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Chapter 1

Introduction

Ergodic theory lies in somewhere among measure theory, analysis, proba-
bility, dynamical systems, and di¤erential equations and can be motivated
from many di¤erent angles. We will choose one speci�c point of view but
there are many others. Let

_x = f (x)

be an ordinary di¤erential equation. The problem of studying di¤erential
equations goes back centuries and, throughout the years, many di¤erent ap-
proaches and techniques have been developed. The most classical approach
is that of �nding explicit analytic solutions. This approach can provide a
great deal of information but is essentially only applicable to an extremely
restricted class of di¤erential equations. From the very beginning of the
20th century, there has been a great development on topological methods to
obtain qualitative topological information such as the existence of periodic
solutions. Again, this can be a very successful approach in certain situations
but there are a lot of equations which have, for example, in�nitely many pe-
riodic solutions, possibly intertwined in very complicated ways, to which
these methods do not really apply. Finally there are numerical methods to
approximate solutions. In the last few decades, with the increase of com-
puting power, there has been hope that numerical methods could play an
important role. Again, while this is true in some situations, there are also
a lot of equations for which the numerical methods have very limited ap-
plicability because the approximation errors grow exponentially and quickly
become uncontrollable. Moreover, the sensitive dependence on initial condi-
tions is now understood to be an intrinsic feature of certain equations than
cannot be resolved by increasing the computing power.

Example 1 Lorenz�s equations were introduced by the meteorologist E.
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Lorenz in 1963 as an extremely simpli�ed model of the Navier-Stokes equa-
tions for a �uid �ow: 8<:

_x1 = � (x2 � x1)
_x2 = x1 (�� x3)� x2
_x3 = x1x2 � �x3;

(1.1)

where � is the Prandlt number and � the Rayleigh number. Usually
� = 10, � = 8=3, and � varies. However, for � = 28, the systems exhibits
a chaotic behaviour. This is a very good example of a relatively simple
ODE which is quite intractable from many angles. It does not admit any
explicit analytic solutions; the topology is extremely complicated with in-
�nitely many periodic solutions which are knotted in many di¤erent ways
(there are studies of the structure of the periodic solutions of Lorenz�s equa-
tions from the point of view of knot theory); on the other hand, numerical
integration has very limited use since nearby solutions diverge very quickly.

Using classical methods, one can prove that the solutions of Lorenz�s
equations, eventually, end up in some bounded region U � R3. This sim-
pli�es our approach signi�cantly since it means that it is su¢ cient to con-
centrate on the solutions inside U . A combination of results obtained over
almost 40 years by several di¤erent mathematicians can be formulated in
the following theorem which can be thought of essentially as a statement in
ergodic theory. We give here a precise but slightly informal statement as
some of the terms will be de�ned more precisely later on these notes.

Theorem 2 For every ball B � R3, there exists a �probability� p (B) 2
[0; 1] such that, for �almost every� initial condition x0 2 R3, we have

lim
T!1

1

T

Z T

0
1B (xt) dt = p (B) ; (1.2)

where xt is the solution of (1.1) with initial condition x0.

First of all, recall that 1B is the characteristic function of the set B
de�ned by

1B (x) =

�
1 if x 2 B;
0 if x =2 B:

The integral
R T
0 1B (xt) dt is simply the amount of time that the solution xt

spends inside the ball B between time 0 and time T , and T�1
R T
0 1B (xt) dt

is therefore the proportion of time that the solution spends in B from t = 0
to T . Theorem 2 makes two highly non trivial assertions:
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1. that the proportion T�1
R T
0 1B (xt) dt converges as T !1;

2. that this limit is independent of the initial condition x0.

There is no a priori reason why the limit (1.2) should exist. But perhaps
the most remarkable fact is that the limit is the same for almost all initial
conditions (the concept almost all will be made precise later). This says that
the asymptotic time averages of the solution xt with initial condition x0 are
actually independent of this initial condition. Therefore, independently of
the initial condition, the proportion of time that the systems spends on B
is P (B). In other words, there exists a way of measuring the balls B such
that the measure P (B) gives us information on the amount of time that the
system, on average, spends on B. Theorem 2 is just a particular case of the
more general Birko¤�s Ergodic Theorem which we will state and prove in
Chapter 4.

The moral of the story is that even though Lorenz�s equations are dif-
�cult to describe from an analytic, numerical, or topological point of view,
they are very well behaved from a probabilistic point of view. The tools
and methods of probability theory are therefore very well suited to study
and understand these equations and other similar dynamical systems. This
is essentially the point of view on ergodic theory that we will take in these
lectures. Since this is an introductory course, we will focus on the simplest
examples of dynamical systems for which there is already an extremely rich
and interesting theory, which are one-dimensional maps of the interval or the
circle. However, the ideas and methods which we will present often apply
in much more general situations and usually form the conceptual founda-
tion for analogous results in higher dimensions. Indeed, results about inter-
val maps are applied directly to higher dimensional systems. For example,
Lorenz�s equations can be studied taking a cross section for the �ow and
using Poincaré�s �rst return map, which essentially reduces the system to a
one dimensional map.



Chapter 2

Measure Theory

In this chapter, we will introduce the minimal requirements of Measure
Theory which will be needed later. In particular, we will review one of the
pillars of measure theory, namely, the concept of integral with respect to an
arbitrary measure. For a more extensive exposition, the reader is encouraged
to check, for example, with [2].

2.1 Motivation: Positive measures and Cantor sets

The notion of measure is, in the �rst instance, a generalization of the stan-
dard idea of length, or, in general, volume. Indeed, while we know how to
de�ne the length � of an interval [a; b], namely, � ([a; b]) = b� a, we do not
a priori know how to measure the size of sets which contain no intervals
but which, logically, have positive measure. For example, let frig1i=0 be a
sequence of positive numbers such that

P
i ri < 1. De�ne a set C � [0; 1]

recursively removing open subintervals from [0; 1] in the following way. To
start with, we remove an open subinterval I0 of length r0 from the interior
of [0; 1] so that [0; 1]nI0 has two connected components. Then we remove
intervals I1 and I2 of lengths r1 and r2 respectively from the interior of these
components so that [0; 1]n (I0 [ I1 [ I2) has 4 connected components. Now
remove intervals I3; :::; I6 from each of the interiors of these components and
continue in this way. Let

C = [0; 1]n
[1

i=0
Ii (2.1)

be a Cantor set. By construction, C does not contain any intervals since
every interval is eventually subdivided by the removal of one of the subin-
tervals Ik from its interior. Therefore, it seems that it does not make sense
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2.1 Motivation: Positive measures and Cantor sets 6

to talk about C as having any length. Nevertheless, the total length of the
intervals removed is

P
i�0 ri < 1 so it would make sense to say that the size

of C is 1�
P
i�0 ri. Measure theory formalizes this notion in a rigorous way

and makes it possible to assign a size to sets such as C.

Remark 3 If
P
i�0 ri = 1 is exactly 1, then C is an example of a non-

countable set of zero Lebesgue measure.

Non-measurable sets

The example above shows that it is desirable to generalise the notion of
length so that we can apply it to measure more complicated subsets which
are not intervals. In particular, we would like to say that the Cantor set
de�ned above has positive measure. It turns out that, in general, it is not
possible to de�ne a measure in a consistent way on all possible subsets. In
1924 Banach and Tarski showed that it is possible to divide the unit ball
in 3-dimensional space into 5 parts and re-assemble these parts to form two
unit balls, thus apparently doubling the volume of the original set. This
implies that it is impossible to consistently assign a well de�ned volume to
any subset in an additive way. See a very interesting discussion on wikipedia
on this point (Banach-Tarski paradox).

Consider the following simpler example. Let S1 be the unit circle and
let f� : S1 ! S1 be an irrational circle rotation. We will see that, in
this case, every orbit is dense in S1 (Theorem 27) Let A � S1 be a set
containing exactly one point from each orbit. Suppose that we have de�ned
a general notion of a measure m on S1 that generalises the notion of length
of an interval so that the measure m (A) has a meaning. In particular, in
order to be well-de�ned, such a measure will be translation invariant in the
sense that the measure of a set cannot be changed by simply translating
this set. Therefore, since a circle rotation f� is just a translation, we have
m (fn� (A)) = m (A) for every n 2 Z, where fn� := f� � n times: : : � f�. Moreover,
since A contains only one single point from each orbit and all points on a
given orbit are distinct, we have fn� (A)\fm� (A) = ; if n 6= m. Consequently,

m
�
fn� (A)

[
fm� (A)

�
= m (fn� (A)) +m (f

m
� (A)) :

Therefore,

1 = m
�
S1
�
= m

�[1

n=�1
fn (A)

�
=

1X
n=�1

m (fn (A)) =

1X
n=�1

m (A)
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which is clearly impossible as the right hand side is zero if m (A) = 0 or
in�nity if m (A) > 0. In order to overcome this di¢ culty, one has to restrict
the family of subsets which can be assigned a length consistently. This
subsets will be called measurable sets and the family a �-algebra.

Remark 4 The previous counterexample depends on the Axiom of Choice
to ensure that the set constructed by choosing a single point from each of an
uncountable family of subsets exists.

2.2 Measures and �-algebras

Let X be a set and A a collection of (not necessarily disjoint) subsets of X.

De�nition 5 We say that A is an algebra (of subsets of X) if

1. ; 2 A and X 2 A,

2. A 2 A implies Ac 2 A,

3. for any �nite collection A1; :::; An of subsets in A we have that
Sn
i=1Ai 2

A.

We say that A is a �-algebra if, additionally,

3�. for any countable collection fAigi2N of subsets in A, we have[
i2N

Ai 2 A:

The family of all subsets of a set X is obviously a �-algebra. Given C
a family of subsets of X we de�ne the �-algebra � (C) generated by C as
the smallest �-algebra containing C. That is, as the intersection of all the
�-algebras containing C. This is always well de�ned and is in general smaller
than the �-algebra of all subsets of X.

Exercise 6 Prove that the intersection of all the �-algebras containing C is
indeed a �-algebra.

If X is a topological space, the �-algebra generated by open sets is called
the Borel �-algebra and is denoted by B (X). Observe that a Cantor set C
introduced in (2.1) is the complement of a countable union of open intervals
and, therefore, belongs to Borel �-algebra B ([0; 1]).
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De�nition 7 A real-valued set function � on a class of sets C is called

1. additive if

�
�[n

i=1
Ai

�
=

nX
i=1

� (Ai)

for any �nite sequence fA1; :::; Ang � C of pairwise disjoint sets such
that

Sn
i=1Ai 2 C.

2. countably additive (or �-additive) if

�
�[1

i=1
Ai

�
=

1X
i=1

� (Ai)

for any countably collection fAigi�1 � F of pairwise disjoint sets such
that

S1
i=1Ai 2 F .

De�nition 8 Let F be a �-algebra of X. A measure � is a function

� : F �! [0;1]

which is countably additive.

This de�nition shows that the �-algebra is as intrinsic to the de�nition
of a measure as the space itself. In general, we refer to a measure space as
a triple (X;F ; �). The elements in the �-algebra F are called measurable
sets. We say that � is �nite if � (X) < 1 and that � is a probability
measure if � (X) = 1. A measure � is called �-�nite if X =

S1
i=1Ai such

that Ai 2 F and � (Ai) <1 for any i. For example, the Lebesgue measure
� on (R;B (R)) is �-�nite because

R =
[

n2Z
[n; n+ 1]

because the Lebesgue measure of an interval is its length. On the other
hand, observe that if �̂ is a �nite measure we can easily de�ne a probability
measure � by

� (A) =
�̂ (A)

�̂ (X)
; A 2 F :

Exercise 9 Let F be a �-algebra and let � : F ! [0;1] be an additive
positive function, � 6=1. Then,
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1. � is �-additive () For any increasing sequence fAngn2N � F (i.e.,
An � An+1) we have

lim
n!1

� (An) = � (A) where A :=
[

n2N
An:

2.

(a) � is �-additive =) For any decreasing sequence fAngn2N � F
(i.e., An+1 � An) such that � (A1) <1 we have

lim
n!1

� (An) = � (A) where A :=
\

n2N
An:

(b) If for any decreasing sequence fAngn2N � F such that An & ;,
we have limn!1 � (An) = 0, then � is �-additive.

De�ning a countably additive function on �-algebras is non-trivial. It is
usually easier to de�ne countably additive functions on algebras because the
class of sequences fAngn2N � A such that

S
n2NAn 2 A is smaller than in �-

algebras. Observe that, unlike what happens in �-algebras,
S
n2NAn needs

not belong to A if A is only an algebra. For example, the standard length
is a countably additive function on the algebra generated by �nite unions of
intervals. The fact that this extends to a countably additive function on the
corresponding �-algebra (and therefore, that we can measure Cantor sets)
is guaranteed by the following fundamental result.

Theorem 10 (Carathéodory�s Theorem, [3, Theorem 1.5.6]) Let e� be
a countably additive function de�ned on an algebra A of subsets. Then e�
can be extended in a unique way to a countably additive function � on the
�-algebra F = � (A).

Remark 11 The �-additivity of e� cannot be removed as the following
counter-example shows. Let A be the algebra of sets A � N such that
either A or NnA is �nite. For �nite A, let �(A) = 0, and for A with a �nite
complement let �(A) = 1. Then � is an additive, but not countably additive
set function.
Proof. It is clear that A is indeed an algebra. � (A [B) = � (A) +� (B) is
obvious for disjoint sets A and B if A is �nite. Finally, A and B in A cannot
be in�nite simultaneously being disjoint. If � was countably additive, we
would have

� (N) =
1X
n=1

� (fng) = 0;

which is clearly a contradiction.
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Nevertheless, de�ning measures on R is easier, as the next subsection
summarises.

2.2.1 Measures on R

In this subsection, we are going to gather some de�nitions and results that,
roughly speaking, state that a measure on R is completely determined by
the value of that measure on intervals of the form (a; b], a � b.

De�nition 12 A distribution function F : R! R is a right-continuous
increasing function. That is,

x � y ) F (x) � F (y) and lim
x!a+

F (x) = F (a) :

Let now J := f(a; b] : a � b 2 Rg and let F : R ! R be a distribution
function. De�ne

� : J �! [0;1]
(a; b] 7�! F (b)� F (a): (2.2)

Then, one can prove that � thus de�ned is a �-additive and �-�nite function
on J. Moreover, there exists a unique �-additive extension of � onto B (R).
That is,

Theorem 13 A distribution function F : R ! R determines a measure �
on (R;B (R)) by means of the formula

� ((a; b]) = F (b)� F (a); (a; b] 2 J:

A natural question now arises. Can we obtain any measure on (R;B (R))
from a distribution function? The answer is no, but almost any of them.
Observe that the measure de�ned through (2.2) is �nite on any bounded
interval. These are precisely the measures we can generate by means of
distribution functions. They are called Lebesgue-Stieljes measures.

De�nition 14 A Lebesgue-Stieljes measure is a measure � on (R;B (R))
such that, for any bounded A 2 B (R), � (A) <1.

Proposition 15 Let � be a Lebesgue-Stieljes measure. Then, there exists a
distribution function F such that

8a < b 2 R; F (b)� F (a) = � ((a; b]) : (2.3)
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Proof. De�ne F (0) = c 2 R any arbitrary value and

F (x) :=

�
F (0) + � ((0; x]) if x > 0
F (0)� � ((x; 0]) if x < 0:

F is a distribution function. It is clearly increasing and, by de�nition,
satis�es (2.3). In order to check the right-continuity, let b � 0. Then

lim
x!b+

F (x) = F (0) + lim
x!b+

� ((0; x]) = F (0) + � ((0; b]) = F (b) ;

where in the second equality we have used that

lim
x!b

� (Ax) = � (Ab) where Ax = (0; x], Ax & Ab as x! b

(see Exercise 9.2(a). The case b < 0 is analogous.

2.2.2 Examples

1. Dirac delta measures. Dirac measures �a, a 2 R, are de�ned on
(R;B(R)) as

�a (A) =

�
1 if a 2 A
0 if a =2 A; A 2 B(R):

In this case, we say that the entire mass is concentrated at the single
point a. The distribution function of �a is

F (x) =

�
1 if x � a
0 if x < a:

An immediate generalization is the case of a measure concentrated on
�nite set of points fa1; :::; ang each of which carries some proportion
�1; :::; �n of the total mass, i.e., � :=

Pn
i=1 �i�ai with �1+ :::+ �n = 1.

Then, given A 2 B(R),

� (A) =
X

fi:ai2Ag
�i

is the sum of the weights carried by those points contained in A.

2. Lebesgue measure. Lebesgue measure is de�ned on B(R) and as-
signs to any subinterval I � R its length. Lebesgue measure � is
characterised by the distribution function F (x) = x. That is,

� ((a; b]) = b� a:
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3. Absolutely continuous measures. Let f : R! R be a continuous
function. For any subinterval I � R de�ne

� (I) :=

Z
I
f (y) dy:

Then � de�nes a �-�nitely additive function on the algebra of �nite
unions of subintervals of R and thus extends uniquely to a measure on
B(R). Indeed, a possible distribution function F associated to � is

F (x) =

Z x

0
f (y) dy:

4. Normal law. The probability measure given by the distribution func-
tion

F (x) =
1p
2�

Z x

�1
e�y

2=2 dy

is called the standard normal law and is denoted by N (0; 1).

5. Measures on spaces of sequences. Let �+k denote the set of in�nite
sequences of k symbols. That is, and element a 2 �+k is a sequence
a = (a0; a1; :::) with ai 2 f0; 1; :::; k � 1g. For any given �nite block
(x0; :::; xn�1) of length n with xi 2 f0; 1; :::; k � 1g, let

Ix0:::xn�1 :=
�
a 2 �+k : ai = xi; i = 0; :::; n� 1

	
denote the set of all in�nite sequences which start precisely with the
prescribed �nite block (x0; :::; xn�1). We call this a cylinder set of
order n. Let

A = f�nite unions of cylinder setsg :

Exercise 16 Show that A is an algebra of subsets of �+k .

Fix now k numbers fp0; :::; pk�1g � [0; 1] such that p0 + :::+ pk�1 = 1
and de�ne a function � : A ! R+ on the algebra of cylinder sets by

�
�
Ix0:::xn�1

�
:=
Yn�1

i=0
pxi :

Exercise 17 Prove that � is �-additive.

Therefore, the function � extends uniquely to a measure on the �-
algebra F = � (A).
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2.3 Integration

Integration with respect to a measure can be regarded as a powerful gen-
eralization of the standard Riemann integral. In this section, we are going
to review the basics of integration with respect to an arbitrary measure.
Before, we need to introduce some de�nitions.

Let (X;F ; �) be a measure space and let A 2 F . We de�ne the char-
acteristic function 1A as

1A (x) =

�
1 if x 2 A
0 if x =2 A:

On the other hand, a simple or elementary function � : X ! R is a
function that can be written in the form

� =
nX
i=1

ci1Ai

for some constants ci 2 R and some disjoint measurable sets Ai 2 F , i =
1; :::; n. The integral of a simple function � with respect to the measure � is
de�ned in a straightforward manner asZ

�d� :=
nX
i=1

ci� (Ai) :

The idea is to extend this integral to more general functions. More con-
cretely, we can de�ne the integral of a measurable function. Recall that a
function f : X ! R is measurable if f�1 (I) 2 F for any I 2 B (R). If
(X;F ; �) is a probability space (i.e., � is a probability), measurable functions
are usually called random variables.

Exercise 18 Let f : X ! R+ be a measurable function. Show that f is the
(pointwise) limit of an increasing sequence of elementary functions. Hint:
de�ne, for any n 2 N,

�n :=
n2n�1X
k=1

k

2n
1f k

2n
�f� k+1

2n
g + n1fn�fg:

The integral of a general, measurable, non-negative function f : R! R+
can be de�ned in two equivalent ways. On the one hand,Z

fd� := sup

�Z
�d� : � is simple, � � f

�
: (2.4)
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On the other hand, one can prove thatZ
fd� = lim

n!1

Z
�nd�

where f�ngn2N is an increasing sequence of elementary functions converging
to f . The integral is usually called the Lebesgue integral of the function f
with respect to the measure � (even if � is not Lebesgue measure). Observe
that

R
fd� may be 1.

Remark 19 Note that, unlike the Riemann integral which is de�ned by a
limiting process that may or may not converge, the supremum in (2.4) is
always well de�ned, though it needs not be �nite.

In general, let f : X ! R be a measurable function and write

f = f+ � f�

where f+ = maxff; 0g and f� = minf�f; 0g. It is not di¢ cult to prove
that both f+ and f� are measurable, non-negative functions.

De�nition 20 Let f : X ! R be a measurable function. IfZ
f+d� <1 and

Z
f�d� <1

we say that f is �-integrable and we de�neZ
fd� =

Z
f+d��

Z
f�d�:

The set of all �-integrable functions is denoted by L1 (X;�).

2.3.1 Properties of the Lebesgue integral

Let f; g : X ! R be two arbitrary measurable functions. The Lebesgue
integral has the following properties (that, in general, are not di¢ cult to
prove):

1. Z
(af + bg) d� = a

Z
fd�+ b

Z
gd�

for any a; b 2 R.
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2. If A 2 F is such that � (A) = 0, thenZ
A
fd� :=

Z
1Afd� = 0:

That is, the integral of f over a set of measure 0 is 0. This is true even
if f takes the values �1 on A. That is, if A contains singularities of f .
Recall that we say that a point x = a is a singularity if f (a) = �1.
For example, if a non-negative function f � 0 is integrable,

R
fd� <

1, then we can say that � (fx : f(x) =1g) = 0.

3. If f � 0 and
R
fd� = 0, then � (fx : f(x) > 0g) = 0.

4. If f � g, then Z
fd� �

Z
gd�:

5. ����Z fd�

���� � Z jf j d�: (2.5)

Indeed,
R
fd� =

R
f+d��

R
f�d� and����Z fd�

���� =

����Z f+d��
Z
f�d�

���� � ����Z f+d�

����+ ����Z f�d�

����
=

Z
f+d�+

Z
f�d� =

Z
jf j d�:

By (2.5), we can characterise L1 (X;�) as the space of measurable
functions f : X ! R such thatZ

jf j d� <1:

In general, for p � 1, we introduce the spaces Lp (X;�) as the space of
measurable functions such that

R
X jf j

p d� < 1, where two functions
are identi�ed if they di¤er, at most, on a set of zero measure. Lp (X;�)
is a Banach space with the norm kfkp := (

R
X jf j

p d�)1=p.

Example 21 Let f : [0; 1]! R be given by

f (x) =

�
0 if x 2 Q
1 if x =2 Q:
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It is well known that this function is not Riemann integrable because the
limit of the upper and lower Riemann sums do not coincide. However, as a
function measurable with respect to the Lebesgue measure �, f is simple:
it values 0 on the measurable set Q and values 1 on the measurable set
[0; 1]nQ. The set of rational numbers Q has zero Lebesgue measure because
Q is countable. Therefore �([0; 1]nQ) = 1 andZ

[0;1]
fd� = � ([0; 1]nQ) = 1:



Chapter 3

Invariant measures

3.1 Invariant measures: de�nitions and examples

Let (X;F ; �) and (Y;G; �) be two measure spaces. A map T : X ! Y is
called measurable if the preimage T�1 (A) of any measurable set A 2 G is
measurable, i.e., T�1 (A) 2 F . A measurable map T is non-singular if the
preimage of every set of measure 0 has measure 0. The map T : X ! Y is
measure-preserving if �

�
T�1 (A)

�
= � (A) for any A 2 G. A non-singular

map from a measure space (X;F ; �) into itself is called a non-singular
transformation, or simply a transformation. If a transformation T :
X ! X preserves a measure �, then � is called T -invariant. Usually, we
will deal with measurable maps between topological spaces. In that case,
the �-algebras involved will be always the corresponding Borel �-algebras.

A set has full measure if its complement has measure 0. We say that a
property holds for �-almost every x (�-a.e.) or �-almost surely (�-a.s.)
if it holds on a subset of full �-measure.

Let � be the Lebesgue measure on R. A �ow fT tgt2J on a measurable
space (X;F ; �) is a family of measurable maps T t : X ! X where, usu-
ally, J equals R (time-continuous �ows) or N (discrete �ows). If J = N, we
say that the �ow fTngn2N is measurable if Tn is measurable for any n.
When J = R, fT tgt2R is measurable if the product map T : X � R ! X
given by T (x; t) = T t(x) is measurable with respect to the product �-algebra
� (F � B (R)) onX�R, and T t : X ! X is a non-singular measurable trans-
formation for any t 2 R. A measurable �ow T t is a measure-preserving
�ow if each T t is a measure-preserving transformation. Discrete �ows are
usually built from measurable maps T : X ! X as follows: for any n 2 N,

17
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we de�ne
Tn (x) = T � n): : : � T (x)

and T 0 = Id, the identity on X.

3.1.1 Examples

1. Dirac measures on �xed points. If T : X ! X is a measurable
map and p a �xed point of T , T (p) = p, then the Dirac measure �p is
invariant. Indeed, let A 2 F be a arbitrary measurable set. We have
to prove that

�p
�
T�1(A)

�
= �p (A) : (3.1)

We consider two cases. First of all, suppose p 2 A so that �p (A) =
1. In this case p 2 T�1 (A) clearly so �p

�
T�1 (A)

�
= 1 and (3.1)

holds. Secondly, suppose that p =2 A. Then �p (A) = 0 and we
also have p =2 T�1 (A) because if p 2 T�1 (A) then p = T (p) 2
T
�
T�1 (A)

�
� A, which would be a contradiction. Therefore p =2

T�1 (A), �p
�
T�1 (A)

�
= 0, and (3.1) holds again.

2. Dirac measures on periodic orbits. Let T : X ! X be a mea-
surable map and let P = fa1; :::; ang be a periodic orbit with minimal
period n. That is, T (ai) = ai+1 for i = 1; :::; n�1 and T (an) = a1. Let
�1; :::; �n be constants such that �i 2 (0; 1) and

Pn
i=1 �i = 1. Consider

the measure
�P (A) =

X
fi:ai2Ag

�i:

Exercise 22 Show that �P is invariant if and only if �i = 1=n for
every i = 1; :::; n.

3. Circle rotations.

Proposition 23 Let T : S1 ! S1 be a circle rotation, T (x) = x + �
for some � 2 R. The Lebesgue measure is invariant.

Proof. T is just a translation and Lebesgue measure is invariant under
translations.

However, depending on the value of �, there may be other invariant
measures. If 2�=� is rational then all points x 2 S1 are periodic of
the same period and, therefore, T admits also in�nitely many distinct
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Dirac measures on the periodic orbits (see Example 26). If 2�=� is ir-
rational, then all orbits are dense in S1 (Example 26) and the Lebesgue
measure is the unique invariant measure of T .

4. Measure-preserving �ows in Rn. Let U � Rn be an open set and
v : U ! Rn a Cr vector �eld, r � 1. Consider the di¤erential equation

_x = v(x): (3.2)

Suppose that, for every p 2 U , there exists a (unique) solution x :
R! U of (3.2) with initial condition p, which means that, _xt = v (xt)
and xt=0 = p. For any t 2 R, we de�ne the map 't : U ! U by
't (p) = xt where x : R ! U is the solution of (3.2) with initial
condition x0 = p. Basic results of ordinary di¤erential equations show
that, for every t, the map 't is a C

r di¤eomorphism and the family of
maps 't : U ! U de�nes a one-parameter group, i.e., 't=0 = Id (the
identity) and 't+s = 't � 's for any t; s 2 R. Moreover, by Liouville�s
formula,

det

����@'t@xi
(p)

���� = exp�Z t

0
div v ('s(p)) ds

�
for any p 2 U and t. Hence, if we assume div v = 0, we have

det
���@'t@xi

(p)
��� = 1 and 't preserves the n-dimensional volume (or Lebesgue

measure). Hamiltonian vector �elds are examples of vector �elds that
satisfy div v = 0. Recall that a vector �eld is called Hamiltonian if
n = 2m is an even number and there exists a function H : U ! R
such that, denoting the points in Rn as (q1; :::; qm; p1; :::; pm),

v =

�
@H

@p1
; :::;

@H

@pm
;�@H
@q1

; :::;� @H
@qm

�
:

Exercise 24 Complete the proof and show that div v = 0 implies that
the �ow 't associated to v preserves the Lebesgue measure.

3.2 Poincaré�s recurrence Theorem

Invariant measures play a fundamental role in dynamics. As a �rst example,
we state and prove the following famous result by Poincaré which implies
that recurrence is a generic property of orbits of measure-preserving dynam-
ical systems.
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Theorem 25 (Poincaré�s Recurrence Theorem) Let (X;F ; �) be a prob-
ability space and let T : X ! X be a measure-preserving map. Let A 2 F
such that � (A) > 0. Then, �-almost every point x 2 A, there exists some
n 2 N such that Tn (x) 2 A. Consequently, there are in�nitely many k 2 N
for which T k (x) 2 A; a point x 2 A returns to A in�nitely often.

Proof. Let

B := fx 2 A : T k (x) =2 A for all k 2 Ng = A
/[

k2N
T�k (A) :

Then B 2 F and all the preimages T�k (B) are measurable, have the same
measure as B, and disjoint. Indeed, suppose that

T�n (B)
\
T�m (B) 6= ;; n 6= m; n > m:

That is, there exists some x 2 T�n (B)
T
T�m (B) such that

Tm (x) 2 Tm
�
T�n (B)

\
T�m (B)

�
= Tm

�
T�n (B)

�\
Tm

�
T�m (B)

�
= Tn�m(B)

\
B:

But this implies that Tn�m(B)
T
B 6= ; which contradicts the de�nition of

B.
Now, since X has �nite total measure, it follows that B has measure 0.

Actually,

1 > � (X) � �
� S
k2N

T�k (B)

�
=
X
k2N

�
�
T�k (B)

�
=
X
k2N

� (B) ;

which implies � (B) = 0. In other words, � (A) = � (AnB) and every point
in AnB returns to A, which proves the �rst assertion.

To show that almost every point of A returns to A in�nitely often let

eBn := fx 2 A : Tn (x) 2 A and T k (x) =2 A; k > ng; n � 1;
denote the set of points which return to A for the last time after exactly n
iterations. We will show that �( eBn) = 0 for any n � 1 so that the set

eB :=[
n�1

eBn � A
of the points with return to A only �nitely many times has measure 0 as well.
Indeed, consider the set Tn( eBn) � B, which is by de�nition contained in A
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and consists of points that never return to A. Therefore, �(Tn( eBn)) = 0.
But eBn � T�n �Tn( eBn)� :
Consequently, using that � is T -invariant we have

�( eBn) � ��T�n �Tn( eBn)�� = ��Tn( eBn)� = 0:
The conclusion of Poincaré�s Recurrence Theorem may be useless if the

preserved measure � has no physical meaning. For example, if p 2 X is a
�xed point, i.e., T (p) = (p), then the Dirac measure �p is invariant. However,
with respect to this measure, any set that does not contain p has measure
zero so we cannot state anything about the recurrence properties of the
systems (except for p, which is a �xed point).

On the other hand, Poincaré�s Recurrence Theorem leads us to some
paradoxical conclusions. For example, particle dynamics are ruled by Hamil-
tonian vector �elds, which preserve the Lebesgue volume of the phase space.
If we open a partition separating a chamber containing gas and a chamber
with a vacuum, then Poincaré�s Theorem implies that, after a while, the gas
molecules will again collect in the �rst chamber. This is because there exists
a set of strictly positive Lebesgue measure in R3N �R3N whose points cor-
respond to the positions and velocities of N particles in the �rst chamber.
The resolution of this paradox lies in the fact that a while may be longer
than the duration of the solar�s system existence. And, of course, that par-
ticle dynamics are described at a microscopic level by quantum mechanics,
whose e¤ects cannot be taken into account deterministically.

Example 26 Let T : S1 ! S1 be a circle rotation of angle � 2 R. If
� = 2�mn , m;n 2 N, then T

n is the identity and Theorem 25 is obvious. If �
is not commensurable with 2�, then Poincaré�s Recurrence Theorem gives

8� > 0; 9n 2 N such that jTn(x)� xj < �:

It easily follows that

Theorem 27 If � 6= 2�mn , then the orbit fT
k (x) ; k = 1; 2; :::g is dense on

the circle S1.

Exercise 28 Prove Theorem 27.
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3.3 Invariant measures for continuous maps

In this section, we show that a continuous map T : X ! X of a com-
pact metric space X into itself has at least one invariant Borel probability
measure.

Theorem 29 (Krylov-Bogolubov) Let X be a compact metric space and
T : X ! X a continuous map. Then there exists a T -invariant Borel
probability � on X.

Exercise 30 The compactness condition is essential here. Consider the
open interval I = (0; 1) and the map T : (0; 1)! (0; 1) given by T (x) = x=2.
Show that T admits no invariant probabilities.

We will prove Krylov-Bogolubov�s Theorem in several steps. Before pro-
ceeding, we need to introduce some de�nitions.

LetM denote the set of all Borel probability measures on a topological
space (X;F), F = B (X). A sequence of measures f�ngn2N �M converges
in the weak* topology to a measure � 2 M if

R
X fd�n !

R
X fd� for any

continuous function f 2 C (X) as n ! 1. A measurable map T : X ! X
induces a map T� :M ! M de�ned by (T��) (A) := �

�
T�1(A)

�
, A 2 F .

We call T�� the push-forward of �. Similarly, we can de�ne (Tn� �) (A) =
� (T�n(A)). Obviously, � is T -invariant if and only if T�� = �.

This notion of convergence is called weak-star convergence because the
space of �nite Borel measures can be canonically identi�ed with the space
of linear functionals on the space of continuous functions, i.e. with the dual
space of continuous functions. Actually, every �nite Borel measure � on X
de�nes a bounded linear functional L� (f) =

R
X fd� on the space Cc (X)

of continuous functions on X with compact support. Furthermore, L� is
positive in the sense that L� (f) � 0 if f � 0. The Riesz Representation
Theorem (see [9, Theorem 2.14]) states that the converse is also true: for
every positive bounded linear functional L on Cc (X), there is a �nite Borel
measure � on X such that L(f) =

R
X fd�, f 2 Cc (X). If X is compact,

then trivially C (X) = Cc (X).
For an arbitrary measure �0 2M, we de�ne the sequence of measures

�n :=
1

n

n�1X
i=0

T i��0: (3.3)

Our aim is to show that the sequence �n converges in the weak* topology
to a probability measure � and that this measure is invariant. In order to
do that, we will need a couple of Lemmas.
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Lemma 31 M is compact in the weak* topology.

Proof (sketch). C (X) is a Banach space with the norm of the supremum

kfk1 = sup
x2X

f (x) ; f 2 C (X) :

Its dual space, C (X)� is a normed space with the norm

kLk = supfjL (f)j : kfk1 = 1; f 2 C (X)g

such that the set of probabilitiesM� C (X)� is contained in the unit ball

fL 2 C(X)� : kLk = 1g :

Indeed, if kfk1 = 1 then f � 1 a.s. so that, for any measure � 2 C (X)�,

L� (f) =

Z
X
fd� �

Z
X
1d�; kfk1 = 1;

by monotonicity of the Lebesgue integral. Therefore, since the constant
function 1 has norm k1k1 = 1 one,

k�k = sup
�����Z

X
fd�

���� : kfk1 = 1; f 2 C (X)
�
=

Z
X
1d� = � (X) ;

which implies that the set of probability measures M is contained in the
unit ball of C (X)�.

Moreover,M is closed. To prove this statement, let f�ngn2N �M be a
sequence of probabilities that, regarded as a sequence of linear functionals�
L�n

	
n2N, converge weakly to a linear map L 2 C

� (X). We need to show
that L = L� for some � 2M. Since L�n are positive,

L�n (f) � 0 8n if f � 0;

then taking the limit n!1 we conclude L (f) � 0 if f � 0, so L is positive.
By the Riesz Representation Theorem, there exists a �nite Borel measure �
such that L = L�. But f�ngn2N are probabilities, so

1 = L�n (1) = �n (X) 8n:

Letting n!1, we also conclude that 1 = L� (1), which implies that � is a
probability as required.

Finally, by the Banach-Alaoglu Theorem, we have that the unit ball of
C� (M) is compact. SinceM is a closed set of a compact one,M is compact
too:
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Theorem 32 (Banach-Alaoglu, [6, Chapter V, §4]) Let E be a normed
space. Then, the closed balls in E� are compact in the weak* topology.

Lemma 33 For all integrable functions f : X ! R we haveZ
X
fd (T��) =

Z
X
(f � T )d�: (3.4)

Proof. We �rst prove that the statement holds for characteristic functions.
If f = 1A, A 2 F , thenZ
X
1Ad (T��) = (T��) (A) = �

�
T�1 (A)

�
=

Z
X
1T�1(A)d� =

Z
X
1A � Td�:

Obviously, (3.4) also holds if f is a simple function, that is, a linear combina-
tion of characteristic functions. Now suppose that f is a non-negative inte-
grable function. By Exercise 18, there exists an increasing sequence ffngn2N
of simple functions converging to f . Moreover, the sequence ffn � Tgn2N is
clearly an increasing sequence of simple functions converging to f � T . By
the de�nition of Lebesgue integral, we haveZ

X
fn � Td� �!

n!1

Z
X
f � Td� and

Z
X
fnd (T��) �!

n!1

Z
X
fd (T��) :

Since we already proved that
R
X fn�Td� =

R
X fnd (T��) for simple functions

and the limit of a sequence is unique, we conclude thatZ
X
f � Td� =

Z
X
fd (T��) :

For a general measurable f , we repeat the same argument for the positive
f+ and negative f� parts of f .

Lemma 34 T� :M!M is continuous.

Proof. Suppose f�ngn2N � M is a sequence converging to �, i.e., �n ! �
as n ! 1. Then, by the de�nition of convergence in the weak* topology,
for any continuous function f : X ! R we haveZ

X
fd (T��n) =

Z
X
f � Td�n �!n!1

Z
X
f � Td� =

Z
X
fd (T��)
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where we have used Lemma 33. In other words, T��n ! T�� as n ! 1,
which, in turn, implies that T is continuous.

Proof of Theorem 29. Let f�ngn2N be the sequence of measure de�ned
in (3.3). The compactness of M implies, in particular, that the sequence
f�ngn2N has a converging subsequence f�njgj2N. De�ne

� := lim
j!1

�nj :

We will show that � is invariant.
One the one hand, using the linearity of T�, we have

T��nj = T�

0@ 1

nj

nj�1X
i=0

T i��0

1A =
1

nj

nj�1X
i=0

T i+1� �0

=
1

nj

nj�1X
i=0

T i��0 �
1

nj
�0 +

1

nj
T
nj
� �0

= �nj �
1

nj
�0 +

1

nj
T
nj
� �0:

Since the last two terms of this expression tend to 0 as j !1, we conclude
that

T��nj �!n!1 �:

On the other hand, from the continuity of T (Lemma 34), we have T��nj !
T��. That is, T�� = � and � is an invariant measure.



Chapter 4

Birkho¤�s Ergodic Theorem

In this chapter, we will state and prove Birkho¤�s Ergodic Theorem which,
in the case of ergodic measures, gives a much more sophisticated statement
about recurrence than Poincaré�s Recurrence Theorem. We will review the
examples of the previous chapter and discuss the ergodicity of their mea-
sures. Finally, we will conclude with a section on the existence of ergodic
measures in general.

4.1 Ergodic transformations.

Throughout this section, (X;F ; �) will denote a measure space and T : X !
X a measure-preserving transformation.

De�nition 35 We say that T or � is ergodic if, for any A 2 F such that
T�1 (A) = A, then A has either measure 0 or full measure.

Exercise 36 Show that T�1(A) = A implies T (A) = A but that the con-
verse is not true in general.

A setA 2 F such that T�1 (A) = A is called T -invariant. A measurable
function f : X ! R is called T -invariant if f � T = f almost everywhere.

Proposition 37 A measurable transformation is ergodic if and only if every
invariant measurable function is constant a.e..

Proof. Exercise. (Hint: see the proof of Proposition 38).
Therefore, the ergodicity a transformation T : X ! X can be char-

acterised saying that T -invariant measurable functions are constant a.e..

26



4.2 Conditional Expectation 27

However, when (X;F ; �) is a �nite measure space, we can use this charac-
terisation in a smaller set of functions.

Proposition 38 Suppose that � (X) < 1. The following properties are
equivalent:

1. T is ergodic.

2. If f 2 Lp (X;�) is T -invariant, p � 1, then f is constant almost
everywhere.

Proof. 2 =) 1. If A 2 F is T -invariant, the characteristic function 1A is
T -invariant and belongs to Lp (X;�). Therefore, 1A is constant a.e.. That
is, � (A) = 0 or 1.

1 =) 2. If f 2 Lp (X;�) is T -invariant, the set Ac := fx : f (x) � cg is
invariant for each c 2 R. Since T is ergodic, this means that � (Ac) is either
0 or 1.

Exercise 39 Show that this implies that f is constant almost everywhere.

4.2 Conditional Expectation

Let (X;F ; �) be a probability space. That is, � (X) = 1. A measurable
function f : X ! R between the measurable spaces (X;F) and (R;B(R))
is called a random variable. If f is a random variable, E [f ] will denoteR
X fd� and we will call this integral the expectation or mean value of f .

De�nition 40 Let f : X ! R be a real-valued random variable such that
E [jf j] < 1 and let G be a sub �-algebra of F , G � F . The conditional
expectation of f with respect to G is a G-measurable random variable f 0

such that Z
A
fd� =

Z
A
f 0d� for any A 2 G: (4.1)

We denote f 0 by E [f j G].

The existence of E [f j G] is not a trivial issue and it is based on the
Radon-Nikodym�s Theorem, one of the most important theorems in measure
theory. The explicit computation of E [f j G] can be carried out in some
particular situations.
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Example 41 Let G be the �-algebra generated by a �nite partitionA1; :::; An
of X and suppose that � (Ai) > 0 for any i = 1; :::; n. Then

E [f j G] =
nX
i=1

E [f1Ai ]

� (Ai)
1Ai :

In particular if G = f;; X;A;Acg is the �-algebra generated by A 2 F , then

E [f j G] = E [f1A]

� (A)
1A +

E [f1Ac ]

� (Ac)
1Ac :

Example 42 If G is the trivial �-algebra, G = f;; Xg, then E [f j G] = E [f ]
for any random variable f . Indeed, on the one hand, only constants are
measurable with respect to the trivial �-algebra; on the other hand, (4.1)
implies the conditional expectation to be equal to the mean value of f .

We review Radon-Nikodym�s Theorem for the bene�t of a clearer ex-
position. Recall that given two �nite measures � and � on a measurable
space (X;F), we say that � is absolutely continuous with respect to � if
� (A) = 0 implies � (A) = 0, where A 2 F . We will write � � �.

Theorem 43 (Radon-Nikodym�s Theorem) Let � and � be two �nite
measures on (X;F) such that � is absolutely continuous with respect to �.
Then, there exists an essentially unique measurable function g : X ! R such
that

� (A) =

Z
A
gd�: (4.2)

The density g is denoted by d�
d� and is usually called the Radon-Nikodym

derivative.

Essentially unique in Radon-Nykodym�s Theorem means that any two
functions satisfying (4.2) may only di¤er on a set of �-measure 0.

Proposition 44 With the same notation as in De�nition 40, the condi-
tional expectation E [f j G] exists and is essentially unique.

Proof. We continue denoting by � the restriction of � to G and de�ne the
measure � on G by

� (A) =

Z
A
fd�, A 2 G:

It is clear that � is absolutely continuous with respect to �. Its Radon-
Nikodym derivative is then the required conditional expectation. The unique-
ness follows from the uniqueness statement in the Radon-Nikodym�s Theo-
rem.
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4.2.1 Properties of the conditional expectation

1. Linearity: for any two random variables f; g : X ! R and two real
numbers a; b 2 R,

E [af + bgj G] = aE [f j G] + bE [gj G] :

This property follows from the de�nition of the conditional expectation
and that of the integral.

2. monotonicity: If g � f then E [gj G] � E [f j G].

Exercise 45 Show the monotonicity property using that, if two G-
measurable random variables f1; f2 : X ! R satisfy E [f11A] � E [f21A]
for any A 2 G, then f1 � f2.

3. The mean value of a random variable is the same as that of its condi-
tional expectation:

E [E [f j G]] = E [f ] :

This is a consequence of (4.1) with A = X 2 G.

4. If f : X ! R is a G-measurable random variable, then E [f j G] = f .
Indeed, f is already G-measurable and satis�es (4.1).

5. Two elements A;B 2 F are independent if � (A \B) = � (A)� (B).
Two �-algebras F and G are independent if, for any A 2 F and any
B 2 G, A and B are independent. We say that a random variable
f : X ! R is independent of a �-algebra G if the �-algebra generated
by f , F = �

�
ff�1 (A) : A 2 B(R)g

�
, is independent of G. Finally, we

say that two random variables are independent it the �-algebras they
generate are independent.

If f : X ! R is independent of G, then E [f j G] = E [f ].

Exercise 46 Prove this statement using that, if g; f : X ! R are two
independent random variables, E [fg] = E [f ] E [g].

6. Factorization: If g is a bounded, G-measurable random variable,

E [gf j G] = gE [f j G] :
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7. If Gi, i = 1; 2, are �-algebras such that with G1 � G2,

E [E [f j G1]j G2] = E [E [f j G2]j G1] = E [f j G1] :

8. Let f be a random variable independent of G and let g be a G-
measurable random variable. Then, for any measurable function h :
R2 ! R such that the random variable

h (f; g) : X �! R
x 7�! h (f (x) ; g (x))

is in L1 (X;�), we have

E [h (f; g)j G] = E [h (f; x)]jx=g :

In this expression, E [h (f; x)] denotes the random variable that, to any
�xed x 2 X, associates the expectation E [h (f; x)]. E [h (f; x)]jx=g
denotes the composition of this random variable with g.

4.3 Birkho¤�s Ergodic Theorem

Let (X;F ; �) be a probability space and T : X ! X a probability preserving
map. The results of this sections are also true if we replace the probability
� with a �nite measure, � (X) <1. We de�ne the �-algebra of T -invariant
sets G = �

��
A 2 F : T�1(A) = A

	�
.

Exercise 47 Show that any G-measurable random variable f : X ! R is
T -invariant.

Theorem 48 (Birkho¤�s Ergodic Theorem) Let f : X ! R be an in-
tegrable random variable (i.e., E [jf j] < 1). With the notation introduced
so far,

lim
N!1

1

N

N�1X
n=0

f (Tn(x)) = E [f j G] (x) a.s.. (4.3)

Remark 49 Birkho¤ �s Ergodic Theorem implies that the limit

lim
N!1

1

N

N�1X
n=0

f (Tn(x))

exists a.s. and, moreover, de�nes a T -invariant integrable function function
because E [f j G] is G-measurable (Exercise 47). In the literature, these im-
portant consequences of Birkho¤ �s Ergodic Theorem are sometimes explicitly
stated.
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Birkho¤�s Ergodic Theorem has an important corollary when T is er-
godic. Observe that, if T is ergodic, then any subset in the �-algebra G of
invariant sets has probability either 0 or 1. Roughly speaking, one might
think of G as the trivial �-algebra so, by Example 42, E [f j G] = E [f ]. We
give a rigorous proof of this fact in the next corollary:

Corollary 50 If T is ergodic with respect to �,

lim
N!1

1

N

N�1X
n=0

f (Tn(x)) = E [f ] a.s..

Proof. Let f 0 = E [f j G] and de�ne the sets A+ := fx 2 X : f 0 (x) > E [f ]g,
A0 := fx 2 X : f 0 (x) = E [f ]g, and A� := fx 2 X : f 0 (x) < E [f ]g. These
three sets are T -invariant (f 0 is T -invariant by Exercise 47) and, therefore,
belong to G. They form a partition of X and, consequently, exactly one of
them must have measure 1 and the other two probability 0. If � (A+) = 1,
then E [f 0] =

R
A+
f 0d� and, using the monotonicity of the integral,

E
�
f 0
�
=

Z
A+

f 0d� >

Z
A+

E [f ] d� = E [f ]� (A+) = E [f ] ;

which is clearly a contradiction because, by de�nition, E [f 0] = E [f ]. Simi-
larly, � (A�) must also be 0. Consequently, � (A0) = 1 and f 0 = E [f ] a.s..

Corollary 50 is often referred to as Birkho¤�s Theorem in the literature.
Its physical interpretation is the following. An integrable function f : X !
R is sometimes called an observable since it can be thought of as the result of
a measurement which depends on the point x of the phase space X at which
f is evaluated. The integral

R
X fd� is sometimes called the space average

of f (with respect to the measure �) whereas, for a given point x 2 X, the
averages 1

n

Pn�1
i=0 f(T

i(x)) are often referred to as the time averages of
f along the orbit of x. Corollary 50 claims that, when � is ergodic, time
averages converge to space averages.

In order to prove Theorem 48, we need an auxiliary result.

Lemma 51 (Maximal Ergodic Theorem) De�ne

SN (x) =

N�1X
n=0

f (Tn(x)) and MN (x) := maxfS0(x); :::; SN (x)g

with the convention S0 = 0. Then
R
fMN>0g fd� � 0.
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Proof. For every 0 � k � N and every x 2 X, by de�nition, one has
MN (T (x)) > Sk (T (x)) and f(x) + MN (T (x)) � f(x) + Sk (T (x)) =
Sk+1(x). Therefore,

f (x) � max fS1(x); :::; SN (x)g �MN (T (x)) :

Furthermore, max fS1(x); :::; SN (x)g = MN (x) on the set fMN > 0g, so
that Z

fMN>0g
fd� �

Z
fMN>0g

(MN �MN � T ) d�

� E [MN ]�
Z
fMN>0g

(MN � T )d� (4.4)

where
R
fMN>0gMNd� � E [MN ] because MN � 0. Now,Z

fMN>0g
(MN � T )d� =

Z
X
1fMN>0g(MN � T )d� =

Z
X
1fT (x) j MN (x)>0gMNd(T��)

=

Z
fT (x) j MN (x)>0g

MNd�

because T is measure-preserving. Since MN � 0,
R
BMNd� � E [MN ] for

any B 2 F , so that (4.4) impliesZ
fMN>0g

fd� � E [MN ]�
Z
fT (x) j MN (x)>0g

(MN � T )d� � 0;

which is the required result.

Proof of Theorem 48. First of all, observe that proving (4.3) is equivalent
to proving that

0 = lim
N!1

1

N

N�1X
n=0

f (Tn(x))� E [f j G] = lim
N!1

1

N

N�1X
n=0

(f � E [f j G]) (Tn(x))

where we have used that E [f j G] is T -invariant. Therefore, replacing f by
f �E [f j G] in the statement of Birkho¤�s Ergodic Theorem, we can assume
without loss of generality that E [f j G] = 0. De�ne S = lim supn!1 Sn=n
and S = lim infn!1 Sn=n. We want to show that S = S = 0. It is enough
to show that S � 0 a.s. since this implies (by considering �f instead of f)
that S � 0. Therefore 0 � S � S � 0, which means S = S = 0 a.s..
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It is clear that S (T (x)) = S (x) for every x 2 X, so that, if " > 0, one
has A" :=

�
x 2 X : S(x) > "

	
2 G. That is, A" belongs to the �-algebra G

of T -invariant sets. We want to show that � (A") = 0. De�ne

f" := (f � ")1A" ;

and S"N and M
"
N according to Lemma 51. With these de�nitions, we have

S"N
N

=

�
0 if S(x) � "
SN
N � " otherwise.

(4.5)

The sequence of sets fM "
N > 0g increases to the set B" := fsupN S"N > 0g =

fsupN
S"N
N > 0g. From (4.5),

supN
S"N (x)

N
> 0() 9N 2 N : SN

N
� " > 0() S(x) > ":

Therefore

B" =

�
supN

SN
N

> "

�
=
�
S > "

	
= A":

Now, on the one hand,
R
fM"

N>0g f
"d� � 0 for any N � 1 from Lemma 51; on

the other hand, E [jf"j] � E [jf j] + " <1. In this situation, the Dominated
Convergence Theorem implies that

0 � lim
N!1

Z
fM"

N>0g
f"d� =

Z
A"
f"d�

and, therefore,

0 �
Z
A"
f"d� =

Z
A"
(f � ") d� =

Z
A"
fd�� "� (A")

=

Z
A"
E [f j G] d�� "� (A") = �"� (A")

because A" 2 G and we assumed that E [f j G] = 0. In conclusion, one must
have � (A") = 0 for any " > 0, which implies that S � 0 almost surely.

Corollary 52 Let T : X ! X be a measurable transformation and � a
T -invariant ergodic probability. Then, for any A 2 F

#
�
1 � j � N : T j (x) 2 A

	
N

�!
N!1

� (A) a.s.:
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Proof. It is a straightforward consequence of Birkho¤�s Ergodic Theorem
applied to the characteristic function f = 1A.

Example 53 Dirac measures on �xed points and periodic orbits.
Let T : X ! X be a measurable transformation and let P = fa1; :::; ang be
a periodic orbit. Let �P = 1

n

Pn
i=1 �ai (A) be the Dirac measure uniformly

distributed on P (see Subsection 3.1.1). We already know that �P is T -
invariant.

Proposition 54 �P is ergodic.

Proof. If P = fa1g is a �xed point, the statement is trivial because every
measurable set A 2 F has measure 0 or 1 with respect to �a1 . In particular,
this is true for any backward invariant set. If P is a periodic orbit with
n � 2 points, then every measurable set A such that T�1 (A) = A must
contain either all points of P or none of them. Therefore A has measure
either 0 or 1.

Now, let p 6= q be two �xed points for T and de�ne the measure

� =
1

2
(�p + �q) :

Proposition 55 � is not ergodic.

Proof. Consider the set A =
S
n2N T

�1 (p) of all the preimages of the point
p. Then clearly T�1 (A) = A. Moreover, q =2 A since q is a �xed point
and therefore cannot be sent to p under a forward iteration. Therefore
� (A) = 1=2 and � is not ergodic.

4.4 Structure of the set of invariant measures

Let X be a topological space and T : X ! X a measurable transformation.
Recall that M denotes the space of all Borel probabilities on (X;B (X)).
The larger space of �nite Borel measures is a vector space since for any two
measures �1 and �2 and any two scalars a; b 2 R we have that a�1 + b�2
also de�nes a �nite measure. LetMT �M be the subset of all T -invariant
Borel probability measures on X. A subset of a linear space is convex if,
for any t 2 [0; 1] and every �1; �2 2M we have t�1 + (1� t)�2 2M.

Exercise 56 M andMT are convex.
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Moreover, MT � M is closed. If, additionally, M is compact (for
instance if X is compact, see Lemma 31) then MT is also compact in the
weak* topology. We say that � 2 MT is an extremal point of MT if it
cannot be written as a linear combination of any two other points of MT ,
i.e., if � = t�1+(1� t)�2 for some �1; �2 2MT , then necessarily t = 0 or 1.
The Krein-Milman Theorem claims that a convex set is the convex hull of its
extremal points. In particular, a convex set has always extremal points. As
we will see in Proposition 59, ergodic probabilities correspond to extremal
points and, therefore, the existence of ergodic measures is always guaranteed
provided that MT 6= ;. For example, if X is compact and T : X ! X is
continuous, then MT 6= ; by Krylov-Bogolubov�s Theorem (Theorem 29).
Consequently,

Proposition 57 If X is compact and T : X ! X is continuous, then there
exists one ergodic probability at least.

We say that two measures � and � are equivalent, and we will write
� = �, if � (A) = � (A) for any A 2 F . In particular, this means thatR
X fd� =

R
X fd� for any bounded measurable function f : X ! R. We

say that two measures � and � are mutually singular if there exists a
measurable set A 2 F such that �(A) = 1 and � (A) = 0.

Lemma 58 If �1; �2 2 MT are ergodic measures such that �1 � �2 then
�1 = �2.

Proof. Let f : X ! R be an arbitrary bounded measurable function
(and thus in particular integrable with respect to any invariant probability
measure). Since �2 is ergodic, by Birkho¤�s Ergodic Theorem,

lim
N!1

1

N

N�1X
n=0

f (Tn(x)) =

Z
X
fd�2

for any x 2 
 on a measurable set of full �2-measure, i.e., �2 (
) = 1. Since
�1 � �2 and �2 (


c) = 0, we have �1 (

c) = 0 and, consequently, �1 (
) = 1

as well. Therefore,

lim
N!1

1

N

N�1X
n=0

f (Tn(x)) =

Z
X
fd�2 �1-a.s..

However, applying Birkho¤�s Ergodic Theorem to �1, we have

lim
N!1

1

N

N�1X
n=0

f (Tn(x)) =

Z
X
fd�1 �1-a.s..
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In other words, Z
X
fd�2 =

Z
X
fd�1 (4.6)

for any measurable bounded function f . Writing (4.6) for a characteristic
function 1A, we obtain �1 (A) = �2 (A) for any measurable set A 2 F and
�1 = �2.

Proposition 59 � 2MT is ergodic if and only if it is an extremal point of
MT .

Proof. � 2 MT extremal point =) � 2 MT ergodic. Suppose that �
is not ergodic. Then there exists a T -invariant measurable subset A � X
with 0 < � (A) < 1. De�ne the measures �A (B) = � (B \A) =� (A) and
�XnA (B) = � (B \ (XnA)) =� (XnA) where B 2 F . Then �A and �XnA are
T -invariant and

� = � (A)�A + � (XnA)�XnA;
so � is not an extreme point.

� 2MT ergodic =) � 2MT extremal point. Suppose by contradiction
that � is not extremal so that � = t�1+(1� t)�2 for two invariant di¤erent
probability measures �1; �2 2 MT and some t 2 (0; 1). Since � (A) = 0
always implies �1 (A) = 0 and �2 (A) = 0 both �1 and �2 are absolutely
continuous with respect to � and, moreover, they are ergodic. Indeed, if
� (A) = 1, then necessarily �1 (A) = �2 (A) = 1. Therefore, by Lemma 58,
we have �1 = � = �2 contradicting thus our assumption.

Ergodic measures are not only extremal points but also mutually singular
each other.

Proposition 60 Let �1 and �2 be distinct ergodic invariant measures. Then
�1 and �2 are mutually singular.

Proof. By Lemma 58, �1 and �2 cannot be absolutely continuous. There-
fore, there exists a measurable set E such that �1(E) > 0 and �2(E) = 0.
De�ne

A =
1\
m=0

1[
j=m

T�j(E):

We will show that �1(A) = 1 and �2(A) = 0 which will imply that �1 and
�2 are mutually singular.

First, we claim that T�1 (A) = A. Indeed, if x 2 A then x 2
S1
j=m T

�j(E)

for any m 2 N. That is, T j (x) 2 E for in�nitely many values of j 2 N.
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If x satis�es this property, then so do T�1 (x) and T (x), which implies
T�1 (A) = A. Therefore, it is su¢ cient to show that �1(A) > 0 to imply
�1(A) = 0 by the ergodicity of �1.

By the invariance of both �1 and �2 we have

�1

�S1
j=0 T

�j(E)
�
� �1 (E) > 0 (4.7)

and
�2

�S1
j=0 T

�j(E)
�
= 0: (4.8)

Observe that (4.8) implies that �2 (A) = 0. On the other hand,

1S
j=m

T�j(E) = T�m

 
1S
j=0

T�j(E)

!

and, consequently,

�i

�S1
j=m T

�j(E)
�
= �i

�
T�m

�S1
j=0 T

�j(E)
��
= �i

�S1
j=0 T

�j(E)
�

for i = 1; 2. In particular, the measure of each
S1
j=m T

�j(E) is constant.
Since the sets

S1
j=m T

�j(E) are nested, i.e.,S1
j=m+1 T

�j(E) �
S1
j=m T

�j(E);

A is the countable intersection of a nested sequence of sets all of them with
the same measure (strictly positive by (4.7)). It follows that �1 (A) > 0 and
�2 (A) = 0 as required.

Exercise 61 Prove this last sentence.



Chapter 5

Circle rotations

In this chapter, we are going to deal with a very important example, that
of circle rotations

T : S1 �! S1
x 7�! x+ �; � 2 R: (5.1)

More concretely, we are going to prove that the Lebesgue measure � on�
S1;B(S1)

�
is ergodic if and only if � is a irrational multiple of 2�, i.e.,

� 6= 2�mn , m;n 2 Z. Indeed if � = 2�
m
n with m;n 2 Z such that m and n

have no common factors, then Tn = Id is the identity and, for any x 2 S1,
Ox =

�
x; T (x); :::; Tn�1(x)

	
is a periodic orbit of period n. Then any set

built as a family of arcs
�
B"
�
T i(x)

�	
i=0:::n�1 of length " > 0 centered at the

points of an orbit Ox is invariant and of strictly positive Lebesgue measure.
Therefore, the Lebesgue measure is not ergodic. Furthermore, according to
Example 53, the Dirac measure supported on Ox

�Ox =
1

n

nX
i=0

�T i(x)

is ergodic. Therefore, a rational rotation admits in�nitely many ergodic
measures.

5.1 Irrational case

We will prove that the Lebesgue measure is ergodic when � in (5.1) is an
irrational multiple of 2� in two di¤erent ways. The �rst proof is rather
easy and uses Fourier analysis. The second one is longer and requires some
non-trivial results such as the Lebesgue Density Theorem. Nevertheless,

38
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this theorem is quite important in order to prove the ergodicity of some
concrete maps, hence the reason why we choose to prove the ergodicity of
an irrational rotation by this slightly more sophisticated way. To start with,
we will give the easier proof.

Proposition 62 The Lebesgue measure is ergodic with respect to the rota-
tion (5.1) if and only if � is an irrational multiple of 2�.

Proof. By Proposition 38, it is enough to prove that any T -invariant
f 2 L2

�
S1; �

�
is constant a.e.. Identify S1 with the unit interval [0; 1] =0�1

and think of � as an irrational number between 0 and 1. The Fourier
series

Pn=1
n=�1 an e

2n�ix of f converges to f in the L2 norm. The seriesPn=1
n=�1 an e

2n�i(x+�) converges to f � T . Since f = f � T a.e., unique-
ness of Fourier coe¢ cients implies that an = an e2n�i� for all n 2 Z. Since
e2n�i� 6= 1 for n 6= 0, we conclude that an = 0 for n 6= 0, so f is constant
a.e..

The converse is immediate because if � = n
m is rational, n;m 2 Z, then

we already showed that the Lebesgue measure is not ergodic.

For the alternative proof, we need �rst to de�ne new concepts and give
additional results.

Lemma 63 ([9, Lemma 7.3]) Let W � Rn be a measurable set that is
contained in a �nite union of balls Bri (xi) where xi 2 Rn and ri > 0,
i = 1; :::; N . Then there is a set S � f1; :::; Ng so that

(a) the balls Bri (xi) with i 2 S are disjoint,

(b) W �
S
i2S B3ri (xi) ; and

(c) � (W ) � 3n
P
i2S � (Bri (xi)).

Proof. Order the balls Bi = Bri (xi) so that r1 � r2 � ::: � rN . Put i1 = 1.
Discard all Bj that intersect Bii . Let Bi2 be the �rst of the remaining Bj
if there are any. Discard all Bj with j > i2 that intersect Bi2 , let Bi3 be
the �rst of the remaining ones, and so on as long as possible. This process
stops after a �nite number of steps and gives S = fi1; i2; :::g. It is clear that
(a) holds. Every discarded Bj is a subset of B3ri (xi) for some i 2 S, for
if r0 < r and Br0 (x0) intersects Br (x), then Br0 (x0) � Br (x). This proves
(b). (c) follows from (b) because, in Rn,

� (B3r (x)) = 3
n� (Br (x)) :
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Corollary 64 Let T : S1 ! S1be an irrational circle rotation. Then, for
every x 2 S1, there exists a sequence of arc neighbourhoods Jn of x with
� (Jn)! 0 as n!1 and a sequence of �nite sets Sn � N such that

1. S1 �
S
i2Sn T

i (Jn) ;

2.
P
i2Sn �

�
T i (Jn)

�
� 3

�
1 + 2

n

�
:

Observe that while the �rst statement is relatively intuitive, the second is
highly non-trivial beforehand. Nevertheless, this is a consequence of Lemma
63. The number three is not as important as the fact that there exists a
bound on how much the intervals T i (Jn) can overlap, so that we can give
a bound uniform in n. This will be crucially used at the end of the proof of
Proposition 68.

Proof of Corollary 64. Identify S1 with [0; 1]/ 0 � 1 and de�ne the
projection

� : R �! [0; 1]/ 0 � 1
z 7�! [z]

that send any real number to its equivalent class in [0; 1]/ 0 � 1. Let z 2
[0; 1] and n 2 N. Take Jn := �

�
B3=n(z)

�
as the image by � of the open ball

of radius 3n centered at z. fJngn2N de�nes a sequence of arc neighbourhoods
of x = [z] such that � (Jn) = 6

n ! 0 as n! 0.

Exercise 65 Using that the orbit fT i (x)gi2N of x is dense in S1 for an
irrational rotation (Theorem 27), prove that there exists a �nite subset I =
fi1; :::; iNg � N such that [0; 1] �

S
i2I B1=n(T

i (x)).

Now, we have
[0; 1] �

S
i2I
B1=n

�
T i (x)

�
:

By Corollary 64, there exists a �nite set S � I such that

[0; 1] �
S
i2S
B3=n

�
T i (x)

�
where the balls B1=n

�
T i (x)

�
are disjoint. Moreover, �

�
B3=n

�
T i (x)

��
=

T i (Jn) and
S1 �

S
i2S
�
�
B3=n

�
T i (x)

��
=
S
i2S
T i (Jn) :
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On the other hand,X
i2S

�
�
T i (Jn)

�
=
X
i2S

�
�
�
�
B3=n

�
T i (x)

���
�
X
i2S

�
�
B3=n

�
T i (x)

��
� 3

X
i2S

�
�
B1=n

�
T i (x)

��
: (5.2)

Observe now that the union
S
i2S B1=n

�
T i (x)

�
is contained in the open

interval (� 1
n ; 1 +

1
n). Since the balls B1=n

�
T i (x)

�
, i 2 S, are disjoint,X

i2S
�
�
B1=n

�
T i (x)

��
= �

�S
i2S
B1=n

�
T i (x)

��
� 1 + 2

n
:

Therefore, (5.2) impliesX
i2S

�
�
T i (Jn)

�
� 3

�
1 +

2

n

�
:

If f 2 L1 (Rn; �), n 2 N, we say that x 2 Rn is a Lebesgue point of f if

f (x) = lim
r!0

1

Br (x)

Z
Br(x)

fd�:

It is probably far from obvious that every f 2 L1 (Rn; �) has Lebesgue
points. But the following remarkable theorem, which we are not going to
prove, shows that they always exist. The reader is encouraged to check with
[9].

Theorem 66 ([9, Theorem 7.7]) If f 2 L1 (Rn; �), then almost every
x 2 Rn is a Lebesgue point of f .

One of the most important corollaries of Theorem 66 is what in the
literature is sometimes referred to as Lebesgue�s Density Theorem. This re-
sult gives us information about the density of (Lebesgue) measure on almost
every point of a measurable set.

Corollary 67 (Lebesgue�s Density Theorem) Let A 2 B (Rn) be a Lebesgue
measurable subset of Rn with positive measure, � (A) > 0. Then for �-almost
every point x 2 A,

lim
r!0

� (A \Br(x))
�(Br(x))

= 1: (5.3)
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Proof. This result is a consequence of Theorem 66 applied to the charac-
teristic function f = 1A.

This result says that in some very subtle way. A priori, one may expect
that if � (A) = 1=2, then for any subinterval J the ratio between A\J and J
might be 1=2, i.e., that the ratio between the measure of the whole interval
and the measure of the set A is constant at every scale. This theorem shows
that this is not the case. Points x 2 A for which (5.3) holds are called
Lebesgue�s density points.

We are now ready to tackle the prove of ergodicity of Lebesgue measure
for irrational circle rotations. Similar arguments of those used in the proof
of Proposition 68 will be used later.

Proposition 68 If �=2� is irrational then Lebesgue measure is ergodic.

Proof. Let A 2 B
�
S1
�
satisfy T�1 (A) = A and � (A) > 0. We want to

show that � (A) = 1. By Lebesgue�s Density Theorem, �-almost every point
of A is a Lebesgue density point of A. Let x 2 A be one of such points and
�x an arbitrary " > 0. Choose n" 2 N large enough so that

� (A \ Jn") � (1� ")� (Jn") (5.4)

where Jn" is a su¢ ciently small arc neighbourhood of x as in Corollary 64.
We shall make three simple statements which combined will give us the
desired result. First of all, observe that (5.4) is equivalent to

� (Jn"nA)
� (Jn")

� ": (5.5)

Secondly, since T is just a translation and Lebesgue measure is invariant by
translations, we have �

�
T i (Jn")

�
= � (Jn") and �

�
T i (Jn"nA)

�
= � (Jn"nA)

for any i 2 N (these equalities stem from the fact that � is invariant by T�1,
which is again a rotation of angle ��). In particular,

�
�
T i (Jn"nA)

�
� (T i (Jn"))

=
� (Jn"nA)
� (Jn")

: (5.6)

In third place, using the invariance of A (T�1(A) = A which, in turn, implies
T (A) = A) and the fact that S1 �

S
i2Sn" T

i (Jn") we have

S1
�
A �

�S
i2Sn" T

i (Jn")
�/

A =
S
i2Sn"

�
T i (Jn")

�
A
�
=
S
i2Sn" T

i (Jn"nA)
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so
�
�
S1
�
A
�
�
X
i2Sn"

�
�
T i (Jn"nA)

�
; (5.7)

Now, from (5.5), (5.6), and (5.7)

�
�
S1
�
A
�
�
X
i2Sn"

�
�
T i (Jn"nA)

�
�
X
i2Sn"

� (Jn"nA)
� (Jn")

�
�
T i (Jn")

�
=
� (Jn"nA)
� (Jn")

X
i2Sn"

�
�
T i (Jn")

�
� 3"

�
1 +

2

n"

�
:

by Corollary 64. Since " is arbitrary, this means that �
�
S1
�
A
�
= 0 so

� (A) = 1.



Chapter 6

Central Limit Theorem

In this chapter we will state a Central Limit Theorem for the random vari-
ables f � Tn built from an observable f 2 L1 (X;�) and an ergodic map
T : X ! X. This Central Limit Theorem is a �rs step to give con�dence
intervals for an estimation of E [f ] by means of Birkho¤�s Ergodic Theorem,

1

N

N�1X
n=0

f � Tn(x):

The Central Limit Theorem will only hold for mixing maps.

6.1 Mixing maps

De�nition 69 Let T : X ! X be a measurable transformation on a mea-
sure space (X;F ; �) that preserves �. We say that T is mixing if, for any
two sets A;B 2 F such that � (A) > 0 and � (B) > 0, we have

lim
n!1

�
�
T�n (B) \A

�
= � (B)� (A) :

There are two natural interpretations of mixing, one geometrical and one
probabilistic. From a geometrical point of view (recall that �

�
T�1(B)

�
=

�(B)) one can think of T�n (B) as a redistribution of mass. The mixing
condition then says that for large n the proportion of T�n (B) which inter-
sects A is just proportional to the measure of A. In other words T�n (B)
is spreading itself uniformly with respect to the measure. A more proba-
bilistic point of view is to think of � (T�n (B) \A) =� (B) as the conditional
probability of having x 2 A given that Tn (x) 2 B, i.e. the probability that
the occurrence of the event B today is a consequence of the occurrence of

44
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the event A n steps in the past. The mixing condition then says that this
probability converges to the probability of A, i.e., asymptotically, there is
no causal relation between the two events.

A classical example by Arnold and Avez ([1]) explains what a mixing
map does. Suppose a cocktail shaker X, � (X) = 1 is �lled by 85% of lemon
juice and 15% of vodka. Let A be the part of the cocktail shaker originally
occupied by the vodka and B any part of the shaker. Let T�1 : X ! X
be the transformation of the content of the shaker made during one move
by the waiter (who is shaking the cocktail repeatedly and redistributes the
volume of the two liquids). Then after n moves the fraction of juice in the
part B is � (T�n (A) \B) =� (B). As the waiter keeps shaking the cocktail
(n!1), the fraction of vodka in any part B approaches � (A) = 0:15, i.e.
the vodka spreads uniformly in the mixture.

Proposition 70 Let (X;F ; �) be a probability space. Any mixing map T :
X ! X is ergodic.

Proof. Let A 2 F be any T -invariant measurable set. Then T�n (A) = A
and

� (A \B) = lim
n!1

�
�
T�n (A) \B

�
= � (A)� (B) :

In particular, for A = B we have � (A) = � (A)2. This means � (A) = 0 or
� (A) = 1, hence T is ergodic.

Proposition 71 Suppose that T : X ! X is mixing. Then, for any f; g 2
L2 (X;�),

lim
n!1

Z
g (f � Tn) d� =

Z
gd�

Z
fd�: (6.1)

Proof. Equation (6.1) trivially holds for characteristic functions. Indeed, if
g = 1A and f = 1B for some sets A;B 2 F , thenZ

g (f � Tn) d� =
Z
1A (1B � Tn) d� =

Z
1A1T�n(B)d� =

Z
1A\T�n(B)d�

= �
�
A \ T�n(B)

�
�!
n!1

� (A)� (B) =

Z
1Ad�

Z
1Bd�:

(6.1) is obviously true for elementary functions as well. The general re-
sult follows approximating two arbitrary functions f and g by sequences of
elementary functions.
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6.2 Central Limit Theorem

In probability, the Strong Law of Large Numbers claims that if fXngn2N
is a sequence of independent random variables de�ned on a probability space
(
;F ; P ) that are identically distributed, then

X1 + :::+Xn
n

�!
n!1

m a.s.,

wherem = E [X1] is the common expectation. We usually say that fXngn2N
is and i.i.d. sequence. Observe that, whenever we have an ergodic map
T : X ! X on a probability space (X;F ; �), for any f 2 L1 (X;�), the
sequence of random variables Xn := f �Tn satis�es the Strong Law of Large
Numbers by Birkho¤�s Ergodic Theorem,

1

n

n�1X
i=0

f
�
T i (x)

�
�!
n!1 E

[f ] a.s.. (6.2)

Unlike the standard result in probability, now Xn = f �Tn are not indepen-
dent in general (although they might be in some particular situations).

Let Sn :=
Pn�1
i=0 f

�
T i (x)

�
. Even if we know that T : X ! X is an

ergodic map, we would like to know how fast the convergence of the averages
Sn=n is to the expected value E [f ]. Unfortunately, this convergence is in
general very slow except for some concrete functions and for dynamical
systems that, in a broad sense, exhibit some strong mixing properties (in
addition to being ergodic). Since we do not know how many iterates are
required in 6.2 to obtain a good approximation of E [f ] and since the rate
of convergence to that value may vary from point to point, having a Central
Limit Theorem for the sequenceXn = f �Tn is crucial to estimate con�dence
intervals for the expectation E [f ].

De�nition 72 Given f 2 L1 (X;�), we say that the random variables Xn =
f � Tn satisfy the Central Limit Theorem if

lim
n!1

�

��
Sn � nE [f ]p

n
� z
��

=
1p
2��f

zZ
�1

e
� s2

2�2
f ds

for some �nite �2f � 0. That is, (Sn � nE [f ]) =
p
n converges in law to

N (0; �2f ).
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For example, if f 2 L1 (X;�) is such that f �Tn satisfy the Central Limit
Theorem, that is,

Sn � nE [f ]
�f
p
n

=
Sn=n� E [f ]
�f=

p
n

�! N (0; 1) as n!1 (6.3)

and we suppose we know �f then, for n large enough,

E [f ] 2
�
Sn
n
� 1:96 �fp

n
;
Sn
n
+ 1:96

�fp
n

�
with an approximately 95% con�dence level. In general �f has to be esti-
mated as well, which means that, strictly speaking, the Gaussian distribution
in (6.3) must be replaced with a di¤erent law in order to obtain con�dence
intervals.

In probability, the Central Limit Theorem is proved for i.i.d sequences
of square integrable random variables. Observe that, again, we are in com-
pletely di¤erent context because the random variables Xn = f �Tn need not
be independent (actually they will not be in general).

From the de�nition of Sn, it can be argued that, provided that such a
�2f exists, it must be

�2f = Cf (0) + 2

1X
n=1

Cf (n) ; (6.4)

where

Cf (n) := Cov (f; f � Tn) = E [f (f � Tn)]� E [f ]2 ; n 2 N;

is the autocorrelation function. More generally, given f; g 2 L2 (X;�),
we introduce the correlation function

Cg;f (n) := Cov (g; f � Tn) = E [g (f � Tn)]� E [g] E [f ] :

Exercise 73 Without loss of generality, we can assume that E [f ] = 0.
Verify the following formula

Var [Sn] = E
�
S2n
�
= nCf (0) + 2

n�1X
i=1

(n� i)Cf (n) :
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Observe that in order that �2f in (6.4) be �nite, we must have Cf (n) ! 0
as n ! 1. By Proposition 71, this is guaranteed if T is mixing. However,
to prove the Central Limit Theorem we need a fast convergence to 0. One
can prove that

lim
n!1

�
Var [Sn]� n�2f

�
= �2

1X
n=1

nCf (n)

which implies that

lim
n!1

Var

�
Snp
n

�
= �2f

provided that
1X
n=1

n jCf (n)j <1: (6.5)

For example, (6.5) holds if there exist constants K � 0 and � > 2 such that
jCf (n)j � Kn�� (polynomial decay of correlations) or some constant � > 0
such jCf (n)j � e��n (exponential decay). One particular class of functions
exhibiting exponential decay are Hölder continuous functions:

De�nition 74 A function f : X ! R de�ned on a metric space X is called
Hölder continuous if there exist constants �f 2 (0; 1] and Kf > 0 such
that

jf (x)� f (y)j � Kf dist (x; y)�f 8x; y 2 X:

Theorem 75 (exponential decay of correlations) Let T : X ! X be a
mixing map on a metric space. For every pair of Hölder continuous functions
f and g, there exist constants Bf;g > 0 and �f;g < 1 such that

jCf;g (n)j � Bf;g�nf;g; n � 1:

Therefore,

Theorem 76 Let f : X ! R be a Hölder continuous functions. Then
Xn = f � Tn satisfy the Central Limit Theorem with �2f as in (6.4).
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