Thus F is of type A.
(3) Since F is of type C, it follows from Lemma 4.11 that there is a
path from i to j. A synchrony translate of this path, starting at node
j, ends at a node in Pa ∩ Lp+2. Iterating this argument, we conclude
that there is at least one node from each layer in Pa. If we take any
node q ∈ Pd, with d 6= a, then we have paths from q to any of the nodes
in Pa in each of the layers. Taking synchrony translates of these paths,
we conclude that Pd contains nodes from every layer and so P is layer
complete or the fully synchronous partition. �

Lemma 4.21. Let N have feedback structure F which is not of type
A. If P = {Pa}a∈s is a synchrony class, then each Pa ∈ P is contained
in a unique layer Li(a) of L.



FEEDFORWARD NETWORKS 27

Proof. Suppose the contrary. Then, for some a ∈ s, there exist i0, j0 ∈
Pa with i0 ∈ Lt, j0 ∈ Lu, where t < u. Note that if t = 1 there is a
connection from Lℓ to i0—since i0, j0 are synchronous and u > 1. Since
N is feedforward connected, there is a path τ : ip→it−1→ . . .→i0, of
length either t−1 or ℓ+t−1, where ip ∈ L1 has no connections from Lℓ.
By Lemma 4.19(1), there is a synchrony translate jp→jp−1→ . . .→j0
of τ . But jp /∈ L1 and so has inputs. Contradiction since ip receives no
inputs and so cannot be synchronous with jp. �

Before proving the final result needed for the proof of Theorem 4.15,
we need a definition.

Definition 4.22. Let P = {Pa}a∈s be a synchrony class for N ⋆ and
a ∈ s. If Pa only contains nodes in one layer, set δ(a) = 0, else define

δ(a) = min{|i− j| | i, j ∈ Pa, where i, j lie in different layers}.

We refer to δ(a) as the synchronization distance for Pa.

Proposition 4.23. Let N have feedback structure F of type B. If P =
{Pa}a∈s is a synchrony class for N ⋆ and for some a ∈ s, δ(a) = d > 0,
then

(1) F is of type A.
(2) d|ℓ.
(3) P is layer d-periodic and δ : s→N is constant, equal to d.

In particular, if d = 1, P is either layer complete or the fully synchro-
nous partition.

Proof. Property (1) holds by Lemma 4.21. Hence, by Lemma 4.11,
given any two nodes in N ⋆ there is a path connecting them. Suppose
m1, n1 ∈ Pa, where m1 ∈ Lu, n1 ∈ Lu+d, and u ≥ 1 is minimal for
this property. By Lemma 4.11, we may choose a path γ1 of shortest
length joining m1 to n1. If the length of γ1 is L, then L = pℓ + d,
where 0 ≤ p ≤ 2. By Lemma 4.19(2), we may choose a sequence γj of
synchrony translates of γ1 such that γj will connect mj to nj, where
nj = mj−1, j > 1. If d 6 | ℓ, then for some j > 1 either mj ∈ Lv, for
v < u, or u < v < u+d. In the first case, we contradict the minimality
of u; in the second case we contradict the definition of synchronization
distance. Hence d|ℓ, proving (2).
For (3), suppose that a ∈ s is chosen so that δ(a) is minimal. Suppose

b ∈ s, b 6= a, and choose the minimal v ≥ 1 such that Lv∩Pb 6= ∅. Pick
x ∈ Lv ∩ Pb and path from x to m1 ∈ Lu. Then choose a synchrony
translate of the path to connect some y ∈ Lv+d∩Pb to n1 ∈ Pa. Just as
above, we show that Lv+jd ∩ Pb 6= ∅ for all j ≥ 0. If there were nodes
in other layers, this would contradict the minimality of δ(a). �



28 MANUELA AGUIAR, ANA DIAS, AND MICHAEL FIELD

Remark 4.24. Let N ⋆ be of type B. If there is a synchrony class P
for which there exists Pa ∈ P with δ(a) ≥ 2, then it follows from
Proposition 4.23 that ℓ ≥ 4 and is not prime.

Proof of Theorem 4.15. (1) follows from Propositions 4.23(3),
Proposition 4.20, and Lemma 4.16. (2) follows from Proposition 4.23(3),
(3) follows from Proposition 4.23(1). The converse statements follow
from Lemma 4.21, Proposition 4.23 and Examples 4.14. �

4.4. Synchrony for AFFNNs with feedback structure. Through-
out this section N will be an AFFNN with layer structure L = {Li}i∈s
and F will be a feedback structure on N . Let N ⋆ denote the associated
network. We always assume

(1) N is feedforward connected.
(2) N ⋆ is of type B.

Regarding (2), note that by Lemma 4.9 there is a maximal feedfor-
ward connected subnetwork Nc of N on which F defines a connection
structure of type B. Noting Remark 4.10, it is no loss of generality to
assume N ⋆ is of type B.
Type A has the meaning previously given—every node in layer 1

receives a feedback loop.
We define F (or N ⋆) to be of type D if (a) there is a node in layer

1 which does not receive a feedback loop, and (b) every node in layer
1 which does not receive a feedback loop has a self-loop. If (a) is true
but (b) fails, F is of type D⋆. With these conventions, an AFFNN
with feedback structure will be precisely one of types A, D or D⋆. We
emphasize that there will always be at least one feedback loop and one
self loop but that for type D⋆ networks there may be nodes with neither
a feedback loop nor a self-loop.
Let F be a feedback structure of type D or D⋆. For t ∈ ℓ, define

subsets Dt of Lt recursively by:

(1) D1 is the subset of L1 consisting of nodes which receive no
feedback loop.

(2) Dt is the subset of Lt consisting of nodes which only receive
connections from nodes in Dt−1, t ≥ 2.

Let ND be the subnetwork of N with node set ND = ∪t≥1Dt and all
connections i→j ∈ N , where i, j ∈ ND.

Lemma 4.25. (Notation and assumptions as above.)

(1) There exists p < ℓ such that Dj = ∅, j > p.
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(2) For t > 1, every node in Dt receives a connection from a node
in Dt−1. Moreover, no node in ND receives a connection from
a node not in ND.

(3) Feedforward connected components of ND are either of type D or
type D⋆. If ND is of type D, then all the feedforward components
will be of type D.

Proof. Immediate by feedforward connectedness and the definition of
ND. �

Example 4.26. In Figure 7 we show subsets A,B,C of ND ⊂ N ⋆.
Observe that no node in A ∪ B ∪ C receives an input from a node
outside of A ∪ B ∪ C (or ND). For this example, the groups A,B

+

+ +

+

++ +

Nodes are synchronous if and only
if they have the same symbol.

Arrows have the same arrowhead if
and only if source nodes are synchronous.

All inputs to nodes are shown. Outputs
are only shown if the output is to a node
in groups A, B or C.

Key

A B C

Figure 7. Subsets of ND and synchrony across layers.

and C are feedforward connected if we drop inputs from the outside
the group. Of course, A ∪ B ∪ C is not feedforward connected as, for
example, there are no connections from A to B ∪ C. Observe that it
is possible for nodes in different layers to be synchronous. As we shall
see, this is essentially the only way a proper subset of nodes in different
layers of a network of type D or D⋆ can be synchronous. In particular,
if no nodes in ND are synchronous, there can be no nodes in different
layers of N ⋆ that are synchronous. We refer to [1] for general results
on synchrony for feedforward connected AFFNN networks.

We define a second subnetwork of N ⋆ which is the maximal subnet-
work of type A. Let F1 ⊂ L1 be the set of all nodes in L1 that receive
a feedback loop. We define the subnetwork NA to consist of all nodes
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and edges that belong to transversals from nodes in F1. The feed-
back structure F induces a feedback structure on NA with associated
network N ⋆

A. Denote the node set of N ⋆
A by NA.

Lemma 4.27. (Notation and assumptions as above.)

(1) NA contains all the nodes in Lℓ.
(2) N ⋆

A is of type A.
(3) The node sets of ND and N ⋆

A (or NA) are disjoint and compli-
mentary.

(4) If P is a synchrony class for N ⋆, then PD = P ∩ND will be a
synchrony class for ND. Conversely, every synchrony class of
ND extends to a synchrony class of N ⋆.

Proof. For (3), observe that ND receives no inputs from N ⋆
A. All the

remaining statements are routine and we omit proofs. �

Remark 4.28. If N is not of type A, then it is possible that no node in
layer 1 of NA has a self-loop. In this case, possible synchrony for NA

is constrained by Theorem 4.15. Moreover, for this case, we shall show
that nodes in N , which lie in NA, can only be synchronous if they lie
in the same layer. In particular, N cannot be layer periodic or fully
synchronous.

Theorem 4.29. (Assumptions and notation as above.) Let F be a
feedback structure on the AFFNN N . If P = {Pa}a∈s is a synchrony
class for N ⋆ then one (at least) of the following possibilities hold.

(1) P is layer complete and F is of type A.
(2) All nodes are synchronous and F is not of type D⋆.
(3) All nodes are asynchronous and F is of type A, D or D⋆.
(4) There exists P ∈ P such that P is contained in a layer and is

not a singleton. F can be of type A, D or D⋆.
(5) If P 6= {k}, F is of type D or D⋆, and there exist synchronous

nodes i, j in different layers,
(a) i, j ∈ ND and are synchronous in PD = P ∩ND.
(b) If F is not of type D⋆, the partition PD may be the fully

synchronous partition of ND.
(c) No node in ND can be synchronous with a node in N ⋆

A and
there are no synchronous nodes in different layers of N ⋆

A.

Remarks 4.30. (1) One only of (1–3) of Theorem 4.29 can occur and
then (4,5) do not occur. On the other hand, (4) and (5) may both
occur multiple times for the same synchrony class. Note that if N ⋆ is
of type A, then ND = ∅.
(2) If no node in layer 1 of NA has a self loop, it is easy to find examples
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where every layer of N ⋆ contains at least two synchronous nodes.
(3) Synchrony for feedforward connected AFFNNs is classified in [1,
§4] and these results can be used to enumerate synchrony classes for a
specific network ND.

The following results are corollaries of Theorem 4.29.

Corollary 4.31. Let F be a feedback structure on the AFFNN N such
that at least one node in the first layer does not receive a feedback loop.
Given a synchrony class for N ⋆, we have precisely one of the following
possibilities:

(a) All nodes are synchronous.
(b) Only nodes in the same layer can be synchronous.
(c) All nodes are asynchronous.
(d) There is a transversal γ with proper initial segment γi ⊂ ND

consisting of synchronous nodes with the remaining nodes of γ
being asynchronous. Any synchronous nodes lying in different
layers of N lie in ND.

Corollary 4.32. Let F be a feedback structure on the AFFNN N of
type A. Consider a synchrony class for N ⋆. We have precisely one of
the following possibilities:

(a) The synchrony class is layer complete. In particular, all nodes
can be synchronous.

(b) Only nodes in the same layer can synchronize.
(c) All nodes are asynchronous.

Examples 4.33. In Figure 8 we show two examples of AFFNNs with
feedback. Network (a) is of type D, network (b) is of type A.
(a) If a+c = b+d, e+g = f+h, s = t, m = n, u = v and p = q, then the
node pairs A1, B1, A2, B2, A3, B3 and C1, C2 may all be synchronous
and ND has nodes C1, C2, connection C1→C2 and self-loop on C1. If
the local valencies are all equal, then all nodes may be synchronous.
Otherwise, the only synchrony across layers is that between C1 and
C2. For an open and dense set of weights, all nodes are asynchronous.
If we remove the self-loop from C1, then the network is of type D⋆.
In this case, we still can have the node pairs A1, B1, A2, B2, A3, B3

synchronous but C1, C2 cannot be synchronous and all nodes cannot
be synchronous. This example illustrates parts (3–5) of Theorem 4.29.
(b) If a = w = w⋆, b = v = v⋆, c = x = x⋆, d = u = u⋆, then
{{A1, B2, A3}, {B1, A2, B3}} is a layer complete synchrony partition.
If the valencies are constant on layers but differ between layers, then
{{Ai, Bi} | i ∈ 3} will be a synchrony class and nodes can be only
synchronous if they are in the same layer. If x⋆ = v⋆, u⋆ = w⋆, u 6= w,
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Figure 8. Both networks shown are feedforward con-
nected AFFNNs with feedback structure. The network
shown in (a) is of type D, or D⋆ if we remove the self-loop
from C1. The network in (b) is of type A. For appropri-
ate choice of weights, all types of synchrony given by
Theorem 4.29 can be exhibited using these networks.

a 6= d, then nodes in layer 3 can be synchronous with all other nodes
asynchronous. For an open and dense set of weights, all nodes will
be asynchronous. This example illustrates (1–4) of Theorem 4.29 for
networks of type A.

The proof of Theorem 4.29 depends on some preliminary results.
The definition of synchrony translate continues to hold for AFFNNs

with a feedback structure and it is easy to see that Lemma 4.11 remains
valid for AFFNNs with feedback structure of type A. Lemma 4.19 holds
for AFFNNs with feedback structure of type A if, for example, adjacent
nodes on the path are not synchronous.

Proposition 4.34. Let F be a feedback structure of type A on the
AFFNN N . Suppose P is a synchrony class for N ⋆. If there exist syn-
chronous nodes lying in different layers then P is either layer complete
or the fully synchronous partition. In either case there is a transversal
consisting of synchronous nodes.

Proof. Suppose first that there is no pair of adjacent synchronous nodes
but there exists at least one pair of synchronous nodes lying in different
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layers. Lemma 4.19(1) applies and we may follow the proof of Propo-
sition 4.23 to obtain an integer d ∈ [1, ℓ − 1], d|ℓ, such that P is layer
d-periodic. Let i ∈ L1 have a self-loop (at least one such node exists
since N is an AFFNN). It follows by d-periodicity that there is a node
j ∈ Ld+1 which is synchronous to i. Since i ∈ L1 has a self-loop, there
must be a node i′ ∈ Ld which is synchronous with j and adjacent to j.
Contradiction.
It follows that if there exists a pair of synchronous nodes lying in

different layers, then there must exist a pair i, j of adjacent synchronous
nodes lying in adjacent layers. Suppose that i→j and i ∈ Lt, j ∈ Lt+1,
where t ∈ [1, ℓ] (t+ 1 is computed mod ℓ). By backward iteration, we
obtain a path of adjacent synchronous nodes i1→ . . .→it = i→it+1 = j
and so a synchronous transversal if t ∈ {ℓ − 1, ℓ}. Suppose we cannot
find adjacent i, j with t ∈ {ℓ−1, ℓ}. Let T ∈ [2, ℓ−2] be the maximum
value of t for which there exists an adjacent pair of i, j of synchronous
nodes with i ∈ Lt, j ∈ Lt+1. By Lemma 4.11, we may choose a
path τ : j→ . . .→i of length L = ℓ − 1, mod ℓ. By our maximality
assumption, τ will contain no pairs a, b of adjacent synchronous nodes
with a ∈ Ls, b ∈ Ls+1, s ∈ [T+1, ℓ]. It follows that Lemma 4.19 applies
to give a synchrony translate j′1→ . . .→j′L = j of τ . Hence there exists
j′ = j′1 ∈ LT+2 which is synchronous to j. Therefore, by synchrony,
there exists i′ ∈ LT+1 which is synchronous to j′ and adjacent to j′,
contradicting the maximality of T .
Our arguments show that if there exist synchronous nodes lying in

different layers there is a transversal consisting of synchronous nodes.
Now apply the argument of Proposition 4.20 to deduce that P is either
layer complete or the fully synchronous partition. �

Lemma 4.35. Let F be a feedback structure on the AFFNN N of type
D or D⋆ and P be a synchrony class for N ⋆.

(1) If N ⋆ is of type D and there is a node in N ⋆
A synchronous with

a node in ND, then all nodes are synchronous: P = {k}.
(2) If N ⋆ is of type D⋆, it is not possible for a node in N ⋆

A to be
synchronous with a node in ND.

Proof. Suppose i ∈ N ⋆
A and j ∈ ND are synchronous. Choose a closed

path γ : i = i0→i1→ . . .→iL = i which necessarily is contained in
N ⋆

A since the nodes in layer 1 of ND can only have a self-loop but
no feedback loop. Since j is synchronous with i, we can lift the final
segment of γ to a path τ = jp→ . . .→j0 = s where jr ∈ ND and is
synchronous with iL−r, 0 ≤ r ≤ p, and jp ∈ L1. Either jp has no self-
loop—contradicting the synchrony of jp and iL−p or jp has a self loop.
In the latter case all the nodes i0, . . . , iL−p all receive inputs but only
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from nodes synchronous to i. Hence γ consists of nodes synchronous
to i. Since γ contains a transversal of synchronous nodes, it follows
easily by feedforward connectedness that P = {k}. In particular, N ⋆

is of type D since a network of type D⋆ has a node with no input. �

Lemma 4.36. Let F be a feedback structure on the AFFNN N of type
D or D⋆ and P be a synchrony class for N ⋆. If there is a pair of
synchronous nodes in N ⋆

A lying in different layers, then P = {k} and
F is of type D.

Proof. From Proposition 4.34 we have that the synchrony class for
N ⋆

A is either layer complete or the fully synchronous partition. From
Lemma 4.25(1) we have that the number of layers of ND (or N ⋆

D) is less
than ℓ. It follows that there are at least two synchronous nodes i, j in
N ⋆

A such that one receives an input from a node d in ND (or N ⋆
D) and

the other does not receive any input from ND (or N ⋆
D). Thus d must

be synchronous with i, j. The result follows by Lemma 4.35. �

Proof of Theorem 4.29. Statement (1) follows from Proposition 4.34.
Statement (2) is obvious since a network of type D⋆ always contains
a pair of asynchronous nodes. Statement (3) is clear since given the
adjacency matrix, it is possible (and easy) to choose weights so that
all nodes are asynchronous. Statement (5) follows from Lemmas 4.35,
4.36 and this leaves (4) as the only other possibility. �

4.5. {2, . . . , ℓ − 1}-feedback structures on (A)FFNNs. We give
two results on {2, . . . , ℓ− 1}-feedback structures. The straightforward
proofs use ideas from [1, Theorem 3.4 & Lemmas 4.7, 4.8] and are
omitted.

Proposition 4.37. If N is an FFNN with a {2, . . . , ℓ − 1}-feedback
structure with synchrony partition {Pa}a∈s, then each Pa is contained
in a single layer: nodes in different layers are not synchronous.

Proposition 4.38. Let N be an AFFNN with a {2, . . . , ℓ−1}-feedback
structure with synchrony partition {Pa}a∈s. Along any transversal,
there are the following possibilities:

(1) All nodes are synchronous.
(2) An initial segment of the transversal is synchronous, the re-

maining nodes are asynchronous.
(3) All nodes are asynchronous.

5. Concluding remarks

Definitions for weight dynamics and examples of adaptation rules
respecting synchrony were given in Section 3. All of this applies to
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feedforward networks with feedback. However, our interest lies rather
in allowing the weights on a feedforward network to evolve to their final
stable state—if that exists—and then investigating how the addition of
fixed feedback loops can affect dynamics and structure of the resulting
network. In particular, quantifying bifurcations that can occur when
feedback is added, and understanding the extent to which a judicious
choice of feedback can optimize the function of the network [4, 5, 6]
(this is the subject of [2]). Already, in Section 4, we have seen how the
addition of feedback can enrich the possible synchrony that occur in the
network. In terms of unsupervised learning, this suggests enhancement
of the potential for unsupervised learning even in a context where we
do not add inhibition to layers of the network.
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