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Abstract. In this note we describe the theory of functional asynchronous networks and one of the main results,
the Modularization of Dynamics Theorem, which for a large class of functional asynchronous networks gives
a factorization of dynamics in terms of constituent subnetworks. For these networks we can give a complete
description of the network function in terms of the function of the events comprising the network and thereby
answer a question originally raised by Alon in the context of biological networks.

1 Introduction

Kastan & Alon [9] identify and describe the configurations
of relatively simple and small subnetworks that occur more
frequently in biological networks than would be the case if
the network were random. They refer to these subnetworks
asnetwork motifs. Later, in his 2007 book on systems bi-
ology [1], Alon makes the following comment

“Ideally, we would like to understand the dynamics
of the entire network based on the dynamics of the
individual building blocks.”(Alon [1, page 27].)
The underlying premise behind this comment is that a

modular, or engineering, approach to network dynamics is
feasible. Identify building blocks, connect together to form
networks and then describe dynamical properties of the
resulting network in terms of the dynamics of its compo-
nents. This approach works well in linear systems theory,
where a superposition principle holds, or in, for example,
the study of synchronization in weakly coupled systems
of nonlinear approximately identical oscillators where net-
work dynamics can be closely related to the dynamics of
individual nodes (oscillators).

However, from the perspective of a mathematician or
physicist, Alon’s comment seems unhelpful for the study
of dynamics of heterogenous networks modelled by sys-
tems of nonlinear ODEs. This is a well-known issue in
complex systems [10]. Yet engineers do couple gadgets to-
gether to make more complex systems and so it is natural
to ask if it is possible to reconcile these viewpoints.

In this note, we outline some of the basic ideas involved
in an approach to network dynamics based on what we call
asynchronous networks. We allow for features seen in net-
works from technology, engineering, and biology (for ex-
ample, neuroscience or gene transcription networks). Net-
work dynamics can involve a mix of distributed and decen-
tralized control, adaptivity, event driven dynamics, switch-
ing, varying network topology and hybrid dynamics. Typi-
cally network dynamics will be piecewise smooth, time-
irreversible, nodes may stop and later restart, and there

a e-mail:c.bick@exeter.ac.uk
b e-mail:mikefield@gmail.com

may be no intrinsic global time. Significantly, many of
these networks have a function: transportation networks
bring people and goods from one point to another, neu-
ral networks may perform pattern recognition or compu-
tation, etc. Our goal is to address Alon’s comment in the
context of functional asynchronous networks. Specifically,
we describe a factorization of dynamics theorem where it
is possible to describe the function of a large class of func-
tional asynchronous networks in terms of the function of
constituent subnetworks. As this article is only intended to
be an introduction, we work always with the simplest ex-
amples and models and omit technical details. We refer the
reader to [3,4] for greater detail, generality and proofs.

2 Examples and properties of
asynchronous networks

We briefly describe some characteristic examples of asyn-
chronous networks (we refer to [3,§3] for more detail).

2.1 Threaded & parallel computation

In threaded or parallel computation, computation is bro-
ken into blocks or ‘threads’ which are then computedin-
dependentlyof each other at a speed that depends on the
clock rates of the individual processors. As the computa-
tion proceeds, threads may need to exchange information
with other threads. This process involves stopping and syn-
chronizing (updating) the thread states. Each thread may
have to stop and wait for other threads to complete their
computations before it can continue with its own computa-
tion. Each thread has its own clock (determined by its as-
sociated processor). If threads run on separate processors,
threads will be unaware of the clock times of other threads
except during the stopping and synchronization events.

2.2 Production and transport networks

We give a simple detailed example of a transport network
in section 4. In production networks, parts, compounds,
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etc. are repeatedly built and combined as part of a produc-
tion process leading to the desired item (for example, a car
or protein). In particular, there is variation in both connec-
tion structure, typically intermittent, and in the set of nodes
(nodes may be combined or decomposed).

2.3 Power grid models

A power grid consists of a network of various types of
generators and loads connected by transmission lines. A
microgrid is a local network, capable of existing indepen-
dently of the main power grid, and typically powered by re-
newable energy sources (for example, solar or wind power).
Critical questions involve the stability of the power grid in
case of loss of a transmission line or generator (variation in
network structure), and control and stability issues related
to combining and separation (islanding) of a large set of
microgrids from the main power grid.

2.4 Thresholds, spiking models and adaptation

Many mathematical models from engineering and biology
incorporate thresholds. For networks, when a node attains
a threshold, there are often changes (addition, deletion,
weights) in connections to another nodes. For networks of
neurons, reaching a threshold can result in a neuron fir-
ing (spiking) and short term connections to other neurons
(for transmission of the spike). For learning mechanisms,
such as Spike-Timing Dependent Plasticity (STDP) [7] rel-
ative timings (the order of firing) are crucial [8,5,11] and
so each neuron, or connection between a pair of neurons,
comes with a ‘local clock’ that governs the adaptation in
STDP. In general, networks with thresholds, spiking and
adaptation provide characteristic examples of asynchronous
networks where dynamics is piecewise smooth and hybrid
– a mix of continuous and discrete dynamics.

2.5 Properties of asynchronous networks

We summarize some of the characteristic features of asyn-
chronous networks as revealed in the examples above.

1. Variable network structure and dependencies between
nodes. Changes depend on the state of the system or
are given by a stochastic process.

2. Synchronization events associated with stopping or wait-
ing states of nodes.

3. Order of events may depend on the initialization of the
system or stochastic effects.

4. Dynamics is only piecewise smooth and there may be
a mix of continuous and discrete dynamics.

5. Aspects involving function, adaptation and control.
6. Evolution only defined for forward time – systems are

not time reversible.

3 Asynchronous networks: formalism

We use the notational conventions thatk = {1, . . . , k} and
k• = k ∪ {0}, k ∈ N. LetR+ = {x ∈ R | x > 0}.

Assume given a network withk nodes,N1, . . . ,Nk. Sup-
pose thatNi has associated phase spaceMi , i ∈ k. Set

M =
∏

i∈k Mi – the network phase space. A vector field
f on M is anetwork vector field.

Stopping, waiting, and synchronization are a feature of
asynchronous networks. If nodes are stopped or partially
stopped, node dynamics will be constrained to subsets of
node phase space. We codify this situation by introducing
aconstraining node N0 that, when connected toNi , implies
that dynamics onNi is constrained. SetN = {N0, . . . ,Nk}.

3.1 Connection structures; admissible vector fields

Interactions between distinct nodes in the network are given
by the network graph. ConnectionsN j→Ni encodedepen-
denciesif i, j ∈ k, andconstraintsif j = 0, i ∈ k.

A connection structureα is a directed network graph
on the nodesN such that for alli ∈ k, j ∈ k•, i , j, there
is at most one directed connectionN j→Ni . We do not allow
self-loops or connections to the constraining nodeN0.

An α-admissiblevector field fα is a network vector
field with dependencies given byα. If N j→Ni < α, i , j,
thenfα does not depend onx j ∈ M j (and conversely, see
[3, §2]).

N0

N1 N2

N3 N4

α

Fig. 1. Construction structure on{N0,N1,N2,N3,N4}.

Referring to figure 1, supposefα = ( f α1 , . . . , f
α
4 ) is α-

admissible. ForX = (x1, x2, x3, x4) ∈M, we have

f α1 (X) = f1(x1), f α2 (X) = f2(x2; x1)

f α3 (X) = f3(x3; x1, x2), f α4 (X) = 0,

where here we have assumed that the constraintN0→N4
results inN4 being stopped.

A generalized connection structureA is a (nonempty)
set of connection structures onN .

AnA-structureF is a setF = {fα | α ∈ A} of network
vector fields such that eachfα ∈ F is α-admissible.

3.2 The event map and asynchronous networks

Suppose thatA is a generalized connection structure and
F is anA-structure.

Interactions between nodes in asynchronous networks
may be state dependent or change over time (stochasti-
cally). Here we only consider state dependence.

We handle interactions and constraints using anevent
mapE : M→A.

The quadrupleN = (N ,A,F ,E) defines anasynchronous
network. Dynamics onN is given by the state dependent
network vector fieldF defined by

F(X) = fE(X)(X), X ∈M. (3.1)
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Remark 1We refer to [3,§4.7] for the definition of an in-
tegral curve for (3.1) and note that the definition we use is
different from that used in Filippov systems [6,2]. Under
simple conditions on the event map [3,§§4.7, 4.8], it can
be shown that ifM is compact then for eachX ∈M there is
a unique piecewise smooth integral curveΦX : [0,∞)→M
with initial condition X and corresponding semiflowΦ :
M × R+→M. In general,Φ will not be continuous as a
function ofX ∈M.

4 A simple transport example

S1 S2T1 T2L

Passing loop with stations

Fig. 2. A single track railway line with a passing loop.

We consider a single track railway line joining stations
markedS1,S2 in figure 2. Suppose there is a passing loop
at L. Trains, markedT1 andT2 in figure 2, start from sta-
tionsS1 andS2 respectively and proceed towards the oppo-
site station. There is no central control or communication
between the train drivers except when both trains are in the
passing loop. We further assume that both drivers are run-
ning a nonlinear oscillator. When a train enters the passing
loop it stops. When both trains are in the passing loop, the
drivers cross couple their nonlinear oscillators. In orderfor
a train to leave the passing loop, two conditions must be
satisfied.

1. Both trains must be in the passing loop.
2. The two nonlinear oscillators must be phase synchro-

nized to withinε where 0< ε ≪ π.

We model this setup using an asynchronous network with
two nodes – corresponding to the two trains. The phase
space for trainTi will be Mi = [−a,b] × T, i ∈ 2 (T =
R/2πZ), where the interval [−a,b] models the line joining
S1 to S2, S1 has coordinate−a < 0, S2 has coordinate
b > 0, The passing loopL will be at x = 0, andT will be
the phase space for the nonlinear oscillator.

Assume train motion given byV1,V2 whereV1(x) >
0 > V2(x) x ∈ [−a,b]. Note that neitherV1 or V2 can be
zero anywhere on [−a,b] otherwise the trains will never
both reach their destination stations in finite time.

We define four connection structures.

αi = N0→Ni , i ∈ 2 (Ti stopped)

β = N0→N1↔ N2← N0(stopped & cross coupled)

∅ = Empty connection structure

Let A = {α1, α2, β, ∅} be the associated generalized con-
nection structure.

Model the uncoupled oscillator dynamics for trainTi

by θ̇i = ω, whereω > 0, and the coupled dynamics by the
Kuramoto phase oscillator system

θ̇1 = ω + sin(θ2 − θ1)

θ̇2 = ω + sin(θ1 − θ2)

It remains to define the admissible vector fields and
event map that give the required dynamics for this exam-
ple. As admissible vector fields (on ([−a,b] ×T)2) we take

f∅ = ((V1, g), (V2, g)),

fα1 = ((0, g), (V2, g)), (T1 stopped, T2 running)

fα2 = ((V1, g), (0, g)), (T2 stopped, T1 running)

fβ = ((0,G1), (0,G2)), (T1,T2 stopped & cross coupled)

We define the event map by

E(X, θ) = α1, x1 = 0, x2 > 0

= α2, x1 < 0, x2 = 0

= β, x1 = x2 = 0, |θ1 − θ2| > ε

= ∅, otherwise

Finally, dynamics are given by the network vector field

F(X, θ) = fE(X,θ)(X, θ). (4.2)

We leave it as an easy exercise for the reader to check that
if Ti is initialized at (xi(0), θi(0)) ∈ [−a,b] × T, i ∈ 2,
where x1(0) ≤ 0 ≤ x2(0), then (4.2) has a well defined
integral curveϕ : R+→([−a,b] ×T)2, with specified initial
condition, that gives the correct dynamics for the passing
loop problem.

Remark 2The passing loop gives an example of a simple
functionalasynchronous network. The function is for the
trains to go from one station to the opposite station in finite
time. Observe that for this example there is the possibility
of adynamical deadlock: if the trains start at the same time
and if θ1(0) = θ2(0) + π, then the coupled phase oscilla-
tors will never phase synchronize –θ1(t) = θ2(t) + π for
all t ∈ R+ – and so the trains will never exit the passing
loop. We refer to [4,§§2,3] for more details on deadlocks
in functional asynchronous networks.

5 Functional asynchronous networks

We follow the notational conventions of section 3 and let
N = (N ,A,F ,E) denote an asynchronous network. We
assume thatN has associated semiflow

Φ = (Φ1, . . . , Φk) : M × R+→M.

Suppose that we are giveninitialization and termination
setsI,F ⊂M where

I =
∏

i∈k

Ii , F =
∏

i∈k

Fi ,

Typically, Ii ,Fi ⊂ Mi will be closed disjoint hypersurfaces
that separateMi into three connected components,i ∈ k.
That is,Mi = M−i ∪ M0

i ∪ M+i whereM−i ∩ M+i = ∅ and

M−i ∩ M0
i = ∂M

−
i = Ii , M0

i ∩ M+i = ∂M
+
i = Fi .

We callN = (N, I,F) a functional asynchronous network.
The network function is getting fromI to F and is ex-
pressed by the transition and timing functions

G0 : D ⊂ I→F, S : D ⊂ I→R
k
+.
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That is, if X ∈ D, then for alli ∈ k there existsSi ∈ R
k
+

such that

Φi(X,Si) ∈ Fi , Φi(X, t) < Fi , t < Si ,

S(X) = (S1, . . . ,Sk),

Example 1For the passing loop example discussed in the
previous section, we takeI1 = M−1 = M+2 = F2 = {−a} ×T,
F1 = M+1 = M+2 = I2 = {b} × T. In this case, there is the
implicit assumption that trains stop when they reach their
termination set. Equally well, we could takeMi = R × T

so thatM−1 = (−∞,a] × T etc. (see also [4,§3]). Finally,
observe thatD = {((−a, θ1), (b, θ2)) | |θ1 − θ2| , π}.

More generally, we allow for general initialization times
and define generalized transition and timing functions

G : D̂ ⊂ I × Rk
+→F, Ŝ : D̂ ⊂ I × Rk

+→R
k
+.

We refer to [4,§3.4] for details. For our main result, it is
required that the network has a generalized transition and
timing functions withD̂ = I × Rk

+.

5.1 Functional networks built from events

In figure 3 we show a nine node functional asynchronous
network that is built from the eight “events”Pa, . . . ,Ph.

Direction of time and space evolution
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Fig. 3. A spatiotemporal decomposition of a functional asyn-
chronous network

The initialization and termination sets are indicated on
the left and right sides of the figure respectively. The events
signify regions of phase space where there can be (state
dependent) interaction between nodes. For example, the
event labelledPg involves interaction between nodesN6,
N7, N8, andN9. Observe that there is only a partially or-
dered temporal structure on the events. Thus, the eventPg

must occur afterP f but can occur before or after eventPh.

5.2 Building blocks

In figure 4 we represent a basic building block with the
same number of inputs and outputs.

The initialization sets are represented by the symbols
◦, termination sets by•. Interaction between nodes occurs
only in the event region denoted by the rectangle. Outside
of the event region, nodes evolve independently. More gen-
erally, we can allow for different number of inputs and out-
puts: nodes may merge or split.

Our immediate aim is describe some basic operations
that we can define on functional asynchronous networks
that allow us enable us to find a (maximal) decomposition
of a functional asynchronous network into the form shown
in figure 3.

N
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e 
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te
ra

ct
io

n

Fig. 4. Dynamical/functional module

5.3 Operations on functional asynchronous
networks

If Na = (Na, Ia,Fa), a ∈ q, are functional asynchronous
networks with distinct node sets (Na ∩ Nb ⊂ {N0}, a ,
b ∈ q), define theproduct

∏
a∈q Na to be the functional

asynchronous networkN = (N, I,F), where

I =
∏

a∈q

I
a, F =

∏

a∈q

F
a

andN =
∏

a∈q N
a is defined in the obvious way to be the

asynchronous network with node setN = ∪a∈qN
a (we re-

fer to [3,§6] for details).
We say thek-node functional asynchronous network

N = (N, I,F) is trivial if N =
∏

a∈k Na where eachNa has
exactly one nodeNa. In particular, ifN is trivial there are
no interactions between nodes and no constraints.

Next letNa = (Na, I,F), a ∈ q, be a family of func-
tional asynchronous networks with common initialization
set, termination set and node setN = {N0,N1, . . . ,Nk}.
Suppose that for eacha ∈ q, there existsΣ(a) ⊂ k such
that

1. Na = N
a
1 ×N

a
2 whereNa

1 has node setΣ(a) andNa
2 is

trivial.
2. If a , b, Σ(a) ∩ Σ(b) = ∅.

We define theamalgamationN = ⊔a∈qN
a to be the func-

tional asynchronous network (
∏

a∈q N
a
1)×N2, whereN2 is

the trivial network defined as the product of the common
trivial factors inNa

2, a ∈ q. Thus the node set ofN2 will be
k r ∪a∈qΣ(a).
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Fig. 5. Amalgamating two functional asynchronous networks.
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Referring to figure 5, we haveΣ(1) = {7,8,9,10} and
Σ(2) = {2,3,4,5}. The amalgamationP = P1⊔P2 is trivial
when restricted to nodes{N1,N6,N11}.

Finally, we outline the operation of concatenation, re-
ferring the reader to [4,§4] for the details (most) we omit.
Suppose thatNa = (Na, Ia,Fa), a ∈ 2, are functional asyn-
chronous networks with common node set. Assume that
F

1 = I
2. TheconcatenationN = (N, I,F) = N2 ⋄ N1 will

be a temporal mergingN1,N2. We define

1. I = I
1, F = F

2.
2. A = {α1 ∨ α2 | ∃X ∈M, α1 = E

1(X), α2 = E
2(X)},

where∨ denote the join of the graphs. The definition of
the set of admissible vector fieldsF for N is trickier and
requires additional conditions onN1,N2 – we refer to [4]
for details. We define the event map byE(X) = E1(X) ∨
E2(X),X ∈ M. We refer to figure 6 for the operation of
concatenation.

P1

P2

P1

P2

=

Time

Fig. 6. Concatenating two functional asynchronous networks.

The concatenationN2 ⋄ N1 has the important property
that if Na has generalized transition and timing functions
Ga : Ia × R

k
+→F

a, Ŝa : Ia × R
k
+→R

k
+, a ∈ 2, thenN2 ⋄ N1

has generalized transition functionG given byG(X,T) =
G2(G1(X,T), Ŝ1(X,T)) [4, Corollary 4.15].

Remark 3We have deliberately avoided listing the detailed
properties required of functional asynchronous networks in
order to define amalgamations and concatenations. Briefly,
apart from requiring the existence of generalized transition
and timing functions, we require (1) the uncoupled vec-
tor vectors defining intrinsic dynamics of a nodeNi to be
transverse toIi , Fi and (2) a local product structure on the
network. We refer to [4,§3] for the details.

6 Modularization of dynamics and function

A functional asynchronous network isprimitive if it cannot
be written as a nontrivial amalgamation or concatenation.

Theorem 1 Under general conditions, a functional asyn-
chronous networkN has a unique (up to rearrangements)
decomposition

N = Nq ⋄ . . . ⋄ N1,

whereN j = N j,1 ⊔ . . . ⊔ N j,q( j), j ∈ q, and and eachN j,ℓ is
primitive.

The generalized transition function G forN can be ex-
pressed in terms of the generalized transition and timing
functions Gj , Ŝ j of N j (or G j,ℓ for N j,ℓ) by:

G(X,T) = Gq(. . .G2(G1(X,T), Ŝ1(X,T)) . . .),

Ŝ(X,T) = Ŝq(. . . Ŝ2(G1(X,T), Ŝ1(X,T)) . . .),

G j = G j,1 × . . . ×G j,q( j), j ∈ q.

Example 2Consider the network shown in figure 3 and
assume that each eventP j . j ∈ {a, . . . ,h} is primitive. A
decomposition satisfying the requirements of theorem 1 is
indicated in figure 7 – the dashed lines indicate the ini-
tialization and termination sets for the subnetworks. The
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Fig. 7. Factorization of network of figure 3.

factorization for the network is

N = Ph ⋄ (Pe⊔ Pg) ⋄ (Pd ⊔ P f ) ⋄ Pb ⋄ (Pa ⊔ Pc).

This factorization corresponds to maximizing from the left
hand side. However, if we maximize from the right we ob-
tain the factorization

N = (Ph ⊔ Pg) ⋄ (Pc ⊔ Pe⊔ P f ) ⋄ Pd ⋄ Pb ⋄ Pa.

In either case there is a concatenation of five networks –
that is the minimum number possible.

Theorem 1 allows us to write the function of a network
explicitly in terms of the transition functions of the con-
stituent subnetworks.

Results of this type depend crucially on intermittent
connection structure and nonsmooth dynamics. For exam-
ple, no such result is possible for a classical coupled net-
work of phase oscillators.

The approach works because we have adopted an en-
gineer’s viewpoint: we emphasise function rather than dy-
namics. Indeed, we are indifferent to the specific dynamics
occurringbetweenthe initialization and termination sets.
Of course, both the timing and transition functions provide
the key information about network function.

7 Concluding comments

1. Theorem 1 is a prototypical theorem providing proof
of concept. The conditions for the theorem can be sig-
nificantly weakened from those required in [4].

2. The theorem yields maximal feedforward structure on
a functional asynchronous network (note that individ-
ual events may have feedback loops).

3. The result suggests the utility of starting with a small
functional asynchronous network; understanding the struc-
ture in depth and then then evolving to optimize func-
tion (for example by adding feedback).

4. There are many as yet unexplored issues such as bifur-
cation, hidden deadlocks, and the effects of noise.

5. There is the problem of how far one can determine in-
ternal structure on the basis of input/output time series
data.
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