
Chapter 2 Hausdorff measure
and dimension

The notion of dimension is central to fractal geometry. Roughly, dimension indi-
cates how much space a set occupies near to each of its points. Of the wide variety
of ‘fractal dimensions’ in use, the definition of Hausdorff, based on a construc-
tion of Carathéodory, is the oldest and probably the most important. Hausdorff
dimension has the advantage of being defined for any set, and is mathematically
convenient, as it is based on measures, which are relatively easy to manipulate.
A major disadvantage is that in many cases it is hard to calculate or to estimate
by computational methods. However, for an understanding of the mathematics
of fractals, familiarity with Hausdorff measure and dimension is essential.

2.1 Hausdorff measure

Recall that if U is any non-empty subset of n-dimensional Euclidean space, !n,
the diameter of U is defined as |U | = sup{|x − y| : x, y ∈ U }, i.e. the greatest
distance apart of any pair of points in U . If {Ui} is a countable (or finite) collection
of sets of diameter at most δ that cover F , i.e. F ⊂ ⋃∞

i=1 Ui with 0 ! |Ui | ! δ
for each i, we say that {Ui} is a δ-cover of F .

Suppose that F is a subset of !n and s is a non-negative number. For any
δ > 0 we define

Hs
δ(F ) = inf

{ ∞∑

i=1

|Ui|s : {Ui} is a δ-cover of F

}

. (2.1)

Thus we look at all covers of F by sets of diameter at most δ and seek to minimize
the sum of the sth powers of the diameters (figure 2.1). As δ decreases, the class
of permissible covers of F in (2.1) is reduced. Therefore, the infimum Hs

δ(F )
increases, and so approaches a limit as δ → 0. We write

Hs(F ) = lim
δ→0

Hs
δ(F ). (2.2)
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Figure 2.1 A set F and two possible δ-covers for F . The infimum of "|Ui |s over all
such δ-covers {Ui} gives Hs

δ(F )

This limit exists for any subset F of !n, though the limiting value can be
(and usually is) 0 or ∞. We call Hs(F ) the s-dimensional Hausdorff measure
of F .

With a certain amount of effort, Hs may be shown to be a measure; see
section 1.3. It is straightforward to show that Hs(Ø) = 0, that if E is con-
tained in F then Hs(E) ! Hs(F ), and that if {Fi} is any countable collection of
sets, then

Hs

( ∞⋃

i=1

Fi

)

!
∞∑

i=1

Hs(Fi). (2.3)

It is rather harder to show that there is equality in (2.3) if the {Fi} are disjoint
Borel sets.

Hausdorff measures generalize the familiar ideas of length, area, volume,
etc. It may be shown that, for subsets of !n, n-dimensional Hausdorff mea-
sure is, to within a constant multiple, just n-dimensional Lebesgue measure,
i.e. the usual n-dimensional volume. More precisely, if F is a Borel subset of
!n, then

Hn(F ) = c−1
n voln(F ) (2.4)

where cn is the volume of an n-dimensional ball of diameter 1, so that cn =
πn/2/2n(n/2)! if n is even and cn = π(n−1)/2((n − 1)/2)!/n! if n is odd. Similarly,
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Length × l

Area × l2

Hs × ls

Figure 2.2 Scaling sets by a factor λ increases length by a factor λ, area by a factor λ2,
and s-dimensional Hausdorff measure by a factor λs

for ‘nice’ lower-dimensional subsets of !n, we have that H0(F ) is the number
of points in F ; H1(F ) gives the length of a smooth curve F ; H2(F ) = (4/π) ×
area (F ) if F is a smooth surface; H3(F ) = (6/π) × vol(F ); and Hm(F ) =
c−1
m × volm(F ) if F is a smooth m-dimensional submanifold of !n (i.e. an m-

dimensional surface in the classical sense).
The scaling properties of length, area and volume are well known. On magni-

fication by a factor λ, the length of a curve is multiplied by λ, the area of a plane
region is multiplied by λ2 and the volume of a 3-dimensional object is multiplied
by λ3. As might be anticipated, s-dimensional Hausdorff measure scales with
a factor λs (figure 2.2). Such scaling properties are fundamental to the theory
of fractals.

Scaling property 2.1

Let S be a similarity transformation of scale factor λ > 0. If F ⊂ !n, then

Hs(S(F )) = λsHs(F ). (2.5)
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Proof. If {Ui} is a δ-cover of F then {S(Ui)} is a λδ-cover of S(F ), so

"|S(Ui)|s = λs"|Ui|s

so
Hs

λδ(S(F )) ! λsHs
δ(F )

on taking the infimum. Letting δ → 0 gives that Hs(S(F )) ! λsHs(F ). Replacing
S by S−1, and so λ by 1/λ, and F by S(F ) gives the opposite inequality required.

"

A similar argument gives the following basic estimate of the effect of more
general transformations on the Hausdorff measures of sets.

Proposition 2.2

Let F ⊂ !n and f : F → !m be a mapping such that

|f (x) − f (y)| ! c|x − y|α (x, y ∈ F) (2.6)

for constants c > 0 and α > 0. Then for each s

Hs/α(f (F )) ! cs/αHs(F ). (2.7)

Proof. If {Ui} is a δ-cover of F , then, since |f (F ∩ Ui)| ! c|F ∩ Ui |α ! c|Ui |α , it
follows that {f (F ∩ Ui)} is an ε-cover of f (F ), where ε = cδα . Thus∑

i |f (F ∩ Ui)|s/α ! cs/α
∑

i |Ui|s , so that Hs/α
ε (f (F )) ! cs/αHs

δ(F ). As δ → 0,
so ε → 0, giving (2.7). "

Condition (2.6) is known as a Hölder condition of exponent α; such a condition
implies that f is continuous. Particularly important is the case α = 1, i.e.

|f (x) − f (y)| ! c|x − y| (x, y ∈ F) (2.8)

when f is called a Lipschitz mapping, and

Hs(f (F )) ! csHs(F ). (2.9)

In particular (2.9) holds for any differentiable function with bounded derivative;
such a function is necessarily Lipschitz as a consequence of the mean value
theorem. If f is an isometry, i.e. |f (x) − f (y)| = |x − y|, then Hs(f (F )) =
Hs(F ). Thus, Hausdorff measures are translation invariant (i.e. Hs(F + z) =
Hs(F ), where F + z = {x + z : x ∈ F }), and rotation invariant, as would
certainly be expected.
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2.2 Hausdorff dimension

Returning to equation (2.1) it is clear that for any given set F ⊂ !n and δ < 1,
Hs

δ(F ) is non-increasing with s, so by (2.2) Hs(F ) is also non-increasing. In
fact, rather more is true: if t > s and {Ui} is a δ-cover of F we have

∑

i

|Ui |t !
∑

i

|Ui|t−s |Ui |s ! δt−s
∑

i

|Ui |s (2.10)

so, taking infima, Ht
δ(F ) ! δt−sHs

δ(F ). Letting δ → 0 we see that if Hs(F ) < ∞
then Ht (F ) = 0 for t > s. Thus a graph of Hs(F ) against s (figure 2.3) shows
that there is a critical value of s at which Hs(F ) ‘jumps’ from ∞ to 0. This
critical value is called the Hausdorff dimension of F , and written dimHF ; it is
defined for any set F ⊂ !n. (Note that some authors refer to Hausdorff dimension
as Hausdorff–Besicovitch dimension.) Formally

dimHF = inf{s # 0 : Hs(F ) = 0} = sup{s : Hs(F ) = ∞} (2.11)

(taking the supremum of the empty set to be 0), so that

Hs(F ) =
{
∞ if 0 ! s < dimHF
0 if s > dimHF.

(2.12)

If s = dimHF , then Hs(F ) may be zero or infinite, or may satisfy

0 < Hs(F ) < ∞.

Hs (F )

∞

0
0 dimH F n

s

Figure 2.3 Graph of Hs (F ) against s for a set F . The Hausdorff dimension is the value
of s at which the ‘jump’ from ∞ to 0 occurs
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A Borel set satisfying this last condition is called an s-set. Mathematically,
s-sets are by far the most convenient sets to study, and fortunately they occur
surprisingly often.

For a very simple example, let F be a flat disc of unit radius in !3. From
familiar properties of length, area and volume, H1(F ) = length (F ) = ∞,
0 < H2(F ) = (4/π) × area (F ) = 4 < ∞ and H3(F ) = (6/π) × vol(F ) = 0.
Thus dimHF = 2, with Hs(F ) = ∞ if s < 2 and Hs(F ) = 0 if s > 2.

Hausdorff dimension satisfies the following properties (which might well be
expected to hold for any reasonable definition of dimension).

Monotonicity. If E ⊂ F then dimHE ! dimHF . This is immediate from the
measure property that Hs(E) ! Hs(F ) for each s.

Countable stability. If F1, F2, . . . is a (countable) sequence of sets then
dimH

⋃∞
i=1 Fi = sup1!i<∞{dimHFi}. Certainly, dimH

⋃∞
i=1 Fi # dimHFj for each

j from the monotonicity property. On the other hand, if s > dimHFi for all i,
then Hs(Fi) = 0, so that Hs(

⋃∞
i=1 Fi) = 0, giving the opposite inequality.

Countable sets. If F is countable then dimHF = 0. For if Fi is a single point,
H0(Fi) = 1 and dimHFi = 0, so by countable stability dimH

⋃∞
i=1 Fi = 0.

Open sets. If F ⊂ !n is open, then dimHF = n. For since F contains a ball of
positive n-dimensional volume, dimHF # n, but since F is contained in countably
many balls, dimHF ! n using countable stability and monotonicity.

Smooth sets. If F is a smooth (i.e. continuously differentiable) m-dimensional
submanifold (i.e. m-dimensional surface) of !n then dimHF = m. In particu-
lar smooth curves have dimension 1 and smooth surfaces have dimension 2.
Essentially, this may be deduced from the relationship between Hausdorff and
Lebesgue measures, see also Exercise 2.7.

The transformation properties of Hausdorff dimension follow immediately
from the corresponding ones for Hausdorff measures given in Proposition 2.2.

Proposition 2.3

Let F ⊂ !n and suppose that f : F → !m satisfies a Hölder condition

|f (x) − f (y)| ! c|x − y|α (x, y ∈ F).

Then dimHf (F ) ! (1/α)dimHF .

Proof. If s > dimHF then by Proposition 2.2 Hs/α(f (F )) ! cs/αHs(F ) = 0,
implying that dimHf (F ) ! s/α for all s > dimHF . "

Corollary 2.4

(a) If f : F → !m is a Lipschitz transformation (see (2.8)) then dimHf (F ) !
dimHF .

(b) If f : F → !m is a bi-Lipschitz transformation, i.e.
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c1|x − y| ! |f (x) − f (y)| ! c2|x − y| (x, y ∈ F) (2.13)

where 0 < c1 ! c2 < ∞, then dimHf (F ) = dimHF .

Proof. Part (a) follows from Proposition 2.3 taking α = 1. Applying this to f −1 :
f (F ) → F gives the other inequality required for (b). "

This corollary reveals a fundamental property of Hausdorff dimension: Haus-
dorff dimension is invariant under bi-Lipschitz transformations. Thus if two sets
have different dimensions there cannot be a bi-Lipschitz mapping from one onto
the other. This is reminiscent of the situation in topology where various ‘invari-
ants’ (such as homotopy or homology groups) are set up to distinguish between
sets that are not homeomorphic: if the topological invariants of two sets differ
then there cannot be a homeomorphism (continuous one-to-one mapping with
continuous inverse) between the two sets.

In topology two sets are regarded as ‘the same’ if there is a homeomor-
phism between them. One approach to fractal geometry is to regard two sets
as ‘the same’ if there is a bi-Lipschitz mapping between them. Just as topo-
logical invariants are used to distinguish between non-homeomorphic sets, we
may seek parameters, including dimension, to distinguish between sets that are
not bi-Lipschitz equivalent. Since bi-Lipschitz transformations (2.13) are neces-
sarily homeomorphisms, topological parameters provide a start in this direction,
and Hausdorff dimension (and other definitions of dimension) provide further
distinguishing characteristics between fractals.

In general, the dimension of a set alone tells us little about its topological
properties. However, any set of dimension less than 1 is necessarily so sparse
as to be totally disconnected; that is, no two of its points lie in the same con-
nected component.

Proposition 2.5

A set F ⊂ !n with dimHF < 1 is totally disconnected.

Proof. Let x and y be distinct points of F . Define a mapping f : !n → [0,∞)
by f (z) = |z − x|. Since f does not increase distances, as |f (z) − f (w)| =∣∣∣|z − x| − |w − x|

∣∣∣ ! |(z − x) − (w − x)| = |z − w|, we have from Corollary

2.4(a) that dimHf (F ) ! dimHF < 1. Thus f (F ) is a subset of ! of H1-measure
or length zero, and so has a dense complement. Choosing r with r /∈ f (F ) and
0 < r < f (y) it follows that

F = {z ∈ F : |z − x| < r} ∪ {z ∈ F : |z − x| > r}.

Thus F is contained in two disjoint open sets with x in one set and y in the
other, so that x and y lie in different connected components of F . "
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2.3 Calculation of Hausdorff dimension—simple examples

This section indicates how to calculate the Hausdorff dimension of some simple
fractals such as some of those mentioned in the Introduction. Other methods will
be encountered throughout the book. It is important to note that most dimension
calculations involve an upper estimate and a lower estimate, which are hopefully
equal. Each of these estimates usually involves a geometric observation followed
by a calculation.

Example 2.6

Let F be the Cantor dust constructed from the unit square as in figure 0.4. (At
each stage of the construction the squares are divided into 16 squares with a
quarter of the side length, of which the same pattern of four squares is retained.)
Then 1 ! H1(F ) ! √

2, so dimHF = 1.

Calculation. Observe that Ek, the kth stage of the construction, consists of 4k

squares of side 4−k and thus of diameter 4−k
√

2. Taking the squares of Ek as a
δ-cover of F where δ = 4−k

√
2, we get an estimate H1

δ(F ) ! 4k4−k
√

2 for the
infimum in (2.1). As k → ∞ so δ → 0 giving H1(F ) ! √

2.
For the lower estimate, let proj denote orthogonal projection onto the x-axis.

Orthogonal projection does not increase distances, i.e. |proj x − proj y| ! |x − y|
if x, y ∈ !2, so proj is a Lipschitz mapping. By virtue of the construction of F ,
the projection or ‘shadow’ of F on the x-axis, proj F , is the unit interval [0, 1].
Using (2.9)

1 = length [0, 1] = H1([0, 1]) = H1(proj F) ! H1(F ). "

Note that the same argument and result hold for a set obtained by repeated
division of squares into m2 squares of side length 1/m of which one square in
each column is retained.

This trick of using orthogonal projection to get a lower estimate of Hausdorff
measure only works in special circumstances and is not the basis of a more
general method. Usually we need to work rather harder!

Example 2.7

Let F be the middle third Cantor set (see figure 0.1). If s = log 2/ log 3 =
0.6309 . . . then dimHF = s and 1

2 ! Hs(F ) ! 1.

Heuristic calculation. The Cantor set F splits into a left part FL = F ∩ [0, 1
3 ] and

a right part FR = F ∩ [ 2
3 , 1]. Clearly both parts are geometrically similar to F

but scaled by a ratio 1
3 , and F = FL ∪ FR with this union disjoint. Thus for any s

Hs(F ) = Hs(FL) + Hs(FR) = ( 1
3 )sHs(F ) + ( 1

3 )sHs(F )
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by the scaling property 2.1 of Hausdorff measures. Assuming that at the critical
value s = dimHF we have 0 < Hs(F ) < ∞ (a big assumption, but one that can
be justified) we may divide by Hs(F ) to get 1 = 2( 1

3 )s or s = log 2/ log 3.

Rigorous calculation. We call the intervals that make up the sets Ek in the con-
struction of F level-k intervals. Thus Ek consists of 2k level-k intervals each of
length 3−k .

Taking the intervals of Ek as a 3−k-cover of F gives that Hs
3−k (F ) ! 2k3−ks

= 1 if s = log 2/ log 3. Letting k → ∞ gives Hs(F ) ! 1.
To prove that Hs(F ) # 1

2 we show that

∑
|Ui |s # 1

2 = 3−s (2.14)

for any cover {Ui} of F . Clearly, it is enough to assume that the {Ui} are intervals,
and by expanding them slightly and using the compactness of F , we need only
verify (2.14) if {Ui} is a finite collection of closed subintervals of [0, 1]. For each
Ui , let k be the integer such that

3−(k+1) ! |Ui | < 3−k. (2.15)

Then Ui can intersect at most one level-k interval since the separation of these
level-k intervals is at least 3−k. If j # k then, by construction, Ui intersects
at most 2j−k = 2j 3−sk ! 2j 3s |Ui |s level-j intervals of Ej , using (2.15). If we
choose j large enough so that 3−(j+1) ! |Ui | for all Ui , then, since the {Ui}
intersect all 2j basic intervals of length 3−j , counting intervals gives 2j !∑

i 2j 3s |Ui |s , which reduces to (2.14). "

With extra effort, the calculation can be adapted to show that Hs(F ) = 1.
It is already becoming apparent that calculation of Hausdorff measures and

dimensions can be a little involved, even for simple sets. Usually it is the lower
estimate that is awkward to obtain.

The ‘heuristic’ method of calculation used in Example 2.7 gives the right
answer for the dimension of many self-similar sets. For example, the von Koch
curve is made up of four copies of itself scaled by a factor 1

3 , and hence has
dimension log 4/ log 3. More generally, if F = ⋃m

i=1 Fi , where each Fi is geo-
metrically similar to F but scaled by a factor ci then, provided that the Fi

do not overlap ‘too much’, the heuristic argument gives dimHF as the num-
ber s satisfying

∑m
i=1 cs

i = 1. The validity of this formula is discussed fully in
Chapter 9.

*2.4 Equivalent definitions of Hausdorff dimension

It is worth pointing out that there are other classes of covering set that define
measures leading to Hausdorff dimension. For example, we could use coverings
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by spherical balls: letting

Bs
δ(F ) = inf{"|Bi|s : {Bi} is a δ-cover of F by balls} (2.16)

we obtain a measure Bs(F ) = limδ→0 Bs
δ(F ) and a ‘dimension’ at which Bs(F )

jumps from ∞ to 0. Clearly Hs
δ(F ) ! Bs

δ(F ) since any δ-cover of F by balls
is a permissible covering in the definition of Hs

δ . Also, if {Ui} is a δ-cover of
F , then {Bi} is a 2δ-cover, where, for each i, Bi is chosen to be some ball
containing Ui and of radius |Ui | ! δ. Thus "|Bi|s ! "(2|Ui|)s = 2s"|Ui|s , and
taking infima gives Bs

2δ(F ) ! 2sHs
δ(F ). Letting δ → 0 it follows that Hs(F ) !

Bs(F ) ! 2sHs(F ). In particular, this implies that the values of s at which Hs

and Bs jump from ∞ to 0 are the same, so that the dimensions defined by the
two measures are equal.

It is easy to check that we get the same values for Hausdorff measure and
dimension if in (2.1) we use δ-covers of just open sets or just closed sets. More-
over, if F is compact, then, by expanding the covering sets slightly to open
sets, and taking a finite subcover, we get the same value of Hs(F ) if we merely
consider δ-covers by finite collections of sets.

Net measures are another useful variant. For the sake of simplicity let F
be a subset of the interval [0, 1). A binary interval is an interval of the form
[r2−k, (r + 1)2−k) where k = 0, 1, 2, . . . and r = 0, 1, . . . , 2k − 1. We define

Ms
δ(F ) = inf{"|Ui|s : {Ui} is a δ-cover of F by binary intervals} (2.17)

leading to the net measures

Ms(F ) = lim
δ→0

Ms
δ(F ). (2.18)

Since any interval U ⊂ [0, 1) is contained in two consecutive binary intervals
each of length at most 2|U | we see, in just the same way as for the measure
Bs , that

Hs(F ) ! Ms(F ) ! 2s+1Hs(F ). (2.19)

It follows that the value of s at which Ms(F ) jumps from ∞ to 0 equals the Haus-
dorff dimension of F , i.e. both definitions of measure give the same dimension.

For certain purposes net measures are much more convenient than Hausdorff
measures. This is because two binary intervals are either disjoint or one of them
is contained in the other, allowing any cover of binary intervals to be reduced to
a cover of disjoint binary intervals.

*2.5 Finer definitions of dimension

It is sometimes desirable to have a sharper indication of dimension than just a
number. To achieve this let h : !+ → !+ be a function that is increasing and
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continuous, which we call a dimension function or gauge function. Analogously
to (2.1) we define

Hh
δ (F ) = inf{"h(|Ui|) : {Ui} is a δ-cover of F } (2.20)

for F a subset of !n. This leads to a measure, taking Hh(F ) = limδ→0 Hh
δ (F ).

(If h(t) = t s this is the usual definition of s-dimensional Hausdorff measure.) If
h and g are dimension functions such that h(t)/g(t) → 0 as t → 0 then, by an
argument similar to (2.10), we get that Hh(F ) = 0 whenever Hg(F ) < ∞. Thus
partitioning the dimension functions into those for which Hh is finite and those
for which it is infinite gives a more precise indication of the ‘dimension’ of F
than just the number dimHF .

An important example of this is Brownian motion in !3 (see Chapter 16
for further details). It may be shown that (with probability 1) a Brownian path
has Hausdorff dimension 2 but with H2-measure equal to 0. More refined cal-
culations show that such a path has positive and finite Hh-measure, where
h(t) = t2 log log(1/t). Although Brownian paths have dimension 2, the dimen-
sion is, in a sense, logarithmically smaller than 2.

2.6 Notes and references

The idea of defining measures using covers of sets was introduced by
Carathéodory (1914). Hausdorff (1919) used this method to define the measures
that now bear his name, and showed that the middle third Cantor set has positive
and finite measure of dimension log 2/ log 3. Properties of Hausdorff measures
have been developed ever since, not least by Besicovitch and his students.

Technical aspects of Hausdorff measures and dimensions are discussed in rather
more detail in Falconer (1985a), and in greater generality in the books of Rogers
(1998), Federer (1996) and Mattila (1995). Merzenich and Staiger (1994) relate
Hausdorff dimension to formal languages and automata theory.

Exercises

2.1 Verify that the value of Hs (F ) is unaltered if, in (2.1), we only consider δ-covers
by sets {Ui} that are all closed.

2.2 Show that H0(F ) equals the number of points in the set F .
2.3 Verify from the definition that Hs(Ø) = 0, that Hs (E) ⊂ Hs (F ) if E ⊂ F , and that

Hs (
⋃∞

i=1 Fi) !
∑∞

i=1 Hs(Fi).
2.4 Let F be the closed interval [0, 1]. Show that Hs (F ) = ∞ if 0 ! s < 1, that

Hs (F ) = 0 if s > 1, and that 0 < H1(F ) < ∞.
2.5 Let f : ! → ! be a differentiable function with continuous derivative. Show that

dimHf (F ) ! dimHF for any set F . (Consider the case of F bounded first and show
that f is Lipschitz on F .)
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2.6 Let f : ! → ! be the function f (x) = x2, and let F be any subset of !. Show that
dimHf (F ) = dimHF .

2.7 Let f : [0, 1] → ! be a Lipschitz function. Writing graph f = {(x, f (x)) : 0 ! x
! 1}, show that dimHgraph f = 1. Note, in particular, that this is true if f is con-
tinuously differentiable, see Exercise 1.13.

2.8 What is the Hausdorff dimension of the sets {0, 1, 2, 3, . . .} and {0, 1, 1
2 , 1

3 , 1
4 , . . .}

in !?
2.9 Let F be the set consisting of the numbers between 0 and 1 whose decimal expan-

sions do not contain the digit 5. Use a ‘heuristic’ argument to show that dimHF =
log 9/ log 10. Can you prove this by a rigorous argument? Generalize this result.

2.10 Let F consist of the points (x, y) ∈ !2 such that the decimal expansions of nei-
ther x or y contain the digit 5. Use a ‘heuristic’ argument to show that dimHF =
2 log 9/ log 10.

2.11 Use a ‘heuristic’ argument to show that the Hausdorff dimension of the set depicted
in figure 0.5 is given by the solution of the equation 4( 1

4 )s + ( 1
2 )s = 1. By solving

a quadratic equation in ( 1
2 )s , find an explicit expression for s.

2.12 Let F be the set of real numbers with base-3 expansion bmbm−1 · · · b1 · a1a2 · · · with
none of the digits bi or ai equal to 1. (Thus F is constructed by a Cantor-like process
extending outwards as well as inwards.) What is the Hausdorff dimension of F ?

2.13 What is the Hausdorff dimension of the set of numbers x with base-3 expansion
0 · a1a2 · · · for which there is a positive integer k (which may depend on x) such
that ai *= 1 for all i # k?

2.14 Let F be the middle-λ Cantor set (obtained by removing a proportion 0 < λ < 1
from the middle of intervals). Use a ‘heuristic argument’ to show that dimHF =
log 2/ log(2/(1 − λ)). Now let E = F × F ⊂ !2. Show in the same way that
dimHE = 2 log 2/ log(2/(1 − λ)).

2.15 Show that there is a totally disconnected subset of the plane of Hausdorff dimension
s for every 0 ! s ! 2. (Modify the construction of the Cantor dust in figure 0.4.)

2.16 Let S be the unit circle in the plane, with points on S parameterized by the angle θ
subtended at the centre with a fixed axis, so that θ1 and θ2 represent the same point if
and only if θ1 and θ2 differ by a multiple of 2π , in the usual way. Let F = {θ ∈ S :
0 ! 3kθ ! π(mod 2π) for all k = 1, 2, . . .}. Show that dimHF = log 2/ log 3.

2.17 Show that if h and g are dimension functions such that h(t)/g(t) → 0 as t → 0
then Hh(F ) = 0 whenever Hg(F ) < ∞.


