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The evolution of a homogeneous Markov process may be described statistically by
“transition probabilites” which form a semigroup of Markov kernels.1 These notes concern
the abstract theory of stationary distributions and invariant sets of such semigroups.

Feel free to contact me by e-mail if you have any questions or comments, or if you
believe that you have found any errors (either typographical or mathematical).

Section 0: Preliminaries (#1–23). We start with some general notation and
terminology (including a useful convention for integrating any real-valued measurable
function). We then look at several important preliminary topics.

Section 1: Markov kernels (#24–29). We define the notion of a Markov kernel on a
measurable space. We introduce stationary probability measures, and consider subsets
of the state space that are “invariant (mod null sets)”; naturally, the term that we use
to describe such sets is “almost invariant”.2 As well as “almost invariant sets”, we also
define “almost invariant functions”. We consider Lebesgue decomposition of stationary
probability measures (Proposition 29). We also introduce ergodic probability measures
(which we define in terms of the triviality of all almost-invariant sets).

Section 2: Semigroups of kernels and ergodicity (#30–36). We introduce a
natural monoid structure on the space of Markov kernels, and thence define the notion of
a “semigroup of Markov kernels”. We define stationarity (of probability measures) and
almost-invariance (of sets and functions) by considering all the Markov kernels comprising
the semigroup. Once again, we then define ergodicity in terms of the triviality of all
almost-invariant sets. We give further characterisations of ergodicity (Theorem 34),
including its equivalence to being an extremal point of the convex set of stationary
probability measures. We also show that the class of ergodic probabliity measures is
mutually singular (Theorem 36).

Section 3: Ergodicity in measurable semigroups (#37–49). Until this point, all
our notions of invariance have been “modulo null sets”. We now introduce forward-
invariance, backward-invariance, strict forward-invariance and strict backward-invariance
of sets, and super-invariance, sub-invariance and strict invariance of functions. We show
that if a semigroup of kernels is “measurable” (i.e. jointly measurable in its spatial and
temporal variables), then ergodicity can be characterised in terms of these new notions of

1The terms “transition function” and “family of transition probabilities” are often used to refer to
either a Markov kernel or a semigroup of Markov kernels.

2However, the reader should be warned that the phrase “almost invariant” sometimes appears in
other literature to refer to sets that differ from being invariant by a “small but strictly positive amount”.
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invariance that do not, in and of themselves, make reference to a measure (Theorem 39).
(However, we make the interesting observation in Exercise 46(A) that, even though the
triviality of all bounded strictly invariant functions is sufficient for ergodicity, the triviality
of all sets whose indicator function is strictly invariant is not sufficient for ergodicity.)
In Proposition 49 we relate ergodicity for continuous-time semigroups to ergodicity for
kernels.

Section 4: Markov processes and pointwise ergodic theorems (#50–90). We
introduce the notion of a “Markov measure” (that is, the law of a homogeneous
Markov process). We state and prove a form of the “Markov-processes version” of the
pointwise ergodic theorem (Theorem 55, with the proof extending from Proposition 58 to
Corollary 73). We also state (without full proof) an “ergodic theorem for semigroups of
kernels” (Proposition 78). Converses of these theorems are also given (Proposition 81 and
Corollary 85). We then give an appendix, introducing a special class of Markov processes,
namely processes with stationary and independent increments. (As in Exercise 135(B),
these are often the stochastic processes driving a random dynamical system.)

Section 5: Ergodic decomposition (#91–111). We show that if the state space
of a measurable semigroup is standard then every stationary probability measure has
an integral representation via ergodic probability measures (Theorem 99/Corollary 100).
Specifically, an integral representation is obtained by conditioning the stationary measure
with respect to the σ-algebra of almost-invariant sets. (The pointwise ergodic theorem
for semigroups of kernels is used to show that the resulting measures are indeed ergodic).
An application of this is presented in Corollary 109.

Section 6: Feller-continuity (#112–123). If the state space of a semigroup of kernels
is a separable metric space, then one can ask about “continuity” of the semigroup. We
present a natural way of defining continuity of a semigroup with respect to its spatial
variable, known as “Feller-continuity”. (We do not consider continuity in time in these
notes.) We present the Krylov-Bogolyubov theorem for existence of stationary probability
measures (Theorem 114). We also discuss strong-Feller-continuity.

Section 7: Random maps and random dynamical systems (#124–143). We
introduce random maps and their associated Markov kernels. We introduce filtered
random dynamical systems (adapted to a one-parameter filtration), and focus on the
case of “memoryless noise”. In this case, we show that the transition probabilities of a
RDS form a semigroup of Markov kernels (Proposition 140, which is essentially a corollary
of Proposition 127). We describe the stationary and ergodic probability measures of this
semigroup in terms of the skew-product dynamics induced by the RDS (Theorem 143).

Appendix: Markov operators (#144–149). We explain the link between Markov
kernels and “Markov operators”.

To maintain the flow of the material, several supporting lemmas and relevant remarks
are left as exercises.
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0 Preliminaries

0.1 Some notational conventions

I. For a function f ∶ S → T and a collection C of subsets of T , let f−1C ∶= {f−1(C) ∶ C ∈ C}.
(Let us recall at this point the general fact that f−1σ(C) = σ(f−1C).)

II. For a set Ω, a collection of measurable spaces {(Xα,Σα)}α∈I and a collection {fα}α∈I
of functions fα ∶ Ω → Xα, we use the notation σ(fα ∶ α ∈ I) as a shorthand for
σ({f−1

α (A) ∶ α ∈ I,A ∈ Σα}). In other words, σ(fα ∶ α ∈ I) is the smallest σ-algebra
on Ω with respect to which fα is measurable for every α ∈ I; it is easy to show that if I
is infinite then

σ(fα ∶ α ∈ I) = ⋃
S⊂I

∣S∣=∣N∣

σ(fα ∶ α ∈ S).

Beware that whenever the notation “σ(. . .)” is used, it is always defined with reference
to some underlying set that does not explicitly appear within the notation. Nonetheless,
we still have the following useful fact (which is very easy to prove): given sets Ω1 ⊂ Ω2

and a collection {fα}α∈I of functions fα ∶ Ω2 → Xα, the σ-algebra σ(fα∣Ω1 ∶ α ∈ I) on Ω1

coincides with the σ-algebra on Ω1 induced from the σ-algebra σ(fα ∶ α ∈ I) on Ω2.

III. For a collection of sets {Xα}α∈I , the Cartesian product ⨉α∈IXα denotes the set
of all I-indexed families (xα)α∈I with xα being a member of Xα for all α. Obviously,
if there exists α′ ∈ I such that Xα′ = ∅ then ⨉α∈IXα = ∅. (The converse clearly holds
if the number of distinct members of the collection {Xα}α∈I is finite. Mathematicians
uncontroversially take as axiomatic that the converse holds whenever I is countably
infinite; the controversial “axiom of choice” asserts that the converse always holds.) Given
a set X and a set I, we write XI as a shorthand for ⨉α∈IX.

If {(Xα,Σα)}α∈I is a collection of measurable spaces with ⨉α∈IXα ≠ ∅, we define the
product σ-algebra ⊗α∈I Σα on ⨉α∈IXα by

⊗
α∈I

Σα ∶= σ( (xα)α∈I ↦ xα′ ∶ α′ ∈ I ).

Given a measurable space (X,Σ) and a set I, we write Σ⊗I as a shorthand for ⊗α∈I Σ.

IV. Given a probability space (X,Σ, ρ) and a set I, it is known (e.g. as a special case of
the Ionescu-Tulcea extension theorem3) that there exists a unique probability measure µ
on (XI ,Σ⊗I) with the property that for any distinct α1, . . . , αn ∈ I and any A1, . . . ,An ∈ Σ,

µ ({ (xα)α∈I ∈XI ∶ xαi ∈Ai ∀1 ≤ i ≤ n}) =
n

∏
i=1

ρ(Ai).

We will denote the unique probability measure with this property by ρ⊗I .

V. By a “measure”, we specifically mean a [0,∞]-valued σ-additive function on some

3Theorem 1 of here.
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given σ-algebra on a set. We write f∗m to denote the image measure of a measure m
under a measurable map f — i.e. f∗m ∶= m(f−1(⋅)). Note that under a given map f ,
the image measure of a Dirac mass at a point x is equal to the Dirac mass at the image
point of x (i.e. f∗δx = δf(x)). Thus we may “recover” the original map f from the image-
measure operation f∗ by restricting to Dirac measures. Also note that the image-measure
operation respects composition: that is, (g ○ f)∗m = g∗(f∗m).

Given a measure space (Ω,F ,m), we say that a set A ⊂ Ω is m-null if there exists
A′ ∈ F such that A ⊂ A′ and m(A′) = 0. (So a measurable set A ∈ F is m-null if and
only if m(A) = 0.) We say that a set A ⊂ Ω is m-full if Ω ∖A is m-null. (If m is a finite
measure then this is equivalent to saying that there exists A′ ∈ F such that A′ ⊂ A and
m(A′) =m(Ω).)

We may define an equivalence relation ∼ on 2Ω by

A ∼ B ⇐⇒ A△B is an m-null set.

The m-completion of F , denoted F̄m, is the union of all equivalence classes of ∼ that
intersect F . It is easy to show that F̄m is a σ-algebra, and that there is a unique
measure m̄ on F̄m with the properties that m̄∣F = m and m̄ assigns the same value to
all members of the same equivalence class of ∼ . (Ω, F̄m, m̄) is called the completion
of (Ω,F ,m). It is easy to show that (Ω, F̄m, m̄) is a complete probability space, and
that for any complete probability space (Ω,J , l) with F ⊂ J and l∣F = m, we have
F̄m ⊂ J and l∣F̄m = m̄. (Heuristically, (Ω, F̄m, m̄) is the “smallest complete probability
space containing (Ω,F ,m)”.) It is also easy to show that for any measurable space
(X,Σ) and any measurable map g ∶ Ω → X, g−1(Σ̄g∗m) ⊂ F̄m and for all A ∈ Σ̄g∗m,
g∗m(A) = m̄(g−1(A)).

Given a second-countable topological space X and a measure m on X (where X is
equipped with its Borel σ-algebra B(X)), it is easy to show that there exists a largest
open m-null set; the complement of this set is called the support of m (denoted suppm).
Note that a point x ∈ X belongs to suppm if and only if m assigns positive measure to
every neighbourhood of x.

VI. (a) We denote the extended real line by R̄ = R ∪ {−∞,∞}, and equip it with the
obvious ordering and corresponding order topology (so the function arc tan ∶ R̄→ [−π2 , π2 ]
is both an order-isomorphism and a homeomorphism), and the corresponding Borel σ-
algebra. For any a, b ∈ R̄ with a ≤ b, the notations [a, b], [a, b), (a, b] and (a, b) have the
obvious meaning. We work with the usual arithmetic on R̄:

(i) 0.∞ = ∞.0 = 0.(−∞) = (−∞).0 = 0;

(ii) for all c ∈ (0,∞],

c.∞ = ∞.c = (−∞).(−c) = (−c).(−∞) = ∞
and (−c).∞ = ∞.(−c) = (−∞).c = c.(−∞) = −∞;

(iii) for all c ∈ R∪ {−∞}, (−∞)+ c = c+ (−∞) = −∞ and ∞+ (−c) = (−c)+∞ = ∞;
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(iv) ∣∞∣ = ∣ −∞∣ = ∞.

(b) Certain theorems involving integrals can be rather cumbersome to state (and to prove)
when one has to take into account integrals that are not well-defined. Accordingly, for the
purpose of efficiently stating and proving several of our results (especially Theorem 12,
Exercise 13, Corollary 14, and the ergodic theorems in Section 4), we introduce the
following convention, that may initially seem unusual but will be of enormous help: Given
a measure space (Ω,F ,m) and a measurable function g ∶ Ω → R̄ with ∫Ω g

+(ω)m(dω) =
∫Ω g

−(ω)m(dω) = ∞, we will declare the value of ∫Ω g(x)m(dω) to be NaN (“not a
number”). We will write R′ to denote R̄ ∪ {NaN}, and will equip R′ with the obvious
σ-algebra (namely B(R̄) ∪ {A ∪ {NaN} ∶ A ∈ B(R̄)}). We define the following rules:

(i) 0.NaN = NaN.0 = 0

(ii) for all c ∈ R′ ∖ {0}, c.NaN = NaN.c = NaN;

(iii) NaN + c = c +NaN = NaN for all c ∈ R′;

(iv) ∣NaN∣ = NaN;

(v) if g ∶ Ω → R′ is a measurable function with m(g−1({NaN})) = 0 then

∫Ω g(ω)m(dω) = ∫g−1(R̄)
g(ω)m(dω);

(vi) if g ∶ Ω → R′ is a measurable function with m(g−1({NaN})) > 0 then

∫Ω g(ω)m(dω) = NaN.

(We emphasise rule (v), which is essentially what will make our convention so useful.)
Where useful, given a measurable function g ∶ Ω→ R′, we will write m(g) as a shorthand
for ∫Ω g(ω)m(dω). (So m(A) =m(1A) for all A ∈ F .)

Given a topological space T , a point a ∈ T and a function g ∶ T ∖ {a} → R′, if
NaN ∈ g(U ∖ {a}) for every neighbourhood U of a, then we automatically say that
limx→a g(x) does not exist. (In particular, NaN itself can never be obtained as a limit.)

Given a function g ∶ Ω → R′, we write g+ ∶ Ω → [0,∞] and g− ∶ Ω → [0,∞] to denote
respectively the positive and negative parts of the function 1R̄(g(⋅))g(⋅) on Ω. We say
that g is nonnegative if g(Ω) ⊂ [0,∞], i.e. if g = g+. We say that g is bounded below
(resp. above) if g(Ω) is a subset of R ∪ {∞} (resp. of R ∪ {−∞}) that is bounded below
(resp. above); and we will say that g is bounded if g is both bounded below and bounded
above. We will say that g is finite if g(Ω) ⊂ R. We will say that g is (F -)simple if g is
measurable and g(Ω) is a finite subset of R. We will say that g is integrable with respect to
m (or m-integrable) if g is measurable and ∫Ω ∣g(ω)∣m(dω) ∈ [0,∞) (which is equivalent
to saying that m(g) ∈ R). So then, m(g) ≠ NaN if and only if both m(g−1({NaN})) = 0
and at least one of the integrals m(g+) and m(g−) is finite; and g is m-integrable if and
only if both m(g−1({NaN}) = 0 and the integrals m(g+) and m(g−) are both finite.

Define sub ∶ R′ ×R′ → R′ by sub(x, y) = x − y for (x, y) ∈ (R̄ × R̄) ∖ {(−∞,−∞), (∞,∞)}
and sub(x, y) = NaN otherwise. Note that sub is measurable.
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VII. (a) Let m1 and m2 be measures on a measurable space (Ω,F), and suppose we have
a measurable function g ∶ Ω → [0,∞) such that m2(A) = ∫A g(ω)m1(dω) for all A ∈ F .
Then we will say that g is “a version of dm2

dm1
” [to be read: “a version of the density of m2

with respect to m1”]. The Radon-Nikodym theorem states that provided m1 and m2 are
σ-finite, a version of dm2

dm1
exists if and only if m2 is absolutely continuous with respect to

m1, and in this case any two versions of dm2

dm1
agree m1-almost everywhere.

(b) Let (X,Σ, ρ) be a probability space, and let E be a sub-σ-algebra of Σ. Given
any A ∈ Σ we will say that a function h ∶ X → [0,1] is “a version of ρ(A∣E)” [to be read:
“a version of the conditional probability under ρ of A given E”] if h is E-measurable and
for all E ∈ E

ρ(A ∩E) = ∫
E
h(x)ρ(dx).

Likewise, given a function g ∶X → R′ that is integrable with respect to ρ, we will say that
a function h ∶ X → R′ is “a version of ρ(g∣E)” [to be read: “a version of the conditional
expectation under ρ of g given E”] if h is E-measurable and for all E ∈ E

∫
E
g(x)ρ(dx) = ∫

E
h(x)ρ(dx).

Since we will be taking conditional expectations under various different probability
measures in the course of these notes, we will dispense of any E notation, and just use
the notations introduced above. We will assume knowledge of the most basic properties
of conditional expectations.

Finally, in this document N denotes the set of positive integers (i.e. 0 ∉ N).

Exercise 1. Let (Ω,F ,m) be a measure space. (A) Show that for any measurable g ∶ Ω→
[0,∞] and any c ∈ R′, m(cg) = cm(g). (B) Show that if g1, g2 ∶ Ω → R′ are measurable
functions and g2 is integrable with respect to m, then m(sub(g1, g2)) = m(g1) −m(g2).
(C) Show that if g1, g2 ∶ Ω → R′ are measurable functions with m(g1) ∈ R ∪ {∞} and
m(g2) ∈ R∪{−∞} (or vice versa), then m(sub(g1, g2)) =m(g1)−m(g2). (D) Let g ∶ Ω→ R′

be an m-integrable function, let E ∶= g−1(R′∖{0}), and let FE be the set of F -measurable
subsets of E. Show that the measure space (E,FE,m∣FE) is σ-finite. (E) Suppose m is
a finite measure. Then one may be tempted to “improve” the definition of an m-full set
(by allowing it to cover more cases) as follows: “We say that a set E ⊂ Ω is m-full if there
exists a measure m′ on E (equipped with the induced σ-algebra of F from Ω onto E)
such that m(A) = m′(A ∩ E) for all A ∈ F .” Identify a problem with this approach to
defining full-measure sets.

0.2 Measurability of extrema and limits

A topology or a topological space is said to be Polish if it is separable and completely
metrisable. A σ-algebra or a measurable space is said to be standard if it is generated
by a Polish topology. It turns out (e.g. Proposition 424G in Chapter 42 of here) that for
any standard measurable space (I,I) and any non-empty J ∈ I, the set of I-measurable
subsets of J is standard (as a σ-algebra on J).
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Let (Ω,F) be a measurable space. The universal completion F̄ of F is defined to be
the intersection, over all probability measures P on (Ω,F), of the P-completion of F . It
is easy to check that ¯̄F = F̄ . A set or a function is said to be universally measurable with
respect to F if it is measurable with respect to F̄ .

Working in any given metric space, the notations Bε(x) and Bε(A) denote respectively
the ball of radius ε about a point x and the ε-neighbourhood of a set A.

The proof of the following is left as an exercise to the reader. (Part (B) is based on
the measurable projection theorem.)

Lemma 2. (A) Let (gn)n∈N be a sequence of measurable functions gn ∶ Ω → R̄. The
functions gs ∶ Ω→ R̄ and gi ∶ Ω→ R̄ given by

gs(ω) = sup
n∈N

gn(ω)

gi(ω) = inf
n∈N

gn(ω)

are measurable. (B) Let (I,I) be a standard measurable space, and let g ∶ Ω× I → R̄ be a
measurable function. The functions gs ∶ Ω→ R̄ and gi ∶ Ω→ R̄ given by

gs(ω) = sup
α∈I

g(ω,α)

gi(ω) = inf
α∈I

g(ω,α)

are universally measurable. (C) Let I be a separable metric space, and let g ∶ Ω × I → R̄
be a measurable function such that the map α ↦ g(ω,α) is continuous for each ω ∈ Ω.
Then the functions gs and gi (as defined in part (B)) are measurable.

Note that as a special case of Lemma 2(B), for any A ∈ F ⊗ B(R̄) the maps ω ↦ supAω
and ω ↦ infAω are universally measurable, where Aω ∶= {x ∈ R̄ ∶ (ω,x) ∈ A}. (To see this:
setting

g(ω,x) = x1A(ω,x) + k 1(Ω×R̄)∖A(ω,x),
we have that gi(ω) = infAω if k =∞, and gs(ω) = supAω if k = −∞.)

Exercise 3. Let I be a metric space, fix any a ∈ I and let g ∶ Ω × (I ∖ {a}) → R̄ be a
measurable function. Define the functions gls,a ∶ Ω→ R̄ and gli,a ∶ Ω→ R̄ by

gls,a(ω) = lim sup
α→a

g(ω,α)
gli,a(ω) = lim inf

α→a
g(ω,α).

(A) Show that if B(I) is standard then gls,a and gli,a are universally measurable. (B) Show
that if I is separable and the map α ↦ g(ω,α) from I ∖ {a} to R̄ is continuous then gls,a
and gli,a are measurable. (C) [Extended Fatou’s lemma] Suppose we have a measure m
on Ω, a measurable function g̃ ∶ Ω → R̄ agreeing with gli,a m-almost everywhere, and a
measurable function l ∶ Ω → R̄ such that m(l−) < ∞ and g(ω,α) ≥ l(ω) for all ω and α.
Show that

∫
Ω
g̃(ω)m(dω) ≤ lim inf

α→a
∫

Ω
g(ω,α)m(dω).
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Lemma 4. (A) Let Y be a metric space, and let (gn)n∈N be a sequence of measurable
functions gn ∶ Ω→ Y such that limn→∞ gn(ω) =∶ g(ω) exists for all ω ∈ Ω. Then g ∶ Ω→ Y
is measurable. (B) Let Y be a Polish space, and let (gn)n∈N be a sequence of measurable
functions gn ∶ Ω→ Y . Then the set Ω′ ∶= {ω ∈ Ω ∶ limn→∞ gn(ω) exists} is measurable, and
the function g ∶ Ω′ → Y given by g(ω) = limn→∞ gn(ω) is measurable.

Proof. (A) For any closed G ⊂ Y ,

g−1(G) =
∞

⋂
n=1

∞

⋃
i=1

∞

⋂
j=i

g−1
j (B 1

n
(G)) .

So g is measurable. (B) Fix a separable complete metrisation d of Y . Then

Ω′ =
∞

⋂
n=1

∞

⋃
i=1

∞

⋂
j,k=i

{ω ∶ d(gj(ω), gk(ω)) < 1
n}

and so Ω′ ∈ F . Part (A) gives the rest.

Lemma 5. Let I be a metric space, and fix a point a ∈ I such that a is an accumulation
point of I (i.e. a ∈ I ∖ {a}). (A) Let Y be a metric space, and let g ∶ Ω × (I ∖ {a}) → Y
be a measurable function such that limα→a g(ω,α) =∶ gl,a(ω) exists for all ω ∈ Ω. Then the
function gl,a ∶ Ω → Y is measurable. (B) Assume I is separable. Let Y be a Polish
space, let g ∶ Ω × (I ∖ {a}) → Y be a measurable function, and let Ω′ ∶= {ω ∈ Ω ∶
limα→a g(ω,α) exists}. If B(I) is standard then Ω′ is universally measurable. If the
map α ↦ g(ω,α) from I ∖ {a} to Y is continuous for each ω ∈ Ω, then Ω′ is measurable.
In any case, the function gl,a ∶ Ω′ → Y given by gl,a(ω) = limα→a g(ω,α) is measurable with
respect to the induced σ-algebra of F onto Ω′.

Proof. (A) Let (an) be a sequence in I ∖ {a} converging to a. Then for all ω ∈ Ω,
gl,a(ω) = limn→∞ g(ω, an). So by Lemma 4(A), gl,a is measurable. (B) Fix a separable
complete metrisation d of Y . Then

Ω′ =
∞

⋂
n=1

∞

⋃
m=1

{ω ∶ sup α,β ∈B1
m
(a)∖{a} d(g(ω,α), g(ω,β)) < 1

n}.

Parts (B) and (C) of Lemma 2 (applied to the map (ω, (α,β))↦ d(g(ω,α), g(ω,β))) and
part (A) of this lemma then give the rest.

0.3 Integration preserves measurability

A π-system is a collection of sets that is closed under pairwise intersections. A λ-system
on a set Ω is a collection of subsets of Ω that includes Ω itself and is closed under both
complements in Ω and countable disjoint unions. Now in order to show that all the
members of some σ-algebra F have some particular property, a common approach is to
show that the set of all sets with the desired property is a σ-algebra, and that there is a
generator C of F all of whose members have the desired property. However, sometimes we
are not quite able to show that the set of all sets with the desired property is a σ-algebra,
but only a λ-system. (An important example is the set of measurable sets on which two
given probability measures agree.) The π-λ theorem says that this is still fine, if our
generator C is a π-system. More precisely: the theorem states that if D is a λ-system on
a set Ω and C ⊂ D is a π-system, then the σ-algebra on Ω generated by C is contained in
D.
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Exercise 6. Let µ and ν be measures on a measurable space (Ω,F). Let C be a π-system
generating F , containing an increasing sequence E1 ⊂ E2 ⊂ E3 ⊂ . . . with µ(En) < ∞ for
all n and ⋃∞

n=1En = Ω (so µ is σ-finite). Show that if µ(E) = ν(E) ∀E ∈ C, then µ = ν.

Let (Ω,F) be a measurable space.

Lemma 7. Fix a ∈ [1,∞]. Let H be a set of functions from Ω to [0,∞] such that:

(a) there exists a π-system C generating F , with Ω ∈ C, such that 1E ∈ H for all E ∈ C;

(b) for any E ∈ F , if 1E ∈ H then 1Ω∖E ∈ H;

(c) for any c1, c2 ∈ [0,∞) and g1, g2 ∈ H, c1g1 + c2g2 ∈ H;

(d) for any increasing sequence (gn) in H with gn(Ω) ⊂ [0, a] for all n, the pointwise
limit of (gn) is in H.

Then H includes all measurable functions g ∶ Ω→ [0,∞] with g(Ω) ⊂ [0, a].

Proof. Let A ∶= {E ∈ F ∶ 1E ∈ H}. For any sequence (En)n∈N of mutually disjoint members
ofA, properties (c) and (d) together yield that ⋃∞

n=1En ∈ A. Combining this with property
(b) and the fact that Ω ∈ A (from property (a)), we have that A is a λ-system. Hence,
by property (a) and the π-λ theorem, A = F . Property (c) then gives that H includes all
the nonnegative simple functions, and hence property (d) completes the result.

Throughout these notes, (X,Σ) is a measurable space, and M is the set of measures on
(X,Σ), equipped with its natural σ-algebra, namely σ(ρ ↦ ρ(A) ∶ A ∈ Σ). So a map
ω ↦ µω from Ω to M is measurable if and only if the map ω ↦ µω(A) is measurable for
every A ∈ Σ. This is, in turn, equivalent to saying that the map ω ↦ µω(g) is measurable
for every measurable g ∶X → R (see Exercise 9).

M<∞ ⊂ M will denote the set of finite measures on X, and M1 ⊂ M<∞ the set of
probability measures on X; note that M<∞ and M1 are measurable subsets of M.

Lemma 8. (A) Let (I,I) be a measurable space, and suppose we have a measurable
mapping α ↦ ρα from I to M<∞. For any measurable function g ∶ Ω × I ×X → R′, the
function g ∶ Ω × I → R′ given by

g(ω,α) = ∫
X
g(ω,α, x)ρα(dx)

is measurable. (B) Suppose we have a σ-finite measure ρ on X. For any measurable
function g ∶ Ω ×X → R′, the function g ∶ Ω→ R′ given by

g(ω) = ∫
X
g(ω,x)ρ(dx)

is measurable.
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Proof. (A) Let H be the set of measurable functions g ∶ Ω × I ×X → R̄ for which g is
measurable, and let C ∶= {E ×B × A ∶ E ∈ F ,B ∈ I,A ∈ Σ}. Note that for any member
S =E×B×A of C, 1S(ω,α) = 1E×B(ω,α)ρα(A) and so 1S ∈ H. Also note that for any
S ∈ F ⊗ I ⊗Σ, 1X∖S(ω,α) = ρα(X) − 1S(ω,α), and so if 1S ∈ H then 1X∖S ∈ H. By the
monotone convergence theorem and Lemma 7 (with a = ∞), it follows that H consists
of all the nonnegative measurable functions on Ω × I × X; in other words, the desired
statement is true whenever g is nonnegative. Now for a general measurable function
g ∶ Ω × I ×X → R′, we can apply our previous statement to the function 1{NaN} ○ g to
obtain that the set

S ∶= { (ω,α) ∈ Ω × I ∶ ρα(x ∈X ∶ g(ω,α, x) = NaN) > 0}

is measurable. We have that

g(ω,α) = { NaN (ω,α) ∈ S
sub(g+(ω,α), g−(ω,α)) (ω,α) ∈ (Ω × I) ∖ S.

Now g+ and g− are measurable (since g+ and g− are nonnegative); so g is measurable.
(B) If ρ(X) <∞ then the result follows immediately from (A); so assume that ρ(X) =∞.
Let (Xn)n∈N be an increasing sequence of sets belonging to Σ, with ⋃∞

n=1Xn = X and
0 < ρ(Xn) <∞ for all n. For any nonnegative measurable function g on Ω ×X, we have

g(ω) = lim
n→∞

∫
Xn
g(ω,x)ρ(dx)

and so, by Lemma 4(A) and part (A) of this lemma, g is measurable. To extend to
general g, argue as in part (A).

Exercise 9. Show that the σ-algebra σ(ρ ↦ ρ(g) ∶ measurable g ∶ X → R′ ) on M
precisely coincides with the σ-algebra on M that we introduced earlier. (So if ω ↦ µω is
a measurable mapping from Ω to M then the mapping ω ↦ µω(g) is measurable for any
measurable g ∶X → R′.)

Exercise 10. Show that if the diagonal in X × X is (Σ ⊗ Σ)-measurable (e.g. if Σ is
the Borel σ-algebra of a second-countable Hausdorff topology), then Σ includes all the
singletons in X, and the map (ρ, x)↦ ρ({x}) from M ×X to [0,1] is measurable.

Exercise 11. Recall that for any measure w on R̄, given a value a ∈ R̄ and a set A ⊂ R̄,
a is called an an essential upper bound (under w) of A if the set {x ∈ A ∶ x > a} is a
w-null set; and for any A ⊂ R̄, the set of essential upper bounds under w of A has a
least element, which is called the essential supremum (under w) of A. The notion of
an essential infimum can be defined similarly. Given a measure space (I,I,m) and a
measurable function g ∶ I → R̄, for any set J ⊂ I we write

m-ess sup
α∈J

g(α) and m-ess inf
α∈J

g(α)

to denote respectively the essential supremum under g∗m of g(J) and the essential
infimum under g∗m of g(J). (A) Let (I,I,m) be a σ-finite measure space, and let

10



g ∶ Ω × I → R̄ be a measurable function. Show that the functions ges ∶ Ω → R̄ and
gei ∶ Ω→ R̄ given by

ges(ω) = m-ess sup
α∈I

g(ω,α)

gei(ω) = m-ess inf
α∈I

g(ω,α)

are measurable. (B) Let I be a metric space, fix a ∈ I, and let m be a σ-finite measure on
I ∖ {a} (equipped with its Borel σ-algebra). Given a function h ∶ I ∖ {a} → R̄, we define
the “essential superior limit” and “essential inferior limit” of h at a by

m-lim ess sup
α→a

h(α) ∶= lim
ε→0

m-ess sup
α∈Bε(a)∖{a}

h(α)

m-lim ess inf
α→a

h(α) ∶= lim
ε→0

m-ess inf
α∈Bε(a)∖{a}

h(α).

Now let g ∶ Ω × (I ∖ {a}) → R̄ be a measurable function. Show that the functions
gles,a ∶ Ω→ R̄ and glei,a ∶ Ω→ R̄ given by

gles,a(ω) = m-lim ess sup
α→a

g(ω,α)
glei,a(ω) = m-lim ess inf

α→a
g(ω,α)

are measurable.

0.4 Shifting integral signs

Note that by the monotone convergence theorem, given a measurable mapping ω ↦ µω
from Ω to M and a measure m on (Ω,F), A↦ ∫Ω µω(A)m(dω) is a measure on (X,Σ).
The integral with respect to this measure of a measurable function g ∶ X → R′ may be
denoted

∫
X
g(x)∫

Ω
µω(dx)m(dω).

Theorem 12. Suppose we have a measurable mapping ω ↦ µω from Ω to M and a
measure m on Ω. Let g ∶X → R′ be a measurable function. If

∫
X
g(x)∫

Ω
µω(dx)m(dω) ≠ NaN

then

∫
X
g(x)∫

Ω
µω(dx)m(dω) = ∫

Ω
∫
X
g(x)µω(dx)m(dω).

Note that, using Theorem 12 itself,

∫
X
g(x)∫

Ω
µω(dx)m(dω) ≠ NaN [resp. ∈ R]

if and only if the following two statements hold:

• g−1({NaN}) is a µω-null set for m almost all ω ∈ Ω;
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• at least one of the integrals

∫
Ω
∫
X
g+(x)µω(dx)m(dω) and ∫

Ω
∫
X
g−(x)µω(dx)m(dω)

[resp. the integral

∫
Ω
∫
g−1(R̄)

∣g(x)∣µω(dx)m(dω) ]

is finite.

Proof of Theorem 12. If g = 1A for some A ∈ Σ then LHS = ∫Ω µω(A)m(dω) = RHS.
Hence the monotone convergence theorem and Lemma 7 (with a = ∞) yield that the
desired statement is true whenever g is nonnegative. Now, for convenience, let µ̄ denote
the measure ∫Ω µω(⋅)m(dω). Let g ∶ X → R′ be any measurable function such that
µ̄(g) ≠ NaN. Firstly, µ̄(g−1(NaN)) = 0, and so for m-almost every ω ∈ Ω, for µω-almost
all x ∈ X, g(x) ≠ NaN. We also know that either µ̄(g+) < ∞ or µ̄(g−) < ∞. Assume the
latter case (the former case is similar); hence

∫
Ω
µω(g−)m(dω) < ∞,

from which it follows that for m-almost every ω ∈ Ω, µω(g−) <∞. So then, for m-almost
every ω ∈ Ω, µω(g) = µω(g+) − µω(g−). With all this, we have:

µ̄(g) = µ̄(g+) − µ̄(g−)

= ∫
Ω
µω(g+)m(dω) − ∫

Ω
µω(g−)m(dω)

= ∫
Ω̃
µω(g+) − µω(g−)m(dω)

= ∫
Ω
µω(g)m(dω)

where Ω̃ is an m-full set on which µω(g−) <∞. So we are done.

Exercise 13. (A) Let (Ω,F ,m) be a measure space. Let f ∶ Ω → X and h ∶ Ω → [0,∞]
be measurable functions, and define the measure ν on X by

ν(A) = ∫
f−1(A)

h(ω)m(dω).

Show that for any measurable g ∶X → R′,

∫
X
g(x)ν(dx) = ∫

Ω
g(f(ω))h(ω)m(dω).

Note that if h ≡ 1 then we recover the “transformation-of-integrals formula”, namely
m(g ○ f) = f∗m(g); and if Ω = X with f = idΩ, then we recover the well-known formula
that “ ∫Ω g dν = ∫Ω g ⋅ dνdm dm”. (B) Let (A,A) and (B,B) be measurable spaces, fix some
a ∈ A, let p be a measure on B, and define the measure qa on A ×B by

qa(S) = ∫
B
1S(a, b)p(db) = p(b ∈ B ∶ (a, b) ∈ S).
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Show that
qa(g) = ∫

B
g(a, b)p(db).

for any measurable g ∶ A×B → R′. (C) [Conditional transformation-of-integrals formula]
Let (Ω,F ,P) be a probability space, let (E,E) be a measurable space, let G be a sub-
σ-algebra of E , let f ∶ Ω → E be a measurable function, and let g ∶ E → R be an
(f∗P)-integrable function. Show that if g̃ ∶ E → R is a version of f∗P(g∣G), then g̃ ○ f is a
version of P(g ○ f ∣f−1G).

As an important case of Theorem 12, we have the following:

Corollary 14 (Fubini-Tonelli theorem for σ-finite spaces). Let (A,A, µ) and (B,B, ν)
be σ-finite measure spaces. For any S ∈ A⊗ B, let

µ⊗ ν(S) ∶= ∫
A
∫
B
1S(a, b)ν(db)µ(da).

(This is well-defined by Lemma 8(B).) µ ⊗ ν is a σ-finite measure on A ×B, and is the
only measure on A ×B assigning the value µ(U)ν(V ) to U × V for all U ∈ A and V ∈ B.
For any measurable g ∶ A ×B → R′, if

∫
A×B

g(a, b)µ⊗ ν(d(a, b)) ≠ NaN

then

∫
A×B

g(a, b)µ⊗ ν(d(a, b)) = ∫
A
∫
B
g(a, b)ν(db)µ(da)

= ∫
B
∫
A
g(a, b)µ(da)ν(db).

Note once again that for any measurable g ∶ A×B → R′, µ⊗ν(g) ≠ NaN [resp. ∈ R] if and
only if the following two statements hold:

• µ⊗ ν(g−1({NaN})) = 0;

• at least one of the four integrals

∫
A
∫
B
g+(a, b)ν(db)µ(da) ∫

A
∫
B
g−(a, b)ν(db)µ(da)

∫
B
∫
A
g+(a, b)µ(da)ν(db) ∫

B
∫
A
g−(a, b)µ(da)ν(db)

[resp. at least one of the two integrals

∫
A
∫
B
∣gR̄(a, b)∣ν(db)µ(da) and ∫

B
∫
A
∣gR̄(a, b)∣µ(da)ν(db)

where gR̄(a, b) ∶= g(a, b)1R̄(g(a, b))] is finite.

If µ and ν are probability measures, then the probability measure µ ⊗ ν represents the
probability distribution for a random selection of a pair (a, b) ∈ A×B in which a and b are
selected independently of each other, with a selected from A with probability distribution
µ and b selected from B with probability distribution ν.
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Proof of Corollary 14. It is clear (by the monotone convergence theorem) that µ⊗ ν is a
measure. For any U ∈ A and V ∈ B,

µ⊗ ν(U × V ) = ∫
A
∫
B
1U(a)1V (b)ν(db)µ(da) = ∫

A
ν(V )1U(a)µ(da) = µ(U)ν(V ).

Now given increasing sequences (Un)n∈N and (Vn)n∈N in A and B respectively such that

⋃∞
n=1Un = A, ⋃∞

n=1 Vn = B and µ(Un), ν(Vn) < ∞ for all n ∈ N, it is clear that (Un×Vn)n∈N is
an increasing sequence in A⊗B with µ⊗ν(Un×Vn) <∞ for all n and ⋃∞

n=1(Un×Vn) = A×B.
So µ⊗ν is σ-finite. The fact that µ⊗ν is the only measure assigning the value µ(U)ν(V ) to
U×V for all U ∈ A and V ∈ B then follows from Exercise 6, with C = {U×V ∶ U ∈ A, V ∈ B}.
Now applying Theorem 12 with Ω = A, X = A×B and µa(S) = ∫B 1S(a, b)ν(db), we obtain
(using Exercise 13(B)) that

∫
A×B

g(a, b)µ⊗ ν(d(a, b)) = ∫
A
∫
B
g(a, b)ν(db)µ(da)

provided µ⊗ ν(g) ≠ NaN. Finally, if we define

µ ⊗̃ν(S) ∶= ∫
B
∫
A
1S(a, b)µ(da)ν(db)

for all S ∈ A ⊗ B, then it is easy to check once again that µ ⊗̃ν is a measure on A × B
assigning the value µ(U)ν(V ) to U × V for all U ∈ A and V ∈ B. So µ ⊗̃ν = µ ⊗ ν, and
therefore, by Theorem 12 again,

∫
A×B

g(a, b)µ⊗ ν(d(a, b)) = ∫
B
∫
A
g(a, b)µ(da)ν(db)

provided µ⊗ ν(g) ≠ NaN.

Exercise 15 (Conditional Fubini theorem). Let (Ω,F ,P) be a probability space, with
G a sub-σ-algebra of F , and let (I,I, ν) be a σ-finite measure space. Let g ∶ Ω × I → R′

be a function that is integrable with respect to P ⊗ ν, and let g̃ ∶ Ω × I → R′ be
a measurable function such that for ν-almost all α ∈ I, the map ω ↦ g̃(ω,α) is a
version of P(ω ↦ g(ω,α)∣G). Show that the map ω ↦ ∫I g̃(ω,α)ν(dα) is a version of
P(ω ↦ ∫I g(ω,α)ν(dα)∣G).

0.5 A lemma on joint measurability

Given sets I ⊂ J ⊂ R̄, we will say that I is right-dense in J if for every t ∈ J and ε > 0,
I ∩ [t, t + ε) ≠ ∅. (This is equivalent to saying that I is both dense in J and contains
every point t ∈ J with the property that J ∩ (t, t + δ) = ∅ for some δ > 0.)

Lemma 16. Let (Ω,F) be a measurable space, let Z be a metric space, let J be a separable
metric space, and suppose we have a function g ∶ J ×Ω→ Z.

(A) Suppose that (i) the map x ↦ g(x,ω) is continuous for each ω ∈ Ω, and (ii) J
admits a countable dense subset S such that the map ω ↦ g(x,ω) is measurable for each
x ∈ S. Then g is a measurable function.

(B) In the case that J is a subspace of R̄: suppose that (i) the map t ↦ g(t, ω) is
right-continuous for each ω ∈ Ω, and (ii) J admits a countable right-dense subset S such
that the map ω ↦ g(t, ω) is measurable for each t ∈ S. Then g is a measurable function.
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To prove this: (A) (Following Lemma 4.51 of here) we leave it as an exercise to show that
for any closed G ⊂ Z,

g−1(G) =
∞

⋂
n=1

⋃
x∈S

( B 1
n
(x) × g(x, ⋅)−1(B 1

n
(G)) ) .

(B) We leave it as an exercise to show that for any closed G ⊂ Z,

g−1(G) =
∞

⋂
n=1

⋃
t∈S

( (J ∩ (t − 1
n , t]) × g(t, ⋅)−1(B 1

n
(G)) ) .

(Lemma 16 can be further generalised, but such generalisations have harder proofs and
will not be needed.)

0.6 The narrow topology for separable metric spaces

Theorem 17. For any separable metrisable topology T on X generating Σ, there is a
corresponding separable metrisable topology NT on M1 (generating the natural σ-algebra
onM1), in which a sequence (µn) of probability measures on X converges to a probability
measure µ on X if and only if the following equivalent statements hold:

(i) µn(g)→ µ(g) for every bounded dT -Lipschitz g ∶X → R;

(ii) µ(g) ≤ lim infn→∞ µn(g) for every T -lower-semicontinuous g ∶X → R ∪ {∞} that
is bounded below;

(iii) µ(g) ≥ lim supn→∞ µn(g) for every T -upper-semicontinuous g ∶ X → R ∪ {−∞}
that is bounded above;

(iv) µ(U) ≤ lim infn→∞ µn(U) for every T -open U ⊂X;

(v) µ(G) ≥ lim supn→∞ µn(G) for every T -closed G ⊂X;

where, in (i), dT may be any separable metrisation of T . NT is compact if and only if T
is compact, and NT is Polish if and only if T is Polish.

NT is called the narrow topology (or topology of weak convergence) associated to T .
Observe that µn → µ in the narrow topology if and only if µn(g) → µ(g) for every
bounded continuous g ∶ X → R. (In fact, this is probably the most commonly given
definition of the narrow topology.)

It is also worth saying that the equivalence of (i)–(v) does not actually rely on the
metrisable topology T being separable. In addition to our above characterisations of
the narrow topology, a further well-known characterisation is that µn → µ if and only
µn(A) → µ(A) for every A ∈ Σ with µ(∂A) = 0; this is proved in many textbooks on
probability theory, but we will not need it here.

Also note that, by the above theorem, if (X,Σ) is standard then M1 (equipped with
its natural σ-algebra) is standard.
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Although the above theorem is (at least in most of its details) well-known, we will write
out a proof of all but the last sentence4. We start with the following exercise:

Exercise 18. Fix a metric d on X. Show that for any A ⊂ X, the sequence (gAn )n∈N of
functions gAn ∶X → [0,1] given by gAn (x) = min(1, nd(x,X ∖A)) is an increasing sequence
of Lipschitz functions converging pointwise to 1A○ . (So gAn converges pointwise to 1A if
and only if A is open.)

Proof of the equivalence of (i)–(v). Fix a metric d on X whose Borel σ-algebra is Σ. We
will show (i)⇒(iv)⇒(ii); the rest is then clear.

Suppose we have (µn)n∈N and µ satisfying (i). Let U ⊂ X be any open set. Using
the monotone convergence theorem and Exercise 18,

lim inf
n→∞

µn(U) = lim inf
n→∞

sup
m∈N

µn(gUm) ≥ sup
m∈N

lim inf
n→∞

µn(gUm) = sup
m∈N

µ(gUm) = µ(U)

where gUm is as in Exercise 18. So (i)⇒(iv).

Now suppose (µn)n∈N and µ satisfy (iv). For each m ∈ N, let Rm ∶= { k
2m}k ∈Z∪{∞} and

define the function hm ∶ R ∪ {∞} → R ∪ {∞} by hm(y) = sup(Rm ∩ (−∞, y)). (So for
y < ∞, hm rounds y down to the nearest 1

2m -division that is strictly less than y.) Note
that hm increases pointwise to the identity function idR∪{∞} as m→∞, and that for any
m ∈ N, given any c ∈ Rm

hm(y) = c + 1

2m

∞

∑
k=1

1(c+ k
2m

,∞](y) ∀ y ∈ (c,∞].

Let g ∶ X → R ∪ {∞} be any lower-semicontinuous that is bounded below, with c ∈ Z
being a strict lower bound of g. So for each m ∈ N,

hm(g(x)) = c + 1

2m

∞

∑
k=1

1Uk,m(x) ∀ x ∈X

where Uk,m = g−1((c + k
2m ,∞]) for each k,m ∈ N. So then, since the sequence (hm ○ g) is

4see e.g. Theorem 9.4 of here, and Exercise 22(B). Further facts along the same lines can be found
in Theorem III.60 of here.
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uniformly bounded below and increases pointwise to g, we have

lim inf
n→∞

µn(g) = lim inf
n→∞

sup
m∈N

µn(hm ○ g) (by MCT)

≥ sup
m∈N

lim inf
n→∞

µn(hm ○ g)

= sup
m∈N

lim inf
n→∞

c + 1

2m

∞

∑
k=1

µn(Uk,m) (by MCT)

≥ sup
m∈N

c + 1

2m

∞

∑
k=1

lim inf
n→∞

µn(Uk,m)

(by Fatou’s lemma, applied to the counting measure on N)

≥ sup
m∈N

c + 1

2m

∞

∑
k=1

µ(Uk,m) (by (iv))

= sup
m∈N

µ(hm ○ g) (by MCT)

= µ(g) (by MCT).

(“MCT” stands for “the monotone convergence theorem”.) This proves that (iv)⇒(ii).
So we are done.

We now consider metrisability of the convergence described in (i)–(v) above (which we
refer to as “narrow convergence” or “weak convergence”). Recall that [0,1]N equipped
with the infinite product topology (the “Hilbert cube”) is a compact metrisable space,
with an exemplary metric being d∞((xn), (yn)) = ∑∞

n=1
1

2n ∣xn − yn∣.

Lemma 19. Fix a separable metric d on X whose Borel σ-algebra is Σ. Then there exists
a countable set {gk}k∈N of d-Lipschitz functions gn ∶X → [0,1] such that for any sequence
(µn) in M1 and any µ ∈M1, µn converges narrowly to µ if and only if µn(gk) → µ(gk)
for each k ∈ N. Hence, if we let d∞ be a metrisation of the topology of [0,1]N, then the
function dM1 ∶M1 ×M1 → [0,∞) given by

dM1(µ1, µ2) = d∞( (µ1(gk))k∈N , (µ2(gk))k∈N )

is a separable metric on M1 whose convergence is precisely narrow convergence.

Another metrisation of the narrow topology is the “Lévy-Prokhorov metric”; however,
the above metrisation will be useful for us.

Proof of Lemma 19. Let C̃ be a countable base for the topology induced by d, and let C
be the collection of all finite unions of members of C̃. Since C is countable, we can write
C = {Ur}r∈N. So for every open U ⊂X there exists a sequence (rm)m∈N of positive integers
such that 1Urm increases pointwise to 1U as m → ∞. For each r ∈ N, let (grm)m∈N be an
increasing sequence of d-Lipschitz functions grm ∶ X → [0,1] converging pointwise to 1Ur

(e.g. as in Exercise 18). (The set {grm}r,m∈N will be precisely the countable set {gk}k∈N
referred to in the statement of the lemma.)

Suppose we have (µn)n∈N and µ such that µn(grm) → µ(grm) for every r and m. As in
the proof that (i)⇒(iv), we have that µ(Ur) ≤ lim infn→∞ µn(Ur) for every r. If we then
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fix any open U ⊂ X and let (rm)m∈N be a sequence of positive integers such that 1Urm
increases pointwise to 1U as m→∞, we have (using the monotone convergence theorem)

lim inf
n→∞

µn(U) = lim inf
n→∞

sup
m∈N

µn(Urm) ≥ sup
m∈N

lim inf
n→∞

µn(Urm) ≥ sup
m∈N

µ(Urm) = µ(U).

So µn converges narrowly to µ.

Exercise 20. (A) Show that if X is equipped with a second-countable topology
generating Σ and C is a countable subbase for this topology, then Σ = σ(C). (B) Show
that for any topological space (T,T ) and any function f ∶ X → T , if D is a subbase for
T then {f−1(U) ∶ U ∈ D} is a subbase for the topology {f−1(U) ∶ U ∈ T } on X. (C) Show
that for any topological space (S,S), if U is a subbase for S then

{{ (xn) ∈ SN ∶ xk ∈ V } ∶ k ∈ N, V ∈ U }

is a subbase for the product topology on SN.

Proof that NT generates the natural σ-algebra of M1.5 Fix a separable metrisable topology
T on X generating Σ, and let B(M1) = σ(NT) denote the Borel σ-algebra of the
corresponding narrow topology NT . Let K be the natural σ-algebra of M1. As in
Exercise 9, K is the smallest σ-algebra on M1 with respect to which the map µ ↦ µ(g)
is measurable for every measurable g ∶X → [0,1], i.e.

K = σ( {µ ∈M1 ∶ µ(g) ∈ B} ∶ measurable g ∶X → [0,1], B ∈ B([0,1]) ).

Letting U be a countable base (or subbase) for the topology on [0,1] and letting {gk}k∈N
be as in Lemma 19, we have (by Exercise 20) that

B(M1) = σ( {µ ∈M1 ∶ µ(gk) ∈ V } ∶ k ∈ N, V ∈ U ).

Hence it is clear that B(M1) ⊂ K.

Conversely, for any bounded continuous g ∶ X → R, the map µ ↦ µ(g) is continuous
and hence B(M1)-measurable; and therefore, by Exercise 18, the map µ ↦ µ(U) is
B(M1)-measurable for every open U ⊂ X. Now the collection of all sets A ∈ Σ for which
the map µ ↦ µ(A) is B(M1)-measurable is a λ-system. Hence, by the π-λ theorem, the
map µ↦ µ(A) is B(M1)-measurable for every A ∈ Σ; in other words, K ⊂ B(M1).

This completes our proof of Theorem 17.

Corollary 21. Fix a separable metrisable topology on X generating Σ, and let K ⊂X be
a non-empty compact set. Then the set KK ∶= {ρ ∈M1 ∶ ρ(K) = 1} is a compact subset of
M1 (equipped with the narrow topology).

Proof. Let MK
1 denote the set of Borel probability measures on K, equipped with the

narrow topology associated to the topology on K induced from X. We know from
Theorem 17 that MK

1 is compact, and it is clear that the map ϕ ∶ µ ↦ µ( ⋅ ∩K) from
MK

1 to KK is surjective (and in fact bijective). Hence it is sufficient to show that ϕ is
continuous; but this is clear, since for any bounded continuous g ∶X → R, g∣K is bounded
and continuous.

5I am grateful to Prof Dan Crisan for his help in the construction of this proof.
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Exercise 22. Fix a separable metrisable topology on X (with Σ being the Borel σ-
algebra). (A) Give an elementary proof (i.e. without citing Theorem 17 or Lemma 19)
that if µ1 and µ2 are probability measures on X such that µ1(g) = µ2(g) for every bounded
continuous g ∶ X → R, then µ1 = µ2. (B) Recall that, given two topological spaces T1

and T2, a closed embedding of T1 into T2 is a function f ∶ T1 → T2 such that f(T1) is
a closed subset of T2 and f maps T1 homeomorphically into its image f(T1). (In the
case that T1 and T2 are metric spaces, this is equivalent to saying that f is a continuous
function under which divergent sequences in T1 are mapped into divergent sequences in
T2.) Show that the map x ↦ δx serves as a closed embedding of X into M1 (equipped
with the narrow topology). Hence prove the “only if” statements in the last sentence of
Theorem 17. (C) [a.s. convergence implies convergence in distribution] Let (Ω,F ,P) be
a probability space, let (gn) be a sequence of measurable functions gn ∶ Ω → X and let
g ∶ Ω → X be a measurable function such that for P-almost all ω ∈ Ω, gn(ω) → g(ω) as
n→∞. Show that gn∗P converges in the narrow topology to g∗P.

Exercise 23. Find a sequence of probability measures (µn) on N converging in the
narrow topology to a probability measure µ on N, such that µ(idN) < lim infn→∞ µn(idN).

1 Markov kernels

Recall that throughout this document, (X,Σ) is a measurable space, with M and M1

denoting respectively the space of measures and the space of probability measures on X.

A Markov kernel on X (which we will sometimes just call a “kernel”) is an X-indexed
family (µx)x∈X of probability measures µx on X such that the map x↦ µx from X toM1

is measurable (which is equivalent to saying that the map x ↦ µx(A) is measurable for
all A ∈ Σ). Heuristically, one can regard a kernel (µx)x∈X as a probabilistic description of
a “random relocation procedure” for a particle in X: if the particle is at position x prior
to relocation, then µx denotes the probability distribution for where the particle will be
relocated to.

Note that the map x ↦ δx is measurable; hence we may associate to each measurable
function f ∶X →X the corresponding Markov kernel (δf(x))x∈X .

Given a kernel (µx) on X, we define an associated map µ∗ ∶M1 →M1 by

µ∗ρ(A) = ∫
X
µx(A)ρ(dx)

for all ρ ∈ M1 and A ∈ Σ. By Lemma 8(A), this map is measurable. Observe that in
the case that (µx) = (δf(x)) for some measurable f ∶ X → X, µ∗ρ is simply equal to f∗ρ.
A heuristic interpretation of µ∗ρ is as follows: Suppose we have a random relocation
procedure for a particle in X, whose transition probabilities are given by (µx)x∈X ;
and suppose the position of the particle prior to relocation is itself selected randomly
(independently of the relocation procedure) with probability distribution ρ. Then, prior
to the selection of the initial position of the particle, the probability distribution for where

19



the particle will be subsequent to relocation is given by µ∗ρ.6

Note that, given a probability measure ρ on X and a measurable function g ∶ X → R′

with ρ(g) ≠ NaN, Theorem 12 yeids that

µ∗ρ(g) = ∫
X
µx(g)ρ(dx).

(As in Exercise 13(A), the condition that ρ(g) ≠ NaN can be dropped if (µx) = (δf(x)) for
some measurable f ∶X →X.)

We now introduce the most fundamental object of study in ergodic theory: A probability
measure ρ on X is said to be stationary (with respect to (µx)x∈X) if µ∗ρ = ρ. In the
particular case that (µx) = (δf(x)) for some measurable f ∶ X → X, this reduces to the
following: a probability measure ρ on X is said to be invariant with respect to f if f∗ρ = ρ.
(In this case, we also say that f is ρ-preserving.)

Exercise 24. Given a stationary probability measure ρ, show that for any measurable
functions g1, g2 ∶ X → R′ with g1(x) = g2(x) for ρ-almost all x, µx(g1) = µx(g2) for
ρ-almost all x.

Exercise 25. For any probability measure ρ on X, define the probability measure µρ on
X ×X by

µρ(B) = ∫
X
∫
X
1B(x, y)µx(dy)ρ(dx)

for all B ∈ Σ⊗Σ. (So ρ is stationary if and only if ρ(A) = µρ(X ×A) for all A ∈ Σ.) Note
that, combining Theorem 12 and Exercise 13(B),

µρ(g) = ∫
X
∫
X
g(x, y)µx(dy)ρ(dx)

for any measurable g ∶ X ×X → R′ with µρ(g) ≠ NaN. (A) Show that ρ is stationary if
and only if for every A ∈ Σ, µρ(A × (X ∖A)) = µρ((X ∖A) ×A). (B) Show that for any
measurable function g ∶X → R′,

µ∗ρ(g) = ∫
X×X

g(y)µρ(d(x, y)).

Now let ρ be a stationary probability measure. Then we will say that a set A ∈ Σ is
ρ-almost invariant (with respect to (µx)) if µx(A) = 1 for ρ-almost all x ∈ A. In the case
that (µx) = (δf(x)) for some ρ-preserving measurable function f ∶ X → X, this reduces
to the following: we will say that a set A ∈ Σ is ρ-almost invariant with respect to f if
f(x) ∈ A for ρ-almost all x ∈ A (i.e. if ρ(A ∖ f−1(A)) = 0).

6One way to make this rigorous is as follows: Suppose we have a probability space (Ω,F ,P) and a
measurable function f ∶ Ω ×X → X such that for each x ∈ X and A ∈ Σ, P(ω ∈ Ω ∶ f(ω,x) ∈ A) = µx(A).
Given a probability measure ρ onX, Corollary 14 yields that P⊗ρ( (ω,x) ∈ Ω×X ∶ f(ω,x) ∈ A) ) = µ∗ρ(A)
for all A ∈ Σ. (Here, we treat the “random relocation procedure” as a random self-mapping of X. For
more on this, see section 7.)
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Exercise 26. (A) Show that the set of ρ-almost invariant sets forms a σ-algebra on X,
and that a set A ∈ Σ is ρ-almost invariant if and only if µx(A) = 1A(x) for ρ-almost all
x ∈ X. (B) Show that A ∈ Σ is ρ-almost invariant if and only if µρ(A × (X ∖ A)) = 0.
(C) Show that A ∈ Σ is ρ-almost invariant if and only if either (i) ρ(A) = 0, or (ii) ρ(A) > 0

and the probability measure C ↦ ρ(A∩C)

ρ(A)
is stationary with respect to (µx). (D) In the

case that (µx) = (δf(x)) for some ρ-preserving measurable function f ∶X →X, show that
for any A ∈ Σ the following are equivalent:

• A is ρ-almost invariant with respect to f ;

• ρ(f−1(A) ∖A) = 0;

• ρ(A△ f−1(A)) = 0;

and show that a sufficient condition for these statements to be true is the following:
f(A) ∖A is a ρ-null set.

Now let us still assume that ρ is a stationary probability measure. We will say that a
function g ∶ X → R′ is ρ-almost invariant (with respect to (µx)) if g is measurable with
respect to the σ-algebra of ρ-almost invariant sets. If (µx) = (δf(x)) for some ρ-preserving
measurable function f ∶X →X, then we will say in this case that g is ρ-almost invariant
with respect to f .

Since every ρ-null A ∈ Σ is ρ-almost invariant, it follows that if g1, g2 ∶ X → R′ are
measurable functions with g1(x) = g2(x) for ρ-almost all x, then g1 is ρ-almost invariant
if and only if g2 is ρ-almost invariant.

Theorem 27. Let ρ be a stationary probability measure. (A) A measurable function
g ∶X → R′ is ρ-almost invariant if and only if for ρ-almost every x ∈X,

µx( y ∈X ∶ g(y) = g(x) ) = 1.

(So in the case that (µx) = (δf(x)), g is ρ-almost invariant if and only if for ρ-almost
every x ∈X, g(f(x)) = g(x).) (B) For any measurable g ∶X → R̄, if either

(a) ρ(g+) <∞ and µx(g) ≥ g(x) for ρ-almost all x ∈X; or

(b) ρ(g−) <∞ and µx(g) ≤ g(x) for ρ-almost all x ∈X;

then g is ρ-almost invariant. In the case that (µx) = (δf(x)) for some measurable map
f ∶ X → X (so f∗ρ = ρ), the conditions on ρ(g+) and ρ(g−) can be dropped—that is:
for any measurable g ∶ X → R̄, if either g(f(x)) ≥ g(x) for ρ-almost all x ∈ X or
g(f(x)) ≤ g(x) for ρ-almost all x ∈X, then g is ρ-almost invariant.

Proof. (A) Suppose g is ρ-almost invariant. Let X1 ∶= g−1(R̄), X2 ∶= g−1({NaN}) =X∖X1,
and let IX1

ρ be the set of ρ-almost invariant subsets of X1. Let (gn)n∈N be a sequence of
functions gn ∶X → R′ such that

• gn(x) = NaN for all x ∈X2 and n ∈ N;

• gn∣X1 is IX1
ρ -simple for all n ∈ N;
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• gn∣X1 converges pointwise to g∣X1 as n→∞.

It is clear that gn is ρ-almost invariant for each n. For each n, since gn only takes finitely
many different values and the preimage of each of these values is a ρ-almost invariant set,
we have that for ρ-almost all x ∈X,

µx( y ∈X ∶ gn(y) = gn(x) ) = 1.

Obviously, therefore, ρ-almost every x ∈X has the property that

µx( y ∈X ∶ gn(y) = gn(x) ) = 1 for all n ∈ N

and therefore
µx( y ∈X ∶ gn(y) = gn(x) for all n ∈ N) = 1

and therefore
µx( y ∈X ∶ g(y) = g(x) ) = 1.

as required. Now on the other hand, suppose we have a ρ-full set X ′ ∈ Σ such that
µx( y ∈ X ∶ g(y) = g(x) ) = 1 for all x ∈ X ′. Given any measurable B ⊂ R′, for any
x ∈ g−1(B) ∩X ′,

µx(g−1(B)) ≥ µx(g−1( {g(x)} )) = 1

and so g−1(B) is ρ-almost invariant. Hence g is ρ-almost invariant.

(B) Let us consider case (a) (case (b) is similar). Fix any a ∈ R; we will show that
the set A ∶= g−1([a,∞]) is ρ-almost invariant. On the basis of Exercise 25(B), since
ρ(g+) <∞ we know that

∫
A×X

g(y)µρ(d(x, y)) ≠ NaN.

Since a > −∞ and g+ is integrable with respect to ρ, the map x↦ 1A(x)g(x) is integrable
with respect to ρ. Hence, again using Exercise 25(B), we have that

∫
X×A

g(y)µρ(d(x, y)) ∈ R

and so

∫
A×A

g(y)µρ(d(x, y)) ∈ R.

Consequently, we have the following:

∫
A×(X∖A)

g(y)µρ(d(x, y)) = ∫
A×X

g(y)µρ(d(x, y)) − ∫
A×A

g(y)µρ(d(x, y))

= ∫
A
∫
X
g(y)µx(dy)ρ(dx) − ∫

A×A
g(y)µρ(d(x, y))

≥ ∫
A
g(x)ρ(dx) − ∫

A×A
g(y)µρ(d(x, y))

= ∫
X×A

g(y)µρ(d(x, y)) − ∫
A×A

g(y)µρ(d(x, y))

= ∫
(X∖A)×A

g(y)µρ(d(x, y)).
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Given that (by Exercise 25(A)) µρ(A×(X∖A)) = µρ((X∖A)×A), and yet the range of g
on X∖A is strictly lower than the range of g on A, it must follow that µρ(A×(X∖A)) = 0.
So, by Exercise 26(B), A is ρ-almost invariant.

Now consider the case that (µx) = (δf(x)) for some measurable map f ∶ X → X, and
suppose that g(f(x)) ≥ g(x) for ρ-almost all x ∈ X. Fix any a ∈ R. For ρ-almost every
x with g(x) ≥ a, g(f(x)) ≥ a; so g−1([a,∞]) is ρ-almost invariant. Hence g is ρ-almost
invariant. (The case that g(f(x)) ≤ g(x) ρ-a.e. is similar.)

Exercise 28. Let ρ be a stationary probability measure. Show by elementary means
(i.e. without citing Theorem 27) that for any ρ-integrable g ∶ X → R̄ the following are
equivalent:

• µx(g) = g(x) for ρ-almost all x ∈X;

• µx(g) ≥ g(x) for ρ-almost all x ∈X;

• µx(g) ≤ g(x) for ρ-almost all x ∈X.

The following proposition will be our main tool in proving important results concerning
the “structure” of the space of stationary probability measures (Theorem 34(i)⇔(iv),
and Theorem 36).

Proposition 29. (A) Let ρ1 and ρ2 be stationary probability measures on X, let

ρ2 = ρsing + ρcont

denote the Radon-Nikodym decomposition of ρ2 into its singular and absolutely continuous
parts with respect to ρ1, and suppose that ρcont(X) > 0. Then the probability measure

ρc = ρcont(⋅)
ρcont(X)

is stationary. (B) Let ρ1 and ρ2 be stationary probability measures, with ρ2

being absolutely continuous with respect to ρ1, and let g ∶X → [0,∞) be a version of dρ2
dρ1

.
Then g is ρ1-almost invariant.

Proof. (A) Take a set A ∈ Σ with ρ1(A) = 1 and ρsing(A) = 0. Then ρ2(A) = ρcont(A) =
ρcont(X), and for any Σ-measurable B ⊂ A, ρ2(B) = ρcont(B). Hence

ρc(C) = ρ2(A ∩C)
ρ2(A)

for any C ∈ Σ, and so (by Exercise 26(C)) it is sufficient to show that A is ρ2-almost
invariant. Since ρ1 is stationary, we have that ρ1(x ∈ A ∶ µx(A) < 1) = 0, and so

ρ2(x ∈ A ∶ µx(A) < 1) = ρcont(x ∈ A ∶ µx(A) < 1) = 0.

Hence A is ρ2-invariant. (B) Fix any a ∈ [0,∞), and let A = g−1([a,∞]). We will show
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that A is ρ1-almost invariant. We have

∫
A×(X∖A)

g(x)µρ1(d(x, y)) = ∫
A
µx(X ∖A)g(x)ρ1(dx)

= ∫
A
µx(X ∖A)ρ2(dx)

= µρ2(A × (X ∖A))
= µρ2((X ∖A) ×A)

= ∫
(X∖A)×A

g(x)µρ1(d(x, y)).

As in the proof of Theorem 27(B), we have that the range of g on X ∖A is strictly lower
than the range of g on A and therefore A is ρ1-almost invariant.

A probability measure ρ is said to be ergodic (with respect to (µx)) if it is stationary
and assigns trivial measure (i.e. either 0 or 1) to every ρ-almost invariant set. (Other
equivalent formulations will be given in Theorem 34 and in Section 3.) If (µx) = (δf(x))
for some measurable f ∶X →X, then we will say in this case that ρ is ergodic with respect
to f .

2 Semigroups of kernels and ergodicity

From now on, T+ denotes either N ∪ {0} or [0,∞). We equip T+ with its standard
topology and the corresponding Borel σ-algebra. λ denotes the counting measure on T+

if T+ = N ∪ {0}, and the Lebesgue measure on T+ if T+ = [0,∞). For any set S ⊂ [0,∞),
we write TS to mean T+ ∩ S.

Given two Markov kernels (µx)x∈X and (νx)x∈X on X, we refer to the Markov kernel
(ν∗µx)x∈X as the composition of (νx) with (µx). We refer to (δx)x∈X as the identity
kernel on X. One can easily check the set of Markov kernels on X forms a monoid under
composition. We will say that two Markov kernels (µx) and (νx) commute if ν∗µx = µ∗νx
for all x ∈X.

Note that for any two measurable functions f1, f2 ∶ X → X, (δf2○f1(x))x∈X is precisely
the composition of (δf2(x))x∈X with (δf1(x))x∈X .

Exercise 30. Let (µx) and (νx) be kernels on X. (A) Given any probability measure ρ
on X, show that (ν∗µ)∗ρ = ν∗(µ∗ρ) and δ∗ρ = ρ. (Here, (ν∗µ)∗ denotes the map on M1

associated with the Markov kernel (ν∗µx)x∈X , and δ∗ denotes the map onM1 associated
with the identity kernel.) (B) Given any bounded measurable g ∶ X → R, show that for
all x ∈ X, µx(ν⋅(g)) = ν∗µx(g) and δx(g) = g(x). (Here, ν⋅(g) denotes the function from
X to R sending y ↦ νy(g).)

Exercise 30 can be summarised by saying that the map ((µx)x∈X , ρ)↦ µ∗ρ is a left monoid
action of the space of Markov kernels upon the setM1, and the map ((µx)x∈X , g)↦ µ⋅(g)
is a right monoid action of the space of Markov kernels upon the set of bounded
measurable functions g ∶X → R.
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A semigroup7 of Markov kernels on X (which we will sometimes just call a “semigroup”)
is a T+-indexed family (µtx)x∈X, t∈T+ of Markov kernels (µtx)x∈X on X such that (µ0

x) is the
identity kernel and (µs+tx ) is the composition of (µtx) with (µsx) for all s, t ∈ T+ (i.e., such
that the map t ↦ (µtx)x∈X serves as a monoid homomorphism from (T+,+) to the space
of Markov kernels on X). Writing this in full:

µ0
x(A) = 1A(x),

µs+tx (A) = ∫
X
µty(A)µsx(dy)

for all x ∈ X, A ∈ Σ and s, t ∈ T+. (The latter equation is sometimes referred to as the
“Chapman-Kolmogorov equation”.) Obviously, this implies that for any s, t ∈ T+ the
kernels (µsx)x∈X and (µtx)x∈X commute. Note that for any kernel (µx) on X there is a
unique discrete-time semigroup (µnx)x∈X,n∈N∪{0} on X such that (µ1

x) = (µx).

Semigroups of Markov kernels typically appear as the family of transition probabilities
associated to a Markov process (Section 4) or stochastic flow / random dynamical system
(Section 7, in particular Proposition 140, which may be regarded as a version of the
“Chapman-Kolmogorov theorem”).

Recall that an autonomous dynamical system (f t)t∈T+ on X is a family of measurable
functions f t ∶ X → X such that f 0 is the identity map and f s+t = f t ○ f s for all s, t ∈ T+.
(For convenience, we will write f−t(A) as a shorthand for (f t)−1(A).) We may associate
with each autonomous dynamical system (f t)t∈T+ on X a corresponding semigroup of
kernels (δf t(x))x∈X, t∈T+ . Also note that by Exercise 30(A), for any semigroup (µtx) on X,
(µt∗)t∈T+ defines an autonomous dynamical system on M1.

Given a semigroup (µtx) on X, we will say that a probability measure ρ is stationary
with respect to the semigroup (µtx) if it is stationary with respect to the kernel (µtx)x∈X
for every t ∈ T+; if (µtx) = (δf t(x)) for some autonomous dynamical system (f t), then we
will say in this case that ρ is invariant with respect to (f t) (or that (f t) is ρ-preserving).

Given a stationary probability measure ρ of the semigroup (µtx), we will say that a
set A ∈ Σ or a measurable function g ∶ X → R′ is ρ-almost invariant with respect to the
semigroup (µtx) if it is ρ-almost invariant with respect to the kernel (µtx)x∈X for every
t ∈ T+. Obviously, Proposition 29 holds for semigroups of kernels just as it does for
individual kernels.

Now it is essentially a tautology that a function is measurable with respect to the
intersection of a collection of σ-algebras if and only if it is measurable with respect
to each member of the collection. Hence, given a semigroup of kernels (µtx) on X and a
stationary probability measure ρ, a measurable function g ∶X → R′ is ρ-almost invariant
if and only if it is measurable with respect to the σ-algebra of ρ-almost invariant sets.

7Generally, a “semigroup” simply means a set equipped with an associative binary operator; however,
the term is often used specifically in connection with the image of T+ under a monoid homomorphism.
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We will say that a probability measure ρ is ergodic (with respect to the semigroup (µtx)) if
it is stationary and assigns trivial measure (i.e. either 0 or 1) to every ρ-almost invariant
set. Observe that if a stationary probability measure ρ is ergodic with respect to the
kernel (µt′x)x∈X for some t′ ∈ T+ then it is ergodic with respect to the semigroup (µtx).

We define ρ-almost invariance and ergodicity with respect to an autonomous dynamical
system (f t) as being the same as ρ-almost invariance and ergodicity with respect to the
semigroup of kernels (δf t(x)).
Proposition 31. Suppose T+ = N ∪ {0}; then the notions of stationarity, almost-
invariance (of sets or functions) and ergodicity are the same for a semigroup of kernels
(µnx) as they are for the kernel (µ1

x).

Proof. By Exercise 30(A), it is clear that a probability measure ρ is stationary with
respect to the semigroup (µnx) if and only if it is stationary with respect to the kernel
(µ1

x). Now fix a stationary probability measure ρ and let A ∈ Σ be a set that is ρ-almost
invariant under the kernel (µ1

x). Obviously A is ρ-almost invariant under the kernel
(µ0

x) (since every measurable set is ρ-almost invariant under the identity kernel). Now
fix any k ∈ N such that A is ρ-almost invariant under the kernel (µkx); we will show
that A is ρ-almost invariant under the kernel (µk+1

x ). Let Ã ∶= {y ∈ A ∶ µ1
y(A) = 1}. Since

ρ(A∖Ã) = 0 and ρ is stationary with respect to (µkx), it follows that for ρ-almost all x ∈X,
µkx(A∖ Ã) = 0. But we also know that for ρ-almost all x ∈ A, µkx(A) = 1. Combining these
two facts, we have that for ρ-almost all x ∈ A, µkx(Ã) = 1 and therefore

µk+1
x (A) = ∫

X
µ1
y(A)µkx(dy) ≥ ∫

Ã
µ1
y(A)µkx(dy) = 1.

Hence A is ρ-almost invariant under the kernel (µk+1
x ). It follows by induction that A is

ρ-almost invariant under the whole semigroup (µnx). The rest is then immediate.

Exercise 32. Suppose T+ = [0,∞), and let (µtx) be a semigroup of kernels on X.
(A) Given a probability measure ρ on X, show that if there exists a Lebesgue-positive
measure set R ⊂ [0,∞) such that ρ is stationary with respect to the kernel (µsx)x∈X for all
s ∈ R, then ρ is stationary with respect to the semigroup (µtx). (Hint: reduce the problem
to a problem about fixed points of autonomous dynamical systems; the Lebesgue density
theorem may also be useful.) (B) Hence, given a stationary probability measure ρ of the
semigroup (µtx) and a set A ∈ Σ, show that if there exists a Lebesgue-positive measure
set R ⊂ [0,∞) such that A is ρ-almost invariant under the kernel (µsx)x∈X for all s ∈ R,
then A is ρ-almost invariant under the semigroup (µtx).
We now come to our first important theorem characterising ergodicity. We start with the
following exercise:

Exercise 33. Given a probability measure ρ on X, we will say that a measurable function
g ∶ X → R′ is ρ-almost constant if there exists c ∈ R′ such that g(x) = c for ρ-almost all
x ∈ X. Show that a measurable function g ∶ X → R′ is ρ-almost constant if and only if it
is measurable with respect to the σ-algebra of ρ-trivial measure sets.

Now let (µtx) be a semigroup of kernels on X. Note that any convex combination
of stationary probability measures is stationary; i.e. the set of stationary probability
measures is a convex set (within the vector space of functions from Σ to R).
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Theorem 34. For any stationary probability measure ρ, the following are equivalent:

(i) ρ is ergodic;

(ii) any measurable function g ∶ X → R′ that is ρ-almost invariant is ρ-almost
constant;

(iii) the only stationary probability measure that is absolutely continuous with respect
to ρ is ρ itself;

(iv) ρ is an extreme point of the convex set of stationary probability measures.

Proof. (i)⇒(ii) follows from Exercise 33. (ii)⇒(iii) follows from Proposition 29(B). Now
given two probability measures ρ1 and ρ2 on X, it is clear that ρ1 and ρ2 are absolutely
continuous with respect to any strict convex combination of ρ1 and ρ2; hence (iii)⇒(iv).
Finally, if A ∈ Σ is a ρ-almost invariant set that is not of ρ-trivial measure, then ρ can be
expressed as a convex combination of ρ(A∩ ⋅ )

ρ(A)
and ρ( ⋅ ∖A)

ρ(X∖A)
, which are stationary probability

measures by parts (A) and (C) of Exercise 26; hence (iv)⇒(i).

Recall that two measures m1 and m2 on X are said to be mutually singular if there exists
A ∈ Σ such that m1(A) = 0 and m2(X ∖A) = 0. In the proof that (iv)⇒(i) in Theorem 34,
we actually see that any non-stationary probability measure can be expressed as a strict
convex combination of two mutually singular probability measures.

A set S ⊂ M of measures on X is said to be mutually singular if for all m1,m2 ∈ S,
m1 and m2 are mutually singular.

Exercise 35. Show that if S is a mutually singular set of measures on X, then for any
finite or countable subset C of S one can associate to each m ∈ S an m-full measure set
Am ∈ Σ in such a way that for any distinct m1,m2 ∈ S, m1(Am2) = 0.

Theorem 36. The set of ergodic probability measures is mutually singular.

Proof. This follows immediately from Proposition 29(A) and characterisation (iii) of
ergodicity in Theorem 34.

3 Ergodicity in measurable semigroups

Let (µx) be a Markov kernel on X. We will say that a set A ∈ Σ is strictly forward-
invariant under (µx) if for every x ∈ X, µx(A) = 1 if and only if x ∈ A. We will say that
A ∈ Σ is strictly backward-invariant under (µx) if for every x ∈ X, µx(A) = 0 if and only
x ∈ X ∖A; this is equivalent to saying that X ∖A is strictly forward-invariant. We will
say that a bounded measurable function g ∶ X → R is strictly invariant under (µx) if for
every x ∈X, g(x) = µtx(g).

Now (and throughout the rest of this section) let (µtx) be a semigroup of Markov
kernels on X. We will say that a set A ∈ Σ is strictly forward-invariant (resp. strictly
backward-invariant) under the semigroup (µtx) if and only if it is strictly forward-invariant
(resp. strictly backward-invariant) under the kernel (µtx)x∈X for all t ∈ T+. We will say
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that a bounded measurable function g ∶ X → R is strictly invariant under the semigroup
(µtx) if and only if it is strictly invariant under the kernel (µtx)x∈X for all t ∈ T+.

Proposition 37. Suppose T+ = N ∪ {0}; then the notions of strict forward-invariance
(of sets), strict backward-invariance (of sets) and strict invariance (of functions) are the
same for the semigroup (µnx) as they are for the kernel (µ1

x).

Proof. We first claim that, given a set A ∈ Σ with µ1
x(A) = 1 for all x ∈ A, we have that

µnx(A) = 1 for all x ∈ A and n ∈ N ∪ {0}. The case that n = 0 is clear, since (µ0
x) is the

identity kernel. Now fix any k ∈ N such that µkx(A) = 1 for all x ∈ A. Then for any x ∈ A,

µk+1
x (A) = ∫

X
µ1
y(A)µkx(dy) ≥ ∫

A
µ1
y(A)µkx(dy) = 1.

Hence, our claim is proved by induction. We now claim that, given a set A ∈ Σ with
µ1
x(A) < 1 for all x ∈ X ∖A, we have that µnx(A) < 1 for all x ∈ X ∖A and n ∈ N ∪ {0}.

The case that n = 0 is clear, since (µ0
x) is the identity kernel. Now fix any k ∈ N such that

µkx(A) < 1 for all x ∈X ∖A. Then for any x ∈X ∖A,

µk+1
x (X ∖A) = ∫

X
µ1
y(X ∖A)µkx(dy) ≥ ∫

X∖A
µ1
y(X ∖A)µkx(dy) > 0.

Hence, our claim is proved by induction. Combining these two claims gives that if a
set A ∈ Σ is strictly forward-invariant under the kernel (µ1

x) then it is strictly forward-
invariant under the whole semigroup (µnx). The same is then also true for the notion
of strict backward-invariance, since (both for a kernel and for a semigroup) a strictly
backward-invariant set is precisely a set whose complement is strictly forward-invariant.

Now let g ∶ X → R be a bounded measurable function that is strictly invariant under
the kernel (µ1

x). Again, obviously g is strictly invariant under the kernel (µ0
x). Now fix

any k ∈ N such that g is strictly invariant under the kernel (µkx). For any x ∈ X, using
Theorem 12 we have that

µk+1
x (g) = ∫

X
µ1
y(g)µkx(dy) = ∫

X
g(y)µx(dy) = g(x).

Hence, by induction, g is strictly invariant under the semigroup (µnx).

Exercise 38. Given an autonomous dynamical system (f t)t∈T+ on X, we will say that a
set A ∈ Σ is strictly invariant under (f t)t∈T+ if f−t(A) = A for all t ∈ T+, and we will say
that a measurable function g ∶ X → R′ is strictly invariant under (f t)t∈T+ if g ○ f t = g for
all t ∈ T+. (So a set A is strictly invariant if and only if its indicator function 1A is strictly
invariant; and a bounded measurable function g ∶ X → R is strictly invariant under (f t)
if and only if it is strictly invariant under the semigroup (δf t(x)).) (A) Show that for any
A ∈ Σ, the following are equivalent:

• A is strictly invariant under (f t);

• A is strictly forward-invariant under (δf t(x));

• A is strictly backward-invariant under (δf t(x)).
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(B) Show that the set of strictly invariant sets under (f t) is a σ-algebra, and that
a measurable function g ∶ X → R′ is strictly invariant under (f t) if and only if it is
measurable with respect to this σ-algebra.

Now we will say that the semigroup (µtx) is measurable if the map (t, x)↦ µtx from T+×X
toM1 is measurable. (So in the case that T+ = N∪{0}, every semigroup of Markov kernels
is measurable.)

Theorem 39. Suppose that (µtx) is measurable, and let ρ be a stationary probability
measure. Then the following are equivalent:

(i) ρ is ergodic;

(ii) ρ assigns trivial measure to every strictly forward-invariant set;

(iii) ρ assigns trivial measure to every strictly backward-invariant set;

(iv) every bounded measurable function g ∶X → R that is strictly invariant is ρ-almost
constant.

Note that by Propositions 31 and 37, Theorem 39 (which we have stated for measurable
semigroups of kernels) also holds for individual Markov kernels.

Remark 40. An autonomous dynamical system (f t) on X is said to be measurable if
the map (t, x) ↦ f t(x) is measurable. It is clear that if (f t) is measurable then (δf t(x))
is measurable. So as a special case of Theorem 39 (together with Exercise 38(A)), an
invariant probability measure of a measurable autonomous dynamical system is ergodic
if and only if it assigns trivial measure to every strictly invariant set.

Before proving Theorem 39, let us introduce some further concepts for which Theorem 39
has important implications.

We say that a set A ∈ Σ is forward-invariant (under the semigroup (µtx)) if µtx(A) = 1
for all x ∈ A and t ∈ T+; in the case that (µtx) = (δf t(x)) for some autonomous dynamical
system (f t), this reduces to the following: we will say that a set A ∈ Σ is forward-invariant
under (f t) if f t(A) ⊂ A for all t ∈ T+. We say that A ∈ Σ is backward-invariant if µtx(A) = 0
for all x ∈ X ∖A and t ∈ T+; so A is backward-invariant if and only if X ∖A is forward-
invariant. In the case that (µtx) = (δf t(x)) for some autonomous dynamical system (f t),
this reduces to the following: we will say that a set A ∈ Σ is backward-invariant under
(f t) if f−t(A) ⊂ A for all t ∈ T+.

It is easy to show that the set of forward-invariant sets is closed under countable
intersections and relatively closed in Σ under arbitrary unions (and so, in particular,
is closed under countable unions).

Now we say that a measurable function g ∶ X → R ∪ {−∞} which is bounded above is
super-invariant if µtx(g) ≥ g(x) for all x ∈X and t ∈ T+; so a set A ∈ Σ is forward-invariant
if and only if 1A is super-invariant. We say that a measurable function g ∶ X → R ∪ {∞}
which is bounded below is sub-invariant if µtx(g) ≤ g(x) for all x ∈X and t ∈ T+; so a set
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A ∈ Σ is backward-invariant if and only if 1A is sub-invariant. Obviously, a function g is
super-invariant if and only if −g is sub-invariant.

All these notions (which we have just introduced for semigroups of kernels) can also
be defined for individual kernels, and (following the proof of Proposition 37) it is easy
to show that if T+ = N ∪ {0} then these notions are the same for the semigroup (µnx) as
they are for the kernel (µ1

x). (In fact, we already proved this for forward-invariance, in
the first “claim” within the proof of Proposition 37.)

Note that, given a stationary probability measure ρ, the notion of forward-invariance
“lies between” ρ-almost invariance and strict forward-invariance; so as a “special case”
of Theorem 39, if (µtx) is measurable then ρ is ergodic if and only if it assigns trivial
measure to every forward-invariant set. (And obviously, the same statement holds for
backward-invariant sets.) Moreover, using Theorem 27, super-invariance (of bounded-
above measurable functions) “lies between” ρ-almost invariance (of measurable functions)
and strict invariance (of bounded measurable functions). So once again, as a “special
case” of Theorem 39, if (µtx) is measurable then ρ is ergodic if and only if all super-
invariant functions are ρ-almost constant; and likewise for sub-invariant functions.

Let us now start the proof of Theorem 39. It is clear that (i) implies (ii) and (iii),
and by Theorem 34 we know that (i) implies (iv). So it remains to show that (ii) implies
(i) (from which it immediately follows that (iii) implies (i)) and that (iv) implies (ii).

Lemma 41. Suppose (µtx) is measurable. For any A ∈ Σ, the set

µ+(A) ∶= {x ∈X ∶ for λ-almost all t ∈ T+, µtx(A) = 1}

is forward-invariant, and the set

µ−(A) ∶= {x ∈X ∶ λ(t ∈ T+ ∶ µtx(A) > 0) > 0}

is backward-invariant.

Proof. By Lemma 8(B), µ+(A) ∈ Σ. Now fix any x ∈ µ+(A) and t ∈ T+. Then (using
Corollary 14)

∫
X
∫
T+
µsy(X ∖A)λ(ds)µtx(dy) = ∫

T+
∫
X
µsy(X ∖A)µtx(dy)λ(ds)

= ∫
T+
µt+sx (X ∖A)λ(ds)

= 0

and hence for µtx-almost all y ∈X, for λ-almost all s ∈ T+, µsy(X ∖A) = 0. In other words,
for µtx-almost all y ∈ X, y belongs to µ+(A). Hence µ+(A) is forward-invariant. Now
notice that

µ−(A) = X ∖ µ+(X ∖A).
So µ−(A) is backward-invariant.

30



Lemma 42. Suppose (µtx) is measurable. For any A ∈ Σ, the set A′ ∶= µ+(µ−(A)) is
strictly forward-invariant.

Proof. By Lemma 41, A′ is forward-invariant. Now fix any x ∈ X and t ∈ T+ such that
µtx(A′) = 1; if we can show that x ∈ A′ then we are done. Since µ−(A) is backward-
invariant (by Lemma 41), we have that A′ ⊂ µ−(A). So for any s ∈ T[0,t],

∫
X
µt−sy (µ−(A))µsx(dy) = µtx(µ−(A)) = 1

and so µt−sy (µ−(A)) = 1 for µsx-almost all y ∈ Y ; since µ−(A) is backward-invariant, it
follows that µsx(µ−(A)) = 1. Now for any s ∈ T[t,∞),

µsx(A′) = ∫
X
µs−ty (A′)µtx(dy) ≥ ∫

A′
µs−ty (A′)µtx(dy) = 1

since µtx(A′) = 1 and A′ is forward-invariant. Since A′ ⊂ µ−(A), we have, in particular,
that µsx(µ−(A)) = 1 for all s ∈ T[t,∞). Thus overall, we have seen that µsx(µ−(A)) = 1 for
all s ∈ T+. Hence x ∈ A′.

Lemma 43. Suppose (µtx) is measurable. Let ρ be a stationary probability measure, and
let A ∈ Σ be any ρ-almost invariant set. Then

ρ(A△ µ+(A)) = ρ(A△ µ−(A)) = 0.

Proof. Note that

{x ∈ A ∶ for λ-almost all t ∈ T+, µtx(A) = 1} = A ∩ µ+(A),
{x ∈X ∖A ∶ for λ-almost all t ∈ T+, µtx(A) = 0} ⊂ (X ∖A) ∩ (X ∖ µ+(A)),

and therefore the complement of A△ µ+(A) contains the set

XA ∶= {x ∈X ∶ for λ-almost all t ∈ T+, µtx(A) = 1A(x)}.

By Exercise 26(A) we know that for every t ∈ T+, for ρ-almost all x ∈ X, µtx(A) = 1A(x).
Hence, by Corollary 14, XA is a ρ-full set, and therefore ρ(A△ µ+(A)) = 0. Finally,

ρ(A△ µ−(A)) = ρ((X ∖A)△ (X ∖ µ−(A))) = ρ((X ∖A)△ µ+(X ∖A)) = 0

since X ∖A is ρ-almost invariant. So we are done.

Corollary 44. Suppose (µtx) is measurable, and let ρ be a stationary probability measure.
Then every ρ-almost invariant set differs from some strictly forward-invariant set by a
ρ-null set.

Proof. Let A be a ρ-almost invariant set. By Lemma 43, ρ(A △ µ−(A)) = 0; and
since µ−(A) is itself backward-invariant (by Lemma 41) and therefore ρ-almost invariant,
ρ(µ−(A)△ A′) = 0 by Lemma 43. We already said (in Lemma 42) that A′ is strictly
forward-invariant. So we are done.

It immediately follows that (ii)⇒(i) in Theorem 39.
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Lemma 45. Suppose (µtx) is measurable. Let A ∈ Σ be a forward-invariant set. Then
the map t ↦ µtx(A) is increasing for every x ∈ X, and the map gA ∶ X → [0,1] given by
gA(x) = limt→∞ µtx(A) is strictly invariant. Given any stationary probability measure ρ,
gA(x) = 1A(x) for ρ-almost all x ∈X.

Proof. It is clear that for each x ∈ X, µtx(A) ≥ 1A(x) for all t ∈ T+. Now for any s, t ∈ T+

and x ∈X,

µs+tx (A) = ∫
X
µty(A)µsx(dy) ≥ ∫

X
1A(y)µsx(dy) = µsx(A).

So the map t ↦ µtx(A) is increasing for each x. Now (using the monotone or dominated
convergence theorem), for any x ∈X and t ∈ T+,

∫
X
gA(y)µtx(dy) = lim

s→∞
∫
X
µsy(A)µtx(dy) = lim

s→∞
µs+tx (A) = gA(x).

So gA is strictly invariant. Now fix a stationary probability measure ρ. Since A is ρ-
almost invariant, there exists (by Exercise 26(A)) a ρ-full Y ∈ Σ such that for all x ∈ Y ,
for all n ∈ N, µnx(A) = 1A(x). Obviously gA(x) = 1A(x) for all x ∈ Y . So we are done.

Proof that (iv)⇒(i). Suppose (iv) holds, and let A be a ρ-almost invariant set. By
Lemmas 41 and 43, µ+(A) is forward-invariant and ρ(µ+(A)) = ρ(A). By Lemma 45,
gµ+(A) is strictly invariant, and is therefore ρ-almost constant. But since, by Lemma 45,
gµ+(A)(x) = 1µ+(A)(x) for ρ-almost all x, it follows that 1µ+(A)(x) is ρ-almost constant.
So ρ(µ+(A)) is equal to either 0 or 1, and hence ρ(A) is equal to either 0 or 1.

This completes the proof of Theorem 39.

Exercise 46. Given a Markov kernel or a semigroup of Markov kernels on X, we will
say that a set A ∈ Σ is strictly invariant if 1A is strictly invariant; note that this is the
same as saying that A is simultaneously forward-invariant and backward-invariant. (This
is, in turn, equivalent to saying that A is simultaneously strictly forward-invariant and
strictly backward-invariant.) (A) In contrast to Remark 40: give an example of a Markov
kernel possessing a stationary probability measure ρ that assigns trivial measure to every
strictly invariant set and yet is not ergodic. (Hint: this is possible on a discrete state
space of just 3 elements!) (B) Show that for any kernel or semigroup of kernels, the set of
strictly invariant sets forms a σ-algebra. (C) Is it necessarily the case that if a bounded
measurable function g ∶ X → R is strictly invariant then it is measurable with respect to
σ-algebra of strictly invariant sets?

Exercise 47. Suppose T+ = [0,∞). Let ρ be a stationary probability measure, and let
A ∈ Σ be a set such that for λ-almost all t ≥ 0, A is ρ-almost invariant with respect to the
kernel (µtx)x∈X . We know from Exercise 32(B) that A must be ρ-almost invariant with
respect to the whole semigroup (µtx); but without using Exercise 32, find an alternative
proof of this fact in the case that (µtx) is measurable. (Hint: following the proof of
Lemma 43, show that ρ(A△ µ+(A)) = 0.)

Exercise 48. Let g ∶ X → R ∪ {−∞} be a measurable function that is bounded above.
(A) Show that if g can be expressed as the pointwise supremum of a collection of super-
invariant functions then g is super-invariant. (B) Show that the following are equivalent:
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(i) for any a ∈ R ∪ {−∞}, g−1((a,∞)) is forward-invariant;

(ii) for any a ∈ R ∪ {−∞}, g−1([a,∞)) is forward-invariant.

It is clear that (ii) implies that g is super-invariant, but does the converse hold? For
the rest of this exercise, assume that (µtx) is measurable. (C) Show that if g is bounded
and super-invariant then Lemma 45 holds with A and 1A replaced by g. (D) [Warning:
this part is long!] Recalling the notion of “essential superior limit” from Exercise 11(B),
show that the function g̃ ∶X → R∪{−∞} given by g̃(x) = λ-lim ess supt→∞ µ

t
x(g) is super-

invariant. (Hint: first prove an “essential” version of Fatou’s lemma.) Can a stronger
conclusion be made in the case that (µtx) = (δf t(x)) for some measurable autonomous
dynamical system (f t)? Show moreover that if ρ is a stationary probability measure and
g is ρ-almost invariant then g̃(x) = g(x) for ρ-almost all x ∈X.8

Proposition 49. Suppose that T+ = [0,∞) and (µtx) is measurable, and define the Markov
kernel (µ̄1

x)x∈X on X by

µ̄1
x(A) = ∫

1

0
µtx(A)dt

for all A ∈ Σ and x ∈X. Let ρ be a stationary probability measure of the semigroup (µtx).
Then:

(A) ρ is stationary with respect to the kernel (µ̄1
x);

(B) a set A ∈ Σ is ρ-almost invariant with respect to the semigroup (µtx) if and only
if it is ρ-almost invariant with respect to the kernel (µ̄1

x);

(C) ρ is ergodic with respect to the semigroup (µtx) if and only if it is ergodic with
respect to the kernel (µ̄1

x).

Proof. (A) For any A ∈ Σ, using Corollary 14 we have that

∫
X
µ̄1
x(A)ρ(dx) = ∫

1

0
∫
X
µtx(A)ρ(dx)dt = ρ(A).

(B) For any A ∈ Σ, again using Corollary 14 we have that

∫
A
µ̄1
x(A)ρ(dx) = ∫

1

0
∫
A
µtx(A)ρ(dx)dt.

The left-hand side is equal to ρ(A) if and only if µ̄1
x(A) = 1 for ρ-almost all x ∈ A, i.e. if

and only if A is ρ-almost invariant with respect to (µ̄1
x)x∈X . Similarly, the right-hand

side is equal to ρ(A) if and only if for λ-almost all t ∈ [0,1], A is ρ-almost invariant with
respect to the kernel (µtx)x∈X ; but by Exercise 32(B), this is equivalent to saying that A
is ρ-almost invariant with respect to the whole semigroup (µtx). (C) Follows immediately
from part (B).

8The case of a measurable autonomous dynamical system is mentioned at the bottom of p537 / top
of p538 of here.
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4 Markov processes and pointwise ergodic theorems

Let (µtx) be a semigroup of kernels, and let ρ be any probability measure on X. We define
(by a recursive construction) a probability measure µt1,...,tnρ on Xn+1 for each list of times
t1, . . . , tn ∈ T+ with t1 ≤ . . . ≤ tn, as follows:

µt1,...,tnρ (A) = ∫
Xn
∫
X
1A(x0, . . . , xn)µtn−tn−1xn−1 (dxn)µt1,...,tn−1ρ (d(x0, . . ., xn−1))

∀A ∈ Σ⊗(n+1)

and
µtρ(A) = ∫

X
∫
X
1A(x0, x1)µtx0(dx1)ρ(dx0) ∀A ∈ Σ⊗Σ.

A heuristic interpretation of µt1,...,tnρ (A) is as follows: Imagine a particle in X which
follows a random trajectory (x(t) ∶ t ≥ 0); and imagine that at any given time s, if the
particle is at location y ∈ X then (independent of the history of the particle before time
s) the probability distribution for where the particle will be at some later time s + t is
given by µty. (The trajectory of such a particle is called a Markov process.) Imagine
moreover that the initial position x(0) of the particle is itself random, having probability
distribution ρ. Then, prior to the selection of the initial point x(0), the probability that
the sequence of positions (x(0), x(t1), . . . , x(tn)) will belong to the set A ⊂Xn+1 is given
by µt1,...,tnρ (A).
Lemma 50. Given any t1 ≤ . . . ≤ tn in T+ and any measurable g ∶ Xn+1 → R′, if
µt1,...,tnρ (g) ≠ NaN then

µt1,...,tnρ (g) = ∫
X
∫
X
∫
X
. . .∫

X
g(x0, . . . , xn)µtn−tn−1xn−1 (dxn) . . . µt2−t1x1 (dx2)µt1x0(dx1)ρ(dx0).

Proof. First suppose n = 1. As in Section 2, Theorem 12 and Exercise 13(B) give that if
µt1ρ (g) ≠ NaN then

µt1ρ (g) = ∫
X
∫
X
g(x0, x1)µt1x0(dx1)ρ(dx0).

Now suppose n = k + 1, for some k where the result is known to be true for n = k. Define
the function g̃ ∶Xk+1 → R′ by

g̃(x0, . . . , xk) = ∫
X
g(x0, . . . , xk+1)µtk+1−tkxk

(dxk+1).

Then provided µt1,...,tk+1ρ (g) ≠ NaN,

µt1,...,tk+1ρ (g)

= ∫
Xk+1 ∫X g(x0, . . . , xk+1)µtk+1−tkxk

(dxk+1)µt1,...,tkρ (d(x0, . . . , xk))

(by Theorem 12 and Exercise 13(B))

= µt1,...,tkρ (g̃)

= ∫
X
∫
X
. . .∫

X
g̃(x0, . . . , xk)µtk−tk−1xk−1 (dxk) . . . (dx2)µt1x0(dx1)ρ(dx0)

= ∫
X
∫
X
. . .∫

X
∫
X
g(x0, . . . , xk+1)µtk+1−tkxk

(dxk+1)µtk−tk−1xk−1 (dxk) . . . µt1x0(dx1)ρ(dx0).

So the result is true for n = k + 1. Hence, by induction, the result is true in general.
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Now let Y be a non-empty subset of XT+ such that for any (xt)t∈T+ ∈ Y and τ ∈ T+,
(xt+τ)t∈T+ ∈ Y . For each t1, . . . , tn ∈ T+, we define the projection πt1,...,tn ∶ Y →Xn by

πt1,...,tn((xt)t∈T+) = (xt1 , . . . , xtn),
and we equip Y with the σ-algebra Y ∶= σ(πt ∶ t ∈ T+). We will say that Y is measurable in
time if the map (t,x)↦ πt(x) from T+×Y to X is measurable. Obviously if T+ = N∪{0}
then Y must be measurable in time.

Proposition 51. Suppose T+ = [0,∞), and suppose we have a separable metric on X
whose Borel σ-algebra coincides with Σ, such that for all (xt) ∈ Y the map t ↦ xt is
right-continuous. Then Y is measurable in time.

Proof. Follows immediately from Lemma 16(B).

Remark 52. Under the conditions of Proposition 51, we actually have that Y is
“progressively” measurable in time, in the sense that for all t ∈ T+, if we equip Y with the
σ-algebra σ(πs ∶ s ∈ T[0,t]) then the map (s,x)↦ πs(x) from T[0,t]×Y to X is measurable.

Proposition 53. There is at most one probability measure µYρ on Y such that for any

t1 ≤ . . . ≤ tn in T+, π0,t1,...,tn∗µ
Y
ρ = µt1,...,tnρ .

Proof. It is clear that

{π−1
0,t1,...,tn(A) ∶ n ∈ N,A ∈ Σ⊗(n+1), t1 ≤ . . . ≤ tn}

is a π-system generating Y. Hence the result follows from the π-λ theorem.

A heuristic interpretation of µYρ is that it is the probability distribution for the entire
random trajectory (x(t) ∶ t ≥ 0) of the particle described earlier. (Y itself will represent
some constraint on the motion of the particle, such as being continuous in time with
respect to some topology on X.)

Note that if µYρ exists then for each t ∈ T+, πt∗µYρ = µt∗ρ (where µt∗ denotes the map on
M1 associated with the kernel (µtx)x∈X).

Exercise 54. (A) Show that if we take Y to be the whole of XT+ , then Y is measurable
in time if and only if either T+ = N∪{0} or Σ = {∅,X}. (B) Using Kolmogorov’s extension
theorem for standard measurable spaces, show that if (X,Σ) is standard and Y = XT+

then the measure µYρ defined in Proposition 53 exists. (C) Show that if Y ∈ Σ⊗T+ and

µX
T+

ρ exists then µYρ exists if and only if µX
T+

ρ (Y ) = 1.

From now until Exercise 75, assume that µYρ exists. The measure µYρ is sometimes
referred to as a Markov measure,9 and a Y -valued random variable whose law is equal
to µYρ is referred to as a (homogeneous) Markov process with initial distribution ρ and
transition probabilities (µtx)x∈X, t∈T+ . (For the equivalence between this definition and the
more common definition via conditional probabilities, see Exercise 65 and Lemma 66.)

If ρ is a stationary probability measure of the semigroup (µtx), then we write Iρ to
refer to the set of ρ-almost invariant sets.

9This is different from how the term is sometimes used in the context of random dynamical systems, to
refer to a probability-measure-valued random variable whose trajectory under a given random dynamical
system is a measure-valued Markov process.
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Theorem 55 (“Ergodic theorem for Markov processes”). Suppose that Y is measurable
in time and ρ is stationary. Let g ∶X → R be a function that is integrable with respect to
ρ, and let ĝ be a version of ρ(g∣Iρ). Then for µYρ -almost all (xt)t∈T+ ∈ Y ,

1

t ∫T[0,t)
g(xs)λ(ds) → ĝ(x0) as t → ∞.

Exercise 56. (A) Show that, given any τ ∈ T+, if we replace ĝ(x0) with ĝ(xτ) in the
statement of Theorem 55, the statement will remain true. (B) Assume the hypotheses
of Theorem 55 and suppose moeover that µYδx exists for ρ-almost every x ∈ X. Show
that ρ-almost every x ∈ X has the property that for µYδx-almost all (xt)t∈T+ ∈ Y ,
1
t ∫T[0,t)

g(xs)λ(ds) → ĝ(x0) as t→∞.

Corollary 57. Suppose that Y is measurable in time and ρ is ergodic. Let g ∶ X → R̄ be
a measurable function with ρ(g) ≠ NaN. Then for µYρ -almost all (xt)t∈T+ ∈ Y ,

1

t ∫T[0,t)
g(xs)λ(ds) → ρ(g) as t → ∞.

Proof. Since ρ is ergodic, Iρ is contained in the σ-algebra of ρ-trivial measure sets. Hence,
if ρ(g) ∈ R then the constant function x↦ ρ(g) is a version of ρ(g∣Iρ), and so Theorem 55
gives the desired result. Now suppose ρ(g) = ∞. (The case that ρ(g) = −∞ is similar.)
For µYρ -almost all (xt)t∈T+ ∈ Y , we have that

1

t ∫T[0,t)
g−(xs)λ(ds) → ρ(g−) as t → ∞.

It is also the case that for each n ∈ N, for µYρ -almost all (xt)t∈T+ ∈ Y ,

lim inf
t→∞

1

t ∫T[0,t)
g+(xs)λ(ds) ≥ lim

t→∞

1

t ∫T[0,t)
g+(xs)∧n λ(ds) = ρ(g+ ∧ n);

and therefore, since supn∈N ρ(g+∧n) =∞ by the monotone convergence theorem, we have
that for µYρ -almost all (xt)t∈T+ ∈ Y ,

1

t ∫T[0,t)
g+(xs)λ(ds) → ∞ as t → ∞.

Combining these gives the desired result.

Now the proof of Theorem 55 essentially divides into two parts: proving the pointwise
ergodic theorem for dynamical systems (which we shall not do in full here), and
characterising the almost-invariant sets of the “horizontal shift dynamical system”. (It
is perhaps worth saying now that Exercises 59, 61, 65 and 72 are included for the sake of
completeness, and are not actually needed in the proof of Theorem 55.)

Recall that an autonomous dynamical system (f t) is said to be measurable if the map
(t, x)↦ f t(x) is measurable.
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Proposition 58 (Ergodic theorem for dynamical systems). Let (f t) be a measurable
autonomous dynamical system on X, let µ be an invariant probability measure of (f t),
and let Iµ denote the set of µ-almost invariant sets. Let g ∶ X → R be a function that is
integrable with respect to µ. Then the limit

lim
t→∞

1

t ∫T[0,t)
g(f s(x))λ(ds) =∶ G(x)

exists and is finite for µ-almost all x ∈ X; and (setting G(x) ∶= NaN for all x where this
limit does not exist) G is a version of µ(g∣Iµ).

It will be left as an exercise to the reader to show that the function G ∶X → R′ is indeed a
measurable function (although this is not such an important point—the important point,
which we will see explicitly, is that if ḡ is a version of µ(g∣Iµ) then the limit given in
Proposition 58 exists and is equal to ḡ(x) for µ-almost all x ∈X).

Exercise 59. Show that if T+ = N ∪ {0} then G is measurable with respect to the σ-
algebra I ⊂ Σ of sets that are strictly invariant under f 1 (and hence µ(g∣Iµ) can be
replaced by µ(g∣I) in the statement of Proposition 58).

Now the proof of Proposition 58 in discrete time (i.e. when T+ = N ∪ {0}) can be found
in virtually any textbook on ergodic theory, and so we will not give it here. However we
will show how to extend the statement from discrete to continuous time.10

Lemma 60. Let (f t) be an autonomous dynamical system on X and let µ be an invariant
probability measure of (f t). Let g ∶X → R be a function that is integrable with respect to
µ. For µ-almost all x ∈X, 1

ng(fn(x))→ 0 as the integer n tends to ∞.

Note that Lemma 60 is obvious in the case that g is bounded; the non-triviality specifically
comes from the fact that g may be unbounded.

Proof of Lemma 60. Let An(x) ∶= 1
n ∑

n−1
i=0 g(f i(x)) for each x ∈ X and n ∈ N. Obviously

µ is an invariant probability measure of the discrete-time dynamical system (fn), and
hence the discrete-time version of Proposition 58 gives that limn→∞An(x) exists and is
finite for µ-almost all x ∈X. For each x ∈X and n ≥ 2,

1
ng(fn(x)) = An(x) − (1 − 1

n
)An−1(x).

The desired result clearly follows.

Proof of Proposition 58 with T+ = [0,∞). Since we can split g into positive and negative
parts, it will suffice just to consider the case that g is nonnegative. Define g̃ ∶X → [0,∞]
by

g̃(x) = ∫
1

0
g(f s(x))ds.

By Corollary 14, we have that µ(g̃) = µ(g) <∞; hence, using the discrete-time version of
Proposition 58, for µ-almost all x ∈X,

1

n

n−1

∑
i=0

g̃(f i(x)) → ḡ(x) as n → ∞

10We essentially follow the outline given at the start of section 1.2.2 of here.
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where ḡ ∶X → [0,∞) is a version of the conditional expectation (under µ) of g̃ given the
σ-algebra of sets that are µ-almost invariant with respect to f 1.

Now let X̃ ∶= {x ∈ X ∶ g̃(f i(x)) < ∞ ∀i}. (It is clear that this a µ-full set.) Letting
⌈t⌉ denote the smallest integer greater than or equal to t, one can verify that for any
x ∈ X̃ and t > 0,

RRRRRRRRRRR
(1

t ∫
t

0
g(f s(x))ds) −

⎛
⎝

1

⌈t⌉
⌈t⌉−1

∑
i=0

g̃(f i(x))
⎞
⎠

RRRRRRRRRRR
≤

⎛
⎝

1

⌈t⌉2

⌈t⌉−1

∑
i=0

g̃(f i(x))
⎞
⎠
+ ( 1

⌈t⌉ g̃(f
⌈t⌉−1(x))) .

Using the discrete-time version of Proposition 58, we see that the first of the two terms
on the right-hand side tends to 0 as t →∞ for µ-almost all x; and using Lemma 60, we
see that the second of the two terms tends to 0 as t→∞ for µ-almost all x. Therefore

1

t ∫
t

0
g(f s(x))ds → ḡ(x) as t → ∞

for µ-almost all x ∈ X. To complete the proof, we show that ḡ is a version of µ(g∣Iµ).
First we show that ḡ is Iµ-measurable, i.e. that it is µ-almost invariant with respect to
(f t)t≥0. Fix any τ ∈ T+. For any x ∈ X̃, letting xτ ∶= f τ(x), we have that for all t > 0,

1

τ + t ∫
τ+t

0
g(f s(x))ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1○

= (1 − τ

t + τ )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→1 as t→∞

(1

t ∫
t

0
g(f s(xτ))ds)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2○

+ 1

τ(t + τ) ∫
τ

0
g(f s(x))ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 as t→∞

.

For µ-almost all x, 1○ tends to ḡ(x) as t →∞; since µ is f τ -invariant, we also have that
for µ-almost all x, 2○ tends to ḡ(xτ) as t → ∞. Therefore ḡ and ḡ ○ f τ agree µ-almost
everywhere. So ḡ is µ-almost invariant. Now, given any A ∈ Iµ, we have

∫
A
ḡ(x)µ(dx) = ∫

A
g̃(x)µ(dx)

= ∫
1

0
∫
A
g(f s(x))µ(dx)ds (by Corollary 14)

= ∫
1

0
∫
f−s(A)

g(f s(x))µ(dx)ds (since µ(A △ f−s(A) ) = 0)

= ∫
1

0
∫
A
g(x)µ(dx)ds

= ∫
A
g(x)µ(dx).

So we are done.

Exercise 61. Let (f t) be a measurable autonomous dynamical system on X, let µ be an
invariant probability measure of (f t), and let g ∶ X → R̄ be a measurable function with
µ(g) ∈ {−∞,∞}. Show that for µ-almost all x ∈X,

lim
t→∞

1

t ∫T[0,t)
g(f s(x))ds

exists. (Hint: if µ(g) =∞, restrict to sublevel sets of lim inft→∞
1
t ∫T[0,t)

g(f s(⋅))ds.)

38



We now introduce the horizontal shift dynamical system. For each τ ∈ T+, define the
map θτ ∶ Y → Y by θτ((xt)t∈T+) = (xτ+t)t∈T+ . It is clear that (θt)t∈T+ is an autonomous
dynamical system on Y .

Lemma 62. For all τ ∈ T+, µYµτ∗ρ exists and is equal to θτ∗µ
Y
ρ .

Proof. We need to show that for any t1 ≤ . . . ≤ tn in T+,

π0,t1,...,tn∗(θτ∗µYρ ) = µt1,...,tnµτ∗ρ .

For any A ∈ Σ⊗(n+1),

π0,t1,...,tn∗(θτ∗µYρ )(A)
= πτ,t1+τ,...,tn+τ∗µ

Y
ρ (A)

= µτ,t1+τ,...,tn+τρ (X ×A)

= ∫
X
∫
X
∫
X
∫
X
. . .∫

X
1A(x0, . . . , xn)µtn−tn−1xn−1 (dxn) . . . µt2−t1x1 (dx2)µt1x0(dx1)µτx(dx0)ρ(dx)

= ∫
X
∫
X
∫
X
. . .∫

X
1A(x0, . . . , xn)µtn−tn−1xn−1 (dxn) . . . µt2−t1x1 (dx2)µt1x0(dx1)µτ∗ρ(dx0)

= µt1,...,tnµτ∗ρ (A).

So we are done.

We immediately have the following corollary:

Corollary 63. µYρ is invariant with respect to (θt) if and only if ρ is a stationary
probability measure.

Lemma 64. Suppose ρ is stationary. For any A ∈ Σ, the set Ã ∶= π−1
0 (A) is µYρ -almost

invariant with respect to (θt) if and only if A is ρ-almost invariant (with respect to (µtx)).

Proof. For any t ∈ T+,

µtρ(A × (X ∖A)) = µYρ (π−1
0,t(A × (X ∖A)) = µYρ (Ã ∖ θ−t(Ã)).

Hence Exercise 26(B) gives the desired result.

Now for any S ⊂ [0,∞), let YS ∶= σ(πs ∶ s ∈ TS).

Exercise 65. Show that for any probability measure ν on X, if there exists a probability
measure µ on Y such that for all τ, s ∈ T+ and A ∈ Σ the map (xt)↦ µsxτ (A) is a version
of µ(π−1

τ+s(A)∣Y[0,τ]), then µYν exists and is equal to µ.

The following lemma provides the converse of Exercise 65 (by setting n = 1 and B ∶=
X ×A):

Lemma 66. Fix any τ ∈ T+, any t1 ≤ . . . ≤ tn in T+, and any B ∈ Σ⊗(n+1). The map
(xt)↦ µt1,...,tnδxτ

(B) is a version of µYρ (π−1
τ,τ+t1,...,τ+tn

(B)∣Y[0,τ]).

Remark 67. It is clear (using Lemma 8(A)) that the map (xt) ↦ µt1,...,tnδxτ
(B) is Y{τ}-

measurable. It therefore follows from Lemma 66 that for any S ⊂ [0, τ] with τ ∈ S, this
same map is also a version of µYρ (π−1

τ,τ+t1,...,τ+tn
(B)∣YS).

39



Proof of Lemma 66. Let C be the set of all C ∈ Y[0,τ] with the property that

µYρ (C ∩ π−1
τ,τ+t1,...,τ+tn(B) )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A○

= ∫
C
µt1,...,tnδxτ

(B)µYρ (d(xt))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B○

.

We first show that C includes every set of the form C = π−1
0,s1,...,sk−1,τ(E0 × . . . ×Ek) with

0 ≤ s1 ≤ . . . ≤ sk−1 ≤ τ and E0, . . . ,Ek ∈ Σ: for any such C, we have

A○ = ∫
E0
∫
E1

. . .∫
Ek−1

∫
Ek
∫
X
. . .∫

X
1B(z0, . . . , zn)µtn−tn−1zn−1 (dzn) . . .

. . . µt1z0(dz1)µτ−sk−1yk−1 (dz0)µsk−1−sk−2yk−2 (dyk−1) . . . µs1y0(dy1)ρ(dy0)

= ∫
E0
∫
E1

. . .∫
Ek−1

∫
Ek
µt1,...,tnδz0

(B)µτ−sk−1yk−1 (dz0)µsk−1−sk−2yk−2 (dyk−1) . . . µs1y0(dy1)ρ(dy0)

= ∫
E0×...×Ek

µt1,...,tnδz
(B)µs1,...,τρ (d(y0, . . . , yk−1, z)) (by Lemma 50)

= B○.

Now using the monotone convergence theorem (and the fact that Y ∈ C), we have that C
is a λ-system. So the π-λ theorem gives that C is the whole of Y[0,τ], as required.

Corollary 68 (“Markov property”). Fix any τ ∈ T+. For any A ∈ Y[τ,∞), each version of
µYρ (A∣Y{τ}) is also a version of µYρ (A∣Y[0,τ]).

Proof. Let A be the set of all A ∈ Y[τ,∞) with the desired property. By Remark 67,
A includes all sets of the form π−1

τ,τ+t1,...,τ+tn
(B). Now using the monotone convergence

theorem (and the fact that Y ∈ A), we have that A is a λ-system. So the π-λ theorem
gives the desired result.

Corollary 69. Suppose ρ is stationary, and fix any τ ∈ T+. For any A ∈ Y, if hA is a
version of µYρ (A∣Y{0}) then hA ○ θτ is a version of µYρ (θ−τ(A)∣Y[0,τ]).

Proof. Follows immediately from Exercise 13(C) (with (Ω,F) = (E,E) = (Y,Y), P = µYρ ,
f = θτ , G = Y{0} and g = 1A) and Corollary 68.

Proposition 70. Suppose ρ is stationary, and let A ∈ Y be a µYρ -almost invariant set with
respect to (θt). Then there is a ρ-almost invariant set A∗ ∈ Σ with µYρ (A△ π−1

0 (A∗) ) = 0.

Proof. Let hA be a version of µYρ (A∣Y0). For each n ∈ N, by Corollary 69 and the
µYρ -almost-invariance of A, hA ○ θn is a version of µYρ (A∣Y[0,n]). Hence Lévy’s upward
theorem gives that hA ○ θn(x) → 1A(x) as n →∞ for µYρ -almost all x ∈ Y . But for each
n, since hA and hA○θn agree µYρ -almost everywhere, it follows that hA∗µYρ = (hA○θn)∗µYρ .

Therefore (e.g. by Exercise 22(C)) hA∗µYρ = 1A∗µYρ = µYρ (X ∖ A)δ0 + µYρ (A)δ1; so
hA(x) ∈ {0,1} for µYρ -almost all x ∈ Y . Hence hA(x) = 1A(x) for µYρ -almost all x ∈ Y .11

Since hA is Y{0}-measurable, there exists A∗ ∈ Σ such that h−1
A ({1}) = π−1

0 (A∗). So
then, µYρ (A △ π−1

0 (A∗) ) = 0. Since A is µYρ -almost invariant, it follows that π−1
0 (A∗) is

µYρ -almost invariant, and therefore (by Lemma 64) A∗ is ρ-almost invariant.

11It is left as an exercise to the reader to verify that in general, if a version of a conditional probability
P(E∣G) takes value 0 or 1 P-almost everywhere, then it is P-a.e. equal to 1E .
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For any sub-σ-algebra Z of Y, we write Z(µYρ )
to denote the smallest σ-algebra containing

both Z and every Y-measurable µYρ -null set. If ρ is stationary, we write Iρ ⊂ Σ to denote
the set of ρ-almost invariant sets with respect to (µtx), and we write IµYρ ⊂ Y to denote

the set of µYρ -almost invariant sets with respect to (θt).

Corollary 71. Suppose ρ is stationary. Then IµYρ = π−1
0 Iρ

(µYρ )

.

Proof. By Lemma 64, π−1
0 Iρ ⊂ IµYρ and therefore π−1

0 Iρ
(µYρ )

⊂ IµYρ . By Proposition 70,

IµYρ ⊂ π−1
0 Iρ

(µYρ )

.

Exercise 72. Show that as a consequence of Corollary 71, µYρ is ergodic with respect to
(θt) if and only if ρ is ergodic with respect to (µtx).

We need one last lemma in order to tie everything together and complete the proof of
Theorem 55.

Lemma 73. Y is measurable in time if and only if (θt) is measurable.

Proof. By definition, the collection {π−1
s (A) ∶ s ∈ T+,A ∈ Σ} generates the σ-algebra Y,

and therefore (θt) is measurable if and only if for all s ∈ T+ and A ∈ Σ the set

{(u, (xt)) ∈ T+ × Y ∶ xs+u ∈ A}

is (B(T+) ⊗ Y)-measurable. This is in turn equivalent to saying that for all s ∈ T+ the
map (u,x) ↦ πs+u(x) is measurable. Obviously the map u ↦ s + u is measurable for
any s, and therefore the previous statement is equivalent to simply saying that the map
(u,x)↦ πu(x) is measurable—which is precisely the definition of what it means for Y to
be measurable in time.

Proof of Theorem 55. Obviously, since g is integrable with respect to ρ, g○π0 is integrable
with respect to µYρ . Let h be a version of µYρ (g ○ π0∣IµYρ ). Since (θt) is measurable (by

Lemma 73), we may apply Proposition 58 to yield that for µYρ -almost all (xs)s∈T+ ∈ Y ,

1

t ∫T[0,t)
g(xs)λ(ds) → h((xs)s∈T+) as t → ∞.

Now by Exercise 13(C), ĝ○π0 is a version of µYρ (g○π0∣π−1
0 Iρ). Therefore, by Corollary 71,

ĝ ○ π0(x) = h(x) for µYρ -almost all x ∈ Y . So we are done.

Exercise 74. We “generalise” one of the steps in the proof of Proposition 70: Let E be
a separable metric space, let f ∶ X → X be a measurable function, let g ∶ X → E be a
measurable function, and let µ be an f -invariant probability measure. Show that if g ○fn
converges µ-almost everywhere as n →∞, then in fact g(fn(x)) = g(x) for all n ∈ N, for
µ-almost every x ∈X. (The Poincaré recurrence theorem may be helpful here.)

Exercise 75. We fix any τ ∈ T+. Prove the following statement: If µτ∗ρ is absolutely
continuous with respect to ρ then for any A ∈ Y, letting h be any version of µYρ (A∣Y{0}),
the map (xt) ↦ µτx0(h′) is a version of µYρ (θ−τ(A)∣Y{0}) where h′ ∶ X → [0,1] is defined
by h = h′ ○ π0. Is the converse of this statement true?
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Exercise 76. Let µ be a probability measure on X, and let F + be some set of nonnegative
measurable functions g ∶X → [0,∞] that includes all the bounded nonnegative measurable
functions. Suppose we have a family (Tn)n∈N∪{∞} of functions Tn ∶ F + → F + such that the
following hold:

(i) for any n ∈ N ∪ {∞} and any pointwise-increasing sequence (gr)r∈N in F +, if the
pointwise limit g∞ ∶= limr→∞ gr is in F + then Tn(g∞)(x) = supr∈N Tn(gr(x)) for
µ-almost all x ∈X;

(ii) for any bounded g ∈ F +, Tn(g)(x)→ T∞(g)(x) as n→∞ for µ-almost all x ∈X.

Now suppose we have g, h ∈ F + (not necessarily bounded) such that Tn(g)(x) → h(x)
as n → ∞ for µ-almost all x ∈ X, and µ(Tn(g)) → µ(T∞(g)) as n → ∞. Show that
µ(h) = µ(T∞(g)); moreover, in the case that µ(T∞(g)) <∞, show that h(x) = T∞(g)(x)
for µ-almost all x ∈X.

Exercise 77. (A) Suppose we have proved Proposition 58, except with the statement
“G is a version of µ(g∣Iρ)” weakened to the statement that µ(G) = µ(g). Derive from
there that G is a version of µ(g∣Iρ). (B) Suppose we have proved that the limit given in
Proposition 58 exists and is finite for µ-almost all x ∈ X. Derive from there that G is a
version of µ(g∣Iρ). (Hint: first take the case that g is bounded, and then extend to the
general case using Exercise 76 with Tn(g) = 1

n ∫T[0,n)
g(f s(⋅))λ(ds) for finite n.)

Viewing a semigroup of Markov kernels as a generalisation of an autonomous dynamical
system, just as we had an ergodic theorem for dynamical systems (Proposition 58), so we
more generally have an “ergodic theorem for semigroups of kernels”.

Proposition 78 (Ergodic theorem for semigroups of kernels). Suppose (µtx) is measurable
and ρ is stationary. Let g ∶X → R be a function that is integrable with respect to ρ. Then
the limit

lim
t→∞

1

t ∫T[0,t)
µsx(g)λ(ds) =∶ H(x)

exists and is finite for ρ-almost all x ∈ X; and (setting H(x) ∶= NaN for all x where this
limit does not exist) H is a version of ρ(g∣Iρ).

We will not write out a proof. The discrete-time case is a special case of the Chacon-
Ornstein theorem; and one may pass from discrete to continuous time by following the
arguments in the proof of Proposition 58 for continuous time (to obtain that the limit
exists and is finite almost everywhere) and Exercise 77(B) (to obtain that the limit H is
a version of ρ(g∣Iρ)).
Exercise 79. For the special case that (X,Σ) is standard and g is bounded, derive
Proposition 78 from Theorem 55 in discrete time. (If stuck, see the proof of Corollary 85
for a similar argument.) Now extend this to continuous time. (Note that the boundedness
of g makes the extension from discrete to continuous time very easy.)

Corollary 80. Suppose (µtx) is measurable and ρ is ergodic. Let g ∶ X → R̄ be a
measurable function with ρ(g) ≠ NaN. Then for ρ-almost all x ∈X,

1

t ∫T[0,t)
µsx(g)λ(ds) → ρ(g) as t → ∞.
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Proof. Exactly the same as in Corollary 57.

We can also find converses to Corollary 80:

Proposition 81. Suppose (µtx) is measurable. If either:

(a) for each A ∈ Σ, for ρ-almost all x ∈X,

1

t ∫T[0,t)
µsx(A)λ(ds) → ρ(A) as t → ∞ ; or

(b) ρ is stationary, and there exists a π-system C ⊂ Σ with σ(C) = Σ such that for
each A ∈ C, for ρ-almost all x ∈X,

1

t ∫T[0,t)
µsx(A)λ(ds) → ρ(A) as t → ∞ ;

then ρ is ergodic.

We start with the following exercise:

Exercise 82. For any R ⊂ Σ, we define the ρ-orthogonal complement R⊥ρ of R by

R⊥ρ ∶= {A ∈ Σ ∶ ρ(A ∩R) = ρ(A)ρ(R) ∀R ∈R}.

(A) Show that R⊥ρ is a λ-system on X. (B) Show that for any A ∈ Σ, if the constant map
x↦ ρ(A) is a version of ρ(A∣σ(R)) then A ∈R⊥ρ (and equivalently, R ⊂ {A}⊥ρ).

Proof of Proposition 81. We will first prove that if (b) holds then ρ is ergodic; we will
then prove that if (a) holds then ρ is stationary. This will complete the proof.

Suppose that (b) holds. By Proposition 78, we have that for each A ∈ C, the constant
function x ↦ ρ(A) is a version of ρ(A∣Iρ). So by Exercise 82(B) C is contained in the
ρ-orthogonal complement of Iρ, and hence (by the π-λ theorem and Exercise 82(A)), the
ρ-orthogonal complement of Iρ is the whole of Σ. It follows in particular that for all
E ∈ Iρ, ρ(E) = ρ(E)2, so ρ(E) ∈ {0,1}.

Now suppose that (a) holds. It is clear that for any simple function g ∶ X → R, for
ρ-almost all x ∈X,

1

t ∫T[0,t)
µsx(g)λ(ds) → ρ(g) as t → ∞.

Now given any bounded measurable g ∶ X → R, since we can approximate g from above
and from below by simple functions, it follows that for ρ-almost all x ∈X,

1

t ∫T[0,t)
µsx(g)λ(ds) → ρ(g) as t → ∞.
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Now fix any A ∈ Σ and τ ∈ T+, and let µτ
⋅
(A) denote the function y ↦ µτy(A). For any

x ∈X, for all t ∈ T+ ∖ {0},

1

τ + t ∫T[0,τ+t)
µsx(A)λ(ds)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1○

= (1 − τ

t + τ )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→1 as t→∞

(1

t ∫T[0,t)
µsx(µτ⋅ (A))λ(ds))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2○

+ 1

τ(t + τ) ∫T[0,τ)
µsx(A)ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 as t→∞

.

We know that 1○→ ρ(A) as t → ∞ for ρ-almost all x. Since the map y ↦ µτy(A) is a
bounded measurable map, we also know that 2○→ ρ(µτ

⋅
(A)) = µτ∗ρ(A) as t → ∞ for

ρ-almost all x. Hence ρ(A) = µτ∗ρ(A). Since A and τ were arbitrary, ρ is stationary.

Remark 83. In case (b), the condition that ρ is stationary is not redundant. (Consider,
for example, the map f ∶ x ↦ x + 1 on the space (X,Σ) = (N,2N), with C = 2N∖{1} and
ρ = δ1.)

Using Proposition 81 we can also give a converse to Corollary 57. We first give the
following exercise:

Exercise 84 (Continuous-time conditional dominated convergence theorem). Let
(Ω,F ,P) be a probability space, and let h ∶ Ω → [0,∞] be a P-integrable function.
Let g ∶ Ω × (0,∞]→ R be a function such that

• for each t ∈ (0,∞], for P-almost all ω ∈ Ω, ∣g(ω, t)∣ ≤ h(ω);

• ω ↦ g(ω, t) is measurable for each t ∈ (0,∞];

• for P-almost all ω ∈ Ω, g(ω, t)→ g(ω,∞) as t→∞.

Now suppose we have a sub-σ-algebra G of F , and a function g̃ ∶ Ω×(0,∞]→ R such that

• for each t ∈ (0,∞], g̃( ⋅ , t) is a version of P(g( ⋅ , t)∣G) ;

• for P-almost every ω ∈ Ω there exists k(ω) ∈ [0,∞) such that the map t↦ g̃(ω, t) is
continuous on (k(ω),∞).

Show that for P-almost all ω ∈ Ω, g̃(ω, t) → g̃(ω,∞) as t → ∞. (Hint: first consider
convergence as t tends to infinity in Q, and then extend to R using continuity. For
the first part it may help to look up a proof of the conditional dominated convergence
theorem.)

Corollary 85. Suppose that (µtx) is measurable, Y is measurable in time, and µYρ exists.
If either:

(a) for each A ∈ Σ, for µYρ -almost all (xt) ∈ Y ,

1

t ∫T[0,t)
1A(xs)λ(ds) → ρ(A) as t → ∞ ; or

44



(b) ρ is stationary, and there exists a π-system C ⊂ Σ with σ(C) = Σ such that for
each A ∈ C, for µYρ -almost all (xt) ∈ Y ,

1

t ∫T[0,t)
1A(xs)λ(ds) → ρ(A) as t → ∞ ;

then ρ is ergodic.

Proof. Fix any A ∈ Σ with the property that for µYρ -almost all (xt) ∈ Y ,

1

t ∫T[0,t)
1A(xs)λ(ds) → ρ(A) as t → ∞.

For each s ∈ T+, Lemma 66 (with τ = 0, n = 1, t1 = s and B =X ×A) gives that

(xt)↦ µsx0(A) is a version of µYρ( (xt)↦ 1A(xs) ∣Y{0} ).

Hence, for each t′ ∈ T+ ∖ {0}, Exercise 15 gives that

(xt) ↦
1

t′ ∫T[0,t′)
µsx0(A)λ(ds) is a version of µYρ((xt) ↦

1

t′ ∫T[0,t′)
1A(xs)λ(ds) ∣ Y{0}).

Hence the conditional dominated convergence theorem (for discrete time) or Exercise 84
(for continuous time) gives that for µYρ -almost all (xt) ∈ Y ,

1

t ∫T[0,t)
µsx0(A)λ(ds) → ρ(A) as t → ∞.

Now it is clear (e.g. using Lemma 5(B)) that the set of all x ∈X with the property that

1

t ∫T[0,t)
µsx(A)λ(ds) → ρ(A) as t → ∞

is a measurable set. Hence we have that for ρ-almost all x ∈X,

1

t ∫T[0,t)
µsx(A)λ(ds) → ρ(A) as t → ∞.

This reduces the problem to Proposition 81, which we have already proved.

Section 4 Appendix: Processes with stationary and independent increments

Imagine we have a stochastic process taking values in a space that is naturally equipped
with some group operation; for example, we could have an Rn-valued stochastic process,
where Rn is viewed as a group under addition, or we could have a stochastic flow on a
smooth manifold M—that is, a Diffeo(M)-valued stochastic process, where Diffeo(M)
is viewed as a group under composition. In such cases it makes sense to talk about
the “increment” in the value of the stochastic process between some “start” time and
some “end” time. We will now introduce the notion of “stationary and independent
increments”, and its relation to the “diagonal shift dynamical system”.
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Suppose Σ includes all the singletons in X.12 Suppose we have a group operation ○
on X such that the maps (x, y) ↦ y ○ x and x ↦ x−1 are measurable, and let e ∈ X be
the identity. Define DY ⊂ Y by DY ∶= π−1

0 ({e}); we equip DY with the σ-algebra DY of
Y-measurable subsets of DY . Given two probability measures ν1 and ν2 on X, we define
their composition ν2 ○ ν1 to be the image measure under the map (x, y)↦ y ○x of ν1⊗ν2,
that is

ν2 ○ ν1(A) = ∫
X×X

1A(y ○ x) ν1⊗ν2(d(x, y))

for all A ∈ Σ. We will say that a family (νt)t∈T+ of probability measures νt on X is
consistent if ν0 = δe and νs+t = νt ○ νs for all s, t ∈ T+. Given a consistent family (νt), for
any x ∈X and t ∈ T+ we define the probability measure ν̄tx on X to be the image measure
under the map y ↦ y ○ x of νt (i.e. ν̄tx = νt ○ δx); that is,

ν̄tx(A) = ∫
X
1A(y ○ x)νt(dy).

Exercise 86. Let (νt) be a consistent family of probability measures. Show that
(ν̄tx)x∈X, t∈T+ is a semigroup of Markov kernels on X.

So, given a consistent family (νt), for any probability measure ρ on X we can ask whether
the Markov measure ν̄Yρ exists. If ν̄Yδe exists then we will define the probability measure
νY on DY to be the restriction of ν̄Yδe to DY; otherwise we say that νY does not exist.

Exercise 87. Given a consistent family (νt), show that if νY exists then ν̄Yρ exists for
any probability measure ρ on X.

Exercise 88. Let µ be a probability measure on Y , and let (νt)t∈T+ be a family of
probability measures on X. We will say that µ has stationary and independent increments
distributed according to (νt) if for any t1, t2 ∈ T+ with t1 ≤ t2 the following hold:

(a) the image measure of µ under the map (xt)↦ xt2 ○ x−1
t1

is equal to νt2−t1 ;

(b) on the probability space (Y,Y,µ), the random variable (xt) ↦ xt2 ○ x−1
t1

is
independent of Y[0,t1].

Show that the following are equivalent:

(i) µ has stationary and independent increments distributed according to (νt);

(ii) (νt) is consistent, νY exists, and the image measure of µ under the map (xt)↦
(xt ○ x−1

0 ) from Y to DY is equal to νY .

(A Y -valued random variable whose law has stationary and independent increments is
itself said to be a stochastic process with stationary and independent increments.)

Now we define the diagonal shift dynamical system (Dθt)t∈T+ to be the T+-indexed family
of maps Dθt ∶ DY → DY given by Dθτ((xt)t∈T+) = (xτ+t ○ x−1

τ )t∈T+ for all τ ∈ T+ and
(xt)t∈T+ ∈DY .

12This assumption is not actually required to be able to formulate valid definitions of the main concepts
in this appendix; however, it does allow for a more straightforward exposition.
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Exercise 89. (A) Show that (Dθt) is indeed an autonomous dynamical system on DY ,
and that if Y is measurable in time then (Dθt) is measurable. (B) Let (νt) be a consistent
family, and suppose that νY exists. Show that νY is invariant with respect to (Dθt).

Let us mention some important examples:

(I) [Poisson process] Let (X,Σ, ○) = (Z,2Z,+), let T+ = [0,∞), and let Y be the set of all
(xt)t≥0 ∈ Z[0,∞) such that t↦ xt is càdlàg and xt − lims→t− xs ∈ {0,1} for all t ∈ (0,∞). Fix
a value λ ∈ (0,∞), and for each t ∈ [0,∞) define the probability measure νt on Z to be
the Poisson distribution with parameter λt, that is,

νt({n}) = {
(λt)n exp(−λt)

n! n ≥ 0
0 n < 0.

One can show that (νt)t≥0 is consistent, and that νY exists. Specifically, νY may be
obtained as follows: Let R ∶= {(tn)n∈N ∈ (0,∞)N ∶ ∑∞

i=1 ti =∞}, withR being the σ-algebra
of B((0,∞))⊗N-measurable subsets of R. Define the probability measure ε on (0,∞) to
be the exponential distribution of decay rate λ, that is, ε(A) ∶= λ ∫A exp(−λt)dt for all
A ∈ Σ. Then one can show that νY is equal to the image measure of ε⊗N∣

R
under the

map

R → DY

(tn)n∈N ↦ (max{r ∈ N ∪ {0} ∶
r

∑
i=1

ti ≤ t})
t≥0

.

A DY -valued random variable with law νY is called a Poisson process of intensity λ;
our construction of νY essentially states that a Poisson process can be constructed as
a cumulative count of events where the time-spacings between consecutive events are
i.i.d. exponentially distributed random times. (A proof of this fact can be found in many
textbooks and lecture notes on stochastic processes.)

(II) [Standard Brownian motion] Fix n ∈ N, and let (X,Σ, ○) = (Rn,B(Rn),+). Let
T+ = [0,∞), and let Yn be the set of all (xt)t≥0 ∈ (Rn)[0,∞) such that t↦ xt is continuous.
For each t ∈ T+, define the probability measure nνt on Rn to be the Gaussian distribution
with mean 0 and covariance matrix tI(n), that is,

nνt(A) ∶= 1

(2πt)n2 ∫A
exp ( 1

2t ∣x∣2) λn(dx)

for t > 0, where λn denotes the Lebesgue measure on Rn, and nν0 = δ0. (Note that
nνt = (1νt)⊗n.) Again, one can show that (nνt)t≥0 is consistent. One of the great
theorems of the last century is that nνYn exists! A proof of this fact can be found
in many textbooks and lecture notes on stochastic calculus or Brownian motion. A
DYn-valued random variable with law nνYn is called an n-dimensional Wiener process or
standard Brownian motion. It is easy to show that an n-dimensional Wiener process is
precisely the concatenation of n independent 1-dimensional Wiener processes. (In other
words, identifying (Rn)[0,∞) with (R[0,∞))n in the obvious manner, it is easy to show that
nνYn = (1νY1)⊗n.)
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(III) [Brownian motion] Fix n ∈ N, and let (X,Σ, ○) and Yn be as in (II). Given any
b ∈ Rn and any symmetric nonnegative-definite matrix C ∈ Rn×n, for each t ∈ T+, define
the probability measure b,Cνt on Rn to be the Gaussian distribution with mean tb and
covariance matrix tC, that is, the unique probability measure on Rn satisfying

∫
Rn
eiu

Tx b,Cνt(dx) = etu
T(ib− 1

2
Cu)

for all u ∈ Rn. Again, one can show that (b,Cνt)t≥0 is consistent. Using the fact that
all Gaussian distributions can be expressed as affine transformations of the standard
Gaussian distribution, the existence of Wiener processes introduced in (II) implies the
existence of b,CνYn . A Yn-valued random variable whose law takes the form b,Cν̄Ynρ for some
probability measure ρ on Rn is called a Brownian motion with initial distribution ρ, drift
b and diffusion C. Remarkably, we have the following theorem: for any consistent family
(νt)t≥0 on Yn, νYn exists if and only if there exist b ∈ Rn and a symmetric nonnegative-
definite C ∈ Rn×n such that (νt)t≥0 = (b,Cνt)t≥0. (For a proof, see Theorem 1 of here.)

Exercise 90. Let T+ = N ∪ {0} and let (X,Σ, ○) = (Z,2Z,+). (A) [Simple random walk]
Let (νn) be the consistent family such that ν1 = 1

2(δ−1 + δ1). Show that if Y is the set
of all sequences of integers, then νY exists, but if Y is the set of bounded sequences of
integers then νY does not exist. (B) Give an example of an integer n, a set A ⊂ Zn, an
increasing sequences of positive integers (nr)r∈N and an assignment of a set A ⊂ Znr to
each r ∈ N, such that the following hold:

(i) for any r1 < r2, (Ar1 ×Znr2−nr1) ∩Ar2 = ∅;

(ii) if Y is the set of bounded sequences of integers then

π−1
0,...,n−1(A) =

∞

⋃
r=1

π−1
0,...,nr−1(Ar) ;

(iii) if Y is the set of all sequences of integers then

π−1
0,...,n−1(A) ≠

∞

⋃
r=1

π−1
0,...,nr−1(Ar).

(The purpose of Exercise 90(B) is to demonstrate that, even though Carathéodory’s
extension theorem guarantees the existence of µYρ if the map π−1

0,t1,...,tn
(A) ↦ µt1,...,tnρ (A)

is countably additive on the class {π−1
0,t1,...,tn

(A) ∶ n ∈ N,A ∈ Σ⊗(n+1), t1 ≤ . . . ≤ tn} of
cylinder sets in Y , nonetheless the countable additivity of this map may depend on Y .)

5 Ergodic decomposition

In Section 2 we saw that the class of stationary probability measures is a convex set
whose extreme points are precisely the ergodic probability measures. In this section we
introduce a further deep fact about the “structure” of the class of stationary probability
measures (under appropriate conditions).
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Let us begin by saying that if Σ is countably generated—meaning that there exists a
countable generator A ⊂ Σ of Σ—then there also exists a countable π-system Ã generating
Σ. To see this, observe that for any collection of sets A, the set Ã of all finite intersections
of members of A is obviously a π-system (in fact, it is clearly the smallest π-system
containing A); and if A is countable then Ã is obviously also countable.

Exercise 91. Let (Ω,F) be a measurable space, and let p1, p2 ∶ Ω →M1 be measurable
functions. Show that if Σ is countably generated then {ω ∈ Ω ∶ p1(ω) = p2(ω)} ∈ F .

Recall that (X,Σ) is said to be standard if there exists a Polish topology on X whose
Borel σ-algebra coincides with Σ. By the Borel isomorphism theorem (Theorem 5 of
here), any two uncountable standard measurable spaces are measurably isomorphic to
each other.

ASSUMPTION: Throughout the rest of this section, (X,Σ) is standard, (µtx)
is a measurable semigroup of kernels, and ρ is a probability measure on X.

Suppose ρ is stationary; then an ergodic decomposition (I,I, ν, (ρ̂α)α∈I) of ρ consists
of a probability space (I,I, ν) and an I-indexed family (ρ̂α)α∈I of probability measures
ρ̂α on X such that (i) the map α ↦ ρ̂α is measurable, (ii) ρ̂α is ergodic for ν-almost all
α ∈ I, and (iii) ρ(A) = ∫I ρ̂α(A)ν(dα) for all A ∈ Σ.

In essence, the main result of this section is that if ρ is stationary then an ergodic
decomposition exists. More specifically, we will construct (up to ρ-almost everywhere
equality) a particular Markov kernel (ρ̂x)x∈X on X, which we call the “canonical ergodic
decomposition” of ρ, and we will then prove that (X,Σ, ρ, (ρ̂x)x∈X) really is an ergodic
decomposition of ρ.

In order to define these “canonical ergodic decompositions”, we will need to introduce
the notion of conditional distributions. (The following definition has nothing to do with
the semigroup (µtx); it is a general concept in probability theory.)

Definition 92. Recall that (X,Σ, ρ) is a probability space, with (X,Σ) standard. Now
let G be a sub-σ-algebra of Σ. We will say that a Markov kernel (νx)x∈X is a version of
ρ( ⋅ ∣G) [to be read: “a version of the conditional distribution of ρ given G”] if for every
A ∈ Σ, the map x↦ νx(A) is a version of ρ(A∣G).

Observe, in particular, that the map x ↦ νx is a G-measurable map from X to M1, and
that ρ is stationary with respect to the kernel (νx).

Proposition 93 (Existence and essential uniqueness of conditional distributions). Let G
be a sub-σ-algebra of Σ. (A) There exists a version of ρ( ⋅ ∣G). (B) Let (ν1

x) be a version
of ρ( ⋅ ∣G), and let (ν2

x) be another kernel on X with x ↦ ν2
x being a G-measurable map.

Then (ν2
x) is a version of ρ( ⋅ ∣G) if and only if ρ(x ∈X ∶ ν1

x ≠ ν2
x) = 0.

Proof. [Adapted from Billingsley, Theorem 33.3.] (A) First suppose X is finite or
countable, and for each x ∈ X let hx ∶ X → [0,1] be a version of ρ({x}∣G). By
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the σ-additivity of conditional probabilities there exists a ρ-full set X̃ ∈ G such that

∑y∈X hy(x) = 1 for all x ∈ X ′. So for every x ∈ X̃ we may define the probability measure
νx on X by

νx(A) = ∑
y∈A

hy(x) ;

and fixing some arbitrary probability measure c on X, we may set νx ∶= c for all x ∈X∖X̃.
The σ-additivity of conditional probabilities gives that for each A ⊂X the map x↦ νx(A)
is a version of ρ(A∣G).

Now suppose that X is uncountable. We may assume without loss of generality that
(X,Σ) = ([0,1],B([0,1])). For each a ∈ (0,1) ∩ Q, let Ha ∶ X → [0,1] be a version of
ρ([0, a]∣G); and let H0(x) ∶= 0 and H1(x) ∶= 1 for all x ∈ X. Since [0,1] ∩Q is countable,
there exists a ρ-full set X ′ ∈ G such that for all x ∈X ′ the map a↦Ha(x) from [0,1]∩Q
to [0,1] is increasing. By the conditional dominated convergence theorem (together with
the countability of [0,1) ∩Q), there exists a ρ-full set X ′′ ∈ G such that for all x ∈ X ′′

and a ∈ [0,1) ∩ Q, Ha+ 1
n
(x) → Ha(x) as n → ∞. So, if we let X̃ ∶= X ′ ∩X ′′, then we

have that for each x ∈ X̃ there exists a unique probability measure νx on X such that
νx([0, a]) = Ha(x) for all a ∈ [0,1] ∩Q. Fixing some arbitrary probability measure c on
X, let us set νx ∶= c for all x ∈ X ∖ X̃. Now let D ⊂ Σ be the set of all A ∈ Σ such that
the map x ↦ νx(A) is a version of ρ(A∣G). It is clear that D includes the collection of
sets of the form [0, a] with a ∈ [0,1]∩Q (which is itself a π-system generating Σ). Using
the σ-additivity of conditional probabilities (together with the fact that X ∈ D) we have
that D is a λ-system. Hence the π-λ theorem gives the desired result.

(B) It is clear that if ρ(x ∈ X ∶ ν1
x ≠ ν2

x) = 0 then (ν2
x) is a version of ρ( ⋅ ∣G). Now

suppose that (ν2
x) is a version of ρ( ⋅ ∣G). Let A be a countable π-system generating Σ. It

is clear that for ρ-almost every x ∈ X, for all A ∈ A, ν1
x(A) = ν2

x(A); so the π-λ theorem
gives the desired result.

Exercise 94. Let G be a sub-σ-algebra of Σ, and let (νx) be a version of ρ( ⋅ ∣G). Show
that for any g ∶ X → R′ which is integrable with respect to ρ, the map x ↦ νx(g) is a
version of ρ(g∣G).
Exercise 95. Given σ-algebras G1 ⊂ G2 ⊂ Σ, we will say that G2 is a ρ-trivial extension
of G1 if G2 ⊂ σ(G1 ∪Nρ), where Nρ is the set of all Σ-measurable ρ-null sets. Show that if
G2 is a ρ-trivial extension of G1 then any version of ρ( ⋅ ∣G1) is also a version of ρ( ⋅ ∣G2).
Exercise 96. Proposition 93 may be obtained as a special case of the disintegration
theorem13, which states the following: Continuing to assume that (X,Σ) is standard, let
(Ω,F) be a measurable space, let µ be a probability measure on Ω ×X, and let P be
the image measure of µ under the projection (ω,x) ↦ ω; then there exists a measurable
function µ̃ ∶ Ω → M1, unique up to P-almost-everywhere equality, such that for every
A ∈ F ⊗Σ,

µ(A) = ∫
Ω
∫
X
1A(ω,x) µ̃(ω)(dx)P(dω).

13The disintegration theorem may actually be proved in a very similar manner to Proposition 93: in
place of a version of ρ(A∣G), one considers a version of the density of the measure E ↦ µ(E ×A) with
respect to P.
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(A) Obtain Proposition 93 as a special case of the disintegration theorem. (B) Hence,
given a sub-σ-algebra G of Σ and a version (νx) of ρ( ⋅ ∣G), show that for any A ∈ G ⊗Σ

ρ(x ∈X ∶ (x,x) ∈ A ) = ∫
X
∫
X
1A(x, y)νx(dy)ρ(dx).

Now prove the same formula without reference to the disintegration theorem. (Hint: first
consider (G ⊗Σ)-measurable rectangles in X ×X.)

Lemma 97. Let G be a sub-σ-algebra of Σ, and let (νx) be a version of ρ( ⋅ ∣G). Then for
ρ-almost every x ∈X, νx(y ∈X ∶ νy = νx) = 1.

Proof. Let A ⊂ Σ be a countable π-system generating Σ, and for each A ∈ A let

EA ∶= {(x, y) ∈X ×X ∶ νx(A) = νy(A)}.

It is clear that EA ∈ G ⊗ G. Now if we let

E ∶= {(x, y) ∈X ×X ∶ νx = νy}

then the π-λ theorem gives that E = ⋂A∈AEA. So E ∈ G⊗G ⊂ G⊗Σ. Hence Exercise 96(B)
gives that

∫
X
∫
X
1E(x, y)νx(dy)ρ(dx) = ρ(x ∈X ∶ (x,x) ∈ E ) = 1

and therefore, for ρ-almost every x ∈X, ∫X 1E(x, y)νx(dy) = 1. But ∫X 1E(x, y)νx(dy) is
precisely νx(y ∈X ∶ νy = νx). So we are done.

Now recall once again that (µtx) is a measurable semigroup of kernels on X. As before,
if ρ is stationary then we shall write Iρ to denote the set of ρ-almost invariant sets.

Proposition 98. Suppose ρ is stationary, let G be any sub-σ-algebra of Iρ, and let (νx)
be a version of ρ( ⋅ ∣G). Then νx is stationary for ρ-almost all x ∈X.

Proof. We first show that for each t ∈ T+, (µt∗νx)x∈X is a version of ρ( ⋅ ∣G). Fix any t ∈ T+,
A ∈ Σ and G ∈ G.

∫
G
µt∗νx(A)ρ(dx) = ∫

G
∫
X
µty(A)νx(dy)ρ(dx)

= ∫
G
µtx(A)ρ(dx) (by Exercise 94 with g(x) = µtx(A))

= ρ(A ∩G) (e.g. by Exercise 26(C)).

So (µt∗νx)x∈X is a version of ρ( ⋅ ∣G), and therefore µt∗νx = νx for ρ-almost all x ∈ X.
This is true for any given t ∈ T+. Now by Exercise 91 (with Ω = T+ × X), the set
{(t, x) ∶ µt∗νx = νx} is a measurable set; consequently, by Corollary 14, ρ-almost every
x ∈ X has the property that for λ-almost all t ∈ T+, µt∗νx = νx. By Exercise 32(A), all
such x actually have the property that for every t ∈ T+, µt∗νx = νx. So we are done.

Theorem 99. Suppose ρ is stationary, and let (ρ̂x) be a version of ρ( ⋅ ∣Iρ). Then ρ̂x is
ergodic for ρ-almost all x ∈X.
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Corollary 100 (Ergodic decomposition theorem). Suppose ρ is stationary. Letting (ρ̂x)
be a version of ρ( ⋅ ∣Iρ), (X,Σ, ρ, (ρ̂x)) is an ergodic decomposition of ρ. Hence there
exists a probability measure Q on the set Me of ergodic probability measures (equipped
with its natural σ-algebra σ(µ↦ µ(A) ∶ A ∈ Σ)) such that

ρ(A) = ∫
Me

µ(A)Q(dµ)

for all A ∈ Σ.

Observe that in Corollary 100, (Me,Ke,Q, (µ)µ∈Me) is itself an ergodic decomposition of
ρ (where Ke denotes the natural σ-algebra on Me).

One immediate important consequence of Theorem 99 / Corollary 100 is that if (µtx)
admits a stationary probability measure then it admits an ergodic probability measure,
and if it admits more than one stationary probability measure then it admits more than
one ergodic probability measure.

Proof of Corollary 100. It is clear that (X,Σ, ρ, (ρ̂x)) is an ergodic decomposition of ρ.
Letting X̃ ∈ Σ be a ρ-full set such that ρ̂x is ergodic for all x ∈ X̃, and letting Σ̃ be the
set of Σ-measurable subsets of X̃, take Q to be the image measure of ρ∣Σ̃ under the map
x↦ ρ̂x from X̃ to Me.

Remark 101. Suppose there exists a σ-locally compact metric on X whose Borel σ-
algebra coincides with Σ, such that the map x ↦ µtx is continuous (with respect to the
narrow topology) for all t ∈ T+. Then the second assertion in Corollary 100 is a special case
of “Choquet’s theorem” in convex analysis (and in fact, for it to be true, the condition
that (µtx) is measurable can be dropped); this can be shown by following the arguments
presented here. [Semigroups of kernels with narrow-continuous dependence on the spatial
parameter are said to be Feller-continuous ; such semigroups will be discussed more in
the next section.]

Remark 102. A natural question to ask is whether the probability measure Q in
Corollary 100 is unique. The answer is yes (see e.g. [18] and references therein for further
details).

Exercise 103. (A) Using Proposition 49, show how one can derive the continuous-time
case of Theorem 99 if one already knows the discrete-time case. (B) The reference given
in Remark 102 actually considers Markov kernels (which are equivalent to discrete-time
semigroups of kernels). Using Proposition 49, prove the assertion in Remark 102 for
continuous-time measurable semigroups.

Exercise 104. Let (Ω,F) be a measurable space, and let (E,E) be a measurable space
such that the diagonal in E×E is (E⊗E)-measurable (e.g. E could be the Borel σ-algebra
of a second-countable Hausdorff topology). Let g ∶ Ω → E be a measurable function.
(A) [Measurable graph theorem] Show that the graph of g is an element of F ⊗ E . (Hint:
consider the map (ω,x)↦ (g(ω), x).) (B) [Measurable image theorem] Assume moreover
that (Ω,F) is standard. Show that for any A ∈ F , g(A) is universally measurable with
respect to E . (Hint: recall the measurable projection theorem.) (C) Still taking (Ω,F)
to be standard, let m be a measure on (Ω,F). Show that for any m-full A ⊂ Ω, g(A) is
g∗m-full. Is it generally true that for any m-null A ⊂ Ω, g(A) is g∗m-null?
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Remark 105. Suppose ρ is stationary. By Exercise 104(C), if we define R ∶X →M1 by
R(x) = ρ̂x then Me is an R∗ρ-full subset of M1.

Now before proving Theorem 99, we give the following exercise.

Exercise 106. Find the incorrect assertion within the following “proof” of Theorem 99,
and give an actual example for which that particular assertion fails. [Hint: consider the
shift map on the infinite product of a non-trivial probability space.]

“Let I+ be the σ-algebra generated by the forward-invariant sets under (µtx), and let
(ρ̃x) be a version of ρ( ⋅ ∣I+). Using Corollary 44 we have that Iρ is a ρ-trivial extension
of I+, and hence (by Exercise 95) (ρ̃x) is also a version of ρ( ⋅ ∣Iρ). So, since ρ̃x = ρ̂x for
ρ-almost all x ∈X, it will suffice to show that ρ̃x is ergodic for ρ-almost all x ∈X. Now by
Proposition 98, ρ̃x is stationary for ρ-almost all x ∈X. So, by Theorem 39, we only need
to show that for ρ-almost all x ∈X, ρ̃x assigns trivial measure to every forward-invariant
set: but since (ρ̃x) is already a version of the conditional distribution of ρ given I+, we
have that for ρ-almost all x, for any forward-invariant set G ∈ I+,

ρ̃x(G) = { 1 x ∈ G
0 x ∉ G.

QED.”

Proof of Theorem 99. Let C ⊂ Σ be a countable π-system generating Σ. By
Proposition 78, for all A ∈ C, for ρ-almost all y ∈X,

1

t ∫T[0,t)
µsy(A)λ(ds) → ρ̂y(A) as t→∞.

Therefore, for all A ∈ C, ρ-almost every x ∈ X has the property that for ρ̂x-almost all
y ∈X,

1

t ∫T[0,t)
µsy(A)λ(ds) → ρ̂y(A) as t→∞.

Since C is countable, it follows that ρ-almost every x ∈ X has the property that for all
A ∈ C, for ρ̂x-almost all y ∈X,

1

t ∫T[0,t)
µsy(A)λ(ds) → ρ̂y(A) as t→∞.

By Lemma 97 it follows that ρ-almost every x ∈ X has the property that for all A ∈ C,
for ρ̂x-almost all y ∈X,

1

t ∫T[0,t)
µsy(A)λ(ds) → ρ̂x(A) as t→∞.

We also know from Proposition 98 that ρ̂x is stationary for ρ-almost all x ∈ X. Hence
case (b) of Proposition 81 gives that ρ̂x is ergodic for ρ-almost all x ∈X.

Exercise 107 (Simultaneous ergodic decomposition). Fix a Polish topology on X whose
Borel σ-algebra coincides with Σ. For each x ∈X and t ∈ T+ ∖ {0}, define the probability
measure µ̄tx on X by

µ̄tx(A) = 1

t ∫T[0,t)
µsx(A)λ(ds)
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for all A ∈ Σ. Now fix a probability measure c on X, and for each x ∈ X define the
probability measure µ̄∞x on X by

µ̄∞x = {
lim
t→∞

µ̄tx if this limit exists

c otherwise

where the limit is taken in the narrow topology. Prove that for any stationary probability
measure w, (µ̄∞x )x∈X is a version of w( ⋅ ∣Iw). (Hint: recall Lemma 19.)

Now we have said that if (µtx) admits a stationary probability measure then it admits an
ergodic probability measure. We will give a generalisation of this fact. Fix n ∈ N. Recall
that a set S ⊂ Rn is said to be convex if λa + (1 − λ)b ∈ S for all a,b ∈ S and λ ∈ [0,1].
We first give the following general fact about convex sets.

Proposition 108. Let (Ω,F ,m) be a measure space, let g ∶ Ω → Rn be an m-integrable
function, and let S ⊂ Rn be a convex set such that g(ω) ∈ S for m-almost all ω ∈ Ω. Then
m(g) ∈ S.

This essentially states that the centre of mass of a convex object, if it exists, lies within
the convex object.

With this, we will prove the following corollary of the ergodic decomposition theorem:

Corollary 109. Suppose ρ is stationary. Let g ∶ X → Rn be a ρ-integrable function, and
let S ⊂ Rn be a convex set such that ρ(g) ∉ S. Then there exists an ergodic probability
measure ρ′ such that g is ρ′-integrable and ρ′(g) ∉ S.

To illustrate this result: Assume ρ is stationary, and suppose we have a set A ∈ Σ and a
ρ-integrable function h ∶ X → R such that ρ(A) = 1 and ρ(h) > 0. Then it is guaranteed
that there exists an ergodic probability measure ρ′ with ρ′(A) = 1 and ρ′(h) > 0; to see
this, just apply Corollary 109 with n = 2, g(x) = (1A(x), h(x)) and S = [0,1) × (−∞,0].

We now start to prove Proposition 108. Let us use ⋅ for the dot-product on Rn, let
∣ ⋅ ∣ denote the corresponding norm (the Euclidean norm), and let d(⋅, ⋅) denote the
corresponding metric (the Euclidean metric).

Lemma 110. Let S ⊂ Rn be a convex set, with S○ denoting the interior of S (relative
to Rn). For any a ∈ Rn ∖ S○ there exists n ∈ Rn with ∣n∣ = 1 such that for all x ∈ S,
n ⋅ (x − a) ≥ d(a, S).

The following exercise takes the reader through the proof:

Exercise 111 (adapted from section 7.3 of here). (A) Show that for any a,b ∈ Rn with
a ⋅ b > 0 there exists c ∈ (0,1) such that for all λ ∈ (0, c), ∣a − λb∣ < ∣a∣. (B) Show that
for any closed G ⊂ Rn and any a ∈ Rn ∖G there exists x ∈ G such that d(a,x) = d(a,G).
(C) Prove Lemma 110 in the case that a ∉ ∂S. (D) Prove Lemma 110 in the case that
a ∈ ∂S by considering a sequence (ar)r∈N in Rn ∖ S̄ converging to a.
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Proof of Proposition 108. Let C ⊂ Rn be the support of g∗m. Since adjusting g on a null
set does not affect either its integral or the support of g∗m, we may assume without loss of
generality that g(ω) ∈ S∩C for all ω ∈ Ω. Now suppose for a contradiction that m(g) ∉ S.
Let S′ ⊂ Rn and L ⊂ Rn denote respectively the convex hull of S ∩ C and the affine
subspace of Rn generated by S ∩C. (Note that S′ ⊂ L∩S.) Let r be the dimension of L,
let ϕ ∶ Rn → Rn be an isometry such that ϕ(L) = Rr × {0} (where 0 is the zero-vector in
Rn−r), and define the isometry ϕ̃ ∶ L→ Rr by ϕ(x) = (ϕ̃(x),0). Since m(g) ∉ S, we must
have that r ≥ 1 (i.e. g does not map Ω into a single point). Now ϕ(g(ω)) ∈ Rr × {0} for
all ω ∈ Ω, so m(ϕ○g) ∈ Rr ×{0}. Since ϕ is an affine transformation, m(ϕ○g) = ϕ(m(g)),
and so we can write ϕ(m(g)) = (a,0) with a = ϕ̃(m(g)). Since m(g) ∉ S, we have in
particular that m(g) ∉ S′, so a ∉ ϕ̃(S′). Hence, using Lemma 110, there exists n ∈ Rr

such that n ⋅ (x − a) ≥ 0 for all x ∈ ϕ̃(S′). So

n ⋅ (ϕ̃(g(ω)) − a) ≥ 0

for all ω ∈ Ω; but we also have that

∫
Ω

n ⋅ (ϕ̃(g(ω)) − a)m(dω) = n ⋅ (∫
Ω
ϕ̃(g(ω))m(dω)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=a

−a) = 0.

It follows that n ⋅(ϕ̃(g(ω))−a) = 0 for m-almost all ω ∈ Ω. Thus the support of (ϕ̃○g)∗m
is contained in the (r − 1)-dimensional affine space {y ∶ n ⋅ (y − a) = 0}. But the support
of (ϕ̃ ○ g)∗m is precisely ϕ̃(C), so C is contained in an (r − 1)-dimensional affine space.
However, this contradicts the fact that the smallest affine space L containing S ∩ C is
r-dimensional.

Proof of Corollary 109. Let Q be as in Corollary 100. By Theorem 12,

ρ(g) = ∫
Me

µ(g)Q(dµ).

By Proposition 108 (with m ∶= Q and with g replaced by the map µ↦ µ(g)), it is not the
case that µ(g) ∈ S for Q-almost all µ ∈Me. Nonetheless it is clear that g is µ-integrable
for Q-almost all µ ∈ Me. So there must exist µ ∈ Me such that g is µ-integrable and
µ(g) ∉ S.

6 Feller-continuity

Fix a separable metrisable topology on X, with Σ = B(X). We regard M1 as being
equipped with the narrow topology. We will say that a Markov kernel (µx) on X is
Feller-continuous if the map x↦ µx is continuous. Note that if (µx) is Feller-continuous
then for any open U ⊂ X the set {x ∈ X ∶ µx(U) > 0} is open. (Some of the important
facts about Feller-continuous kernels do not actually rely on the full strength of Feller-
continuity, but only on this fact.)

Exercise 112. (A) Show that a kernel (µx) on X is Feller-continuous if and only if the
map ρ ↦ µ∗ρ from M1 to M1 is continuous. (B) Show that for any function f ∶ X → X,
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(δf(x))x∈X is a Feller-continuous Markov kernel if and only if f is continuous. (C) Show
that if (µx) and (νx) are Feller-continuous kernels on X then their composition (ν∗µx)
is Feller-continuous.

We will say that a semigroup of Markov kernels (µtx) on X is Feller-continuous14 if the
kernel (µtx)x∈X is Feller-continuous for all t ∈ T+. By Exercise 112(C), if T+ = N∪{0} then
Feller-continuity is the same for the semigroup (µnx) as for the kernel (µ1

x).

Exercise 113. Let (µtx) be a Feller-continuous semigroup. (A) Show that if A ∈ Σ is a
forward-invariant set then the closure Ā is also forward-invariant. (B) Show that if ρ is
a stationary probability measure then suppρ is forward-invariant.

The following theorem can be regarded as a partial converse to Exercise 113(B):

Theorem 114 (Krylov-Bogolyubov). Let (µtx) be a semigroup of kernels on X that is
both measurable and Feller-continuous, and let K ⊂X be a non-empty forward-invariant
compact set. Then there exists at least one stationary (and hence at least one ergodic)
probability measure ρ with ρ(K) = 1.

We start with the following exercise:

Exercise 115. For each x ∈X and τ ∈ T+ ∖{0}, we define the probability measure µ̄tx on
X by

µ̄τx(A) = 1

τ ∫T[0,τ)
µsx(A)λ(ds)

for all A ∈ B(X). Show that for any bounded measurable g ∶ X → R, any x ∈ X and any
t, τ ∈ T+ with τ ≠ 0,

∣µt∗µ̄τx(g) − µ̄τx(g)∣ ≤
2t supy∈X ∣g(y)∣

τ
.

Proof of Theorem 114. Pick any x ∈ K. It is clear that µ̄tx(K) = 1 for all t ∈ T+ ∖ {0}.
Hence by Corollary 21, there exists an unbounded increasing sequence (tn)n∈N in T+∖{0}
such that µ̄tnx converges in the narrow topology (as n → ∞) to a probability measure ρ
with ρ(K) = 1. We now show that ρ is stationary. Fix any t ∈ T+. By Exercise 112(A),
since the kernel (µtx)x∈X is Feller-continuous, we have that µt∗µ̄tnx → µt∗ρ as n →∞. But
also, for any bounded continuous g ∶ X → R we have that µt∗µ̄tnx (g) − µ̄tnx (g) → 0 as
n →∞, by Exercise 115. Since µ̄tnx (g) → ρ(g) as n →∞, it follows that µt∗µ̄tnx (g) → ρ(g)
as n→∞. Hence µt∗µ̄tnx → ρ as n→∞. So then, µt∗ρ = ρ.

Thus we have proved that there exists at least one stationary probability measure ρ.
Now it is easy to check that (µtx∣B(K)

)
x∈X, t∈T+

is a measurable semigroup of Markov

kernels on K, with ρ∣B(K) being a stationary probability measure. Since K is compact,

(K,B(K)) is standard, and therefore the semigroup (µtx∣B(K)
) must admit at least one

ergodic probability measure r. It is then clear that the probability measure A↦ r(A∩K)
on X is ergodic with respect to (µtx).

14We warn the reader that a “Feller semigroup” is a related but different concept from a Feller-
continuous semigroup of kernels. (We will not discuss Feller semigroups here.)
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Exercise 116. Given any semigroup of kernels (µtx) on X, show that the set of open
backward-invariant sets forms a topology on X. (Hint: note that for any second-countable
topological space, the union of an arbitrary collection of open sets can be covered by a
finite or countable subcollection thereof.)

Exercise 117. Let (µtx) be a semigroup of kernels. We will say that an open set U ⊂X
is accessible from a point x ∈X if there exists t ∈ T+ such that µtx(U) > 0. (A) Show that
for any x ∈X there exists a smallest closed forward-invariant set containing x (which we
shall denote Gx). (B) Show that for any x ∈ X there is a largest open set that is not
accessible from x, and that the complement Cx of this set is given by

Cx = ⋃
t∈T+

suppµtx.

(C) Show that for any x ∈ X, Cx ⊂ Gx, with equality in the case that (µtx) is Feller-
continuous.

Now we will say that a Markov kernel (µx) is strong-Feller-continuous if for every bounded
measurable g ∶X → R the map x↦ µx(g) is continuous. Note that this is indeed stronger
than Feller-continuity.

Before continuing our discussion of strong-Feller-continuity, we introduce the following
notions: Given an index set I and a family (Cα)α∈I of subsets of X, we will say that
(Cα)α∈I is disjoint if Cα1 ∩Cα2 = ∅ for all distinct α1, α2 ∈ I, and we will say that (Cα)α∈I
is well-separated if the following hold:

(i) for each α ∈ I there exists a neighbourhood U of Cα such that

U ∩ ⋃
β∈I∖{α}

Cβ = ∅ ;

(ii) ⋃α∈I Cα is closed.

Obviously, condition (i) is stronger than disjointness.

Exercise 118. Recall that we are assuming X to be a separable metric space. Show that
if (Cα)α∈I is well-separated then I is at most countable, and is finite in the case that X
is compact.

Proposition 119. Let (µx) be a strong-Feller-continuous kernel. Then any disjoint
family (Cα)α∈I of forward-invariant sets is well-separated.

Corollary 120. Let (µx) be a strong-Feller-continuous kernel. Given a mutually singular
collection S of stationary probability measures, the family (suppρ)ρ∈S is well-separated.

This implies in particular that (µx) admits at most countably many ergodic probability
measures, and that if X is compact then (µx) admits at most finitely many ergodic
probability measures. (The same obviously also holds for any semigroup of kernels (µtx)
for which there exists t ∈ T+ such that the kernel (µtx)x∈X is strong-Feller-continuous.)
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Proof of Proposition 119. Let (Cα)α∈I be a disjoint family of forward-invariant sets. To
show condition (i): Fix any α ∈ I. We know that µx(Cα) = 1 for all x ∈ Cα, and
hence strong-Feller-continuity gives that there exists a neighbourhood U of Cα such that
µx(Cα) > 0 for all x ∈ U . So then, for any β ∈ I ∖ {α}, since Cβ ∩ Cα = ∅, we have
that µx(Cβ) < 1 for all x ∈ U ; and therefore, since Cβ is forward-invariant, Cβ ∩ U = ∅.
This proves condition (i). Now, to show condition (ii): Suppose for a contradiction
that D ∶= ⋃α∈I Cα is not closed. Fix any x ∈ D̄ ∖D, and let (xn)n∈N be a sequence in
D converging to x. For each n ∈ N, let An ∈ {Cα ∶ α ∈ I} be such that xn ∈ An; let
E ∶= ⋃∞

n=1An, and let A∞ ∶= Ē ∖ E. Obviously E is forward-invariant, and therefore Ē
is forward-invariant; by construction x ∈ Ē, and so µx(Ē) = 1. However, for each fixed
n ∈ N∪{∞}, we have that µxr(An) = 0 for all r sufficiently large, and therefore by strong-
Feller-continuity µx(An) = 0; so then, since Ē = ⋃n∈N∪{∞}An, we have that µx(Ē) = 0.
Thus we have a contradiction, and so condition (ii) holds.

Proof of Corollary 120. By Proposition 119 and Exercise 113(B), it suffices to show that
(suppρ)ρ∈S is a disjoint family; so fix any two distinct ρ1, ρ2 ∈ S. Let A ∈ B(X) be a ρ1-full
ρ2-null set. Using Lemmas 41 and 43, let C1 ⊂ A be a forward-invariant ρ1-full set, and let
C2 ⊂X∖A be a forward-invariant ρ2-full set. Obviously C1∩C2 = ∅, so by Proposition 119,
C1 ∩C2 = ∅. But also, suppρ1 ⊂ C1 and suppρ2 ⊂ C2; hence suppρ1 ∩ suppρ2 = ∅.

Exercise 121. Let (µtx) be a semigroup of kernels, let ρ be a stationary probability
measure of (µtx), and suppose there exists t ∈ T+ such that the kernel (µtx)x∈X is strong-
Feller-continuous. Show that ρ is ergodic if and only if it assigns trivial measure to every
closed forward-invariant set.

We finish this section with a useful sufficient criterion for strong-Feller-continuity:15

Proposition 122. Let (µx) be a Markov kernel on X. Suppose there exists a σ-finite
measure ν on X such that µx is absolutely continuous with respect to ν for all x, and
suppose there exists an assignment to each x ∈X of a version hx of dµx

dν such that the map
x↦ hx(y) is continuous for ν-almost all y ∈ Y . Then (µx) is strong-Feller-continuous.

We begin with the following exercise:

Exercise 123 (Scheffé’s Lemma). Let (Ω,F ,m) be a measure space. Suppose we have
an m-integrable function g ∶ Ω → [0,∞) and a sequence (gn) of m-integrable functions
gn ∶ Ω → [0,∞), such that: (i) gn(ω) → g(ω) as n → ∞ for m-almost all ω ∈ Ω; and
(ii) m(gn)→m(g). Show that gn converges in L1(m) to g as n→∞.

Proof of Proposition 122. Fix any bounded measurable g ∶ X → R. Let (xn) be a
sequence in X converging to a point x. For each n,

∣µxn(g) − µx(g)∣ ≤ (sup
y∈X

∣g(y)∣)∫
X
∣hxn(y) − hx(y)∣ ν(dy).

Now we know that hxn(y) → hx(y) as n → ∞ for ν-almost all y ∈ X; we also know that
for any n, ν(hxn) = ν(hx) = 1. Hence, by Exercise 123, ∫X ∣hxn(y) − hx(y)∣ ν(dy) → 0 as
n→∞, and therefore µxn(g)→ µx(g) as n→∞.

15This is a slight generalisation of a remark made on p15 of here.
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7 Random maps and random dynamical systems

The approach to “random dynamical systems” (RDS) that we shall work with is
essentially based on that presented in here (only, we will work specifically with RDS that
are adapted to a given one-parameter filtration on the underlying probability space). In
this section, as is typical when studying RDS, we will often omit brackets around the
arguments of certain functions in order to avoid an excess of brackets.

We start with the following exercise about independent σ-algebras:

Exercise 124. Let (Ω,F ,P) be a probability space, and let G1 and G2 be sub-σ-algebras
of F that are independent under P (meaning that P(E1∩E2) = P(E1)P(E2) for all E1 ∈ G1

and E2 ∈ G2). Let g ∶ Ω×Ω→ R′ be a (G1⊗G2)-measurable function, and define the function
g2 ∶ Ω→ R′ by g2(ω) = g(ω,ω). (A) Show that

P⊗P(g) = P(g2).

(B) Define the function h ∶ Ω→ R′ by h(ω) = ∫Ω g(ω, ω̃)P(dω̃). Show that if g is integrable
with respect to P⊗ P then h is a version of P(g2∣G1).

A random map (I,I, ν, (ϕ(α))α∈I) on X consists of a probability space (I,I, ν) and an
I-indexed family (ϕ(α))α∈I of functions ϕ(α) ∶X →X such that the map (α,x)↦ ϕ(α)x
from I ×X to X is measurable.

We may associate to any random map (I,I, ν, (ϕ(α))α∈I) a corresponding Markov kernel
of “transition probabilities” (ϕx)x∈X , defined by

ϕx(A) = ν(α ∈ I ∶ ϕ(α)x ∈ A)

for all x ∈ X and A ∈ Σ. In other words, for each x ∈ X we define ϕx to be the image
measure of ν under the map α ↦ ϕ(α)x.

Remark 125. A natural question to ask is whether for every Markov kernel (µx)x∈X
there exists a random map (I,I, ν, (µ(α))α∈I) on X such that (µx)x∈X is the Markov
kernel associated with (I,I, ν, (µ(α))α∈I). It turns out that if (X,Σ) is standard then
the answer is yes (Lemma 3.22 of here, or Theorem 1.1.1 of here).

Exercise 126. Show that for any probability measure ρ on X, ϕ∗ρ is given by

ϕ∗ρ(A) = ∫
I
ϕ(α)∗ρ(A)ν(dα).

Hence show that for any measurable g ∶X → R′, if ϕ∗ρ(g) ≠ NaN then

ϕ∗ρ(g) = ∫
I
ρ(g ○ ϕ(α))ν(dα).

We now relate composition of kernels with composition of independent random maps.
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Proposition 127. Let (I,I, ν) be a probability space, and let J1 and J2 be sub-σ-algebras
of I that are independent under ν. Let (ϕ(α))α∈I be a family of functions from X to X
such that the map (α,x) ↦ ϕ(α)x is (J1 ⊗Σ)-measurable, and let (ψ(α))α∈I be a family
of functions from X to X such that the map (α,x)↦ ψ(α)x is (J2 ⊗Σ)-measurable. Let
(ϕx) and (ψx) be the Markov kernels associated with the random maps (I,I, ν, (ϕ(α))α∈I)
and (I,I, ν, (ψ(α))α∈I) respectively. Then (ψ∗ϕx)x∈X is the Markov kernel associated to
the random map (I,I, ν, (ψ(α) ○ ϕ(α))α∈I).

Proof. Fix any x ∈X and A ∈ Σ.

ν(α ∈ I ∶ ψ(α)ϕ(α)x ∈ A) = ∫
I
1A(ψ(α)ϕ(α)x)ν(dα)

= ∫
I×I

1A(ψ(α̃)ϕ(α)x)ν⊗ν(d(α, α̃))

(by Exercise 124(A))

= ∫
I
ν(α̃ ∈ I ∶ ψ(α̃)ϕ(α)x ∈ A)ν(dα)

(by Corollary 14)

= ∫
I
ψϕ(α)x(A)ν(dα)

= ∫
X
ψy(A)ϕx(dy)

= ψ∗ϕx(A).

So we are done.

Exercise 128. Fix a separable metrisable topology on X, with Σ = B(X). Let
(I,I, ν, (ϕ(α))α∈I) be a random map on X such that ϕ(α) is continuous for every α ∈ I.
(A) Show that (ϕx) is Feller-continuous. (B) Show that there exists a ν-full set J ∈ I
such that for every open U ⊂X,

{x ∈X ∶ ϕx(U) > 0} = ⋃
α∈J

ϕ(α)−1(U).

(Hint: let {Un}n∈N be a countable base; for each n, let Nn = {x ∶ ϕx(Un) = 0}, let Sn
be a countable dense subset of Nn, and let Jn = {α ∶ ∀x ∈ Sn, ϕ(α)x ∉ Un}; then take
J = ⋂∞

n=1 Jn.)

Now just as a Markov kernel can naturally appear as the transition probabilities of a
random map, so likewise a semigroup of Markov kernels can naturally appear as the
transition probabilities of a “random dynamical system with memoryless noise”.

Recall that in essence, a “dynamical system” is a rule specifying the future evolution
of the state of a system given its initial state. A “random dynamical system” is a
rule specifying the future evolution of the state of a system given both its initial state
and the (moment-by-moment) behaviour of some random process which influences the
(simultaneous moment-by-moment) evolution of the system. Now just as the term
“dynamical system” is often used to refer specifically to an autonomous dynamical system
(i.e. a dynamical system that is homogeneous in time), so likewise the term “random
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dynamical system” is generally used to refer to a random dynamical system that is
“homogeneous in time”. Formally this “homogeneity” may be defined by the following
properties: (i) the behaviour of the random process (which we often call “noise”) is
statistically stationary in time; and (ii) the rule itself which determines how the evolution
of the system over a time interval [t0, t0 +∆t] is affected by the behaviour of the random
process over the time interval [t0, t0 +∆t] does not depend on t0.

Let us first discuss the “noise” (i.e. the random process affecting the system). The
“classical” way of describing a random process is essentially as follows: we have a
measurable space (Ω,F) representing all possible information about how the process
might behave (and possibly more), together with a probability distribution P for this; we
have a “state space” M ; and we have, associated to each instant in time t, a measurable
function Xt ∶ Ω → M which represents “projecting” from the space of “all information
about the process” to a specific piece of information about the “state” of the process at
the instant in time t.

However, not all mathematical models of random processes lend themselves to this
description. More specifically, we may have a model of noise which describes the
“behaviour of the noise over a time interval (t, t + h)” (for any h > 0), but does not
describe the “state” of the noise at any instant in time t. Accordingly, we will take the
following more general approach to describing noise:

Definition 129. A noise space (Ω,F , (Ft)t∈T+ ,P, (θt)t∈T+) consists of a filtered probability
space (Ω,F , (Ft)t∈T+ ,P) and an autonomous dynamical system (θt)t∈T+ on (Ω,F) such
that θ−tFs ⊂ Fs+t for all s, t ∈ T+. We say that the noise space (Ω,F , (Ft)t∈T+ ,P, (θt)t∈T+)
is stationary if P is invariant with respect to (θt); we say that it is memoryless if for any
s, t ∈ T+, Fs and θ−sFt are independent under P.

(Ω,F) represents the set all possibilities for how the noise will behave over the whole
timeline. (This “timeline” will generally be either T+ or T, where T = T+∪{−t ∶ t ∈ T+}; the
latter case is achieved when θt is measurably invertible for all t ∈ T+). P is the probability
distribution for how the noise will behave over the whole timeline. Ft represents all
information regarding how the noise will behave over the time interval from 0 to t. (θt)
is the time-shift dynamical system: for any τ ∈ T+, θτ represents shifting the “reference
time t = 0” backward by τ . (So θ−tFs represents all information regarding how the noise
will behave over the time interval from t to s + t.)
Exercise 130. Let (Ω,F , (Ft)t∈T+) be a filtered measurable space, and let (θt)t∈T+ be an
autonomous dynamical system on (Ω,F) such that θ−tFs ⊂ Fs+t for all s, t ∈ T+. Let

F∞ ∶= σ (⋃
t∈T+
Ft) ,

and for all s, t ∈ T+ with s ≤ t, let F ts ∶= θ−sFt−s. (A) Show that for any s ∈ T+,

θ−sF∞ = σ
⎛
⎝ ⋃
t ∈T[s,∞)

F ts
⎞
⎠
.

Accordingly, we will write F∞
s ∶= θ−sF∞. We will also write F∞

∞ ∶= ⋂s∈T+ F∞
s . (B) Show

that for any r, s, t, u ∈ T+ ∪ {∞} with r ≤ s ≤ t ≤ u, F ts ⊂ Fur .
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Exercise 131. Let θ = (Ω,F , (Ft),P, (θt)) be a noise space. (A) Show that θ is
memoryless if and only if for every s ∈ T+, Fs and θ−sF∞ are independent under P.
(B) Suppose that θ is stationary, and that for all t ∈ T+, θt is bijective and its inverse
θ−t ∶ Ω → Ω is measurable. Show that θ is memoryless if and only if F∞ (the “future”)
and σ (⋃t∈T+ θtFt) (the “past”) are independent under P.

The following is a version of Kolmogorov’s 0-1 law :

Proposition 132. Let (Ω,F , (Ft),P, (θt)) be a memoryless noise space, and let F∞
∞ be

as in Exercise 130. Then P(A) ∈ {0,1} for all A ∈ F∞
∞ .

Proof. It is clear that F∞
∞ is independent of Fs under P for all s ∈ T+. Obviously ⋃s∈T+ Fs

is a π-system, and so by Exercise 82(A) and the π-λ theorem, F∞
∞ is independent of the

whole of F∞ under P. But F∞
∞ is itself contained in F∞, and so F∞

∞ is independent of
itself under P.

Note that (θt) may be regarded not only as an autonomous dynamical system on (Ω,F),
but also as an autonomous dynamical system on the “restricted” space (Ω,F∞). (In
particular, for each t ∈ T+, θt may be viewed as a measurable self-map of the “restricted”
space (Ω,F∞).) With this in mind, we state the following corollary of Proposition 132.

Corollary 133. Let (Ω,F , (Ft),P, (θt)) be a memoryless stationary noise space, and let
F∞ be as in Exercise 130. Then P∣F∞ is ergodic with respect to θt for every t ∈ T+ ∖ {0}
(and is obviously therefore ergodic with respect to (θt)t∈T+.)

Proof. Fix t ∈ T+ ∖ {0}, and let A ∈ F∞ be a set that is strictly invariant under θt. Then
A ∈ F∞

nt for all n ∈ N, and therefore A ∈ F∞
∞ . Hence P(A) ∈ {0,1} by Proposition 132, and

so Remark 40 yields that P∣F∞ is ergodic with respect to θt.

Exercise 134. On the basis of Corollary 133, derive the strong law of large numbers as
a special case of the pointwise ergodic theorem for discrete-time autonomous dynamical
systems.

Exercise 135. (A) Let (I,I, ν) be a probability space. Let Ω ∶= IN. For each n ∈ N∪{0},
let Fn be the σ-algebra on Ω given by

Fn ∶= σ( (αr)r∈N ↦ αm ∶ m ∈ {1, . . . , n} ).

(So F0 is the σ-algebra generated by the empty set, namely the trivial σ-algebra
{Ω,∅}.) Let F ∶= I⊗N = σ (⋃∞

n=0Fn). Let P ∶= ν⊗N. Define the function θ ∶ Ω → Ω
by θ((αn)n∈N) = (αn+1)n∈N. Taking T+ = N ∪ {0}, show that (Ω,F , (Fn),P, (θn)) is
a memoryless stationary noise space. (B) Returning to the appendix of Section 4:
For any S ⊂ [0,∞), let DYS be the set of YS-measurable subsets of DY . Let (νt)
be a consistent family of probability measures on X such that νY exists. Show that
(DY,DY, (DY[0,t]),νY , (Dθt)) is a memoryless stationary noise space. (In the case that
νY is the law of a Wiener process, this noise space represents a Gaussian white noise
process.)
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Remark 136. Exercise 135(A) does also work in continuous time: if we let Ω = I(0,∞),
F = I⊗(0,∞), P = ν⊗(0,∞), Ft = σ((αr)r>0 ↦ αs ∶ 0 < s ≤ t), and let (θt) be the horizontal
shift dynamical system on I⊗(0,∞), then (Ω,F , (Ft),P, (θt)) is a memoryless stationary
noise space. However, such a model of continuous-time noise will rarely if ever be useful
in practice.

We now go on to define a (time-homogeneous) random dynamical system:

Definition 137. Let θ = (Ω,F , (Ft),P, (θt)) be a stationary noise space. A random
dynamical system (RDS) ϕ on X over θ is a (T+×Ω)-indexed family ϕ=(ϕ(t, ω))t∈T+, ω∈Ω
of functions ϕ(t, ω) ∶X →X such that:

(i) ϕ(0, ω) = idX for all ω ∈ Ω;

(ii) ϕ(s + t, ω) = ϕ(t, θsω) ○ ϕ(s,ω) for all s, t ∈ T+ and ω ∈ Ω;

(iii) for each t ∈ T+, the map (ω,x)↦ ϕ(t, ω)x from Ω×X to X is (Ft⊗Σ)-measurable.

X is the state space of our system. ϕ(t, ω)x represents what the state of the system
will be at time t, if it is x at time 0 and the realised behaviour of the noise is ω. (In
particular, this obviously justifies property (i).) Property (iii) tells us that ϕ(t, ω)x will
only be affected by how the noise behaves on the time-interval from 0 to t. Property (ii)
represents the fact that the manner by which the noise affects the evolution of the system
is homogeneous in time.

Exercise 138. Show that for any s, t ∈ T+ the map (ω,x) ↦ ϕ(t, θsω)x is (F s+ts ⊗ Σ)-
measurable (where F s+ts is as in Exercise 130).

Exercise 139. Can you see how a random map on X naturally generates a discrete-time
random dynamical system?

Let ϕ be a RDS over a stationary noise space θ. If θ is memoryless, then for each
t ∈ T+ we will write (ϕtx)x∈X to denote the Markov kernel associated to the random map
(Ω,F ,P, (ϕ(t, ω))ω∈Ω). Note that (ϕtx)x∈X is also the Markov kernel associated to the
random map (Ω,F ,P, (ϕ(t, θsω))ω∈Ω) for any s ∈ T+.

Proposition 140. Suppose θ is memoryless. Then (ϕtx)x∈X, t∈T+ is a semigroup of Markov
kernels.

Proof. (ϕ0
x)x∈X is the Markov kernel associated to the identity map, which is clearly

the identity kernel. Now fix any s, t ∈ T+. We know that (ϕsx)x∈X is the Markov
kernel associated to (ϕ(s,ω))ω∈Ω and that (ϕtx)x∈X is the Markov kernel associated to
(ϕ(t, θsω))ω∈Ω. Memorylessness implies that F s0 and F s+ts are independent under P. Hence
by Proposition 127 (together with Exercise 138), we have that (ϕt∗ϕsx)x∈X is the Markov
kernel associated to (ϕ(s + t, ω))ω∈Ω. So we are done.

Exercise 141 (“Memoryless noise implies Markovian trajectories”). Suppose θ is
memoryless, and let Y =XT+ . Show that for any probability measure ρ on X, ϕYρ exists
and is equal to the image measure of P⊗ρ under the map (ω,x)↦ (ϕ(t, ω)x)t∈T+ . (Here,
following the notation scheme in Section 4, ϕYρ denotes the Markov measure associated
to the semigroup (ϕtx) and initial distribution ρ.)
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Now, for each t ∈ T+, define the map Θt ∶ Ω ×X → Ω ×X by

Θt(ω,x) = (θtω,ϕ(t, ω)x).

Exercise 142. Show that (Θt)t∈T+ is an autonomous dynamical system on (Ω×X,F⊗Σ),
and is also an autonomous dynamical system on the “restricted space” (Ω ×X,F∞ ⊗Σ).

Theorem 143 (based on Kifer, Lemma 1.2.3 and Theorem 1.2.1). Suppose θ is
memoryless, and let ρ be a probability measure on X. Then (i) ρ is stationary with
respect to (ϕtx) if and only if P∣F∞ ⊗ ρ is invariant with respect to (Θt), and (ii) ρ is
ergodic with respect to (ϕtx) if and only if P∣F∞ ⊗ ρ is ergodic with respect to (Θt).

Proof. (i) We will show that for any t ∈ T+, P∣F∞ ⊗ ϕt∗ρ = Θt
∗(P∣F∞ ⊗ ρ). (The result is

then immediate). By the π-λ theorem, it suffices to consider sets of the form E ×A for
E ∈ F∞ and A ∈ Σ.

P⊗ ϕt∗ρ(E ×A) = P(E)ϕt∗ρ(A)

= P(θ−t(E))∫
X
ϕtx(A)ρ(dx)

= (∫
Ω
1θ−t(E)(ω̃)P(dω̃))(∫

X
∫

Ω
1A(ϕ(t, ω)x)P(dω)ρ(dx))

= ∫
X
(∫

Ω
∫

Ω
1θ−t(E)(ω̃)1A(ϕ(t, ω)x)P(dω̃)P(dω)) ρ(dx)

= ∫
X
(∫

Ω
1θ−t(E)(ω)1A(ϕ(t, ω)x)P(dω)) ρ(dx) (Exercise 124(A))

= ∫
X
∫

Ω
1E×A(Θt(ω,x))P(dω)ρ(dx)

= P⊗ ρ(Θ−t(E ×A)).

(ii) Obviously, the map p ↦ (P∣F∞) ⊗ p from M1 to the set of probability measures on
(Ω×X,F∞⊗Σ) is linear (i.e. respects convex combinations); hence, by characterisation (iv)
of ergodicity in Theorem 34, if (P∣F∞)⊗ρ is ergodic then ρ is ergodic. Conversely, suppose
that ρ is ergodic, and take any A ∈ F∞ ⊗Σ that is (P⊗ ρ)-almost invariant under (Θt).
For each x ∈ X, let Ax ∶= {ω ∈ Ω ∶ (ω,x) ∈ A} ∈ F∞, and let g(x) ∶= P(Ax) = P(θ−t(Ax))
(for any t). Fix any t ∈ T+; for any x ∈X we have that,

ϕtx(g) = ∫
Ω
g(ϕ(t, ω)x)P(dω)

= ∫
Ω
P(θ−t(Aϕ(t,ω)x))P(dω)

= ∫
Ω
∫

Ω
1A(θtω̃, ϕ(t, ω)x)P(dω̃)P(dω)

= ∫
Ω
1A(θtω,ϕ(t, ω)x) P(dω) (by Exercise 124(A)).

But since A is (P ⊗ ρ)-almost invariant, we know that ρ-almost every x ∈ X has the
property that for P-almost all ω ∈ Ω, 1A(θtω,ϕ(t, ω)x) = 1A(ω,x); and hence, for ρ-
almost every x ∈X,

ϕtx(g) = ∫
Ω
1A(ω,x)P(dω) = g(x).

64

http://rd.springer.com/book/10.1007%2F978-1-4684-9175-3


This was true for any t ∈ T+. So (by Theorem 27(B)), g is ρ-almost invariant. Hence,
since ρ is ergodic, it follows that there exist c ∈ R and a ρ-full set X̃ ∈ Σ such that g(x) = c
for all x ∈ X̃. Now P⊗ ρ(A) = ∫X g(x)ρ(dx) = c. So it remains to show that c is equal to
either 0 or 1.

Let X ′ = {x ∈ X ∶ ϕnx(X̃) = 1 for all n ∈ N ∪ {0}} ⊂ X̃. It is easy to show (e.g. as a
special case of the discrete-time version of Lemma 43) that ρ(X ′) = 1; so, in particular,
since X ′ is not ρ-null, there must exist x ∈ X ′ such that for each n ∈ N, for P-almost all
ω ∈ Ω, 1A(θnω,ϕ(n,ω)x) = 1A(ω,x). Fix such an x. For each n ∈ N, define the function
hn ∶ Ω→ [0,1] by

hn(ω) = ∫
Ω
1A(θnω̃, ϕ(n,ω)x)P(dω̃).

On the one hand, by Exercise 124(B), hn is a version of P(ω ↦ 1A(θnω,ϕ(n,ω)x)∣Fn),
which is the same as being a version of P(ω ↦ 1A(ω,x)∣Fn), which is the same as being
a version of P(Ax∣Fn). But on the other hand, for P-almost all ω, ϕ(n,ω)x ∈ X̃ and so

hn(ω) = ∫
Ω
1A(ω̃, ϕ(n,ω)x)P(dω̃)

(since P is θn-invariant)

= g(ϕ(n,ω)x)
= c.

Therefore, for every n ∈ N the constant map ω ↦ c = P(Ax) is a version of P(Ax∣Fn).
Since Ax ∈ F∞ it follows that P(Ax) must be either 0 or 1.16 So we are done.

Appendix: Markov operators

Let ρ be a probability measure on (X,Σ). We will say that two measurable functions
f, g ∶ X → R′ are ρ-equivalent if f(x) = g(x) for ρ-almost all x ∈ X. For any measurable
f ∶X → R′, we will write [f] to denote the ρ-equivalence class of f .

Let L1(ρ) be the set of ρ-equivalences classes of ρ-integrable functions from X to R′.
For f, g ∈ L1(ρ) and c ∈ R, we may define f + g, cf , f+, f−, ∣f ∣ and ∫A f dρ (where A ∈ Σ)
in the natural way (by considering representatives of f and g). We also equip L1(ρ) with
its natural partial ordering ≤ (where we say that f ≤ g if for any representative f̃ of f and
any representative g̃ of g, f̃(x) ≤ g̃(x) for ρ-almost all x ∈ X). Finally, for any c ∈ R, we
will also write c to denote the ρ-equivalence class represented by the constant function
x↦ c.

Note that L1(ρ) is a vector space; we can define a norm on L1(ρ) by ∣∣f ∣∣ = ∫X ∣f ∣dρ.
It is well-known that this is indeed a norm, and under this norm L1(ρ) is a Banach space.

There are different definitions for a “Markov operator”, but the one that we shall use is

16There are a few ways of justifying this; perhaps the most elementary is as follows: By Exercise 82(B),

⋃n∈NFn is contained in the P-orthogonal complement of {Ax}; and therefore (by the π-λ theorem and
Exercise 82(A)) F∞ is contained in the P-orthogonal complement of {Ax}. Hence, in particular, Ax is
in the P-orthogonal complement of {Ax}.

65



as follows: A Markov operator over (X,Σ, ρ) is a function P ∶ L1(ρ) → L1(ρ) with the
following properties:

(i) P is linear;

(ii) Pf ≥ 0 for all f ∈ L1(ρ) with f ≥ 0;

(iii) ∫X Pf dρ = ∫X f dρ for all f ∈ L1(ρ);

(iv) P1 = 1 (and hence Pc = c for all c ∈ R).

Exercise 144. Show that properties (i), (ii) and (iii) imply that P is continuous.

Exercise 145. Show that the set of Markov operators over (X,Σ, ρ) forms a monoid
under composition. (So we can define a Markov semigroup as a T+-indexed family of
Markov operators (P t)t∈T+ such that the map t↦ P t is a monoid homomorphism.)

As an important special case: Let θ ∶X →X be a ρ-preserving measurable function. We
may associate to θ the linear operator Pθ ∶ L1(ρ)→ L1(ρ) given by Pθ[f] = [f○ θ] for any
ρ-integrable f ∶ X → R′. It is easy to show that Pθ is indeed a Markov operator. Note
that this association θ ↦ Pθ of a Markov operator to a measure-preserving map reverses
order of composition: Pθ2 ○ θ1 = Pθ1 ○ Pθ2 .

Now just as a self-map on X can naturally give rise to a Markov operator, so (more
generally) a Markov kernel on X can give rise to a Markov operator: Let (µx) be a
Markov kernel on X with respect to which ρ is stationary. Recall from Exercise 24 that
for any two ρ-equivalent functions f, g ∶ X → R′ the maps x ↦ µx(f) and x ↦ µx(g) are
ρ-equivalent. Hence we may define the function Pµ ∶ L1(ρ)→ L1(ρ) by Pµ([f]) = [µ⋅(f)]
for any ρ-integrable f ∶ X → R′. Again, it is easy to show that Pµ is a Markov operator.
Also note once again that this association (µx) ↦ Pµ reverses order of composition: the
Markov operator associated to (ν∗µx)x∈X is equal to Pµ ○ Pν .

Definition 146. We will say that two Markov kernels (µx) and (νx) are ρ-equivalent
if µx = νx for ρ-almost all x ∈ X. Given a kernel (µx), we write [µ] to denote the
ρ-equivalence class of (µx).

It is clear that for any two ρ-equivalent kernels (µx) and (νx), ρ is stationary with respect
to (µx) if and only if ρ is stationary with respect to (νx). So:

Definition 147. For any kernel (µx) on X, we will say that [µ] is measure-preserving if
ρ is stationary with respect to (µx).

It is also clear that for any two ρ-equivalent kernels (µx) and (νx) with respect to which
ρ is stationary, Pµ = Pν . Thus, if we let K denote the set of all ρ-equivalences classes of
Markov kernels and let O denote the set of Markov operators over (X,Σ, ρ), then we can
define a map F ∶K →M by F ([µ]) = Pµ.

Exercise 148. Show that if (X,Σ) is countably generated then F ∶K →M is injective.
(Hint: Show that, in general, if Pµ = Pν then for each A ∈ Σ, for ρ-almost all x ∈ X,
µx(A) = νx(A). Then, as in the proof of Proposition 93(B), use countable generation and
the π-λ to give the desired result.)
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Now recall once again that a measurable space (X,Σ) is said to be standard if there
exists a Polish topology on X whose Borel σ-algebra coincides with Σ, and that every
uncountable standard measurable space is isomorphic to ([0,1],B([0,1])).

Proposition 149. If (X,Σ) is standard then F ∶K →M is bijective.

The proof of surjectivity is essentially identical to the proof of Proposition 93(A),
replacing “version of ρ(A∣G)” with “representative of P [1A]”, and replacing countable
additivity of conditional probabilities and the conditional dominated convergence theorem
with continuity of Markov operators (Exercise 144). (The full proof is left as an exercise.)
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