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Heteroclinic cycles may occur as structurally stable asymptotically stable attrac-

tors if there are invariant subspaces or symmetries of a dynamical system. Even

for cycles between equilibria, it may be difficult to obtain results on the generic

behaviour of trajectories converging to the cycle. For more complicated cycles be-

tween chaotic sets, the nontrivial dynamics of the ‘nodes’ can interact with that

of the ‘connections’. This paper focuses on some of the simplest problems for such

dynamics where there are direct products of an attracting homoclinic cycle with

various types of dynamics. Using a precise analytic description of a general planar

homoclinic attractor, we are able to obtain a number of results for direct product

systems.

We show that for flows that are a product of a homoclinic attractor and a

periodic orbit or a mixing hyperbolic attractor, the product of the attractors is a

minimal Milnor attractor for the product. On the other hand, we present evidence

to show that for the product of two homoclinic attractors, typically only a small

subset of the product of the attractors is an attractor for the product system.

Keywords: Milnor attractor, heteroclinic cycle, connection selection

1. Introduction

A prerequisite for understanding the dynamical behaviour of a coupled system is

first to understand the dynamics of the uncoupled (that is, product) system.
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As an illustration, consider two systems with attracting limit cycles L1 and L2 of

periods P1 and P2 respectively. In all cases one can show that the product L1×L2

is a Milnor attractor for the product system. In the absence of any symmetries,

the ratio P1/P2 of the periods is typically irrational and the product is a minimal

Milnor attractor on which there is quasiperiodic flow. For a zero measure set of

P1/P2, namely rational values, L1 × L2 can be decomposed into smaller attractors

consisting of periodic orbits. This observation motivates the study of quasiperiodic

behaviour in more general cases where there is coupling between the systems. In

particular, it suggests that finding conjugating transformations to a product system

is a way to understand the persistence of quasiperiodic behaviour in coupled systems

(Broer et al. 1990).

In this paper we examine the dynamics of products when the first factor is an

attracting homoclinic cycle and the second factor is either an attracting limit cycle,

or a hyperbolic flow or another homoclinic attractor. The questions we address are

whether the typical dynamics of the product system will have an attractor that

is the product of the attractors of the factors, and which attractors are minimal.

We regard this work as a first step towards the analysis of more complicated sys-

tems such as skew extensions of a homoclinic attractor. However, it turns out that

analysis of product systems containing a homoclinic attractor as a factor is surpris-

ingly delicate and non-trivial. For this reason, we restrict attention in this work to

establishing basic results for product systems and do not consider skew products

or more general coupled systems with a homoclinic ‘factor’. Note that Stone and

Holmes (1989) have results on chaotic or random forcing of homoclinic attractors,

but their work does not enable computation of Milnor attractors for direct product

systems.

We remark that although homoclinic and heteroclinic attractors only appear at

codimension one or higher for unconstrained dynamical systems, it has been known

for some time that there can be robust heteroclinic attractors in systems with

symmetries. This situation can occur if the connections that make up the attractor

are stable within invariant subspaces. We refer to Krupa (1997) and Ashwin & Field

(1999) for some studies of this effect and further references.

The paper is organised as follows. In §2 we discuss some of the definitions we
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use; in particular we define Milnor attractors, minimal Milnor attractors, likely limit

sets and heteroclinic attractors. We also prove the following basic result which is

used in the later sections.

Theorem 1.1. Suppose that Φt = (φt, ψt) is a product of C1 flows on X×Y where

X ⊂ Rn and Y ⊂ Rm are compact regions. Suppose that Λ is the likely limit set of

X × Y ; then Λ is invariant under the R2-action defined by (φt, ψs), (t, s) ∈ R2.

In §3 we introduce a general model for a simple homoclinic attractor Σ ⊂ R2.

The attractor Σ will consist of a hyperbolic saddle together with one saddle con-

nection. Dynamics will be defined on a one-sided neighbourhood H of Σ in R2. All

points in H \ Σ will have ω-limit set equal to Σ. For this model, we obtain exact

expressions for the well-known algebraic slowing down of attraction to the cycle.

This allows a precise and simple investigation of several product systems with ho-

moclinic attractors. In §4 we use this model homoclinic attractor in the proof of

the following result.

Theorem 1.2. Suppose that ψt(x) = x+$t is a periodic flow on S1 = R/Z with

$ 6= 0. Let φt be a semiflow on H with homoclinic attractor Σ as in §3. Then

Σ×S1 is a minimal Milnor attractor for the product system Φt : H×S1 → H×S1,

Φt(u, x) = (φt(u), ψt(x)).

In §5 we consider the product of a homoclinic cycle with a hyperbolic basic set.

The following is typical of our results.

Theorem 1.3. Suppose that ψt is a flow on a Riemannian manifold M and that

X is a hyperbolic attractor for ψt. Let φt be a semiflow on H with homoclinic

attractor Σ as in §3. Then Σ × X is a Milnor attractor for the product system

Φt : H ×M → H ×M , Φt(u, x) = (φt(u), ψt(x)). If ψt|X is topologically mixing,

then Σ×X is a minimal Milnor attractor for the product system.

In §6, we consider the product of two homoclinic attractors. One result identifies

the possibilities for attractors for the product.

Theorem 1.4. Consider a product of two systems with homoclinic attractors Σ1 ⊂

H1 and Σ2 ⊂ H2 such that Σi is the only attractor within Hi. Let

Σ = ({q1} × Σ2)
⋃

(Σ1 × {q2}) ,
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where qi is the equilibrium point on Σi, i = 1, 2. Then either Σ or Σ1 × Σ2 is a

maximal Milnor attractor for the product.

The two dimensional invariant set Σ1 × Σ2 is a heteroclinic network for the

product dynamics. It consists of the union of all the connections joining the equi-

librium (q1, q2) to (q1, q2). In the remainder of §6, we investigate the product of two

particularly simple model homoclinic attractors. For this system, we are able to

show that Σ is a minimal attractor for the product system. In particular, Σ1 × Σ2

is not a Milnor attractor; rather the attractor is a sub-network containing only

connections where one of the factor systems remains at an equilibrium. This result

proceeds by an examination of accumulation points of the sequence ε1λn1 − ε2λm2
where the λi > 1 give the rates of slowing down for Σi and the εi depend on initial

conditions.

This result strongly suggests that the product of attracting heteroclinic cycles

is typically not a Milnor attractor. In §7 we discuss the problem of ‘selection of

connections’ for heteroclinic cycles with multi-dimensional connections, as well as

some problems in extending our results to a more general setting. Specifically, we

discuss some obstacles to removing assumptions about the form of the cycle or the

assumption of a product structure.

2. Attractors for product systems

Consider a dynamical system defined by the continuous flow Φt on M , where M is

a compact region in Rn. For our intended applications, it suffices to assume that

M is forward invariant under Φt (so Φt is a semiflow on M) and that Φt is the

restriction of a flow defined on Rn (or an invariant open neighbourhood of M in

Rn).

We denote Lebesgue measure on M by `. Given x ∈M , let

ω(x) = ∩T>0{Φt(x) | t ≥ T}, α(x) = ∩T<0{Φt(x) | t ≤ T}

respectively denote the ω- and α-limits set of the trajectory through x. If X is a

subset of M , let B(X) = {x ∈M | ω(x) ⊂ X} denote the basin of attraction of X.

Definition 2.1 (Milnor 1985). A compact invariant subset X ⊂ M is a Milnor

attractor if
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1. `(B(X)) > 0.

2. For any proper compact invariant subset Y ⊂ X, `(B(X) \ B(Y )) > 0.

We say X is a minimal attractor if for all proper compact invariant subsets Y ⊂ X,

`(B(Y )) = 0.

Remarks 2.2. (1) For the systems considered in this paper, it will usually be the

case that B(X) is a neighbourhood of X in M (but not necessarily in Rn).

(2) Every compact invariant set X with a nonempty open basin of attraction con-

tains a Milnor attractor. In general, the attractor will be a proper subset of X.

(3) A Milnor attractor X is minimal if and only if there is a full measure subset

B ⊂ B(X) such that ω(x) = X for all x ∈ B. (Choose an increasing sequence (Yn)

of proper compact subsets of X such that ∪nYn = X and let B = B(X) \∪nB(Yn).

Observe that `(
∑

n B(Yn)) = 0 and if ω(x) is a proper subset of X then there exists

n such that ω(x) ⊂ Yn.)

(4) It is possible to make a trivial extension to the definitions of Milnor and minimal

attractors by allowing products with measure preserving transformations. This will

prove useful in §5.

If Z is an invariant measurable set with `(Z) > 0, the likely limit set of Z (Milnor

1985) is the smallest closed invariant set that contains all ω-limit sets except for a

subset of Z with `-measure zero. If X is a Milnor attractor then the likely limit set

of B(X) exists and is equal to X.

We refer to lemma 1 of Milnor (1985) for a general proof of the existence of the

likely limit set. It also follows easily from results in Milnor (1985) that the likely

limit set of M for a semiflow defined on a compact region M ⊂ Rn is the maximal

attractor; that is, it is a Milnor attractor that contains all Milnor attractors in M .

Lemma 2.3. Let Λ denote the likely limit set of Z. Then

1. x ∈ Λ if and only if for all ε > 0 and for all full measure subsets H of Z there

exists a ∈ H such that Bε(x) ∩ ω(a) 6= ∅ (Bε(x) denotes the ε-ball about x).

2. Λ is a minimal Milnor attractor if and only if for all x ∈ Λ, and all ε > 0

and for all measurable subsets H of Z of strictly positive measure,

`({a ∈ H | Bε(x) ∩ ω(a) 6= ∅}) > 0.
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Proof. The first statement follows by noting that x /∈ Λ if and only if there exist

ε > 0 and a full measure subset H of Z such that Bε(x) ∩ ω(a) = ∅ for all a ∈ H.

The second statement is obviously satisfied if Λ is minimal. On the other hand,

suppose that Y is a compact flow invariant subset of Λ with B(Y ) of strictly positive

measure. Now apply the criterion with Bε(x) disjoint from Y and H = B(Y ).

Proof of Theorem 1.1. We write Φt,s = (φs, ψt). Fix (t, s) ∈ R2 and let (x, y) ∈

Λ. We claim that (x′, y′) = Φt,s(x, y) ∈ Λ. In order to show this, we use the

characterization of the likely limit set given by lemma 2.3(1). Choose ε > 0; it

follows by continuity that there is a δ > 0 such that Φt,s(Bδ(x, y)) ⊆ Bε(x′, y′).

Since Φt,s is C1, it follows that if H ′ ⊆ X×Y is of full measure so is H = Φ−t,−sH ′.

Hence, by lemma 2.3, there exists (a, b) ∈ H such that Bδ(x, y)∩ω(a, b) 6= ∅. Setting

(a′, b′) = Φt,s(a, b), it follows that (a′, b′) ∈ H ′ and Bε(x′, y′) ∩ ω(a′, b′) 6= ∅. Hence

(x′, y′) ∈ Λ.

We say a chain-recurrent compact invariant set Σ is a heteroclinic network (Ash-

win & Field 1999) between equilibria if it has a finite proper subset E consisting of

equilibria such that for any x ∈ Σ we have α(x), ω(x) ⊂ E . We refer to the points

in E as nodes, and orbits in Σ \ E as connections. If there is just one node and

one connection, we call Σ a homoclinic cycle (or just a cycle). More generally, we

say that a heteroclinic network Σ is a heteroclinic cycle if there are at least two

nodes and one can order the nodes cyclically so that there exists a single connecting

trajectory from one node to the next, and no other connections.

We say a heteroclinic network Σ is a heteroclinic attractor if Σ is a Milnor at-

tractor. This definition includes homoclinic attractors as the special case when Σ is

a homoclinic cycle. A heteroclinic attractor may be a subset of a larger heteroclinic

network; namely a chain-recurrent compact invariant set Σ that is not necessarily

a Milnor attractor, but which contains all unstable manifolds of equilibria within

Σ. Finding a heteroclinic attractor within a heteroclinic network may be a subtle

problem on account of two effects: essential asymptotic stability (see Melbourne

1991), and connection selection where only a small subset of the network may be

seen in the attractor (see Ashwin & Chossat 1997).
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3. A model homoclinic attractor in R2

In this section we consider a simple model for an attracting homoclinic cycle. To

this end, assume that we are given a smooth flow φt on the plane with a homoclinic

cycle Σ connecting the origin – see figure 1.

Σ

(0,0)

y−axis

x−axis

Figure 1. Vector field on the plane with homoclinic cycle

Assume that the origin is a hyperbolic saddle with associated eigenvalues −a <

0 < b, where

a > b > 0 and
a

b
6∈ {3/2, 2, 3, 4}. (3.1)

We further assume that coordinates are chosen so that the local stable manifold

of the origin lies on the x-axis and the local unstable manifold of the origin lies

on the y-axis. It follows from 3.1 and Samovol’s version of Sternberg’s linearization

theorem (Samoval 1972, Belickii 1973) that (provided the vector field is at least

C7) we can make a C3-local change of coordinates so that the vector field is linear

near the origin:

x′ = −ax,

y′ = by.

Rescaling coordinates if necessary, we suppose that these equations are valid on an

open neighbourhood of the square [0, 1]2 ⊂ R2.

We start by considering the linear system. Referring to figure 2, we consider

the flow of this system on a subset of the square [0, 1]2 ⊂ R2. We fix an interval

I = [0, A0]×{1}, A0 < 1, on the top side of the square. For each (X, 1) ∈ I, X 6= 0,

let T (X) be the time it takes to flow from (X, 1) to (1, F (X)) ∈ J – the point of
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I

J

y

(0,1)

(1,0) x

Figure 2. Linear flow near a hyperbolic fixed point at 0; I and J represent inflowing and

outflowing sections.

intersection with J of the forward trajectory through (X, 1). Since a > b, it is easy

to see that J = {1} × [0, B], where B < A0. A straightforward computation shows

that

F (X) = Xλ, T (X) = logX−1/b, B = Aλ0 , (3.2)

where λ = a/b > 1.

Using these expressions it is now easy to define a return map for the cycle Σ. We

define α, β(X), γ(X) such that (1, X) maps to (Xγ(X), 1) after time α+Xβ(X);

note that β and γ are C2 and γ(0) > 0. Combining the above gives a map (X, 1) 7→

(F̂ (X), 1) (Poincaré map on I) and time of first return T̂ (X) > 0 given explicitly

by

T̂ (X) = α+ logX−1/b + β(Xλ)Xλ, (3.3)

F̂ (X) = γ(Xλ)Xλ. (3.4)

Set γ(0) = γ0. Since λ > 1, it follows that we can assume that A0 > 0 is chosen

sufficiently small so that that F̂ (X) < X/2, for all X ∈ (0, A0]. Noting the explicit

form of the return map (3.4) we recover a well-known result.

Lemma 3.1. The set Σ is a minimal attractor for φt whenever λ > 1.

Given X ∈ (0, A0], define sequences (Xn), (γn) and (Tn(X)) by

X0 = X, Xn = γ(Xλ
n−1)Xλ

n−1, n ≥ 1,

γn = γ(Xλ
n), n ≥ 0, Tn(X) = T̂ (Xn−1), n ≥ 1.
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It follows that

Xn = γn−1X
λ
n−1,

= (Πn−1
j=0 γ

λj

n−1−j)X
λn ,

= γ̄nX
λn , n ≥ 1,

where γ̄n(X) = Πn−1
j=0 γ

λj

n−1−j , n ≥ 1, and we define γ̄0(X) ≡ 1. It follows from (3.3)

that for X ∈ (0, A0] we have

Tn(X) = α− 1
b

log(γ̄n−1(X)) + λn−1 logX−
1
b + β(γ̄n−1(X)λXλn)γ̄n−1(X)λXλn .

(3.5)

For our subsequent results, we need some estimates on the functions γ̄n(X) and

their derivatives.

Lemma 3.2. Let τ > γ0 > 0; then there exists A1 = A1(τ) ∈ (0, A0] such that for

X ∈ (0, A1] and n ≥ 0 we have

γ̄n(X) ≤ τ
λn−1
λ−1 .

Proof. We start by constructing A1. Since γ is C1, we may choose C > 0 such that

for all Y ∈ (0, A0]

|γ(Y )− γ0| ≤ CY. (3.6)

We define A1 ∈ (0, A0] by requiring that for all n ≥ 1

Cτ
λn−λ
λ−1 Aλ

n

1 ≤ CAλ1 ≤ min{A0, τ − γ0}. (3.7)

Our proof now proceeds by induction on n. Since γ̄0(X) ≡ 1, the result is trivially

true for n = 0. Suppose we have verified the estimate for n− 1. For n ≥ 1 we have

the following formula relating γ̄n and γ̄n−1:

γ̄n(X) = γ(γ̄n−1(X)λXλn)γ̄n−1(X)λ. (3.8)

It follows from our inductive hypothesis that γ̄n(X) ≤ γ(γ̄n−1(X)λXλn)τ
λn−λ
λ−1 .

Since by (3.7) γ̄n−1(X)λXλn ∈ (0, A0], it follows from (3.6) that

|γ(γ̄n−1(X)λXλn)− γ0| ≤ Cγ̄n−1(X)λXλn ≤ Cτ
λn−λ
λ−1 Xλn .
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Substituting in our estimate for γ̄n(X), we have for X ∈ (0, A1]

γ̄n(X) ≤ τ
λn−λ
λ−1 (γ0 + Cτ

λn−λ
λ−1 Xλn),

= τ
λn−1
λ−1 (γ0 + Cτ

λn−λ
λ−1 Xλn)/τ,

≤ τ
λn−1
λ−1 (γ0 + CAλ1 )/τ,

≤ τ
λn−1
λ−1 ,

where the last two inequalities follow from (3.7).

Remark 3.3. It follows from Lemma 3.2 that if µ > 0 and 0 < Aγ
µ
λ−1
0 < 1, then

Xλn γ̄n(X)µ → 0 very rapidly as n → ∞, X ∈ (0, A]. We use this observation

frequently in the proofs of the next three technical lemmas.

Lemma 3.4. Let C > 1; then one can find A2 ∈ (0, A1] such that for all X ∈ (0, A2]

and n ≥ 1 we have |γ̄′n(X)| ≤ Cλnγ̄n(X).

Proof. Fix C > 1 and define εn = c
n2 , where c > 0 is chosen so that

∞
∏

n=1

(

1 +
1
λ

c

n2

)

< C. (3.9)

We show that we can choose A2 ∈ (0, A1] such that if X ∈ (0, A2] then for all n ≥ 1

|γ̄′n(X)| ≤
(

Πn
j=1(λ+ εj)

)

γ̄n(X).

This suffices since Πn
j=1(λ + εj) = λnΠn

j=1(1 + 1
λ
c
j2 ), and so it follows from (3.9)

that for all n ≥ 1 we have Πn
j=1(λ+ εj) ≤ Cλn.

Our proof proceeds by induction on n. If n = 1, γ̄1(X) = γ(Xλ) and so γ̄′1(X) =

λγ′(Xλ)Xλ−1. Hence
γ̄′1(X)
γ̄1(X)

= λXλ−1 γ
′(Xλ)
γ(Xλ)

.

Since γ is C1, it follows that we may choose A2 ∈ (0, A1] so that for all X ∈ (0, A2]

we have |λXλ−1 γ
′(Xλ)
γ(Xλ)

| ≤ λ+ ε1. This establishes the first step of the induction.

Differentiating (3.8) with respect to X, we may write γ̄′n(X) = I1 +I2 +I3 where

I1 = λγ(γ̄n−1(X)λXλn)γ̄n−1(X)λ−1γ̄′n−1(X),

= λγ̄n(X)
γ̄′n−1(X)
γ̄n−1(X)

,

I2 = λγ′(γ̄n−1(X)λXλn)γ̄n−1(X)2λ−1γ̄′n−1(X)Xλn ,

I3 = λnγ′(γ̄n−1(X)λXλn)γ̄n−1(X)2λXλn−1.
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Suppose we have verified the required estimate for n − 1. It follows from the

second expression for I1 that

|I1| ≤ λ(Πn−1
j=1 (λ+ εj))γ̄n(X). (3.10)

Note that (3.10) holds without further conditions being required on X.

Rearranging our expression for I2, we find that

I2 = γ(γ̄n−1(X)λXλn)γ̄n−1(X)λ
γ̄′n−1(X)
γ̄n−1(X)

λXλn γ̄n−1(X)λ
γ′(γ̄n−1(X)λXλn)
γ(γ̄n−1(X)λXλn)

,

= γ̄n(X)
(

γ̄′n−1(X)
γ̄n−1(X)

)

λXλn γ̄n−1(X)λ
(

γ′(γ̄n−1(X)λXλn)
γ(γ̄n−1(X)λXλn)

)

.

Choosing A2 smaller if necessary (we may do this uniformly in n using lemma 3.2

and remark 3.3), we may require that
∣

∣

∣

∣

λXλn γ̄n−1(X)λ
γ′(γ̄n−1(X)λXλn)
γ(γ̄n−1(X)λXλn)

∣

∣

∣

∣

≤ εn
2
,

for all n ≥ 2 and X ∈ (0, A2]. Hence we obtain the following estimate on |I2|

|I2| ≤
εn
2

(Πn−1
j=1 (λ+ εj))γ̄n(X). (3.11)

Rearranging our expression for I3, we find that

I3 = γ̄n(X)
γ′(γ̄n−1(X)λXλn)
γ(γ̄n−1(X)λXλn)

γ̄n−1(X)λXλn−1λn

Choosing A2 smaller if necessary (again using lemma 3.2, remark 3.3 as in the

estimate of I2), we may require that
∣

∣

∣

∣

γ′(γ̄n−1(X)λXλn)
γ(γ̄n−1(X)λXλn)

γ̄n−1(X)λXλn−1λn
∣

∣

∣

∣

≤ εn
2

Πn−1
j=1 (λ+ εj),

for all X ∈ (0, A2], n ≥ 2. Hence we obtain the following estimate on |I3|:

|I3| ≤
εn
2

(Πn−1
j=1 (λ+ εj))γ̄n(X). (3.12)

Estimates (3.10, 3.11, 3.12) together complete the inductive step.

Let Sn(X) = Sn =
∑n
j=1 Tj(X). It follows from (3.5) that

Sn = nα− 1
b

log Πn−1
j=1 γ̄j(X)+

λn − 1
λ− 1

logX−
1
b +

n
∑

j=1

β(γ̄j−1(X)λXλj )γ̄j−1(X)λXλj

(3.13)
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This formula for the return times of a homoclinic attractor in R2 is completely

general.

Next we need estimates on the derivative of Sn.

Lemma 3.5. We may choose A3 ∈ (0, A2], such that for all n ≥ 1, X ∈ (0, A3] we

have S′n(X) = M1(X) +M2(X) +M3(X), where

(M1) |M1(X)| ≤ 2
b

λn − λ
λ− 1

, (M2) M2(X) = −1
b

λn − 1
λ− 1

1
X
, (M3) |M3(X)| ≤ 2

b
.

Proof. Differentiating Sn with respect to X, we may write S′n(X) = M1(X) +

M2(X) +M3(X) where

M1(X) = −1
b

n−1
∑

j=1

γ̄′j(X)
γ̄j(X)

,

M2(X) = −1
b

λn − 1
λ− 1

1
X
,

M3(X) =
n
∑

j=1

(aj(X) + bj(X) + cj(X)),

and the terms aj , bj , cj are given explicitly by

aj(X) = β′(γ̄j−1(X)λXλj )γ̄j−1(X)λXλj [λγ̄j−1(X)λ−1γ̄′j−1(X)Xλj

+ γ̄j−1(X)λλjXλj−1],
(3.14)

bj(X) = β(γ̄j−1(X)λXλj )λγ̄j−1(X)λ−1γ̄′j−1(X)Xλj , (3.15)

cj(X) = β(γ̄j−1(X)λXλj )γ̄j−1(X)λλjXλj−1. (3.16)

Choose A3 ∈ (0, A2] so that the estimate of lemma 3.4 applies with C = 2.

Estimating the sum for M1(X) using the estimate of lemma 3.4 yields estimate

(M1). In order to estimate M3(X) it suffices to show that we can choose A3 so

that |aj(X)|, |bj(X)|, |cj(X)| ≤ 1
32−j for all j and X ∈ (0, A3]. This is a routine

estimate using lemma 3.2, remark 3.3 and we omit details.

For j ≥ 1, define C1 functions on [0, A3] by

pj(X) =
γ̄′j(X)
γ̄j(X)

,

mj(X) = aj(X) + bj(X) + cj(X),

where aj , bj , cj are defined according to (3.14,3.15,3.16).
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Lemma 3.6. We may choose C > 0, A4 ∈ (0, A3] such that for all n ≥ 1, X ∈

(0, A4] we have

|p′n(X)| ≤ Cλn,

|m′n(X)| ≤ C2−n.

Proof. For j ≥ 0, define

qj(X) =
γ′(γ̄j(X)λXλj )
γ(γ̄j(X)λXλj )

.

Straightforward estimation, using Lemma 3.4, shows that we can choose c > 0 such

that for all X ∈ [0, A3], j ≥ 0,

|qj(X)| ≤ c, |q′j(X)| ≤ cλj γ̄j(X)λXλj . (3.17)

Just as in the proof of Lemma 3.4, it follows from (3.8) that

pn(X) = λpn−1(X)(1 + qn−1(X)γ̄n−1(X)λXλn)

+λnqn−1(X)γn−1(X)λXλn−1.

Differentiating this equation, we obtain an equation relating p′n(X) to p′n−1(X),

q′n−1(X) and derivatives of γ̄n−1(X)λXλn and γn−1(X)λXλn−1. Using remark 3.3,

we may suppose A4 ∈ (0, A3] chosen so that all these terms, with the exception of

the derivatives p′n, p′n−1, go to zero very rapidly as j → ∞. It follows, just as in

the proof of Lemma 3.4, that we can find C > 0 so that p′n satisfies the required

estimate, all n ≥ 1.

The proof of the estimate on the m′j is straightforward and omitted.

Corollary 3.7. We may choose d > 0, A5 ∈ (0, A4] and N0 ≥ 1 such that if

n > m ≥ N0, then

1. |S′n(X)− S′m(X)| ≥ dλn 1
X , X ∈ (0, A5].

2. S′n − S′m is monotonic on (0, A5].

Proof. Since λ > 1, (1) follows easily from lemma 3.5. Using the estimates of

Lemma 3.6, together with lemma 3.5, we easily show that we can choose A5 ∈ (0, A4]

so that for all X ∈ (0, A5], n > m, S′′n(X)− S′′m(X) is strictly positive.
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φτ(z)(z)

(0,0)

Σ
(1,0)

(0,1)
I

zH

Figure 3. The region H and the map τ

Let H = ∪X∈Iφ[0,T (X)](X) denote the compact region in R2 swept out by the

(semi)flow φt (see figure 3). Let ξ : R → Σ be the trajectory of φt satisfying

ξ(0) = (0, 1). Thus, limt→±∞ ξ(t) = (0, 0).

Let z ∈ H \ {(0, 0)}. We define τ(z) ∈ R(≥ 0) to be the smallest value of t ≥ 0

such that φτ(z)(z) ∈ I. The function τ is smooth on H \ I and vanishes identically

on I. It follows from the continuity of φt that ξ(−τ(z))→ x as z → x ∈ Σ, x 6= 0.

While τ(z) defines the first time the trajectory through z meets I, subsequent

return times are given in terms of Sn(φτ(z)(z)). Specifically, the nth return time for

the trajectory through z to I is equal to τ(z) + Sn(φτ(z)(z)).

Lemma 3.8. Let T ∈ R. For any z ∈ H \ Σ and divergent monotone increasing

sequence (tn) the following are equivalent:

(i) limn→∞ φtn(z) = ξ(T ).

(ii) There is an increasing sequence of integers kn such that

lim
n→∞

tn − Skn(φτ(z)(z))− τ(z) = T.

In the case T = ±∞, (i) =⇒ (ii) but, in general, (ii) 6=⇒ (i).

Proof. In order to simplify the notation, we set τ = τ(z), u1 = φτ (z), Sn = Sn(u1),

and un = φSn(u1) ∈ I. We remark that limn→∞ un = {(0, 1)}. We first show that
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(ii) implies (i). We have φSkn+τ+T (z) = φSkn+T (u1) = φT (un), and so

lim
n→∞

φSkn+τ+T (z) = lim
n→∞

φT (un) = φT ((0, 1)) = ξ(T ).

Conversely, suppose that φtn(z)→ ξ(T ). Since φtn(z) = φtn−τ (u1) it follows that

φtn−τ−T (u1)→ {(0, 1)}.

Hence, since φT (z) is continuous in z, it follows that tn−τ−T −Skn → 0 as n→∞

for some sequence kn →∞.

Finally, exactly the same arguments work to show that (i) =⇒ (ii) in case

T = ±∞. On the other hand the converse does not hold; if T = +∞ we may choose

a very rapidly increasing sequence (tn) satisfying limn→∞ φtn(z) = ξ(0) and then

choose a slowly increasing sequence (kn) so as to satisfy (ii) with T =∞. A similar

argument covers the case T = −∞.

4. Product of a cycle and a periodic orbit

In this section we consider the product of a periodic orbit and the homoclinic

attractor Σ ⊂ H ⊂ R2 constructed in the previous section. The (semi)flow on

(z, θ) ∈ H × S1 is given by Φt(z, θ) = (φt(z), θ + $t (mod1)), with φt : H → H

the (semi)flow defined in the previous section. Note that $ is the frequency of the

periodic orbit and the cycle has slowing down ratio λ > 1.

Lemma 4.1. For all $ 6= 0, θ ∈ R, λ > 1, and almost all u ∈ I \ {(0, 1)},

ω(u, θ) = Σ× S1.

Proof. Let u ∈ I \ {(0, 1)}. We consider the set of all intersections of forward

trajectories through (u, θ) with I by defining un ∈ I, tn ∈ R(> 0), and θn ∈ S1 so

that Φtn (u, θ) = (un, θn).

We have ω(u, θ) = Σ×S1 if and only if (θn) is dense in S1 = [0, 1). By lemma 3.8

we see that tn = Sn(u) and θn = θ + $Sn(u). Hence we have density in [0, 1) if

[θ+$Sn(u)] is uniformly distributed in [0, 1) ([r] denotes the fractional part of r).

It follows by Corollary 3.7 that for n > m ≥ N0, S′n(u) − S′m(u) is monotonic on

(0, A4] and is bounded below by a multiple of λn. It follows from theorem 5.10,

corollary 2 of Harman (1998) that [θ + $Sn(u)] is uniformly distributed in [0, 1)

for almost all u ∈ (0, A4].
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Proof of Theorem 1.2 Since u1 depends smoothly and invertibly on z for a full

measure set of z ∈ H, we may apply lemma 4.1. It follows that for all $, θ ∈ S1

and λ > 1, ω(z, θ) = Σ × S1 for almost all z ∈ H. Hence Σ × S1 is a minimal

attractor.

Remarks 4.2. (1) Note that it does not follow from the proof of theorem 1.2 that

ω(z, θ) = Σ×S1 for all z ∈ H. Indeed, this is generally false. As a simple example,

suppose λ > 1 is an integer, γ̂(0) = 1, and Sn(u) = log(u−1/b
1 )λn. If we choose

u ∈ I, ω such that log(u−1/b
1 ) = p/q and $ = s/q, then $Sn is clearly rational with

denominator bounded by q(λ− 1).

(2) Our proof of theorem 1.2 assumes the dynamics on the second factor is time-

periodic. The proof obviously extends to the case when the dynamics on the second

factor is given by a semiflow defined on a neighbourhood of a hyperbolic attracting

limit cycle.

(3) As one of the referees pointed out to us, an approach based on expanding

sequences, see Melbourne & Stewart (1997), may be used to obtain partial results

on the ω-limit sets of points in H × S1. In particular, for almost all frequencies

$, there exist trajectories in H × S1 with ω-limit set equal to Σ × S1. However,

without more detailed estimates on the flow on H, this approach does not yield

a proof that Σ × S1 is a (minimal) Milnor attractor, as the expanding sequence

depends nonlinearly on the initial point u ∈ I \ {(0, 1)}.

5. Product of an attracting cycle and a chaotic set

In this section, we consider a flow which is the product of a homoclinic attractor

with a transitive hyperbolic flow ψt : X → X. Under these assumptions on ψt, we

can prove that the product of the cycle with the the hyperbolic flow is a Milnor

attractor. However, as was pointed out to us by Ian Melbourne, our arguments can

be substantially simplified if we assume in addition that the flow ψt is topologically

mixing. Under this additional assumption, the product of the cycle with the the

hyperbolic flow is a minimal Milnor attractor. Providing that we work in a suffi-

ciently high smoothness class, topologically mixing hyperbolic flows are generically

stably mixing (we refer to Field et al. (2003) for precise statements of results and

Article submitted to Royal Society



Product dynamics 17

background). For these reasons, we emphasize the case when ψt is topologically

mixing and only give brief details on the methods needed when ψt is not mixing.

We start by briefly reviewing some definitions and results on hyperbolic flows

(we refer to Bowen & Ruelle (1975) for further details). Recall that if ψt : M →M is

a smooth flow on the Riemannian manifold M , then a compact ψt-invariant set X ⊂

M is called a basic set for the flow if X is hyperbolic, transitive, locally maximal

and isolated. Henceforth we regard ψt as a flow on the basic set X. The flow ψt is

topologically mixing if for all non-empty open subsets U, V of X (induced topology),

there exists T = T (U, V ) such that ψt(U)∩V 6= ∅, t ≥ T . We fix an equilibrium state

ν on X corresponding to a Hölder continuous potential, for example the measure

of maximal entropy. The measure ν is a regular Borel measure which is strictly

positive on open subsets of X and the flow φt is ν-measure preserving and ergodic.

If ψt is topologically mixing, then ψt is measure theoretically mixing in the sense

that for all measurable subsets A,B of X, we have

lim
t→∞

ν(Φt(A) ∩B) = ν(A)ν(B).

It is well-known that for hyperbolic basic sets, topologically mixing is equivalent

to measure theoretic mixing, provided that the measure is an equilibrium state

corresponding to a Hölder continuous potential. In future, we often just say ‘mixing’.

We consider the product of a homoclinic attractor Σ ⊂ H with ψt. We prove in

theorem 5.1 that the product Σ ×X is a minimal Milnor attractor which is equal

to the likely limit set of H×X. For simplicity, we work with a homoclinic attractor

that satisfies the conditions† of §3. However, we expect that much of what we say

generalizes fairly straightforwardly to general heteroclinic attractors in R2 or Rn.

Specifically, we assume that Σ ⊂ H ⊂ R2 is a one dimensional homoclinic

attractor for the semiflow φt : H → H defined on a connected subset H of R

contained in R2. We suppose that H is a one-sided open neighbourhood of Σ

chosen so that if z ∈ H \ Σ, then ω(z) = Σ. We assume the component ∂H of the

boundary of H disjoint from Σ is smooth and transverse to the flow φt. Denote the

hyperbolic saddle point on Σ by q and define λ = a/b > 1, where −a < 0 < b are

the eigenvalues of the Jacobian at q. Choose a section T to the cycle, transverse to

† We do not need to assume the nonresonance conditions a/b 6∈ {3/2, 2, 3, 4} in this case.
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H

Σ
q

p
T

H

Figure 4. An attracting homoclinic cycle Σ with section T transverse to the cycle at P .

the connection in Σ, such that all trajectories in H \Σ pass through T and return

after finite time – see figure 4. Set Σ ∩ T = {p}.

We consider the flow Φt(u, x) = (φt(u), ψt(x)) on H ×X.

Theorem 5.1. Suppose that ψt is topologically mixing. Then the product Σ×X is

the likely limit set of H ×X and is a minimal Milnor attractor for Φt

Proof. Let Z = ∂H × X. We take the product measure µ = ` × ν on Z where `

is Lebesgue measure on ∂H and ν is an equilibrium state on X. Let ε > 0. Given

x ∈ X, let Dε(x) ⊂ X denote the open ball radius ε, centre x where distance is

induced from the metric on the ambient manifold M . Set Bε(x) = {p} ×Dε(x). It

follows from Lemma 2.3(2) that it suffices to show that if K ⊂ Z is any measurable

set with µ(K) > 0, then µ({a ∈ K | Bε(x) ∩ ω(a) 6= ∅}) > 0, for all x ∈ X (note

that we use Fubini’s theorem and the smoothness of Φt to reduce to measurable

subsets K of Z rather than H ×X). Suppose then that K ⊂ Z is measurable and

µ(K) > 0. For each σ ∈ ∂H, let Kσ = K ∩ ({σ} × X). It follows from Fubini’s

theorem that we can choose a measurable subset J of ∂H such that for all σ ∈ J ,

Kσ is ν-measurable, ν(Kσ) > 0 and
∫

J
ν(Kσ) d` = µ(K). Given σ ∈ J , let (tn) be

the corresponding sequence of return times to the section T . That is, φtn(σ) ∈ T ,

n = 1, 2, . . .. Define Eσn = ψ−tn(Dε(x)) ∩Kσ. Then
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lim supEσn = {x ∈ Kσ | ∀m ∃n ≥ m such that x ∈ Eσn}

= {x ∈ Kσ | ψtn(x) ∈ Dε(x) infinitely often}.

It follows by Fatou’s lemma that

ν(lim supEσn) ≥ lim sup ν(Eσn) (5.1)

= ν(Kσ)ν(Dε(x)), (5.2)

since ψt is mixing. Define lim supEn = ∪σ∈J lim supEσn . Then lim supEn is a mea-

surable subset of Z and, by Fubini’s theorem and (5.2), we have µ(lim supEn) ≥

µ(K)ν(Dε(x)) > 0. Hence, µ({a ∈ K | Bε(x) ∩ ω(a) 6= ∅}) > 0.

(a) The case when ψt is not mixing

We have the following result that covers the case when ψt is not mixing.

Theorem 5.2. Suppose that ψt is transitive. Then the product Σ×X is the likely

limit set of H ×X and is a Milnor attractor for Φt

Proof. We only give brief details of the proof. We start by proving the result in case

ψt : Sr → Sr is the suspension of a subshift of finite type S with roof function r.

This is proved using fairly standard methods based on symbolic coding in combina-

tion with estimates on the return times to the section T . Next suppose X is a basic

set. Following Bowen & Ruelle (1975), let π : Sr → X define a symbolic dynamics

on X and let Π = IΣ×π : Σ×Sr → Σ×X denote the associated finite-to-one pro-

jection. Choose an equilibrium state m on Sr and corresponding measure mX on X

(so that π is a measure preserving isometry). Noting that ω(Π(z, s)) = Π(ω(z, s)),

(z, s) ∈ Σ×Sr, we see that the likely limit set for H ×X is equal to the projection

by Π of the likely limit set for H × Sr.

(b) Product of a homoclinic attractor and a hyperbolic attractor

Suppose that ψt is a flow on the manifold M and that X is a hyperbolic attractor

for ψt. Let Φt(u, (x, s)) = (φt(u), ψt(x, s)) denote the corresponding semi-flow on

H ×M .
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Proof of Theorem 1.3 Take the Sinai-Ruelle-Bowen measure on X and apply

theorems 5.1, 5.2.

6. A product of attracting cycles

In this section we investigate dynamics for a product of two homoclinic attractors. In

order to illuminate ideas rather than technicalities, we shall eventually make strong

assumptions about the homoclinic attractors. However, we start with a result that

holds for a quite general product dynamical system Φt on M = H1×H2 ⊃ Σ1×Σ2

defined by

Φt(x1, x2) = (φ1
t (x1), φ2

t (x2)), (6.1)

for semi-flows φkt : Hk → Hk, k = 1, 2. For each k = 1, 2 we assume that φkt has a

single attractor, namely a homoclinic attractor Σk ⊂ Hk with a fixed point qk. We

define sections Tk to Σk ⊂ Hk meeting Σk at pk 6= qk, k = 1, 2. Set T ?k = Tk \ {pk}

and H?
k = Hk \ Σk.

We define the invariant subset Σ ⊂ Σ1 × Σ2 by

Σ = (Σ1 × {q2}) ∪ ({q1} × Σ2). (6.2)

This is a heteroclinic network that is contained within Σ1×Σ2 where only connec-

tions where one factor is at equilibrium are included.

Theorem 6.1. The likely limit Λ for H1 ×H2 for the system (6.1) is either

(a) Λ = Σ as defined in (6.2) or

(b) Λ = Σ1 × Σ2.

Proof. Obviously, ω(a, b) ⊂ Σ1×Σ2 for all (a, b) ∈ H1×H2. Moreover there are no

(a, b) in the full measure set H∗1 ×H∗2 such that ω(a, b) ⊂ {q1} × Σ2 or ω(a, b) ⊂

Σ1 × {q2}. Hence Λ ⊂ Σ1 × Σ2, Λ 6= {q1} × Σ2,Σ1 × {q2}.

Now suppose that Λ contains a point (x1, x2) ∈ Σ1 ×Σ2 \Σ, such that xk 6= qk

for k = 1, 2. By theorem 1.1, Λ is a closed set that must contain (φ1
t (x1), φ2

s(x2))

for all (t, s) ∈ R2. Hence it must contain Σ1 × Σ2 and we have case (b). The only

remaining possibility is case (a).
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Proof of Theorem 1.4 This follows from theorem 6.1 on noting that the likely

limit set of H1×H2 is a maximal Milnor attractor that contains all Milnor attractors

of (6.1).

Although it may seem counterintuitive, the examples we consider in the re-

mainder of this section lead us to believe that the typical case is in fact (a). More

precisely, we make the following conjecture:

Conjecture on products of attracting heteroclinic cycles: Suppose that

Σ1,Σ2 are attracting heteroclinic cycles consisting of the union of a finite set of

trajectories and sets of equilibria E1, E2. For typical such pairs (Σ1,Σ2) we con-

jecture that the unique minimal Milnor attractor for the product system is equal

to (E1 × Σ2) ∪ (Σ1 × E2) (that is, a union of a finite number of one-dimensional

connections between the equilibria E1 × E2).

The remainder of this section is devoted to showing that the conjecture holds

for a product of homoclinic attractors related to the model system described in §3.

(a) Analysis of a model example

We now assume that we are given a pair of homoclinic attractors, defined by

planar flows as described in §3. In particular, each cycle Σk contains a hyperbolic

saddle qk, and has an associated asymptotic slowing-down ratio λk > 1, k = 1, 2.

We denote the connecting homoclinic orbit in Σk by ξk(t). Thus, we have

ξk(t) = φkt (pk) ∈ Σk (k = 1, 2).

Let Skn(u) denote the time to the nth return of u ∈ T ?k to T ?k for φkt and τk(x) be

the time of the first hit of the φkt -orbit through x ∈ Hk with Tk (see §3 for the

precise definition of τk).

Suppose that the trajectory through Z2 = (u, z) ∈ T ?1 ×H2 meets T ?1 ×H2 at

the successive times 0 = t0 < t1 < . . .. The intersections define a sequence (un, zn)

with

Φtn(u, z) = (un, zn) ∈ T ?1 ×H2. (6.3)

We have un → p1 and zn → Σ2 as n→∞. Let Ω2(u, z) = Ω2(Z2) = A({zn}) ⊂ Σ2.

We similarly define Ω1(Z1) ⊂ Σ1, given Z1 = (z′, u′) ∈ H1 × T ?2 . Observe that
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ω(Zk) = Σ1 × Σ2 if and only if Ωk(Zk) = Σk, k = 1, 2. Of course, if Z ∈ T ?1 × Σ2

(respectively, Σ1×T ?2 ), then Ω2(Z) = Σ1×{q2} (respectively, Ω1(Z) = {q1}×Σ2).

We consider the case (u, z) ∈ T ?1 × H2. If ẑ ∈ Ω2(u, z), then either ẑ = q2,

in which case ω(u, z) ⊃ Σ1 × {q2}, or not. If ẑ 6= q2, then there exists a unique

T ∈ R such that ẑ = ξ2(T ). Choose an increasing sequence (kn) of integers such

that zkn → ẑ. Set τ2(z) = v ∈ T ?2 and note that it follows from lemma 3.8 that

there is an increasing sequence (ln) of integers such that

lim
n→∞

(tkn − S2
ln(v))− τ2(z) = T.

It follows from (6.3) that

lim
n→∞

(S1
kn(u)− S2

ln(v))− τ2(z) = T.

For m,n ∈ N, let Θm,n = S1
n(u) − S2

m(v) − τ2(z). In order that ẑ = ξ2(T ) ∈

Ω2(u, z), it is necessary and sufficient that T ∈ A({Θm,n | m,n ∈ N}). In particular,

Ω2(u, z) = Σ2 if and only if

A({Θm,n | m,n ∈ N}) = R.

Fix Z ∈ M and note that we have already covered the case where one or other

component of Z lies in one of the factor cycles. Hence it is no loss of generality to

assume Z ∈ H?
1 ×H?

2 . We consider the first intersection of the trajectory through

Z with the T ?1 ×H?
2 and H?

1 × T ?2 to be given by Z2 ∈ T ?1 ×H?
2 and Z1 ∈ H?

1 × T ?2 .

Associated to the Zk, k = 1, 2 we define sets {Θk
m,n | m,n ∈ N} as described above.

Example 6.2. Suppose that the two homoclinic attractors (Σk, Hk) are defined by

identical dynamics. Let Z = (u, u) ∈ T ?1 × T ?2 . It is obvious that ω(Z) is the

diagonal {(u, u) | u ∈ Σ1} of Σ1 × Σ2. Moreover, the unique limit point ẑ ∈ Ω2(Z)

is equal to p2 and so T = 0 and ẑ = ξ2(0). Note that the corresponding set

{Θ2
m,n | m,n ∈ N} is unbounded and that it does not follow that q2 lies in the

limit set Ω2(Z). Accumulation points of {Θ2
m,n | m,n ∈ N} give information about

Ω2(Z) but the unboundedness of {Θ2
m,n | m,n ∈ N} tells us nothing – indeed,

{Θ2
m,n | m,n ∈ N} is always unbounded. However, if A({Θ2

m,n | m,n ∈ N}) = ∅,

then it follows that q2 ∈ Ω2(Z) and so ω(Z) ⊃ Σ1 × {q2}.

Generally, we have the following useful result.
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Lemma 6.3. Suppose that Z ∈ H?
1 × H?

2 . If either A({Θ1
m,n | m,n ∈ N}) or

A({Θ2
m,n | m,n ∈ N}) is empty then both are empty and ω(Z) = Σ.

It follows from our formulae for Skn (3.13) that there exist constants Ck > 0

such that |Skn(uk)| ∼ Ckλnk log u−1
k .

For the remainder of this section we simplify our exposition by assuming that

for our model cycles Σk ⊂ Hk, we can take αk = 0, βk ≡ 0 and γk ≡ 1, k = 1, 2.

Under these assumptions†, it follows from (3.13) that

Skn(uk) =
λnk

bk(λk − 1)
log u−1

k +
1

bk(λk − 1)
log uk, k = 1, 2.

Choose Z = (u, z) ∈ T ?1 ×H2 as above. Then

Θm,n = Θ2
m,n = ε1λ

n
1 − ε2λm2 − σ (6.4)

where εk and σ depend smoothly on the initial condition except on a set of zero

measure:

ε1 =
log(u−1)
b1(λ1 − 1)

, ε2 =
log(v−1)
b2(λ2 − 1)

, (6.5)

σ =
log(u)

b1(λ1 − 1)
− log(v)
b2(λ2 − 1)

+ τ2(z, v). (6.6)

It follows from our earlier discussion that a necessary and sufficient condition for

ẑ = ξ2(T ) ∈ Ω2(Z) \ {q2} is that

σ + T ∈ A({ε1λn1 − ε2λm2 | m,n ∈ N}). (6.7)

(b) Resonant eigenvalues

Suppose that λ1 6= λ2 > 1 are resonant. That is, λr1 = λs2, for coprime r, s ∈ N.

Setting β = λ
1
s
1 = λ

1
r
2 > 1, we may write λ1 = βs, λ2 = βr.

Lemma 6.4. Let Z ∈ H?
1 ×H?

2 . Suppose that Z = (u, z) ∈ T ?1 ×H?
2 . If λ1, λ2 > 1

are resonant and ε1 6= βjε2 all j ∈ Z, then ω(Z) = Σ. On the other hand if

ε1 = βjε2 for some j ∈ Z, then there is a point Ẑ ∈ H?
2 such that

1. If r > 1, s = 1, then ω(Z) is the union of Σ1 × {q2} with the Φt-trajectory

through (p1, Ẑ).

† Which amount to the cycles and flows being obtained by identifying the edges I and J in

figure 2.
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2. If r = 1, s > 1, then ω(Z) is the union of {q1} × Σ2 with the Φt-trajectory

through (p1, Ẑ).

3. If r, s > 1, then ω(Z) is the union of Σ with the Φt-trajectory through (p1, Ẑ).

Proof. We have ε1λ
n
1 − ε2λ

m
2 = ε1β

ns − ε2β
mr. If ε1 6= βjε2, all j ∈ Z, then

A({Θ2
m,n | m,n ∈ N}) = ∅ and so the result follows from lemma 6.3.

Suppose, on the other hand, that for some j ∈ Z, we have ε1 = βjε2. Since

(r, s) = 1, we may find strictly positive integers n0,m0 such that n0s −m0r = j.

Define the increasing sequence (nk,mk) by nk = n0 + kr, mk = m0 + ks and note

that nks −mkr = j, k ≥ 1. It follows that ε1βnks − ε2βmkr = 0, k ≥ 1 and so 0

is a limit point of (6.7). Hence σ(u, z) + T = 0 implicitly determines an additional

limit point Ẑ ∈ Ω2(u, z) and so ω(Z) contains the Φt-trajectory through (p1, Ẑ).

Examination of the possible sequences of return times shows that three possibilities

may occur, as described in the statement of the theorem.

(c) Rapid approximation by rationals

Definition 6.5. Suppose that α, β, γ are real numbers, with γ > 1 and α > 0. We

say that α is (β, γ)-Liouville if there are infinitely many positive integer pairs (p, q)

such that
∣

∣

∣

∣

α− p

q
− 1
q
β

∣

∣

∣

∣

≤ 1
q
γ−q.

Remarks 6.6. (1) If η > 1, K > 0, and for infinitely many positive integer pairs

(p, q) α satisfies the estimate
∣

∣

∣α− p
q −

1
qβ
∣

∣

∣ ≤ Kη−q, then α is (β, γ)-Liouville for

all γ ∈ (1, η).

(2) A (β, γ)-Liouville number satisfies a restricted Diophantine condition (see Chap-

ter 6, Harman 1998).

(3) Without loss of generality we can assume that 0 ≤ β < 1 since α is (β, γ)-

Liouville if and only if it is (β + n, γ)-Liouville for any n ∈ Z.

Examples 6.7. (1) The real number α is Liouville if for each n, we can choose

an integer pair (p, q) such that
∣

∣

∣α− p
q

∣

∣

∣ < 1
qn . Normally, it is required that α is

irrational. However, we regard rational numbers as (trivially) Liouville. If α is (0, γ)-

Liouville, then α is Liouville. In particular, every rational number is (0, γ)-Liouville.

Indeed, if α is (0, γ)-Liouville, then
∣

∣

∣α− p
q

∣

∣

∣ ≤ 1
qγ
−q for infinitely many (p, q). Fix
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n ≥ 1 and choose (p, q) so that 1
qγ
−q < q−n. It follows that |α − p

q | < q−n and

so α is Liouville, but the converse is false. Most Liouville numbers are not (0, γ)-

Liouville for any γ > 1. It is easy to show that there do exist irrational (0, γ)-

Liouville numbers. For example, if we define γ =
∑∞
n=0 10−pn , where p0 = 1 and

pn+1 = 10pn , n > 0, then γ is (0, γ)-Liouville for all γ ∈ (1, 10) (note Remark 6.6).

(2) For any rational β, if α is (β, γ)-Liouville then α is Liouville. This follows from

the first remark, since if α is (β, γ)-Liouville and β = r/s, then α is (0, γ
1
s )-Liouville.

Conversely, if α is (0, γ)-Liouville then, for every rational β, α is (β, η)-Liouville for

some η > 1.

(3) If β /∈ Z, then 1 is not (β, γ)-Liouville for any γ > 1.

The next result and proof were kindly communicated to us by Glyn Harman.

Lemma 6.8. For any β ∈ [0, 1), the set Lβ of numbers which are (β, γ)-Liouville

for some γ > 1 is uncountable and has zero Hausdorff dimension.

Proof. Let γ > 1 and define Aγ(n) = γ−n/n. Define

Im,n =
[

m

n
− β

n
−Aγ(n),

m

n
− β

n
+Aγ(n)

]

.

Every (β, γ)-Liouville number lies in infinitely many Im,n. Let 0 < B < C. Since
∑∞
n=1

∑

Bn≤m≤Cn |Im,n|ρ converges for every ρ > 0, it follows that the set of (β, γ)-

Liouville numbers has Hausdorff dimension zero. It follows from the countable sta-

bility property of Hausdorff dimension, §2.2 Falconer (1990), that Lβ has Hausdorff

dimension zero. In particular, Lβ has measure zero, for all β ∈ R.

To show that the set of Lβ is uncountable, it suffices to show that the set of

(β, γ)-Liouville numbers is uncountable. Inside each interval Im,n there lie at least

two more intervals Iu,w, Iv,w. For example, take w = 2
[

n
Aγ(n)

]

+ 1 and applying

this recursively we see that it contains a Cantor set homeomorphic to the usual

‘middle third’ Cantor set and so must be uncountable.

From our perspective, it is more useful to quantify the set of β ∈ [0, 1) for which

a fixed number can be (β, γ)-Liouville for some γ. Given x ∈ R and γ > 1, define

β(x) = {β ∈ [0, 1) | x ∈ Lβ}, βγ(x) = {β ∈ β(x) | x is (β, γ)-Liouville}.

Lemma 6.9. For all x ∈ R, β(x) has zero Hausdorff dimension.
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Proof. Fix x ∈ R and for n ∈ N, γ > 1 define

I(n, γ) =
{

β ∈ [0, 1) | ∃m ∈ Z,
∣

∣

∣

∣

x− m

n
− β

n

∣

∣

∣

∣

<
γ−n

n

}

.

Clearly, I(n, γ) is the union of at most two intervals of total length 2γ−n. If β ∈ β(x),

then for some γ > 1, we have β ∈ ∪n≥n0I(n, γ) for all n0. Since Σn≥n0 |2γ−n|ρ → 0

as n0 → ∞ for any ρ > 0, it follows that βγ(x) has Hausdorff dimension zero.

Choose a monotone decreasing sequence γn → 1. Then β(x) = ∪n≥1βγn(x) and so

it follows from the countable stability property of Hausdorff dimension that β(x)

has Hausdorff dimension zero.

Remark 6.10. It follows from lemma 6.9, that β(x) has Lebesgue measure zero.

(d) Existence of non-trivial limits

Theorem 6.11. Let λ, µ > 1, α1, α2 > 0. There is a limit point for (α1λ
n−α2µ

m)

if and only if log λ
log µ is

(

logα2
logα1 log µ , λ

)

-Liouville.

Proof. Suppose that (α1λ
n − α2µ

m) has a limit point L ∈ R. Then there exists a

sequence (mk, nk) such that limk→∞ α1λ
nk − α2µ

mk − L = 0. Set α = α2/α1 and

replace L by L/α1. Dividing by λnk , we may rewrite the limit condition as

1− αµ
mk

λnk
− Lλ−nk = o(λ−nk).

We have

α
µmk

λnk
= exp(mk logµ− nk log λ+ logα),

= 1 +mk logµ− nk log λ+ logα+ o(mk logµ− nk log λ+ logα),

in the limit as k →∞. Hence we may write

1−αµ
mk

λnk
−Lλ−nk =nk log λ−mk logµ−logα−Lλ−nk+o(mk logµ−nk log λ+logα).

Since this expression is o(λ−nk), we have

nk log λ−mk logµ− logα = Lλ−nk + o(λ−nk), if L 6= 0,

= o(λ−nk), if L = 0.
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In the case L 6= 0, we obtain the estimate
∣

∣

∣

∣

log λ
logµ

− 1
nk

logα
logµ

− mk

nk

∣

∣

∣

∣

≤ 2L
nk logα log λ

λ−nk ,

and so, since logα = logα2/ logα1, log λ
log µ is ( logα2

logα1 log µ , λ)-Liouville. The second

case, when L = 0 is easier as log λ
log µ satisfies a stronger estimate.

For the converse, observe that if log λ
log µ is ( logα2

logα1 log µ , λ)-Liouville, then the se-

quence (α1λ
nk − α2µ

mk) is bounded and hence there is a convergent subsequence.

Remark 6.12. Observe that if λ1 = λ2 then it follows by Example 6.7(3), that we

get a non-trivial connection only if logα2
logα1 log µ is integer valued.

Theorem 6.13. For almost all (z1, z2) ∈ H1×H2, ω(z1, z2) = Σ. In particular, Σ

is a minimal attractor for the product system Φt.

Proof. By lemma 6.3 we have ω(z1, z2) = Σ if and only if A({Θ2
m,n}) = ∅. It

follows from (6.4) that A({Θ2
m,n}) = ∅ if and only if A({ε1λn1 − ε2λ

m
2 }) = ∅.

By theorem 6.11, A({ε1λn1 − ε2λm2 }) 6= ∅ if and only if x = log λ/ logµ is (β, λ)-

Liouville where β = log ε2/(log ε1 logµ). Using the explicit expressions (6.5) for

ε1, ε2, it follows easily that the fractional part of β lies in the zero measure set β(x)

for at most a zero measure set of initial conditions (z1, z2). Hence for almost all

(z1, z2), ω(z1, z2) = Σ and so Σ is minimal.

7. Discussion

In summary we have shown, under a number of technical assumptions, that products

of a homoclinic attractor with a periodic or chaotic system typically lead to product

attractors, but that this is not the case for products of two homoclinic attractors.

We highlight some of the problems in extending our results.

Although, in theorem 6.1, we showed there were just two possibilities for the

likely limit set of a product of homoclinic attractors, we were only able to iden-

tify the Milnor attractor when return times could be estimated precisely. For more

general attracting homoclinic (or heteroclinic) cycles, we are so far unable to prove

similar results on the structure of attractors. However, we believe that our results
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generalize, subject probably to generic conditions. Similar comments apply to ex-

tending our results on the product of a limit cycle or chaotic set with a homoclinic

attractor.

Some of the results can clearly be generalized to the case of skew products. For

example, in § 4 one could adapt the proof to allow a skew product from the periodic

orbit into the attracting cycle. However, this does not seem to be straightforward

for a product with a chaotic set or with another heteroclinic attractor.

The results on attractors for products of two robust cycles (§6) should be con-

trasted to more general problems with attractors with two-dimensional sets of con-

nections such as described in Ashwin & Chossat (1997). In that work, the one di-

mensional network consisting of principal connections (namely those corresponding

to the most unstable eigenvalues) were generically selected as a Milnor attractor; in

our case the special product structure means that any Milnor attractor must factor

to give the individual cycles.

If one of the systems has a heteroclinic attractor, asking whether all connections

will be approached in the product systems is equivalent to asking whether there is

nontrivial selection of connections; see Ashwin & Chossat (1997) and Ashwin et al.

(2003) for examples and discussion of this effect.

Questions of cycle selection are relevant to non-transitive attractors that include

connections between more general transitive (for example chaotic) subsets. For such

‘cycling chaos’ attractors, where the connections consist purely of one-dimensional

sets, any trajectories approaching the attractor must limit to a unique connecting

trajectory. In the more general case there is an issue of cycle selection. The cases

where all connections are selected occur in the ‘phase-resetting’ and ‘free-running’

cases of cycling chaos investigated in Ashwin et al. (2003).

The authors would like to thank Anton Deitmar, Glyn Harman, Ian Melbourne and Rob
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