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Resonance oscillations in a mass-spring impact oscillator
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Abstract We investigate the presence of asymptoti-

cally stable periodic oscillations in a time-periodic im-

pact oscillator close to an isochronous one. A new aver-

aging method is developed to account for the position of

the obstacle and for the impact restitution coefficient,

which don’t appear in the classical smooth situation.

Keywords Asymptotic stability · Periodic solutions ·
Impact oscillator · Averaging method · Perturbation
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1 Introduction

If a linear oscillator with an eigenfrequency w is being

forced by a small periodic excitation and the frequency

of the excitation is close to w, then the equation of the

motion reads as

ẍ+ w2x = εf(t, x, ẋ, ε), (1)

where ε > 0 is a small parameter and f is a smooth

2π/w-periodic in time function. A possible way to prove

the occurrence and stability of resonance oscillations in

(1) is known as the method of averaging, see [15,29,35].

One of the conclusions of this method is that the ampli-

tude a and phase shift φ of 2π/w-periodic oscillations

in (1) are close to the zeros of

F (a, φ) = −
2π∫
0

(
sin(τ + φ)
1
a cos(τ + φ)

)
◦

◦f(τ, a cos(τ + φ),−a sin(t+ φ), 0)dτ,
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known as averaging function. Specifically, if F (a0, φ0) =

0 and the real parts of the eigenvalues of F ′(a0, φ0) are

negative, then, for all ε > 0 sufficiently small, equation

(1) has an asymptotically stable 2π/w-periodic solution

that approaches

t 7→ (a cos(t+ φ),−a sin(t+ φ)) (2)

as ε→ 0. This approach is often referred to as the Van

der Pol method or the second Bogolyubov’s theorem

[4]. The phenomenon which occurs when ε crosses 0

can be viewed as a bifurcation because the family of π-

periodic cycles that corresponds to ε = 0 gets destroyed

when ε deviates from 0. Those π-periodic that persist

can gain asymptotic stability and they are termed reso-

nance periodic solutions in such a case. In the simplest

case, where equation (1) has the form

ẍ+ εcẋ+ w2x+ εrx = εb cos(wt), (3)

the method of averaging provides the existence of an

asymptotically stable 2π/w-periodic solution near the

cycle (2) with

a =
b√

w2c2 + r2
, φ = − arccos

r√
w2c2 + r2

, (4)

see e.g. [7]. In particular, the amplitude of 2π/w-periodic

resonance solutions in (3) increases infinitely when both

the damping coefficient c > 0 and the detuning coeffi-

cient r > 0 approach zero.

The goal of this paper is to investigate the occur-

rence (bifurcation) of resonance oscillations in mechan-

ical oscillators with impacts, where the presence of the

obstacle makes the analysis more interesting. A proto-

typic example of an oscillator of this type is given by

(see Fig. 1)

ẍ+ εcẋ+ w2x+ εrx = εb cos(wt), (5)

(1− εµ)ẋ(t− 0) = −ẋ(t+ 0), if x(t) = εd, (6)



2 J. Newman, O. Makarenkov

x

 

d 

b cos(wt) 

Fig. 1 A driven impact oscillator whose obstacle is εd-
distant from the rest position and which is governed by equa-
tions (5)-(6).
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Fig. 2 A trajectory of the impact oscillator (5)-(6) depicted
at Fig. 1.

which is equation (3) coupled with the Newton’s impact

law. Each trajectory x of oscillator (5)-(6) is governed

by equation (5) until the trajectory hits the obstacle

x = εd at time t, when the impact law (6) applies.

The impact law sends the trajectory from the point

(x(t − 0), ẋ(t − 0)) to (x(t + 0), ẋ(t + 0)) = (x(t −
0),−(1 − εµ)ẋ(t − 0)) instantaneously and the motion

along (5) continues, see Fig. 2. The collisions with the

obstacle located at x = εd are absolutely elastic, if the

restitution coefficient 1 − εµ equals to 1. It is natural

to expect that the amplitude of resonance oscillations

of the impact oscillator (5)-(6) is now proportional to
1

|wc|+|r|+|µ| . But what is the influence of d? In this pa-

per we answer this question by deriving an analogue of

the averaging function F for the second-order impact

oscillator of the following general form

ẍ+ w2x = εf(t, x, ẋ, ε),

(1− εµ)ẋ(t− 0) = −ẋ(t+ 0), if x(t) = εd.
(7)

The averaging of the impact oscillator (7) is dis-

cussed in Zhuravlev-Klimov [39, § 27] under the as-

sumption that µ = 0. The method employed in [39] is

the discontinuous transformation of Zhuravlev-Ivanov

(see Brogliato [5], Pilipchuk-Ibrahim [32]). The sym-

metry property µ = 0 lies in heart of this method, so it

is not straightforward to extend the method of [39] to

(7) with µ > 0, which is our main interest. Important

results on averaging of impact systems are obtained by

Samoylenko and Perestyuk, see [31]. However, the im-

pacts in [31] are deemed as collisions with a surface

t = τ(x, ẋ) in the extended phase space rather than

collisions with an obstacle x = const, that we work

with here. In the autonomous case, an averaging ap-

proach to the dynamics of coupled impact oscillators is

implemented in Sartorelli-Lacarbonara [33], where the

small parameter ε comes from a suitable scaling. A fun-

damental technique to justify averaging of periodic im-

pact oscillators is developed in Burd [9], but the focus

of [9] is on the slow-fast time scales.

The impact oscillator (7) is a fundamental model

of mechanics. It describes the dynamics of such im-

portant industrial systems as gear pairs [28,25], pres-

sure relief valves [16], ocean systems [18], robot loco-

motion [34,36], cutting [13] and drilling [10] setups,

etc. Impact oscillators are also used in neuroscience

to model integrate-and-fire and resonate-and-fire neu-

rons, see Coombes-Thul-Wedgwood [12]. Similar im-

pact systems arise in the context of population mod-

els with impulsive feedback control [38,37,24] or state-

dependent impulsive harvesting [17]. Many other ap-

plications are surveyed in [26]. The books by Babit-

skiy [1] and Babitsky-Krupenin [2] provide a general

framework to identify resonances in impact oscillators

using the so-called first Bogolyubov’s theorem, which

provides an approximation of the dynamics of (7) on

time-intervals of order 1/ε (see also [20]). In particular,

we refer the reader to [2, §6.5], where the authors derive

the averaging functions for the impact oscillator (7) ex-

pressed in slightly different terms. The result of this pa-

per is complementary, as we provide a way to rigorously

prove asymptotic stability of the resonances. The litera-

ture on impact oscillators features several results about

stability of equilibria (see e.g. Leine-Heimsch [23]) and

about bifurcation of resonance homoclinic solutions (see

e.g. Battelli-Feckan [3]). But, apart from the situations

where the solution can be found in the closed form

(see e.g. Okninski-Radziszewski [30]), the intermediate

problem about bifurcation of resonance periodic solu-

tions lacked rigorous description so far. An important

step to fill in this gap has been recently made in Feckan-

Pospisil [14], where the persistence of periodic orbits in

oscillators of form (7) (of any dimension) is addressed

in the case where the obstacle is fixed. Our paper is

a somewhat parallel step where the main focus is on

stability.

The paper is organized as follows. Next section is de-

voted to the main result of the paper (theorem 1) that

links asymptotically stable periodic solutions in (7) to

a suitable averaging function. An application of theo-

rem 1 to the prototypic impact oscillator (5)-(6) is given

in section 3 (theorem 2), where we derive formulas for
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the amplitudes and phase shifts of above-mentioned sta-

ble periodic solutions. The conclusions are summarized

in section 4, followed by an acknowledgment section.

2 The main result

In this section we derive condition for the occurrence

of resonance periodic solutions in the impact oscillator

(7). Without loss of generality one can take w = 1 and

rewrite (7) as

ẍ+ x = εf(t, x, ẋ, ε),

(1− εµ)ẋ(t− 0) = −ẋ(t+ 0), if x(t) = εd.
(8)

Our main result is that the asymptotically stable π-

periodic solutions in (8) correspond to zeros of the fol-

lowing bifurcation function

F (a, φ) =

(
−µa
2d/a

)
+

π/2−φ∫
0

F

(
τ,

(
a

φ

)
, 0

)
dτ +

+

(
−1 0

0 1

) π∫
π/2−φ

F

(
τ,

(
−a
φ

)
, 0

)
dτ,

where

F

(
t,

(
a

φ

)
, ε

)
=

= −
(

sin(t+ φ)f(t, a cos(t+ φ),−a sin(t+ φ), ε)
1
a cos(t+ φ)f(t, a cos(t+ φ),−a sin(t+ φ), ε)

)
.

Specifically, the following theorem holds.

Theorem 1 Let f : R×R×R→ R be a twice continu-

ously differentiable function, such that F (a0, φ0) = 0

for some a0 > 0 and −π/2 < φ0 < π/2. Assume

that the real parts of the eigenvalues of F ′(a0, φ0) are

negative. Then, there exists ε0 > 0 such that for all

ε ∈ (0, ε0) the impact oscillator (7) has a unique asymp-

totically stable π-periodic solution xε that satisfies

(xε(0), ẋε(0))→ (a0 cosφ0,−a0 sinφ0) as ε→ 0. (9)

Proof For convenience of the reader the proof is split

into 3 steps.

Step 1: Transforming (8) to the standard form of av-

eraging. This transformation will be a special form of

the angle-action change of coordinates. Introduce S :

(0,∞)× (−π/2, π/2)→ R2 as

S

(
a

θ

)
=

(
a cos θ

−a sin θ

)

and fix such an open neighborhood V of S

(
a0
φ0

)
that

V ∩{(x, y) : x = 0} = ∅. We will take the values of ε > 0

x

x
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Fig. 3 The directions of the flow of (8) at ε = 0 and two
sample points B = (a cos θ1,−a sin θ1) with θ1 ∈ (0, π/2)
and C = (a cos θ2,−a sin θ2) with θ2 ∈ (−π/2, 0).
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Fig. 4 Four important points on a sample trajectory t 7→
(u1(t), u2(t)) = (x(t), ẋ(t)) of (8) and (10) during the time
interval [0, π] (the case of positive initial angle):
K = (u1(0), u2(0)) = (a cosφ,−a sinφ),
L = (u1, u2)(T (a, φ, ε)− 0) =

= (aL cos(T (a, φ, ε) + φL),−aL sin(T (a, φ, ε) + φL)),
M = (u1, u2)(T (a, φ, ε) + 0) =

= (aM cos(T (a, φ, ε) + φM ),−aM sin(T (a, φ, ε) + φM )),
N = (u1, u2)(π) = (aN cos(π + φN ),−aN sin(π + φN )).

so small that V doesn’t intersect x = εd either. Let

K ∈ V and consider a solution t 7→ u(t) = (u1(t), u2(t))

of
u̇1 = u2,

u̇2 = −u1 + εf(t, u1, u2, ε),

u2(t+ 0) = −(1− εµ)u2(t− 0), if u1(t) = εd

(10)

that originates at K. Our first step consists in intro-

ducing the action-angle-like change of the variables

u(t) = S

(
a(t)

t+ φ(t)

)
, if t ∈ R and u1(t) 6= εd, (11)

or, equivalently, in finding differential equations for two

functions t 7→ (a(t), φ(t)) that solve (11) and satisfy(
a(0)

φ(0)

)
= S−1(K). Similarly to how (11) works in the

classical method of averaging, one gets(
ȧ

φ̇

)
= εF

(
t,

(
a

φ

)
, ε

)
, if a(t) cos(t+φ(t)) 6= εd.(12)

Equation (12) governs (a(t), φ(t)) until S

(
a(t)

φ(t)

)
reaches

x = εd, which moment of time we denote by T (a, φ, ε).
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Let

(
aL
φL

)
=

(
a

φ

)
(T (a, φ, ε)). To comply with the

jump in (10) (i.e. in order that (11) hold for all t from

a neighborhood of T (a, φ, ε) except of T (a, φ, ε) itself),

the trajectory t 7→ (a(t), φ(t)) must undergo a jump

from

(
aL
φL

)
to a new point

(
aM
φM

)
at t = T (a, φ, ε)

(see Fig. 4) and

aM cos(T (a, φ, ε) + φM ) = aL cos(T (a, φ, ε) + φL),

aM sin(T (a, φ, ε) + φM ) =

= −(1− εµ)aL sin(T (a, φ, ε) + φL).

This gives(
aM
φM

)
= S−1

[(
1 0

0 −(1− εµ)

)
◦

◦ S
((

0

T (a, φ, ε)

)
+

(
aL
φL

))]
−
(

0

T (a, φ, ε)

)
and, therefore, the equation (12) must be complemented

by the following impact law(
a

φ

)
(t+ 0) = S−1

[(
1 0

0 −(1− εµ)

)
◦

◦S
(

a(t− 0)

t+ φ(t− 0)

)]
−
(

0

t

)
,

if a(t) cos(t+ φ(t)) = εd.

(13)

A function t 7→ (a(t), φ(t)) is now a solution of (12)-(13)

if and only if

(u1(t), u2(t)) = (a(t) cos(t+ φ(t)),−a(t) sin(t+ φ(t)))

is a solution of (10). Denote by Pε the Poincaré map of

(12)-(13) over period π, in particular Pε(K) = N (see

Fig. 4). If u1 > 0, then

Qε

(
u1
u2

)
= S

(
Pε

(
S−1

(
u1
u2

))
+

(
0

π

))
for all ε > 0 sufficiently small. Furthermore, the eigen-

values of (Qε)
′
(
u1
u2

)
and (Pε)

′
(
S−1

(
u1
u2

))
coincide.

Step 2: Expanding the Poincaré map Pε in powers of ε

and deriving a closed form of the leading term. Denote

by

t 7→
(
A

Φ

)(
t, t0,

(
a

φ

)
, ε

)
the solution t 7→

(
a(t)

φ(t)

)
of (12) with the initial condi-

tions a(t0) = a, φ(t0) = φ. Then

Pε

(
a

φ

)
=

(
A

Φ

)(
π, T (a, φ, ε),

(
aM
φM

)
, ε

)
=

(
aM
φM

)
+

+ε
π∫

T (a,φ,ε)

F

(
τ,

(
A

Φ

)(
π, T (a, φ, ε),

(
aM
φM

)
, ε

)
, ε

)
dτ

To extract the leading term in the expansion of Pε in

powers of ε, we observe the following

T (a, φ, 0) = π/2− φ,(
A′t
Φ′t

)
(π/2− φ, 0, a, φ, 0) = 0,(

A′ε
Φ′ε

)
(π/2− φ, 0, a, φ, 0) =

π/2−φ∫
0

F

(
τ,

(
a

φ

)
, 0

)
dτ,

T ′ε(a, φ, 0) = −
π/2−φ∫

0

F2

(
τ,

(
a

φ

)
, 0

)
dτ − d

a ,

S

(
a

π/2

)
=

(
0

−a

)
, S′

(
a

π/2

)
=

(
0 −a
−1 0

)
,

S−1
(

0

a

)
=

(
a

−π/2

)
, (S−1)′

(
0

a

)
=

(
0 1

1/a 0

)
,(

aL
φL

)∣∣∣∣
ε=0

=

(
a

φ

)
,

(
aM
φM

)∣∣∣∣
ε=0

=

(
a

φ− π

)
.

These formulas allow us to conclude

Pε

(
a

φ

)
= P0

(
a

φ

)
+ ε

(
∂
∂εPε(a, φ)

∣∣
ε=0

)
+

+ε2R(a, φ, ε) =

=

(
a

φ

)
+ ε

(
∂
∂ε

(
aM
φM

)∣∣∣∣
ε=0

)
+

+ε
π∫

π/2−φ
F

(
τ,

(
aM
φM

)∣∣∣∣
ε=0

, 0

)
dτ + ε2R(a, φ, ε)

=

(
a

φ

)
+ ε

((
−µa
2d/a

)
+

π/2−φ∫
0

F

(
τ,

(
a

φ

)
, 0

)
dτ

)
+

+ε
π∫

π/2−φ
F

(
τ,

(
a

φ− π

)
, 0

)
dτ + ε2R(a, φ, ε) =

=

(
a

φ

)
+ εF (a, φ) + ε2R(a, φ, ε).

We of course refer to the Implicit Function Theorem

and to the differentiability of the implicit function (Krantz-

Parks [22] or Kolmogorov-Fomin [21]) to ensure the cor-

rectness of the above expansion.

Step 3: Making conclusions about the fixed points of

Pε based on the properties of the leading term. Since

F (a0, φ0) = 0 and F ′(a0, φ0) is invertible, there exists

ε0 > 0 (that can be chosen as small as possible) such

that for any ε ∈ (0, ε0) the map

(a, φ) 7→ F (a, φ) + εR(a, φ, ε) (14)

has a unique zero (aε, φε) in the ε0-neighborhood of

(a0, φ0) and (aε, φε) → (a0, φ0) as ε → 0. Zeros of

(14) coincide with the fixed points of Pε and it remains

to show that the absolute values of the eigenvalues of

(Pε)
′
(
aε
φε

)
don’t exceed 1. Now we use the following

algebraic fact: if λ is an eigenvalue of the square matrix

A, then 1 + ελ is an eigenvalue of I + εA. Therefore,

since the absolute values of the eigenvalues of F ′(a0, φ0)
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are negative, the constant ε0 > 0 can be chosen so

small, that the absolute values of the eigenvalues of

I + ε
(
F ′(aε, φε) + εR′(a,φ)(aε, φε, ε)

)
don’t exceed 1. �

3 Application to the mass-spring impact

oscillator

The change of the variables x̃ = x(wt) brings (5)-(6) to

the form

ẍ+ εcẋ+ x+ εrx = εb cos(t),

(1− εµ)ẋ(t− 0) = −ẋ(t+ 0), if x(t) = εd.
(15)

We now apply theorem 1 in order to locate asymptoti-

cally stable π-periodic solutions (resonances) in (15).

Theorem 2 Let b > 3d ≥ 0, µ ≥ 0, c ≥ 0 and µ+ c 6=
0. Then there exists ε0 > 0, such that for all ε ∈ (0, ε0)

the impact oscillator (15) has a unique asymptotically

stable π-periodic solution xε satisfying

(xε(0), ẋε(0))→ (a0 cosφ0,−a0 sinφ0) as ε→ 0,(16)

where a0 is the unique real positive root of the quadratic

polynomial

16b2 = 9a2 (−µ− (π/2)c)
2

+ (3πra+ 12d)2 (17)

and φ0 ∈ (−π/2, π/2) is the unique solution of

cos2 2φ =
16b2 − 9a2 (−µ− (π/2)c)

2

16b2
(18)

which verifies cos 2φ > 0 and sin 2φ < 0.

Proof Computing F gives

F (a, φ) =
1

2

(
−2µa− πac
4d/a+ πr

)
− 2b

3a

(
2a sin 2φ

cos 2φ

)
(19)

and

F ′(a, φ) =

−µ− π
2 c − 8

3b cos 2φ

− 2d
a2 + 2b

3a2 cos 2φ 4b
3a sin 2φ

 .

Equaling F (a, φ) to zero one obtains

4b sin 2φ = −3µa− (3/2)πac, (20)

4b cos 2φ = 3aπr + 12d. (21)

Observe, that any solution (a, φ) of (17)-(18) such that

sin 2φ < 0 and cos 2φ > 0 verifies (20)-(21). In order to

see that (17) has an unique real positive solution, we

rewrite (17) as

αa2 + βa+ γ = 0, (22)

where α = 9(π2r2 + (µ + (π/2)c)2), β = 72πrd, γ =

122d2 − 16b2. Since α > 0 and β > 0, (22) has a real

positive root if and only if γ < 0, which follows from

the hypothesis b > 3d of the theorem. The second root

of (22) is always negative.

It now remains to examine the eigenvalues of F ′(a, φ).

The real parts of these eigenvalues are negative, if

trace :
(
−µ− π

2
c
)

+
4b

3a
sin 2φ < 0,

determinant :
16b2

9a2
cos2 2φ− 16bd

3a2
cos 2φ+

+
(
−µ− π

2
c
) 4b

3a
sin 2φ > 0,

which holds true, provided that b > 0, µ+ (π/2)c > 0,

sin 2φ < 0, cos 2φ > 0 and b cos 2φ − 3d > 0. All these

inequalities are just the assumptions of the theorem and

b cos 2φ− 3d > 0 follows from (21).

�

Remark 1 The positive root of (17) is given by

a =
−12πrd+

√
D

3(π2r2 + (µ+ (π/2)c)2)
, (23)

where D = (12πrd)2− (π2r2 + (µ+ (π/2)c)2) · (122d2−
42b2). Therefore, (23) is an ε-approximation of the am-

plitude of π-periodic asymptotically stable oscillations

of (15) provided that the assumptions of theorem 2

hold.

Remark 2 If the collisions are purely symmetric (i.e.

µ = d = 0), (23) reduces to

a =
4b

3
√
π2r2 + (π/2)2c2

. (24)

Formulas (23) and (24) allow to compare the properties

of the resonance solutions of the smooth oscillator (3)

with those of the impact one (5)-(6).

4 Conclusion

In this paper we provided sufficient conditions for the

occurrence of asymptotically stable π/w-periodic so-

lutions (1:1-resonances) in a periodically driven mass-

spring impact oscillator which is close to the following

reduced system

ẍ+ w2x = 0,

ẋ(t− 0) = −ẋ(t+ 0), if x(t) = 0;
(25)

see Fig. 3 for the phase portrait of (25). The obsta-

cle is plugged at the position x = 0 in order to make

the periods of all the periodic solutions of (25) equal.

Such an oscillator is also known as isochronous. Similar
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to the classical approach that is used in nonlinear dy-

namics to study resonances in ε-perturbed isochronous

systems (see [15,29,35]), the ideas of the method of av-

eraging are used in our paper. However, the presence of

the impact obstacle suggested two more natural param-

eters, which are the deviation of the Newton restitution

coefficient µ̃ from 1 and the deviation of the position d̃

of the obstacle from x = 0. Assuming that the small-

ness of both these coefficients is of the order of the

perturbation (i.e. µ̃ = εµ and d̃ = εd), we derived an

averaging function, whose zeros correspond to those pe-

riodic solutions of (25) that produce asymptotically sta-

ble π/w-periodic solutions in the respective full system.

The conclusion of our paper is that the constant µ plays

a role similar to viscous friction as far as 1:1-resonance

solutions are concerned. The role of the constant d is

new, but (23) suggests that this coefficient diminishes

the influence of the external excitation. Finally, when

the impact law changes the coordinates of all trajecto-

ries symmetrically, the formula for the amplitude (24)

of 1:1-resonance solutions is similar to the smooth case

(4).

Along the lines of Burd [8] and Chicone [11], our

work can be further extended to the cases where the

position εd of the obstacle is fixed at some x = d̃, or

where the unperturbed Hamiltonian system is mutli-

dimensional and nonlinear, or where the perturbation

f is almost periodic. Kamenskii-Makarenkov-Nistri [19]

provides a dimension reduction scheme that can be used

to examine the situations where a perturbed Hamil-

tonian system with impacts is given in a part of the

phase space only. Following the ideas of Buica-Llibre-

Makarenkov [6], the asymptotic stability of resonance

solutions xε can be replaced by attractivity of xε in such

a neighborhood that doesn’t depend on ε (uniform at-

tractivity). The proof of the absence of 1:1 resonances

other than that given by theorems 1 and 2 is similar to

Makarenkov-Ortega [27, lemma 2].
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