Functional Asynchronous Networks:
Factorization of Dynamics and Function

Christian Bick-2 and Michael Fiel&P

1 Department of Mathematics, University of Exeter, ExetedEOQF, UK
2 Department of Mathematics, Imperial College, SW7 2AZ, UK

Abstract. In this note we describe the theory of functional asynchronous nesveardt one of the main results,
the Modularization of Dynamics Theorem, which for a large class oftfanal asynchronous networks gives
a factorization of dynamics in terms of constituent subnetworks. Foetheswvorks we can give a complete
description of the network function in terms of the function of the eventspeiming the network and thereby
answer a question originally raised by Alon in the context of biological né¢svo

1 Introduction may be no intrinsic global time. Significantly, many of

) ) . ) ) these networks have a function: transportation networks
Kastan & Alon [9] identify and describe the configurations ping people and goods from one point to another, neu-

of relatively simple and small subnetworks that occur more 5| networks may perform pattern recognition or compu-
frequently in biological networks than would be the case if {ation. etc. Our goal is to address Alon’s comment in the
the network were random. They refer to these subnetworkscontext of functional asynchronous networks. Specifically
asnetwork motifsLater, in his 2007 book on systems bi- e describe a factorization of dynamics theorem where it

ology [1], Alon makes the following comment is possible to describe the function of a large class of func-
“Ideally, we would like to understand the dynamics tional asynchronous networks in terms of the function of
of the entire network based on the dynamics of the  constituent subnetworks. As this article is only intendgd t
individual building blocks."(Alon [1, page 27].) be an introduction, we work always with the simplest ex-

The underlying premise behind this comment is that a amples and models and omit technical details. We refer the

modular, or engineering, approach to network dynamics is reader to [3,4] for greater detail, generality and proofs.
feasible. Identify building blocks, connect together tmfio

networks and then describe dynamical properties of the .

resulting network in terms of the dynamics of its compo- 2 Examples and properties of

nents. This approach works well in linear systems theory, asynchronous networks

where a superposition principle holds, or in, for example, . . o

the study of synchronization in weakly coupled systems We briefly describe some characteristic examples_ of asyn-
of nonlinear approximately identical oscillators wheré-ne ~ chronous networks (we refer to [$3] for more detail).

work dynamics can be closely related to the dynamics of
individual nodes (oscillators).

However, from the perspective of a mathematician or
physicist, Alon’s comment seems unhelpful for the study |n threaded or parallel computation, computation is bro-
of dynamics of heterogenous networks modelled by sys-ken into blocks or ‘threads’ which are then compuied
tems of nonlinear ODEs. This is a well-known issue in dependenﬂpf each other at a speed that depends on the
complex systems [10]. Yet engineers do couple gadgets toclock rates of the individual processors. As the computa-
gether to make more complex systems and so it is naturakion proceeds, threads may need to exchange information
to ask if it is possible to reconcile these viewpoints. with other threads. This process involves stopping and syn-

In this note, we outline some of the basic ideas involved chronizing (updating) the thread states. Each thread may
in an approach to network dynamics based on what we callhave to stop and wait for other threads to complete their
asynchronous network¥gVe allow for features seen in net-  computations before it can continue with its own computa-
works from technology, engineering, and biology (for ex- tion. Each thread has its own clock (determined by its as-
ample, neuroscience or gene transcription networks). Net-sociated processor). If threads run on separate processors
work dynamics can involve a mix of distributed and decen- threads will be unaware of the clock times of other threads
tralized control, adaptivity, event driven dynamics, it except during the stopping and synchronization events.
ing, varying network topology and hybrid dynamics. Typi-
cally network dynamics will be piecewise smooth, time-
irreversible, nodes may stop and later restart, and there2.2 Production and transport networks

@ e-mail:c.bick@exeter.ac.uk We give a simple detailed example of a transport network
b e-mail:mikefield@gmail.com in section 4. In production networks, parts, compounds,

2.1 Threaded & parallel computation
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etc. are repeatedly built and combined as part of a produc-M = [];x Mi — the network phase space. A vector field
tion process leading to the desired item (for example, a carf on M is anetwork vector field

or protein). In particular, there is variation in both coone Stopping, waiting, and synchronization are a feature of
tion structure, typically intermittent, and in the set ofles asynchronous networks. If nodes are stopped or partially
(nodes may be combined or decomposed). stopped, node dynamics will be constrained to subsets of

node phase space. We codify this situation by introducing
aconstraining node pthat, when connected tg, implies
2.3 Power grid models that dynamics om; is constrained. Se¥ = {N, ..., Ng}.

A power grid consists of a network of various types of
generators and loads connected by transmission lines. A3.1 Connection structures; admissible vector fields
microgrid is a local network, capable of existing indepen-
dently of the main power grid, and typically powered by re-
newable energy sources (for example, solar or wind power)
Critical questions involve the stability of the power gnid i
case of loss of a transmission line or generator (variation i
network structure), and control and stability issues eelat
to combining and separation (islanding) of a large set o
microgrids from the main power grid.

Interactions between distinct nodes in the network aregive
by the network graph. Connectiohs—N; encodedepen-
denciesdf i, j € k, andconstraintsif j = 0,i € k.
A connection structurer is a directed network graph
on the nodegV such that for ali € k, j € k*, i # j, there
f is at most one directed connectibip—N;. We do not allow
self-loops or connections to the constraining ndige
An a-admissiblevector fieldf* is a network vector
field with dependencies given lay If Nj—N; ¢ a,i # |,
2.4 Thresholds, spiking models and adaptation Egeggil) does not depend oxj € M; (and conversely, see
Many mathematical models from engineering and biology
incorporate thresholds. For networks, when a node attains
a threshold, there are often changes (addition, deletion,
weights) in connections to another nodes. For networks of N, N,
neurons, reaching a threshold can result in a neuron fir- ——=
ing (spiking) and short term connections to other neurons
(for transmission of the spike). For learning mechanisms, No
such as Spike-Timing Dependent Plasticity (STDP) [7] rel-
ative timings (the order of firing) are crucial [8,5,11] and
so each neuron, or connection between a pair of neurons, Ny N,
comes with a ‘local clock’ that governs the adaptation in
STDP. In general, networks with thresholds, spiking and
adaptation provide characteristic examples of asynclusno Fig. 1. Construction structure ofNo, Ny, Na, Na, Na).
networks where dynamics is piecewise smooth and hybrid
— a mix of continuous and discrete dynamics.
Referring to figure 1, suppoge = (f7,..., f7) isa-
admissible. FoX = (Xg, X2, X3, X4) € M, we have

f'(X) = fi(xa), f5(X) = fa(x2; X1)

We summarize some of the characteristic features of asyn- f$(X) = fa(Xa; X1, X2), f5(X) =0,
chronous networks as revealed in the examples above.

2.5 Properties of asynchronous networks

where here we have assumed that the constidjrtN,
1. Variable network structure and dependencies betweerresults inN4 being stopped.
nodes. Changes depend on the state of the system or A generalized connection structus is a (honempty)

are given by a stochastic process. set of connection structures ov.
2. Synchronization events associated with stopping orwait ~ An A-structuref is a setf = {f* | a € A} of network
ing states of nodes. vector fields such that eaéti € ¥ is e-admissible.

3. Order of events may depend on the initialization of the
system or stochastidlects.

4. Dynamics is only piecewise smooth and there may be 3-2 The event map and asynchronous networks
a mix of continuous and discrete dynamics.

5. Aspects involving function, adaptation and control.

6. Evolution only defined for forward time — systems are
not time reversible.

Suppose thafA is a generalized connection structure and
¥ is anA-structure.

Interactions between nodes in asynchronous networks
may be state dependent or change over time (stochasti-
cally). Here we only consider state dependence.

i We handle interactions and constraints usingeeent
3 Asynchronous networks: formalism map& : M—A.

The quadrupl&t = (N, A, F, &) defines amsynchronous
network Dynamics ot is given by the state dependent
network vector fieldF defined by

We use the notational conventions that {1,...,k} and
k* =k U {0}, ke N. LetR, = {xe R | x> 0}.

Assume given a network witknodesNsy, . . ., Nx. Sup-
pose thatN, has associated phase spade i € k. Set F(X) = f¥99(X), X e M. (3.1)
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Remark 1We refer to [3,§4.7] for the definition of an in-

It remains to define the admissible vector fields and

tegral curve for (3.1) and note that the definition we use is event map that give the required dynamics for this exam-

different from that used in Filippov systems [6,2]. Under
simple conditions on the event map 4.7, 4.8], it can
be shown that iM is compact then for eack € M there is

a unique piecewise smooth integral cugg : [0, c0)—>M
with initial condition X and corresponding semiflo@ :

M x R,—M. In general,®@ will not be continuous as a
function ofX € M.

4 A simple transport example

Passing loop with stations

Sy T, L T, S,
- < >

Fig. 2. A single track railway line with a passing loop.

We consider a single track railway line joining stations
markedS;, S; in figure 2. Suppose there is a passing loop
at L. Trains, marked'; andT, in figure 2, start from sta-

tionsS; andS; respectively and proceed towards the oppo-
site station. There is no central control or communication
between the train drivers except when both trains are in the
passing loop. We further assume that both drivers are run-
ning a nonlinear oscillator. When a train enters the passing
loop it stops. When both trains are in the passing loop, the

drivers cross couple their nonlinear oscillators. In orfder

a train to leave the passing loop, two conditions must be

satisfied.
1. Both trains must be in the passing loop.

2. The two nonlinear oscillators must be phase synchro-

nized to withine where O< ¢ < 7.

We model this setup using an asynchronous network with

ple. As admissible vector fields (on-@, b] x T)?) we take

0 = ((V1.9). (V2.9)).

£ = ((0, 9). (V2, 9)), (T1 stopped T, running)

2 = ((V1.9), (0, 9)). (T2 stopped T, running)

2 = ((0,G1), (0,Gy)), (T1, T, stopped & cross coupled)

We define the event map by

8()(,0) =ay, X3=0,% >0
=ay, X1 <0,% =0
=B, X1=%X=0,101-02 > ¢
= 0, otherwise

Finally, dynamics are given by the network vector field

F(X, 6) = f6%9(X, 6). (4.2)

We leave it as an easy exercise for the reader to check that
if T; is initialized at §&(0),6,(0)) € [-a,b] x T, i € 2,
wherex;(0) < 0 < x2(0), then (4.2) has a well defined
integral curvep : R, —([—a, b] x T)?, with specified initial
condition, that gives the correct dynamics for the passing
loop problem.

Remark 2The passing loop gives an example of a simple
functionalasynchronous network. The function is for the
trains to go from one station to the opposite station in finite
time. Observe that for this example there is the possibility
of adynamical deadlockf the trains start at the same time
and if 8:(0) = 6,(0) + x, then the coupled phase oscilla-
tors will never phase synchronizef{t) = 6,(t) + = for

all t € R, — and so the trains will never exit the passing
loop. We refer to [4§§2,3] for more details on deadlocks
in functional asynchronous networks.

two nodes — corresponding to the two trains. The phase5 Functional asynchronous networks

space for trainl; will be M; = [-a,b] x T, i € 2 (T =
R/277), where the intervalHa, b] models the line joining
S; to Sy, S; has coordinate-a < 0, S, has coordinate
b > 0, The passing loop will be at x = 0, andT will be
the phase space for the nonlinear oscillator.

Assume train motion given by, V, whereV;(x) >
0 > V,(X) x € [-a,b]. Note that neitheN; or V, can be
zero anywhere on-{a, b] otherwise the trains will never
both reach their destination stations in finite time.

We define four connection structures.

aj = Ng—N;, i € 2 (T; stopped)
B =Nog—N; & N « Np(stopped & cross coupled)
(0 = Empty connection structure
Let A = {a1,a2,B,0} be the associated generalized con-
nection structure.
Model the uncoupled oscillator dynamics for trdin
by 6; = w, wherew > 0, and the coupled dynamics by the
Kuramoto phase oscillator system
61 = w + sin@, — 67)
0> = w + sin@E, — 6,)

We follow the notational conventions of section 3 and let
N = (N, A, F,E) denote an asynchronous network. We
assume that has associated semiflow

D= (Dyg,..., D) : M xR, »M.
Suppose that we are givenitialization andtermination
setsl, F ¢ M where

1=][n F=[]F,
iek iek

Typically, T;, F; ¢ M; will be closed disjoint hypersurfaces
that separatd/; into three connected componenitss k.
Thatis,M; = M U M2 U M;" whereM;” n M;" = 0 and

M A M2 =aM” =T;, M2n M =M =TF;.
We callN = (1,1, F) afunctional asynchronous network

The network function is getting from to F and is ex-
pressed by the transition and timing functions

Go:DcCI-F, S:DclI-RK.
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That is, ifX € D, then for alli € k there existsS; € R¥
such that

Di(X,S) e Fi, &(X,1) ¢F,t<S,
S(X) = (St ., Sk),

Example 1For the passing loop example discussed in the
previous section, we take = M; = MJ =T, = {-a} x T,
F; = MJ = MJ = I, = {b} x T. In this case, there is the
implicit assumption that trains stop when they reach their
termination set. Equally well, we could také = R x T
so thatM] = (—o0,a] x T etc. (see also [4§3]). Finally,
observe thaD = {((—a, 61), (b, 62)) | 161 — 62| # 7).

More generally, we allow for general initialization times
and define generalized transition and timing functions

G:DCcIxRYSF, S:DclIxRKSRE.
We refer to [4,§3.4] for details. For our main result, it is

raction

Node inte

Fig. 4. Dynamicalfunctional module

5.3 Operations on functional asynchronous
networks

If N& = (:3,1%,F?), a € q, are functional asynchronous
networks with distinct node setsV@é N A c {Ng}, a #

required that the network has a generalized transition and® € ), define theproduct [T.q N* to be the functional

timing functions withD = I x RX.

5.1 Functional networks built from events

In figure 3 we show a nine node functional asynchronous
network that is built from the eight “event®?, ..., P".

Direction of time and space evolution
Initialization

a
; N

2
3
4
55
6
7
8
9

Nodes
Nodes

: ot

:

: LI

Fig. 3. A spatiotemporal decomposition of a functional asyn-
chronous network

The initialization and termination sets are indicated on
the left and right sides of the figure respectively. The event

asynchronous netwoik = (91, I, IF), where

Hzl_[]la, IB‘:HIB‘a

aeq aeq

and = [Jaq M* is defined in the obvious way to be the
asynchronous network with node $€t= UacqN? (we re-
fer to [3, §6] for detalils).

We say thek-node functional asynchronous network
N = (O, I, ) is trivial if N = [].ec N? where eacliN? has
exactly one nod&\,. In particular, ifN is trivial there are
no interactions between nodes and no constraints.

Next let?t? = (M3, I, F), a € q, be a family of func-
tional asynchronous networks with common initialization
set, termination set and node g€t = {Ng, Ny, ..., Ny}.
Suppose that for each € q, there exists¥(a) c k such
that

1. M2 = N x N whereNd has node seX(a) andj is
trivial.
2. Ifa#b, 2@ NZ(b) =0.

We define theamalgamatiordt = Liaqt? to be the func-

signify regions of phase space where there can be (statdional asynchronous networKJieq 917) X 912, wheredt, is
dependent) interaction between nodes. For example, théhe trivial network defined as the product of the common

event labelledP? involves interaction between nodél,
N7, Ng, andNg. Observe that there is only a partially or-
dered temporal structure on the events. Thus, the é¥ent
must occur aftePf but can occur before or after evepit

5.2 Building blocks

In figure 4 we represent a basic building block with the
same number of inputs and outputs.

The initialization sets are represented by the symbols
o, termination sets by. Interaction between nodes occurs
only in the event region denoted by the rectangle. Outside
of the event region, nodes evolve independently. More gen-
erally, we can allow for dferent number of inputs and out-
puts: nodes may merge or split.

Our immediate aim is describe some basic operations
that we can define on functional asynchronous networks
that allow us enable us to find a (maximal) decomposition
of a functional asynchronous network into the form shown
in figure 3.

trivial factors in013, a € g. Thus the node set of, will be
K\ Ugeg2'(a).

-

oA wN
0000

No temporal relation between

P! and P2

Fig. 5. Amalgamating two functional asynchronous networks.
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Referring to figure 5, we havg(1) = {7, 8,9, 10} and
2(2) = {2, 3,4,5}. The amalgamatioR = P! LI P? is trivial
when restricted to nodgsl;, Ng, N11}.

Finally, we outline the operation of concatenation, re-
ferring the reader to [44] for the details (most) we omit.

Example 2Consider the network shown in figure 3 and
assume that each evelt. j € {a,...,h} is primitive. A
decomposition satisfying the requirements of theorem 1 is
indicated in figure 7 — the dashed lines indicate the ini-
tialization and termination sets for the subnetworks. The

Suppose thait? = (3,12, F2), a € 2, are functional asyn-
chronous networks with common node set. Assume that
F! = 1. TheconcatenatioN = (91,1, F) = N? o N* will

be a temporal merginiy*, N2. We define

1. I1=1'F =F2
2. A={arVazx | IX eM,a; = 81()(),(1'2 = 82()()},

whereV denote the join of the graphs. The definition of
the set of admissible vector fields for 91 is trickier and
requires additional conditions dw*, N? — we refer to [4]
for details. We define the event map 8(X) = &'(X) v
E2(X),X € M. We refer to figure 6 for the operation of
concatenation.

Direction of time and space evolution

Initialization Termination

Nodes
© © N o v b w N e

Fig. 7. Factorization of network of figure 3.

factorization for the network is

Time

S — ] S— N=P"o (PPLP?) o (PUP’)oPPo (P2LIPY).
Pt - . This factorization corresponds to maximizing from the left

hand side. However, if we maximize from the right we ob-

. . . in the f rization
Fig. 6. Concatenating two functional asynchronous networks. tain the factorizatio

N=FP"UP) o (P UPPLP)oPYoPPoP?
The concatenatioN? o N! has the important property
that if N® has generalized transition and timing functions
G?: 2 x RX>F2 S : 2 x RKSRX a e 2, thenN2 o NI
has generalized transition functi@given byG(X, T) =
G2(GY(X, T), SY(X, T)) [4, Corollary 4.15].

In either case there is a concatenation of five networks —
that is the minimum number possible.

Theorem 1 allows us to write the function of a network
explicitly in terms of the transition functions of the con-
stituent subnetworks.

Remark 3We have deliberately avoided listing the detailed Results of this type depend crucially on intermittent

properties required of functional asynchronous netwarks i connection structure and nonsmooth dynamics. For exam-

order to define amalgamations and concatenations. Briefly,ple, no such result is possible for a classical coupled net-

apart from requiring the existence of generalized tramsiti  work of phase oscillators.

and timing functions, we require (1) the uncoupled vec- The approach works because we have adopted an en-

tor vectors defining intrinsic dynamics of a nobeto be gineer’s viewpoint: we emphasise function rather than dy-

transverse td;, F; and (2) a local product structure on the namics. Indeed, we are ifftérent to the specific dynamics

network. We refer to [4§3] for the details. occurringbetweerthe initialization and termination sets.
Of course, both the timing and transition functions provide
the key information about network function.

6 Modularization of dynamics and function

A functional asynchronous networkpsimitiveif it cannot

: o ; 7 Concluding comments
be written as a nontrivial amalgamation or concatenation.

1. Theorem 1 is a prototypical theorem providing proof
of concept. The conditions for the theorem can be sig-
nificantly weakened from those required in [4].

2. The theorem yields maximal feedforward structure on

a functional asynchronous network (note that individ-

ual events may have feedback loops).

The result suggests the utility of starting with a small

functional asynchronous network; understanding the struc

ture in depth and then then evolving to optimize func-
tion (for example by adding feedback).

There are many as yet unexplored issues such as bifur-

cation, hidden deadlocks, and théeets of noise.

5. There is the problem of how far one can determine in-
ternal structure on the basis of inpuitput time series
data.

Theorem 1 Under general conditions, a functional asyn-
chronous networl has a unique (up to rearrangements)
decomposition

N=Nlo.. oN,

whereN! = N 1y, NG| j e g, and and eacNH is

primitive. 3.
The generalized transition function G fbrcan be ex-

pressed in terms of the generalized transition and timing

functions G, S; of NI (or G for N) by:

G(X,T) = GY(...G*G (X, T), SHX,T))...),
S(X,T) = (... FGHX, T),SHX, T)).. ),
G =G x..xGH) jeq.
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