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Chapter 1

Introduction

This course concerns the dynamics of systems of particles. Newton’s laws lead
to the elegant formulations of the theory due to Lagrange and Hamilton. Ap-
plications include the approximate description of motion near equilibria, and
classification of equilibria according to their stability. Rotating rigid bodies
can be studied in detail - the concepts of angular velocity, angular momentum,
and the inertia tensor are introduced and applied to systems such as the freely
rotating body and the symmetric top or gyroscope.

The key idea is that we want to set up the equations of motion so that we
obtain Newton’s laws in an inertial frame; but the structure of the equations
should not depend on the choice of coordinates used. The most powerful method
for ensuring this is to write the equations as a variational principle. Some texts
(there are many) covering much of this material are

• Kibble and Berkshire, Classical Mechanics (Longman 1996)

• Landau and Lifshitz, Mechanics (Butterworth-Heinemann 1997)

• Goldstein, Classical Mechanics (Addison-Wesley 1980).

Kibble and Berkshire was originally written for Physics students; it is at about
the right level for this course. The latter two were written as graduate texts,
but aim to be fully self-contained.
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Chapter 2

Calculus of Variations

Many important questions in geometry can be written in variational form:

• what is the shortest path between two points in the plane?

• what is the shortest path between two points in a given surface?

• what is the shortest closed curve enclosing given area?

Further, the laws of optics could be written as a variational principle - Fermat’s
Principle of Least Time, that the path of a light ray minimises (or extremises)
the ‘optical path’

T =

∫ x1

x0

|dx|
n(x)

. (2.1)

Certainly the equations of statics are a simple variational problem - a system
of particles interacting via a potential V (x1, . . . , xN ) has equilibria at those
points where the potential has an extremum - a maximum, minimum or saddle.

Lagrange’s idea was that dynamics - that is, Newton’s laws for a particle in
a potential force could also be written in variational form, as the condition for
an extremum of the ‘action integral’:

S =

∫ t1

t0

m

2
|ẋ|2 − V (x)dt. (2.2)

We will see that this condition, the Euler-Lagrange equation, is:

mẍ = −∇V. (2.3)

This is clearly the same as Newton’s 2nd law. We will see later how this ap-
proach can be extended to systems of many particles, perhaps with additional
constraints. For instance a pendulum consists of a particle moving in the plane,
constrained in such a way that its distance from a fixed point is constant. A
‘rigid body’ is a collection of many particles, subject to the constraints that the
separation between each pair of particles is constant.
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2.1 The Euler-Lagrange equation

To understand the Lagrangian method properly, we need to look at the ideas of
the Calculus of Variations quite carefully. For simplicity let us consider the case
of one dependent and one independent variable. We consider the space of all
real differentiable functions x(t), satisfying the two conditions x(t1) = x1 and
x(t2) = x2. Let us call these functions ‘paths’. We are given a differentiable
function, called the Lagrangian, f(x, ẋ, t), (we can extend to the case where f
also depends on higher derivatives) and we want to extremise the action integral

S[x] =

∫ t2

t1

f(x, ẋ, t)dt. (2.4)

That is, if we change the path by O(ε), keeping the end points fixed, we want
the action only to change by a much smaller amount, o(ε). More precisely, we
say a variation of a path x(t) is a real differentiable function η(t) satisfying
η(t1) = η(t2) = 0. Thus xε(t) = x(t) + εη(t) is also a path, for any real ε. If we
evaluate the action integral on the varied path xε(t),

S[xε] =

∫ t2

t1

f(xε, ẋε, t)dt. (2.5)

we can differentiate it with respect to ε. It is convenient to treat x and ẋ as
though they were independent -

d

dε
S[xε] =

∫ t2

t1

∂

∂x
f(xε, ẋε, t)η +

∂

∂ẋ
f(xε, ẋε, t)η̇dt. (2.6)

If this derivative vanishes for ε = 0, for any variation η(t), we say the path x(t)
is an extremum of the action S[x].

Now x(t) and ˙x(t) are not really independent, as one is the derivative of the
other; similarly with η(t). To eliminate the dependence on η̇ we integrate by
parts:

d

dε
S[xε]|ε=0 =

∫ t2

t1

∂

∂x
f(x, ẋ, t)η +

∂

∂ẋ
f(x, ẋ, t)η̇dt = (2.7)∫ t2

t1

∂

∂x
f(x, ẋ, t)ηdt+ [

∂

∂ẋ
f(x, ẋ, t)η]t2t1 −

∫ t2

t1

d

dt

∂

∂ẋ
f(x, ẋ, t)ηdt (2.8)

and the integrated term vanishes, since η(t1) = η(t2) = 0. Hence, if x(t) is an
extremum of S[x],∫ t2

t1

(
∂

∂x
f(x, ẋ, t)− d

dt

∂

∂ẋ
f(x, ẋ, t))ηdt = 0, (2.9)

for all η(t). The only way we can achieve this is if the expression in brackets
vanishes:

∂

∂x
f(x, ẋ, t)− d

dt

∂

∂ẋ
f(x, ẋ, t) = 0. (2.10)
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This is called the Euler-Lagrange equation for this variational problem, We see
that in general it will be a second-order ordinary differential equation for the
path x(t).

2.1.1 Example

For example if

S =

∫ t2

t1

1

2
(mẋ2 − V (x))dt, (2.11)

the Euler-Lagrange equation reads

−mẍ− V ′(x) = 0, (2.12)

Newton’s 2nd law for a particle of mass m in potential V .

2.1.2 Example - the Brachistochrone problem

One of the earliest mechanical problems to be posed in a variational formulation
was the ‘Brachistochrone problem’ (Greek - shortest time).

A particle slides without friction under gravity along a curve in a vertical
plane, z = Z(x). It is released from rest at the point x1.

For what function Z(x) is the time taken to travel from x1 to x2 minimised?
Choose coordinates so x1 = Z(x1) = 0. By conservation of energy, the speed

of the particle at point x is
√−2gZ(x), so the total time taken is

T =

∫ x2

x1

√
dx2 + dz2/

√
−2gZ(x) (2.13)

=

∫ x2

0

√
1 + Z ′2dx√−2gZ(x)

. (2.14)

Now, dropping the irrelevant factor of 2g, put F (Z,Z ′, x) =
√

1 + Z ′2/
√−Z(x).

We have:

∂

∂Z
F (Z,Z ′, x) =

√
1 + Z ′2

2(−Z)3/2
, (2.15)

∂

∂Z ′
F (Z,Z ′, x) =

Z ′√
(1 + Z ′2)(−Z , (2.16)

so the Euler-Lagrange equation is:

d

dx

Z ′√
(1 + Z ′2)(−Z =

√
1 + Z ′2

2(−Z)3/2
. (2.17)

Expanding, we get:

Z ′′√
(1 + Z ′2)(−Z)

− Z ′2Z ′′

(1 + Z ′2)3/2
√−Z +

Z ′2

2
√

1 + Z ′2(−Z)3/2
=

√
1 + Z ′2

2(−Z)3/2
.

(2.18)
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Rearranging terms over a common denominator, and simplifying, we get

2ZZ ′′ + Z ′2 + 1 = 0. (2.19)

Solutions of this nonlinear 2nd order equation may not be easy to find in general,
but we may use a general result to integrate the equation once, getting a first-
order equation instead.

This variational problem, which is specified by the function F (Z,Z ′, x) =√
1 + Z ′2/

√−Z(x), has a symmetry - F is independent of x. Physically this
means that if we translate the whole curve in the x-direction, without changing
its shape, the time of descent is unchanged.

We may verify directly (see problem sheet 1, question 1) that if Z satisfies
the Euler-Lagrange equation:

d

dx

∂

∂Z ′
F (Z,Z ′, x)− ∂

∂Z
F (Z,Z ′, x) = 0, (2.20)

then
d

dx
(Z ′

∂

∂Z ′
F (Z,Z ′, x)− F (Z,Z ′, x)) = − ∂

∂x
F (Z,Z ′, x) (2.21)

In this example the right-hand side vanishes, and we can integrate at once:

Z ′
∂

∂Z ′
F (Z,Z ′, x)− F (Z,Z ′, x) = K, (2.22)

a constant. We will see later how Noether’s theorem gives a more general
construction of such constants of motion, whenever a variational problem has a
symmetry.

In this example,

Z ′2√
(1 + Z ′2)(−Z)

−
√

1 + Z ′2√−Z(x)
= K (2.23)

giving
−1√

(1 + Z ′2)(−Z)
= K. (2.24)

or
Z(1 + Z ′2) = −1/K2 = k. (2.25)

Rearranging and separating,

dx =
dZ√
k/Z − 1

(2.26)

Substituting Z = k cos2(θ), this becomes

dx =
−2k cos(θ) sin(θ)dθ

tan(θ)
(2.27)

= −2k cos2(θ)dθ. (2.28)
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Integrating,
x = −k(θ + sin(2θ)/2), (2.29)

which, with
Z = k cos2(θ) = k/2(1 + cos(2θ)), (2.30)

is the parametric form of the solution. This curve is a cycloid, the curve de-
scribed by a point on the circumference of a circle as the circle is rolled along a
line without slipping.

2.2 Many dependent variables

The extension to more than one dependent variable xi,i = 1, . . . , N , is straight-
forward. Now the Lagrangian depends on N functions and their derivatives ẋi.
As before we look at differentiable paths, and keep the end-points fixed. Writing
the N variables xi as an N -component vector, we have

S[x] =

∫ t2

t1

f(x, ẋ, t)dt. (2.31)

and our variational equation is

d

dε
S[xε] =

∫ t2

t1

N∑
i=1

(
∂

∂xi
f(xε, ẋε, t)ηi +

∂

∂ẋi
f(xε, ẋε, t)η̇i)dt. (2.32)

We integrate by parts as before, using η(t1) = η(t2) = 0, getting∫ t2

t1

N∑
i=1

(
∂

∂xi
f(x, ẋ, t)− d

dt

∂

∂ẋi
f(x, ẋ, t))ηidt = 0, (2.33)

and this can only vanish if each coefficient of ηi vanishes separately. We thus
get N separate Euler-Lagrange equations, one for each independent variation
ηi:

∂

∂xi
f(x, ẋ, t)− d

dt

∂

∂ẋi
f(x, ẋ, t) = 0. (2.34)

2.2.1 Example - Motion in the plane: changing coordi-
nates

Take
L =

m

2
(ẋ2 + ẏ2)− V (x, y)),

giving

mẍ = −∂V
∂x

, (2.35)

mÿ = −∂V
∂y

. (2.36)

9



But if we write the same Lagrangian in polar coordinates,setting V (x, y) =
Ṽ (r, θ), we get

L =
m

2
(ṙ2 + r2θ̇2)− Ṽ (r, θ)).

Now

∂L

∂ṙ
= mṙ (2.37)

∂L

∂θ̇
= mr2θ̇ (2.38)

and

∂L

∂r
= mrθ̇2 − ∂Ṽ

∂r
, (2.39)

∂L

∂θ
= −∂Ṽ

∂θ
. (2.40)

Hence the Euler-Lagrange equations are

mr̈ = mrθ̇2 − ∂Ṽ

∂r
, (2.41)

mr2θ̈ + 2mrṙθ̇ = −∂Ṽ
∂θ

. (2.42)

We can now easily transform to a rotating frame with φ = θ − ωt,, giving

L =
m

2
(ṙ2 + r2(φ̇+ ω)2)− Ṽ (r, φ+ ωt)).

and you can verify that this gives the correct equations of motion in a rotating
frame. Transformation to other coordinate systems is similarly straightforward.
We are no longer restricted to Cartesian coordinates in inertial frames. The
advantage of the Lagrangian approach is that the Euler-Lagrange equations
always have the same form, so we are free to transform coordinates arbitrarily.

2.2.2 Example - Newton’s laws

The general rule for constructing the Lagrangian of a system of N particles is
to construct the kinetic energy - in Cartesian coordinates this is:

T =

N∑
i=1

mi

2
|ẋi|2

and the potential energy V (x1,x2, . . . ,xN ), then take

L = T − V.
The Euler-Lagrange equations are then

miẍi = −∇iV, (2.43)

where ∇i denotes the gradient with respect to the coordinate xi. These are
exactly Newton’s 2nd law for this system.

10



2.2.3 Example - Coupled Harmonic Oscillators

Take

L =

N∑
i=1

mi

2
ẋi

2 −
N∑
i=1

N∑
j=1

1

2
xiKijxj

where K is a symmetric matrix, and the action integral is

S =

∫ t2

t1

Ldt.

The Euler-Lagrange equations then read:

−miẍi −
N∑
j=1

Kijxj = 0. (2.44)

We will see later how any Lagrangian near an equilibrium point can be modelled
by a Lagrangian of this form, and how the equations of these coupled oscillators
can be separated.

2.3 Several independent variables

Let y(x) be a function from Rn to R. Given some Lagrangian density

f(y,∇y,x)

we want to find extrema of the action

S[y] =

∫
Ω

fdnx

where the integral is taken over some finite, simply connected (no holes) domain
Ω. We denote the i-th component of ∇y by y,i for short, and as before we treat
these and y as being independent. Again as before, we fix y on the boundary
of Ω, which we denote ∂Ω. This will be some (n − 1) dimensional ’surface’ in
Rn. A variation of y is some differentiable function η(x) from Ω to R, which
vanishes on ∂Ω. Then if we evaluate S[y+ εη], and differentiate with respect to
ε at ε = 0, we get: ∫

Ω

∂f

∂y
η +

n∑
i=1

∂f

∂y,i
η,id

nx. (2.45)

We now use the divergence theorem, and the identity div(ηv) = ηdivv +
(∇η).v, to integrate the second term by parts, getting∫

Ω

[
∂f

∂y
−

n∑
i=1

d

dxi

∂f

∂y,i
]ηdnx +

n∑
i=1

∫
∂Ω

η . . . . (2.46)
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The last term is linear in η|∂Ω which vanishes, hence it is zero. If the variation
of S vanishes for all η, we have the Euler-Lagrange equation:

∂f

∂y
−

n∑
i=1

d

dxi

∂f

∂y,i
= 0, (2.47)

or with the obvious shorthand notation,

∂f

∂y
− div

∂f

∂∇y = 0.

2.3.1 Example - The wave equation

If we take
f = u2

t/2− u2
x/2

then we get the Euler-Lagrange equation:

uxx − utt = 0. (2.48)

2.3.2 Example - Minimal surfaces

The area of a surface given by z = z(x, y), with (x, y) ∈ Ω is:

S =

∫ ∫
Ω

√
1 + z2

x + z2
ydxdy.

It is worthwhile to calculate the boundary term explicitly here when calculating
the variation - (exercise); the Euler-Lagrange equation is:

∂

∂x
(

zx√
1 + z2

x + z2
y

) +
∂

∂y
(

zy√
1 + z2

x + z2
y

) = 0. (2.49)

This is the equation satisfied by soap films. Exercise: compare the equation
obtained by putting z = z(r) in the integral S and finding the EL equation of
the restricted expression, with direct substitution of z = z(r) in the full EL
equation. The more general problem, of a soap bubble - a constant, rather than
zero mean curvature surface - is described by minimising

S =

∫ ∫
Ω

√
1 + z2

x + z2
y − pzdxdy.

Here p is proportional to the pressure in the bubble. Can you show that there
are spherical bubbles? What is p for a spherical bubble of radius R?

2.4 Constrained systems

Here we are given a variational problem together with certain side conditions.
As in an ordinary constrained optimisation problem, the most powerful ap-

proach is to use Lagrange multipliers.
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2.4.1 Lagrange multipliers

Suppose we are given a function V (x) depending on N variablesxi. These xi
satisfy M < N independent constraints Fi(x) = 0. The set of x satisfying all
the constraints, supposed non-empty, is denoted C. We suppose that at any
point of C, the gradients ∇Fi are all linearly independent. A vector u ∈ RN
is said to be tangent to C at x if the derivative of each Fi in the direction u
vanishes: u.∇Fi(x) = 0, for i = 1, . . . ,M . These tangent vectors form a vector
space of dimension N −M . Any other vector, not satisfying these conditions, is
called transverse to C. We can split RN into the direct sum of two subspaces,
the space tangent to C, of dimension N −M , and a space of vectors transverse
to C, of dimension M .

Now we want V (x) to be stationary as x moves in C, so that d/dεV (x+εu) =
0, for u tangent to C at x. Thus at the stationary point x, we have

u.∇(V −
M∑
i=1

λiFi) = 0,

for all constants λi, and all u tangent to C at x.
However, for any other u, transverse to C, we may still impose

u.∇(V −
M∑
i=1

λiFi) = 0,

giving M independent conditions, which we can solve for the M unknowns λi.
The N + M variables xi, i = 1, . . . , N , and λi, i = 1, . . . ,M , then satisfy
N +M equations:

d

dxj
(V −

M∑
i=1

λiFi) = 0, j = 1, . . . , N, (2.50)

Fi = 0, i = 1, . . .M. (2.51)

These are exactly the conditions for an unconstrained extremum of the function

Ṽ (x, λ) = V −
M∑
i=1

λiFi

with respect to the N +M variables (x, λ).
We may apply the same method to variational problems.

2.4.2 Example - The isoperimetric problem

This problem is to find the curve between two points (x1, y1) and (x2, y2), of
specified length, which maximises the area integral

∫ x2

x1
ydx.

In this example the length of the curve is

L[y] =

∫ x2

x1

√
1 + y′2dx,

13



which takes the given value l. The area is

A[y] =

∫ x2

x1

ydx.

We look for extrema of the modified functional

S[y] =

∫ x2

x1

ydx− λ(

∫ x2

x1

√
1 + y′2dx− l),

where λ is some scalar constant, to be determined. The Euler-Lagrange equation
is

λ
d

dx
(

y′√
1 + y′2

) + 1 = 0 (2.52)

Hence ( y′√
1+y′2

) = −(x−x0)/λ, giving the parametric solution, after a little

work,

x = x0 + λ sin(θ) (2.53)

y = y0 + λ cos(θ), (2.54)

so the extremum is a circular arc of radius λ. The variational problem satisfied
by a soap bubble is another isoperimetric problem, in which the surface area is
extremised, holding the volume integral constant. The Lagrange multiplier is p.

2.5 Problems 1

1. Conservation of ’energy’.

The Euler-Lagrange equation corresponding to a functional F (y, y′, x) is

∂F

∂y
− d

dx

∂F

∂y′
= 0.

Show that
d

dx
(F − y′ ∂F

∂y′
) =

∂F

∂x
.

Hence, in the case that F is independent of x, show that

F − y′ ∂F
∂y′

= constant.

2. The hanging rope.

A rope hangs between the two points (x, y) = (±a, 0) in a curve y = y(x),
so as to minimise its potential energy∫ a

−a
mgy

√
1 + y′2dx

14



while keeping its length constant:∫ a

−a

√
1 + y′2dx = L

Of course L > 2a. Find and solve the Euler-Lagrange equation.

3. The relativistic particle A particle moving with speed near c, the speed of
light, has Lagrangian

L = −m0c
2

√
1− ẋ2

c2
− U(x).

Show that the equation of motion can be interpreted as Newton’s 2nd law,
but with a mass depending on the speed of the particle-

m =
m0√
1− ẋ2

c2

.

The constant m0 is called the ’rest mass’ of the particle. Use the result
of question 1 to find a conserved quantity - the relativistic energy of the
particle. Find the leading approximation to this Lagrangian in the case

ẋ2

c2
<< 1.

4. A nonlinear Laplace equation.

Find the Euler-Lagrange equation for the function u(x, y) which minimises
(extremises): ∫

Ω

F (u2
x + u2

y) + f(x, y)udxdy,

where the domain of integration is a simply connected finite region Ω.
Suppose u takes a specified value on the boundary ∂Ω of Ω; these are
called Dirichlet boundary conditions.

5. Geodesics on a cylinder.

Consider a circular cylinder of radius a, whose axis is the z-axis. The
metric - the element of arc length - is given in cylindrical polars by:

ds2 = a2dφ2 + dz2.

Write down the length of a curve on the cylinder joining the points (z1, φ1)
and (z2, φ2). Find the curve which minimises this length. Is there more
than one solution?

Repeat this calculation in Cartesian coordinates, using a Lagrange multi-
plier and the constraint x2 + y2 = a2.

15



Chapter 3

Lagrange’s equations

We may use the ideas of constrained Calculus of Variations to construct the
equations of motion for a system of N bodies subject to potential forces, and
satisfying a certain kind of constraint.

3.1 Example - The simple pendulum

To illustrate our approach, we take the Lagrangian of a particle of mass m in
the (x, y) plane with potential mgy(t), but we impose the constraint

√
(x(t)2 +

y(t)2) = l. This gives the constrained Lagrangian:

L =
m

2
(ẋ2 + ẏ2 − 2gy)− λ(t)(

√
(x(t)2 + y(t)2)− l).

Here the multiplier λ is a function of t, for now the constraint
√

(x(t)2+y(t)2) =
l has to hold separately for each t.

We get

mẍ = −λ x√
x(t)2 + y(t)2

, (3.1)

mÿ = −mg − λ y√
x(t)2 + y(t)2

. (3.2)

We can simplify this by choosing different coordinates.
If we write x = r sin(θ), y = −r cos(θ), we can solve the constraint explicitly.

Here we get

L =
m

2
(ṙ2 + r2θ̇2 + 2gr cos(θ))− λ(t)(r − l).

This gives two Euler-Lagrange equations, and the constraints:

mr̈ = mrθ̇2 +mg cos(θ)− λ, (3.3)

mr2θ̈ + 2mrṙθ̇ = −mgr sin(θ) (3.4)

r = l (3.5)

ṙ = 0. (3.6)

16



Thus, the equation tangential to the constraint set is the usual pendulum
equation, and the other, transverse, equation yields an explicit formula for λ.
In this problem λ is the tension in the string of the pendulum.

3.2 Holonomic and non-holonomic constraints

To extend this approach, we need to define our idea of a constraint more care-
fully.

A physical system may often be modelled by one with fewer independent
variables. For instance, two masses moving in R3 joined by a spring have 6
independent coordinates; but if the spring is very strong, we model the system
by treating it as a rigid rod - then the system has only 5 independent coordinates;
the 6 coordinates (x1, y1, z1;x2, y2, z2) satisfy (x1−x2)2+(y1−y2)2+(z1−z2)2 =
L2, say. This kind of constraint only involves the coordinates. Such contraints
are called holomomic.

We sometimes have constraints involving the velocities - suppose a particle
at position x can only move perpendicular to a specified vector field A(x). Then
A(x).ẋ = 0. Some such constraints can be integrated to give constraints on the
coordinates alone; if A(x) = ∇F (x), then we integrate to get F (x) =constant.
Such contraints are also called holomomic. However if curlA 6= 0, the con-
straint can not be integrated; we call these constraints non-holomomic. Such
non-holonomic constraints are much harder to treat in general.

3.2.1 Example - the ice skate

The coordinates of an ice skate are given by its position in the plane (x, y), and
the direction it is pointing, θ, measured from the x-axis say. The ice skate can
only move in the direction it points, so the rate of change of the coordinates
satisfies sin(θ)ẋ− cos θẏ = 0. But the curl

(
∂

∂x
,
∂

∂y
,
∂

∂θ
) ∧ (sin(θ),− cos θ, 0) = −(sin(θ),− cos θ, 0)

which does not vanish. There is no function F (x, y, θ) which remains constant
throughout the motion because of the constraint. Hence, although ẋ, ẏ, and θ̇
are linearly related, x, y and θ are independent.

This course will only deal with holonomic constraints.

3.2.2 Lagrangian for motion with constraints

We may apply this approach much more generally. Suppose we have a system
of N particles whose unconstrained Lagrangian is

L =

N∑
i=1

mi

2
ẋ2
i − V (x1, . . . ,xN ).

17



We now require the configuration of the system to satisfy a set of M < 3N
independent constraints

Fα(x1, . . . ,xN ) = 0, i = 1, . . . ,M.

The extended Lagrangian is thus

L̃ = L−
M∑
α=1

λαFα.

We can obtain the equations of motion either directly, or better, after a change
of variables to new coordinates qi, i = 1, . . . , 3N −M and Qα = Fα, α =
1, . . . ,M . The only condition on the qi is that they should be differentiable
functions of the xi, and that the gradients of the qi and Qα should all be linearly
independent. Then the original coordinates xi will be differentiable functions
of the qi and Qα.

The number of independent coordinates qi on the set satisfying all the con-
straints is called the number of degrees of freedom of the system.

Then the kinetic energy is

N∑
i=1

mi

2
ẋ2
i =

N∑
i=1

mi

2
(

3N−M∑
j=1

3N−M∑
k=1

∂xi
∂qj

.
∂xi
∂qk

q̇j q̇k

+2

3N−M∑
j=1

M∑
α=1

∂xi
∂qj

.
∂xi
∂Qα

q̇jQ̇α

+

M∑
α=1

M∑
β=1

∂xi
∂Qα

.
∂xi
∂Qβ

Q̇αQ̇β).

It is still quadratic in the components of the velocity. The potential energy will
be some function of the new coordinates, Ṽ (q,Q), so our extended Lagrangian
becomes:

L̃ =

N∑
i=1

mi

2
(

3N−M∑
j=1

3N−M∑
k=1

∂xi
∂qj

.
∂xi
∂qk

q̇j q̇k + 2

3N−M∑
j=1

M∑
α=1

∂xi
∂qj

.
∂xi
∂Qα

q̇jQ̇α

+

M∑
α=1

M∑
β=1

∂xi
∂Qα

.
∂xi
∂Qβ

Q̇αQ̇β)− Ṽ (q,Q)−
M∑
α=1

λαQα.

We can now calculate the equations of motion from this in the usual way; we
first calculate:

∂L̃

∂q̇j
=

N∑
i=1

mi(
3N−M∑
k=1

∂xi
∂qj

.
∂xi
∂qk

q̇k +
M∑
α=1

∂xi
∂qj

.
∂xi
∂Qα

Q̇α),

∂L̃

∂Q̇α
=

N∑
i=1

mi(
3N−M∑
j=1

∂xi
∂qj

.
∂xi
∂Qα

q̇j +
M∑
β=1

∂xi
∂Qα

.
∂xi
∂Qβ

Q̇β).
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The constaints are given by

∂L̃

∂λα
= −Qα = 0,

so Q̇α = 0 as well, since the constraints hold for all t. The equations of motion
split into a set of 3N −M equations for the qj , reading:

d

dt
(
∂L̃

∂q̇j
) =

∂L̃

∂qj
, (3.7)

that is, substituting the constraints,

d

dt
(

N∑
i=1

mi

3N−M∑
k=1

∂xi
∂qj

.
∂xi
∂qk

q̇k) =
∂L̃

∂qj
|Q=0, (3.8)

and a set of M equations for the constraint variables:

d

dt
(

N∑
i=1

mi

3N−M∑
j=1

∂xi
∂qj

.
∂xi
∂Qα

q̇j) =
∂L̃

∂Qα
|Q=0, (3.9)

which can always be satisfied by choosing the λα appropriately. The 3N −M
equations for the qj are identical to those we would obtain by substituting the

constraints Qα = 0 and Q̇α = 0 into L̃, and calculating the Euler-Lagrange
equations directly from this expression.

Thus it is possible to calculate the equations of motion more directly; first we
choose coordinates qj on the set C satisfying the constraints, next we calculate
the kinetic energy T and potential energy V on C, in terms of the qj and q̇j ; the
Lagrangian L = T − V then gives the correct constrained equations of motion.

3.2.3 Example - a simple mass-pulley system.

A light inextensible rope hangs vertically from a fixed support. It passes round
a light pulley which supports a mass M , then goes up, over a second pulley,
which is fixed. A second mass m is suspended on the end of the rope. Find the
Lagrangian of the system, and describe its motion.

Let the mass M have vertical coordinate Z, measured downwards. The mass
m has vertical coordinate z. As the string is inextensible, 2Z + z =constant.
The kinetic energy is

T =
M

2
Ż2 +

m

2
ż2,

or, using the constraint to eliminate z,

T = (
M

2
+ 2m)Ż2.

The potential energy is:

V = −MgZ −mgz = −(M − 2m)gZ,
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where we have neglected an irrelevant constant.
Then

L = (
M

2
+ 2m)Ż2 + (M − 2m)gZ.

Hence the Euler-Lagrange equation is:

(M + 4m)Z̈ = (M − 2m)g.

Note that we did not need to calculate the tension in the rope.
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3.3 Example - The compound pendulum

To illustrate our approach, we take the Lagrangian of two particle of mass
m1, m2 in the (x, y) plane with potential m1gy1 + m2gy2, but we impose the
constraints

√
(x2

1 + y2
1) = l1, and

√
((x2 − x1)2 + (y2 − y1)2) = l2. Thus particle

1 is attached to a fixed point by an inextensible string of length l1, and particle
2 is attached to particle 1 by a string of length l2.

We have the unconstrained Lagrangian:

L =
m1

2
(ẋ2

1 + ẏ2
1 − 2gy1) +

m2

2
(ẋ2

2 + ẏ2
2 − 2gy2).

We can forget the constraints by choosing appropriate coordinates.
If we write x1 = l1 sin(θ1), y1 = −l1 cos(θ1), and x2 = l1 sin(θ1) + l2 sin(θ2),

y2 = −l1 cos(θ1)− l2 cos(θ2), we get

L =
m1

2
l21θ̇1

2
+
m2

2
(l21θ̇1

2
+2l1l2 cos(θ1−θ2)θ̇1θ̇2+l22θ̇2

2
)+m1gl1 cos(θ1)+m2g(l1 cos(θ1)+l2 cos(θ2)).

This gives two Euler-Lagrange equations, which are the same as we could have
found by substituting these coordinates in Newton’s laws, and eliminating the
unknown tensions in the strings.

d

dt
(m1l

2
1θ̇1 +m2l

2
1 θ̇1 +m2l1l2 cos(θ1 − θ2)θ̇2) = −m2l1l2 sin(θ1 − θ2)θ̇1θ̇2

−m1gl1 sin(θ1)−m2gl1 sin(θ1)

d

dt
(m2l1l2 cos(θ1 − θ2)θ̇1 +m2l

2
2θ̇2) = m2l1l2 sin(θ1 − θ2)θ̇1θ̇2

−m2gl2 sin(θ2).
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3.3.1 Exercise

Repeat the above calculation using Cartesian coordinates, and Lagrange multi-
pliers for the two constraints.

3.4 Example - a particle moves on a surface of
revolution

A surface of revolution is given in cylindrical coordinates by

z = f(r).

Now the Lagrangian of a particle moving under gravity on this surface is

L =
m

2
(ṙ2 + r2θ̇2 + ż2)−mgz − λ(z − f(r)),

or imposing the constraint and its derivative, ż = f ′(r)ṙ,

L =
m

2
(ṙ2 + r2θ̇2 + f ′(r)2ṙ2)−mgf(r).

This yields the EL equations in the usual way:

∂L

∂ṙ
= m(1 + f ′(r)2)ṙ,

∂L

∂r
= mrθ̇2 −mgf ′(r),

∂L

∂θ̇
= mr2θ̇,

∂L

∂θ
= 0.

Thus

d

dt
m(1 + f ′(r)2)ṙ = mrθ̇2 −mgf ′(r),

d

dt
mr2θ̇ = 0.

If f(r) = −√l2 − z2, this gives the equation for the sphercal pendulum.

3.4.1 Exercise - The Spherical Pendulum

Alternatively, calculate the Lagrangian and equations of motion for the spherical
pendulum in spherical polar coordinates.
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3.4.2 Example - A free particle on an ellipsoid

A particle moves in R3, with kinetic energy

T = (ẋ2 + ẏ2 + ż2)/2,

and the constraint
K = x2/a+ y2/b+ z2/c = 1.

We form the Lagrangian
L = T − λK.

The equations of motion are then

ẍ = −2λx/a,

ÿ = −2λy/b,

z̈ = −2λz/c.

Using the constraint K = 1 and its first and second time derivatives, we can
calculate λ. We find

xẋ/a+ yẏ/b+ zż/c = 0,

xẍ/a+ yÿ/b+ zz̈/c+ ẋ2/a+ ẏ2/b+ ż2/c = 0,

so that, after a little manipulation,

−2λ(x2/a2 + y2/b2 + z2/c2) + ẋ2/a+ ẏ2/b+ ż2/c = 0.

Hence

ẍ = − ẋ2/a+ ẏ2/b+ ż2/c

x2/a2 + y2/b2 + z2/c2
x/a,

ÿ = − ẋ2/a+ ẏ2/b+ ż2/c

x2/a2 + y2/b2 + z2/c2
y/b,

z̈ = − ẋ2/a+ ẏ2/b+ ż2/c

x2/a2 + y2/b2 + z2/c2
z/c.

It is easier to find the equation of motion using 2 coordinates on the ellipse
and one other which is the constraint K itself. The best choice is the confocal
coordinates; there are three roots of the equation

K(u) = x2/(a− u) + y2/(b− u) + z2/(c− u) = 1

Evidently one of these vanishes on our ellipse. The other two are the coordinates
we need. In fact the equation of motion can be solved in these variables, though
the methods needed go well beyond this course.
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3.5 Conservation laws

We saw early on an example where the Lagrangian of a variational problem
had a symmetry, and this led to a conserved quantity. The Euler-Lagrange
equations, for a Lagrangian with N degrees of freedom, are:

∂

∂qi
L(q, q̇, t)− d

dt

∂

∂q̇i
L(q, q̇, t) = 0, i = 1, . . . , N. (3.10)

We need to consider examples of what we mean by a symmetry. The
simplest example is seen at once if L is independent of one or more of the
coordinates, qi say. Then

d

dt

∂

∂q̇i
L(q, q̇, t) = 0,

so that
∂

∂q̇i
L(q, q̇, t) = constant.

It is convenient to have a name for this quantity, conserved or not; we denote
the derivative ∂

∂q̇i
L by pi. It is called the conjugate momentum to qi.

3.5.1 N particles on the line

Consider a system of N particles moving along a line, interacting by pairwise
potentials Vij(qi − qj). The Lagrangian is then:

L =

N∑
i=1

mi

2
q̇2
i −

N−1∑
i=1

N∑
j=i+1

Vij(qi − qj).

Evidently this is invariant under translations qi → qi + x. If we rewrite qi =
q1 +Qi, for i > 1, then

L =
m1

2
q̇2
1 +

N∑
i=2

mi

2
(q̇1 + Q̇i)

2 −
N−1∑
i=2

N∑
j=i+1

Vij(Qi −Qj)−
N∑
j=2

V1j(−Qj).

Now we can see that in these coordinates L is independent of q1, so that the
momentum conjugate to q1 is conserved

m1q̇1 +

N∑
i=2

mi(q̇1 + Q̇i) = constant.

This is called the total momentum of the system. In the original coordinates,
this is

P =

N∑
i=1

miq̇i.

Here the independence of L from a coordinate was only achieved after a
change of variables. We would like to be able to identify symmetries and calcu-
late the conserved quantities corresponding to them without having to choose
a particular set of coordinates.
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3.5.2 Conservation of energy

We saw in the section on the Brachistochrone problem, and in exercise 1, that
the Euler-Lagrange equation can be integrated once if the lagrangian does not
depend explicitly on the independent variable. We see directly that

d

dt
(

N∑
i=1

q̇i
∂L

∂q̇i
− L) =

(
∂

∂t
+

N∑
i=1

q̇i
∂

∂qi
+

N∑
i=1

q̈i
∂

∂q̇i
)(

N∑
i=1

q̇i
∂L

∂q̇i
− L) =

N∑
i=1

q̈i
∂L

∂q̇i
+

N∑
i=1

q̇i
d

dt

∂L

∂q̇i
− ∂L

∂t
−

N∑
i=1

q̇i
∂L

∂qi
−

N∑
i=1

q̈i
∂L

∂q̇i
=

−∂L
∂t
,

if the Euler-Lagrange equation is satisfied. Thus a symmetry, the time-independence
of L leads to the conservation of the quantity

E(q, q̇) =
N∑
i=1

q̇i
∂L

∂q̇i
− L.

This quantity is known as the energy.
We will see later that the momentum variables pi can be used instead of the

velocities q̇i; the energy written in the new set of variables is then called the
Hamiltonian. This leads to a very elegant re-formulation of the equations of
Lagrangian mechanics.

3.6 Noether’s Theorem

To generalise the above results, we return to the variational problem; we had

S[x] =

∫ t2

t1

L(q, q̇, t)dt. (3.11)

and our variational equation was

d

dε
S[q] =

∫ t2

t1

N∑
i=1

(
∂

∂qi
L(q, q̇, t)ηi +

∂

∂q̇i
L(q, q̇, t)η̇i)dt. (3.12)

Now let us consider a special class of variations, explicitly given as functions of
the coordinates and velocities, η(q, q̇, t), satisfying:

N∑
i=1

∂

∂qi
L(q, q̇, t)ηi +

∂

∂q̇i
L(q, q̇, t)

dηi
dt

=
d

dt
G(q, q̇, t).
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We drop the condition that ηi(t1) = ηi(t2).
Such sets of functions, (η(q, q̇, t), G(q, q̇, t)), will be called symmetries of

the Lagrangian L(q, q̇, t). The idea is that if we replace q→ q + εη, then L is
changed only by an exact t-derivative d

dtG(q, q̇, t).
It is important to realise that any Lagrangian of this form gives an Euler-

Lagrange equation which is identically zero.
Exercise Prove this. Why does the result make sense?
Hence the replacement q→ q + εη, takes solutions of the Euler-Lagrange

equations into nearby solutions of the same equations.
Now let us look at the right-hand side of (??areq). We have, if η is a

symmetry, ∫ t2

t1

N∑
i=1

(
∂

∂qi
L(q, q̇, t)ηi +

∂

∂q̇i
L(q, q̇, t)η̇i)dt = (3.13)

∫ t2

t1

dG

dt
dt = (3.14)

G(q, q̇, t)|t2t1 . (3.15)

On the other hand, if q satisfies the Euler-Lagrange equation, we have∫ t2

t1

N∑
i=1

(
∂

∂qi
L(q, q̇, t)ηi +

∂

∂q̇i
L(q, q̇, t)η̇i)dt = (3.16)

∫ t2

t1

N∑
i=1

ηi(
∂

∂qi
L− d

dt

∂

∂q̇i
L)dt+ (

N∑
i=1

ηi
∂L

∂q̇i
)|t2t1 = (3.17)

(

N∑
i=1

ηi
∂L

∂q̇i
)|t2t1 . (3.18)

Hence, comparing the two expressions, we find that there is a function which is
constant between the times t1 and t2:

(

N∑
i=1

ηi
∂L

∂q̇i
−G)|t2t1 = 0.

Such a function, constant along any path which solves the Euler-Lagrange equa-
tions, is called a constant of motion or integral of motion. This result,
which gives an explicit formula for an integral of motion given a symmetry of
the Lagrangian, is called Noether’s Theorem.

3.6.1 Example - Angular momentum

Consider the Lagrangian for a particle in a central potential,

L =
m

2
(ẋ2 + ẏ2)− V (x2 + y2),

26



with the symmetry

x→ x+ εy

y → y − εx.
This leaves L unchanged to first order in ε. Thus G = 0 here. The Noether
integral corresponding to this symmetry is seen to be

y(mẋ)− x(mẏ) = m(yẋ− xẏ).

This is the angular momentum.

3.6.2 Example - Galilean invariance

Consider the Lagrangian for a pair of particles interacting pairwise:

L = (
m1

2
ẋ2

1 +
m2

2
ẋ2

2)− V (x2 − x1).

This has a symmetry that we may add the same constant to each of the ẋi,
- effectively transforming to a moving frame of reference. In detail we have:

η1 = t

η2 = t

η̇1 = 1

η̇2 = 1,

Hence the derivative along the symmetry of L,

d

dε
L(x + εη) =

2∑
i=1

(
∂L

∂xi
ηi +

∂L

∂ẋi
η̇i) = m1ẋ1 +m2ẋ2 =

d

dt
(m1x1 +m2x2).

Hence G is here given by m1x1 +m2x2, the centre of mass of the system. Thus
the Noether integral here is

K =

2∑
i=1

ηi
∂L

∂ẋi
− (m1x1 +m2x2) =

t(m1ẋ1 +m2ẋ2)− (m1x1 +m2x2).

The fact that this quantity is conserved means that the centre of mass moves
with constant speed, for the total momentum m1ẋ1 +m2ẋ2 is also constant.
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3.6.3 Exercise

A system has Lagrangian

L =
1

2
(ẋ2 − ẏ2)− V (x2 − y2).

Find a symmetry of this Lagrangian, and hence construct the corresponding
Noether integral. Verify directly that this is conserved if x and y satisfy the
Euler-Lagrange equations.

3.7 Homogeneous functions

A function f(x) is called homogeneous if it has a simple scaling property -
specifically, if:

f(tx) = tnf(x), (3.19)

for all t ∈ R, we say that f(x) is homogeneous of degree n. For instance the
usual form of the kinetic energy of a many-particle system

T =

N∑
i=1

mi

2
ẋi

2,

is a homogeneous function of ẋ of degree 2.
Euler established the following theorem on homogeneous functions. If f(x) is

homogeneous of degree n, we may differentiate both sides of (3.19) with respect
to t:

x.∇f(tx) = ntn−1f(x),

so that if we set t = 1, we get:

x.∇f((x) = nf(x). (3.20)

Now this result, though simple, has a lot of applications. For instance, many
Lagrangians in non-relativistic classical mechanics have the form

L = T (q, q̇)− V (q),

and T is homogeneous in the velocities q̇, with degree 2. Now the Energy
integral is given in all cases by:

E =

N∑
i=1

q̇i
∂L

∂q̇i
− L

which by Euler’s theorem is, in these cases:

= 2T − (T − V )

= T + V,

by the homogeneity of T .
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3.7.1 Example - A particle in a magnetic field - 1

The Lagrangian for a particle in a time-independent magnetic field with vector
potential A(x) is given by:

L =
m

2
|ẋ|2 + eA(x).ẋ, (3.21)

so that it is the sum of two homogeneous functions of the ẋ, L2 and L1, say, of
degrees 2 and 1 respectively. The energy is then

E =

3∑
i=1

ẋi
∂L

∂ẋi
− L

which by Euler’s theorem is

= (2L2 + L1)− (L2 + L1)

= L2.

For any time-independent Lagrangian, the energy is constant along the solutions
of the equations of motion, so we find that |ẋ| =constant.

3.7.2 Exercise - A particle in a magnetic field - 2

SKIP - use as coursework Calculate the Euler-Lagrange equations for the
Lagrangian (7.1), and verify directly that |ẋ| =constant. For the more general
Lagrangian

L =
m

2
ẋ2 + eA(x, t).ẋ + eφ(x, t),

find the Euler-Lagrange equations. Denoting B = curlA, and E = gradφ− ∂A
∂t

,

write out the equations of motion. What happens if A = gradψ, and φ = ∂ψ
∂t

?

3.8 The Virial Theorem

Suppose a system has Lagrangian

L =

N∑
i=1

mi

2
|ẋi|2 − V (x1, . . . ,xN), (3.22)

where V is homogeneous of degree d, say. For instance, a system of coupled
harmonic oscillators has d = 2, a system of gravitating particles has d = −1.

We consider the quantity:

I =

N∑
i=1

mi

2
|xi|2.
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and suppose that the motion is bounded, so all the xi and ẋi are bounded
functions of time. In particular I is bounded. We define the time average 〈f〉
of a function f by 〈f〉 = limt→∞ 1

2t

∫ t
−t f(t′)dt′.

Differentiating I twice with respect to time,

d2I

dt2
=

N∑
i=1

mi(xi.ẍi + ẋi.ẋi).

The time average of the right-hand side is zero, or else dI
dt will grow as t→ ±∞.

The second term is twice the kinetic energy T =
∑N
i=1

mi
2 |ẋi|2, the first term is:

N∑
i=1

mi(xi.ẍi =

−
N∑
i=1

xi.
∂V

∂xi
=

−dV,
by Euler’s theorem. Hence

〈2T − dV 〉 = 0.

This result is known as the Virial Theorem.
For instance the time averages of the potential energy V and kinetic energy

T are equal for a system of coupled harmonic oscillators, with d = 2. For a
gravitating system, with d = −1, we find, similarly, 〈2T + V 〉 = 0. This result
gives us a way of estimating the mass of a distant astronomical object, such
as a globular cluster. By measuring the red-shift in the spectrum of a star, we
can find the component of its velocity in the line of sight. We can do this for
different stars in a cluster, so we can estimate the total kinetic energy in the
centre of mass frame, up to a factor of m, the unknown total mass. We can
also estimate the radius R of the object, so the potential energy is something
like Gm2/R. The total mass can thus be estimated in terms of measurable
quantities. Surprisingly these estimates are often significantly higher than the
amount of mass we can observe, for instance by multiplying the number of stars
by their average mass. This is known as the ’missing mass’ problem. The
conjectured solution was that there was a lot of invisible mass in there too,
perhaps black holes, see

http://www.sciencenews.org/20020921/fob3.asp
http://hubblesite.org/newscenter/archive/2002/18/text

for evidence confirming this.

3.9 Integrable systems- Lagrangian description

Suppose a Lagrangian system has D degrees of freedom. Every symmetry it
possesses will correspond to a conserved quantity. We are particularly inter-
ested in the extreme case in which the system has D independent conserved
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quantities, and a symmetry corresponding to each. We will also require that
these symmetries satisfy a compatibility condition; each of the conserved quan-
tities should be unchanged under the action of each of the symmetries. We will
see how to check this when we look at Hamiltonian mechanics. Then a powerful
theorem due to Liouville, and in a more modern version to Arnol’d, states that
the system can be solved by quadratures - evaluating and inverting integrals.
We can see what this implies by looking at a couple of examples.

3.9.1 Example - a pair of harmonic oscillators

We take
L =

m1

2
(ẋ2

1 − ω2
1x

2
1) +

m2

2
(ẋ2

2 − ω2
2x

2
2),

and this has one obvious conserved quantity, the energy:

E =
m1

2
(ẋ2

1 + ω2
1x

2
1) +

m2

2
(ẋ2

2 + ω2
2x

2
2).

However, the Euler-Lagrange equations are:

ẍ1 = −ω2
1x1,

ẍ2 = −ω2
2x2,

so the dynamics of the two particles at x1 and x2 are totally decoupled. Hence
we may write the energy as a sum E = E1 + E2, with

E1 =
m1

2
(ẋ2

1 + ω2
1x

2
1),

E2 =
m2

2
(ẋ2

2 + ω2
2x

2
2),

There is a symmetry corresponding to each of these. The symmetry corre-
sponding to E1 (what is it?) only involves x1, so does not affect E2. We can
read the equations for E1 and E2 as first order ode for x1, x2, so∫ t

ω1dt′ =

∫ x1 dx′√
X2

1 − x2
1

,

∫ t

ω2dt′ =

∫ x2 dx′√
X2

2 − x′2
,

The solution of the two degree of freedom system can be found explicitly by
inverting these integrals:

x1 = a1 cos(ω1t− φ1)

x2 = a2 cos(ω2t− φ2).

Such systems, which possibly after a change of coordinates can be split into
uncoupled systems, are called separable. We will see later that any system of
N linearly coupled harmonic oscillators is in fact a separable system.
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3.9.2 Example - a particle in a central potential

In polar coordinates our Lagrangian is:

L =
m

2
(ṙ2 + r2θ̇2)− V (r).

Since θ is ignorable,

h =
∂L

∂θ̇
= mr2θ̇ = constant.

Because L is independent of t,

E =
m

2
(ṙ2 + r2θ̇2) + V (r) = constant.

We can eliminate θ̇, getting

E =
m

2
ṙ2 +

h2

2mr2
+ V (r) = constant.

Now we can read this as a first order differential equation for r, and we get

mṙ2 = 2E − h2

mr2
− 2V (r),

giving ∫ t

dt′ =

∫ r √
m

2E − h2

mr′2 − 2V (r′)
dr′.

Once r(t) has been found, the equation mr2θ̇ = h can be integrated to find θ(t).
These are both examples of completely integrable systems. Although

most mechanical systems with more than one degree of freedom are not inte-
grable, very (infinitely) many examples of this type are known.

3.9.3 A heavy particle on a surface of revolution

We saw the Lagrangian for this system was:

L =
m

2
(ṙ2 + r2θ̇2 + f ′(r)2ṙ2)−mgf(r).

This yields the EL equations in the usual way:

d

dt
m(1 + f ′(r)2)ṙ = mrθ̇2 −mgf ′(r),

d

dt
mr2θ̇ = 0.

The symmetry – that the system is unchanged under rotations in θ – leads to
the conservation of angular momentum:

mr2θ̇ = h = constant.
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Thus we can use the symmetry to eliminate not one but two variables, both θ,
which is irrelevant to the motion, and θ̇, which is determined once r(t) is found.
We may replace the energy

E =
m

2
(ṙ2 + r2θ̇2 + f ′(r)2ṙ2) +mgf(r),

by the function of r and ṙ, taking the same constant value,

E′ =
m

2
(ṙ2 + f ′(r)2ṙ2) +

h2

2mr2
+mgf(r).

The equations of motion reduce to a single first order equation for r(t),

ṙ2 =
2E′

m
− f ′(r)2ṙ2 − 2gf(r)− h2

m2r2
,

giving ∫ t

t0

dt′ =

∫ r

r0

1√
2E′
m
− f ′(r)2ṙ2 − 2gf(r)− h2

m2r2

dr′.

This gives the solution in terms of (the inverse function of) a definite integral.
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3.10 Problem Sheet 2 - Lagrangian Mechanics

1. Particle in a central potential.

A particle of mass m moves in R3 under a central force

F (r) = −dV

dr
,

in spherical coordinates, so

(x, y, z) = (r cos(φ) sin(θ), r sin(φ) sin(θ), r cos(θ)).

Find the Lagrangian from first principles, in terms of (r, θ, φ) and their
time derivatives.

Hence

(a) show that h, defined by h = mr2φ̇ sin2(θ) is a constant of the motion.

(b) derive the other two equations of motion.

2. The spherical pendulum.

An inextensible string of length l is fixed at one end, and has a bob of mass
m attached at the other. The bob swings freely in R3 under gravity, and
the string remains taut, so the system is a spherical pendulum. Find the
Lagrangian in an appropriate coordinate system, and identify a conserved
quantity. Write down both equations of motion.

3. Horizontal Atwood machine.

An inextensible taut string of length l has a mass m at each end. It
passes through a hole in a smooth horizontal plane, and the lower mass
hangs vertically, while the upper is free to move in the plane. Write down
the Lagrangian, in terms of the two coordinates of the upper particle, and
find the equations of motion. Identify two conserved quantities, and hence
reduce the equations of motion to a single first-order equation.

Alternatively, treat the particles as though they moved independently, but
subject to the constraint that the string is of constant length. Construct
the appropriate Lagrangian, with a Lagrange multiplier λ, multiplying the
length of the string. Calculate this λ, which is the tension in the string.

4. The guitar string.

Suppose a string is tied between two fixed end points x = 0, y = 0 and
x = l, y = 0. Let y(x, t) be the small transverse displacement of the string
from its equilibrium at position x ∈ (0, l) and t > 0. The string has mass
µ per unit length, and constant tension F .

Show that the kinetic and potential energies are given by:

T =
µ

2

∫ l

0

y2
t dx,

V = F

∫ l

0

(
√

1 + y2
x − 1)dx.
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Here subscripts denote partial derivatives. You may neglect the effect of
gravity. If the displacement y is small, so that |yx| << 1, show that the
Lagrangian can be approximated by an expression quadratic in y, and find
the Euler-Lagrange equation for the approximate Lagrangian.

5. The diatomic molecule.

Two atoms of masses m1, m2 move freely in the plane, with the constraint
that the distance between them |x1 − x2| − l = 0, where l is a constant.

(a) Write down the kinetic energy and the constrained Lagrangian in
Cartesian coordinates, and find the the Lagrange multiplier of the
constraint, which is the force in the bond between the two atoms.

(b) Rewrite the Lagrangian in new coordinates (X, r), where X is the
centre of mass, and (x1 − x2) = r.

Identify six symmetries of the system and write down the corresponding
Noether integrals.

• If the particles are subjected to a gravitational potential
∑2
i=1mixi.jg,

where j is the unit vector (0, 1), write down the modified Lagrangian.

• If the particles are subjected instead to a harmonic potential
∑2
i=1miω

2|xi|2,
write down the modified Lagrangian.

• If the particles are no longer subjected to the constraint, but instead
there is a force between them due to a potential V (|x1 − x2|), write
down the Lagrangian.

State which of the symmetries and conservation laws survive in each of
these cases.

M2A2 Problem Sheet 2 - Lagrangian Mechanics

Solutions

1. Particle in a central potential.

A particle of mass m moves in R3 under a central force

F (r) = −dV

dr
,

in spherical coordinates, so

(x, y, z) = (r cos(φ) sin(θ), r sin(φ) sin(θ), r cos(θ)).

Find the Lagrangian from first principles, in terms of (r, θ, φ) and their
time derivatives.

Hence
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(a) show that h, defined by h = mr2φ̇ sin2(θ) is a constant of the motion.

(b) derive the other two equations of motion.

Solution:The kinetic energy is T = m
2 (ẋ2 + ẏ2 + ż2). We substitute

x = r sin(θ) cos(φ),

y = r sin(θ) sin(φ),

z = r cos(θ).

Differentiating these, substituting into T , and simplifying, we find

T =
m

2
(ṙ2 + r2θ̇2 + r2 sin2(θ)φ̇2).

The potential energy is V (r), so our Lagrangian is:

L = T − V =
m

2
(ṙ2 + r2θ̇2 + r2 sin2(θ)φ̇2)− V (r).

This Lagrangian is independent of φ; so the corresponding EL equation is

d

dt

∂L

∂φ̇
=
∂L

∂φ
= 0.

Hence h = ∂L

∂φ̇
= mr2φ̇ sin2(θ) is a constant of motion. The radial equation

is:
d

dt
(mṙ) = mr(θ̇2 + sin2(θ)φ̇2)− V ′(r),

and the θ equation is:

d

dt
(mr2θ̇) = mr2 sin(θ) cos(θ)φ̇2.

2. The spherical pendulum.

An inextensible string of length l is fixed at one end, and has a bob of mass
m attached at the other. The bob swings freely in R3 under gravity, and
the string remains taut, so the system is a spherical pendulum. Find the
Lagrangian in an appropriate coordinate system, and identify a conserved
quantity. Write down both equations of motion.

Solution:The unconstrained Lagrangian, as in question 1, is

Lunconstrained = T − V =
m

2
(ṙ2 + r2θ̇2 + r2 sin2(θ)φ̇2) +mgr cos(θ).
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Here we have taken the lowest point of the sphere as the origin of θ. Now
the constraint is r − l = 0. Hence the extended Lagrangian is

Lext =
m

2
(ṙ2 + r2θ̇2 + r2 sin2(θ)φ̇2) +mgr cos(θ)− λ(r − l).

The r equation determines λ; the other equations are the same as we would
find from the simpler Lagrangian:

L =
ml2

2
(θ̇2 + sin2(θ)φ̇2) +mgl cos(θ).

As before, φ is ignorable, so

h =
∂L

∂φ̇
= ml2φ̇ sin2(θ)

is a constant of the motion:

d

dt
(ml2φ̇ sin2(θ)) = 0.

The θ equation is:

d

dt
(ml2θ̇) = ml2 sin(θ) cos(θ)φ̇2 −mgl sin(θ).
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3. Horizontal Atwood machine.

An inextensible taut string of length l has a mass m at each end. It
passes through a hole in a smooth horizontal plane, and the lower mass
hangs vertically, while the upper is free to move in the plane. Write down
the Lagrangian, in terms of the two coordinates of the upper particle, and
find the equations of motion. Identify two conserved quantities, and hence
reduce the equations of motion to a single first-order equation.

Alternatively, treat the particles as though they moved independently, but
subject to the constraint that the string is of constant length. Construct
the appropriate Lagrangian, with a Lagrange multiplier λ, multiplying the
length of the string. Calculate this λ, which is the tension in the string.

Solution:We use polar coordinates (r, θ) for the particle in the horizontal
plane, and measure the vertical coordinate z of the other particle down-
wards. Then the extended constrained Lagrangian is:

L =
m

2
(ṙ2 + r2θ̇2 + ż2) +mgz − λ(r + z − l).

Here the r and z equations both involve λ linearly - eliminating z with the
constraint r + z − l = 0, the Lagrangian simplifies to:

L =
m

2
(2ṙ2 + r2θ̇2) +mg(l − r).

We see

h =
∂L

∂θ̇
= mr2θ̇

is a conserved quantity, as L does not depend explicitly on θ. Since L is
also independent of t, the energy is constant:

E =
m

2
(2ṙ2 + r2θ̇2) +mg(r − l).

Returning to the extended Lagrangian, the z equation is: mz̈ = mg − λ,
so substituting the constraint we find:

λ = mg +mr̈.
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4. The guitar string.

Suppose a string is tied between two fixed end points x = 0, y = 0 and
x = l, y = 0. Let y(x, t) be the small transverse displacement of the string
from its equilibrium at position x ∈ (0, l) and t > 0. The string has mass
µ per unit length, and constant tension F .

Show that the kinetic and potential energies are given by:

T =
µ

2

∫ l

0

y2
t dx,

V = F

∫ l

0

(
√

1 + y2
x − 1)dx.

Here subscripts denote partial derivatives. You may neglect the effect of
gravity. If the displacement y is small, so that |yx| << 1, show that the
Lagrangian can be approximated by an expression quadratic in y, and find
the Euler-Lagrange equation for the approximate Lagrangian.

Solution:The change in length of the displaced string is:

∆l =

∫ l

0

(
√

1 + y2
x − 1)dx,

so the potential energy (the work done in displacing the string) is F∆l+
times this:

V = F

∫ l

0

(
√

1 + y2
x − 1)dx,

as required. The string is supposed to move only in the y-direction, so its
kinetic energy is, as usual, the integral of the mass density times half the
square of the speed:

T =
µ

2

∫ l

0

y2
t dx.

Hence

L =

∫ l

0

µ

2
y2
t − F (

√
1 + y2

x − 1)dx.

Now let yx be small; the leading approximation to L is then:

L(2) =

∫ l

0

µ

2
y2
t −

F

2
y2
xdx,

where terms quartic in yx have been neglected. The EL equation for this
appproximate Lagrangian is:

µytt = Fyxx,

which is the familiar wave equation; the speed c of these waves is given by
c2 = F/µ.
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5. The diatomic molecule.

Two atoms of masses m1, m2 move freely in the plane, with the constraint
that the distance between them |x1 − x2| − l = 0, where l is a constant.

(a) Write down the kinetic energy and the constrained Lagrangian in
Cartesian coordinates, and find the the Lagrange multiplier of the
constraint, which is the force in the bond between the two atoms.

(b) Rewrite the Lagrangian in new coordinates (X, r), where X is the
centre of mass, and (x1 − x2) = r.

Identify six symmetries of the system and write down the corresponding
Noether integrals.

• If the particles are subjected to a gravitational potential
∑2
i=1mixi.jg,

where j is the unit vector (0, 1), write down the modified Lagrangian.

• If the particles are subjected instead to a harmonic potential
∑2
i=1miω

2|xi|2,
write down the modified Lagrangian.

• If the particles are no longer subjected to the constraint, but instead
there is a force between them due to a potential V (|x1 − x2|), write
down the Lagrangian.

State which of the symmetries and conservation laws survive in each of
these cases.

Solution:

(a) Let the particles have Cartesian coordinates (x1, y1), (x2, y2). The
extended Lagrangian is:

L =
m1

2
(ẋ2

1 + ẏ2
1) +

m2

2
(ẋ2

2 + ẏ2
2)− λ(|x1 − x2| − l).

The EL equations are

m1ẍ1 = λ(x1 − x2)/l,

m2ẍ2 = λ(x2 − x2)/l,

where we have substituted in the constraint. If we dot each equation
with (x1 − x2), divide by the masses, and subtract, we find

(ẍ1 − ẍ2) · (x1 − x2) = λl(1/m1 + 1/m2).

Now the second derivative of the constraint gives:

(ẍ1 − ẍ2) · (x1 − x2) + (ẋ1 − ẋ2) · (ẋ1 − ẋ2) = 0.

Thus
λ = − m1m2

l(m1 +m2)
|ẋ1 − ẋ2|2.
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(b) In the relative coordinates,

X = (m1x1 +m2x2)/(m1 +m2),

r = (x1 − x2),

we get

x1 = X +
m2

m1 +m2
r,

x2 = X− m1

m1 +m2
r.

Substituting these expressions and their derivatives into L we get,
after some cancellation:

L =
m1 +m2

2
Ẋ2 +

m1m2

2(m1 +m2)
ṙ2 − λ(|r| − l).

The centre of mass motion and the relative motion are now decoupled.

The system has several symmetries -

• L is independent of t, so the energy

E =
m1 +m2

2
Ẋ2 +

m1m2

2(m1 +m2)
ṙ2

is conserved.

• L is independent of X, so both components of the total momentum

P =
∂L

∂Ẋ
= (m1 +m2)Ẋ,

are conserved.

• L is unchanged under rotations of the vectors X or of r, separately.
Thus the two quantities:

J = (m1 +m2)X ∧ Ẋ,

and
K =

m1m2

m1 +m2
r ∧ ṙ,

are each conserved.

• The system is invariant under Galilean transformations -

X→ X + εVt,

Ẋ→ Ẋ + εV,

for any constant vector V. L is not unchanged under this transfor-
mation; rather

L→ L+ ε(m1 +m2)Ẋ ·V
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= L+ ε
d

dt
(m1 +m2)X ·V.

Hence the Noether integral is here

I ·V = (m1 +m2)X ·V −P ·Vt,
so the centre of mass moves at constant speed.

Note that the unconstrained system has 4 degrees of freedom, so it consists
of 4 second order equations. With these 7 conserved quantities, the motion
is reduced to a single first order system. In fact, including the constraint
means the equation for the time dependence of |r| is trivial - the motion
is determined completely.

• If the particles are subjected to a gravitational potential
∑2
i=1mixi.jg,

where j is the unit vector (0, 1), the modified Lagrangian is:

L =
m1

2
(ẋ2

1 + ẏ2
1) +

m2

2
(ẋ2

2 + ẏ2
2)− λ(|x1 − x2| − l)−

2∑
i=1

mixi.jg.

The new potential term is not invariant under translations in the j
direction, or under rotations. The other symmetries survive.

• If the particles are subjected instead to a harmonic potential
∑2
i=1miω

2|xi|2,
the modified Lagrangian is:

L =
m1

2
(ẋ2

1 + ẏ2
1) +

m2

2
(ẋ2

2 + ẏ2
2)− λ(|x1 − x2| − l)−

2∑
i=1

miω
2|xi|2.

Both rotational symmetries still survive under this perturbation, so J
and K, defined as before, are still conserved separately. The system
is no longer Galilean invariant, so I is not conserved for this system.

• If the particles are no longer subjected to the constraint, but instead
there is a force between them due to a potential V (|x1 − x2|), the
Lagrangian is:

L =
m1

2
(ẋ2

1 + ẏ2
1) +

m2

2
(ẋ2

2 + ẏ2
2)− V (|x1 − x2|).

All 7 symmetries survive in this model.
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Chapter 4

Hamiltonian mechanics

We have seen that the energy

E =

D∑
i=1

q̇i
∂L

∂q̇i
− L,

and the conjugate momenta

pi =
∂L

∂q̇i
,

are important quantities, being conserved if L has the corresponding symmetry.
We can use these variables to rewrite Lagrange’s equations in a more symmet-
rical form. We need to define this type of transformation more generally first.

4.1 The Legendre Transformation

Suppose we have a real function f of a vector variable, x in a vector space X,
and suppose it is convex. That is we require the ’Hessian’ matrix:

∂2f

∂xi∂xj

to be positive definite. This implies a weaker property:

λf(x1) + (1− λ)f(x2) < f(λx1 + (1− λ)x2),

for all x1, x2, and 0 < λ < 1. The ’chord’ from x1 to x2 lies above the arc
between the same two points. We can see that the function f1(x) = x2 is convex.
However the function f2(x) = x4 although it satisfies the second property, is
not convex at x = 0, since f ′′2 (0) = 0; it is ’too flat’.

PICTURE
We can transform this function f(x) into into another convex function of a

new vector variable g(y) in X∗, the dual vector space of X, by taking:

g(y) = maxx(y · x− f(x)).
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This maximum will exist and will be unique, and if f is smooth, the map between
x and y will be smooth and invertible. This transformation is known as the
Legendre transformation, and g(y) is called the Legendre dual of f(x).
What is the Legendre dual of g(y)? Legendre duals are important in other
fields - thermodynamics, economics, geometrical optics etc., wherever we need
to maximise a function of many variables (entropy, profit, or whatever).

4.2 Hamilton’s equations

We can use the Legendre transformation to rewrite Lagrange’s equations in a
more symmetrical form. Consider a function of 3D variables, all treated as
independent:

Ẽ((pi, qi, q̇i)|Di=1) =

D∑
i=1

q̇ipi − L((qi, q̇i)|Di=1),

and we consider how it varies as all these variables change slightly:

Ẽ((pi + δpi, qi + δqi, q̇i + δq̇i)|Di=1)− Ẽ((pi, qi, q̇i)|Di=1)

=

D∑
i=1

∂Ẽ

∂pi
δpi +

∂Ẽ

∂qi
δqi +

∂Ẽ

∂q̇i
δq̇i,

to first order. Now
∂Ẽ

∂pi
= q̇i,

∂Ẽ

∂q̇i,
= pi − ∂L

∂q̇i
,

and
∂Ẽ

∂qi,
= − ∂L

∂qi
.

We need to consider L which are convex functions of the velocities q̇i. We then
evaluate Ẽ at its unique extremum (a maximum), with respect to all the q̇i, so
we get

pi − ∂L

∂q̇i
= 0.

These equations should be solved for the q̇i in terms of the pi and qi.
This maximum, H = maxq̇ E(p,q, q̇), is equal to the energy; it should be

considered as a function only of the 2D variables (p,q). It will also be a convex
function, but of the new variables p.

Denote
H(pi, qi)|Di=1 = Ẽ((pi, qi, q̇i)|Di=1)|pi= ∂L

∂q̇i

.

This function H(pi, qi)|Di=1) is called the Hamiltonian. We have

∂H

∂pi
= q̇i,
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and
∂H

∂qi
= − ∂L

∂qi
=

d

dt

∂L

∂q̇i
= −ṗi.

Hence the equations of motion are rewritten as a set of 2D first order equations,

ṗi = −∂H
∂qi

,

q̇i =
∂H

∂pi
.

This system is known as Hamilton’s equations.

4.2.1 Example - A particle in a central potential.

A point mass m moves in a central potential V (r) in R3. In spherical polars,
its Lagrangian is

L =
m

2
(ṙ2 + r2(φ̇2 sin2(θ) + θ̇2)− V (r).

The conjugate momenta are:

pr =
∂L

∂ṙ
= mṙ,

pθ =
∂L

∂θ̇
= mr2θ̇,

pφ =
∂L

∂φ̇
= mr2 sin2(θ)φ̇.

Now because L is quadratic in the velocity components, we know that E is the
sum of the kinetic and potential terms;

E =
m

2
(ṙ2 + r2(φ̇2 sin2(θ) + θ̇2) + V (r).

Rewriting this in terms of the momenta, we get:

H =
1

2m
(p2
r +

1

r2 sin2(θ)
p2
φ +

1

r2
p2
θ) + V (r).

Hence Hamilton’s equations are:

dr

dt
= ∂H

∂pr
=

pr

m
,

dpr
dt

= −∂H
∂r

=
1

mr3 sin2(θ)
p2
φ +

1

mr3
p2
θ −

∂V

∂r
,

dθ

dt
= ∂H

∂pθ
=

pθ

mr2
,
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dpθ
dt

= −∂H
∂θ

= − cos(θ)

mr2 sin3(θ)
p2
φ,

dφ

dt
= ∂H

∂pφ
=

pφ

mr2 sin2(θ)
,

dpφ
dt

= ∂H
∂φ

= 0.

Note that φ is an ignorable coordinate, and pφ is conserved.

4.2.2 Example - A particle moving freely on a surface.

A particle of mass m moves on a surface S, given parametrically by

xi = xi(q1, q2).

Thus the coordinates xi in R3 vary according to:

ẋi = Miαq̇α,

where the 2× 3 matrix Miα is given by:

Miα =
∂xi

∂qα
.

We suppose this matrix has rank 2. The kinetic energy T is thus

m

2

3∑
i=1

ẋ2
i

=
m

2

2∑
α=1

3∑
j=1

2∑
β=1

q̇α(MT )αjMjβ q̇β

=
m

2

2∑
α=1

2∑
β=1

q̇αgαβ q̇β .

The 2× 2 matrix gαβ , called the metric tensor in the surface, is symmetric and
invertible. Why?.

Then the momentum conjugate to qα is

pα =
∂L

∂q̇α
= m

2∑
β=1

gαβ q̇β ,

and inverting this, we have

q̇β =
1

m

2∑
α=1

(g−1)βαpα.
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Thus our Hamiltonian is

H =
1

2m

2∑
α=1

2∑
β=1

pβ(g−1)βαpα.

Hamilton’s equations follow in the usual way; we get

q̇β = ∂H
∂pβ

=
1

m

2∑
α=1

(g−1)βαpα,

ṗβ = − ∂H
∂qβ

=
1

2m

2∑
γ=1

2∑
δ=1

pγ
∂

∂qβ
(g−1)γδ pδ.

These are the equivalent, up to reparametrisation in time, as the equations of a
geodesic on the surface S.

4.2.3 Exercise

What is the Euler Lagrange equation corresponding to the path length on a
surface S, giving

L =

√√√√ 2∑
α=1

2∑
β=1

dqα
ds

gαβ
dqβ
ds

where s is any parameter on the curve? What is the Hamiltonian corresponding
to this Lagrangian L? Why is the result strange?

4.3 The Poisson Bracket

Suppose we have a Hamiltonian system with Hamiltonian H(p,q, t). Then the
equations of motion are

q̇ =
∂H

∂p
,

ṗ = −∂H
∂q

.

If we have a function K(p,q, t), its time evolution is given by

dK

dt
=
∂K

∂q
.q̇ +

∂K

∂p
.ṗ +

∂K

∂t
=

∂K

∂q
.
∂H

∂p
− ∂K

∂p
.
∂H

∂q
+
∂K

∂t
=

{K,H}+
∂K

∂t
.

The expression

{K,H} =
∂K

∂q
.
∂H

∂p
− ∂K

∂p
.
∂H

∂q
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is called the Poisson bracket of H with K. Hence, if we have a time-
independent function K(p,q), its Poisson bracket with H(p,q, t) vanishes if
and only if K is constant on solutions of Hamilton’s equations with Hamilto-
nian H.

The Poisson bracket operation has the following fundamental properies:

{H,K} = −{K,H}, (antisymmetry),

{H,JK} = J{H,K}+ {H,J}K, (derivation property),

{H,αJ + βK} = α{H,J}+ β{H,K}, (linearity),

{{H,J},K}+ {{J,K},H}+ {{K,H}, J} = 0, (Jacobi identity).

The first three of these are elementary, but the fourth is deeper. If the left hand
side is expanded in full, every term will contain one of the second derivatives of
H, J , and K. Also every term, for instance

∂2H

∂pi∂pj

∂J

∂qi

∂K

∂qj
,

will appear once with a plus sign and once with a minus sign, but with the indices
i and j exchanged. Since the matrix of second derivatives of any continuously
differentiable function is symmetric, all the terms cancel in pairs.

We can now construct a converse of Noether’s theorem - we recall that gave
an explicit construction of an integral of motion for a Lagrangian system, given
a symmetry of the Lagrangian - here we construct a symmetry of a Hamiltonian
system, given an integral of motion.

If J(p,q) is an integral of motion for the Hamiltonian H(p,q), that is
{J(p,q),H(p,q)} = 0, then, by antisymmetry H(p,q) Poisson commutes with
J(p,q), so H(p,q) is an integral of motion for the Hamiltonian J(p,q). Thus
Hamilton’s equations with Hamiltonian J are a symmetry of the Hamiltonian
H, as required.

We can use Jacobi’s identity to prove:
Poisson’s theorem If J(p,q) and K(p,q) are both constants of the motion
for Hamilton’s equations with Hamiltonian H(p,q, t), then their Poisson bracket
{J,K} is another constant of the motion for H.

Proof: Jacobi’s identity can be rewritten:

{{J,K},H} = {{J,H},K} − {J, {K,H}}.
Both terms on the right hand side vanish if J and K are both constants of the
motion, so {J,K} is another constant of the motion for H.

We note that this does not always generate new constants of motion; some-
times two such functions satisfy {J,K} = 0. In this case we say that J and K
are in involution, or that they Poisson commute.
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4.3.1 Angular momentum - worked exercise.

1. Consider the two functions L1, L2 for a system with three degrees of
freedom:

L1 = p2q3 − p3q2,

L2 = p3q1 − p1q3.

2. Show directly that they both Poisson commute with the Hamiltonian for
a particle in a central potential:

H =
|p|2
2m

+ V (|q|).

3. Show that L3 defined by L3 = −{L1, L2} is not identically zero and verify
directly that {L3,H} = 0. Verify directly that L1, L2 and L3 satisfy the
Jacobi identity.

4. Show that L3 and K = L2
1 + L2

2 + L2
3 do Poisson commute.

5. Find Hamilton’s equations, when the Hamiltonian is ω1L1 + ω2 + ω3L3,
and you may assume ω is a unit vector. What is the geometrical meaning
of these equations? That is, what is the corresponding symmetry of H?

4.3.2 Solution

1. Direct calculation:

{L1,H} =
∂L1

∂q
.
∂H

∂p
− ∂L1

∂p
.
∂H

∂q
=

p2
∂H

∂p3
− p3

∂H

∂p2
+ q2

∂H

∂q3
− q3

∂H

∂q2
=

p2
p3

m
− p3

p2

m
+ (q2

q3

|q| − q3
q2

|q| )V
′(|q|)
= 0.

Also {L2,H} = 0, similarly.

2. Direct calculation:

{L1, L2} =
∂L1

∂q
.
∂L2

∂p
− ∂L1

∂p
.
∂L2

∂q
=

p2
∂L2

∂p3
− p3

∂L2

∂p2
+ q2

∂L2

∂q3
− q3

∂L2

∂q2
=

p2q1 − p3.0 + q2(−p1)− q3.0 =

−(p1q2 − p2q3),

so that
L3 = p1q2 − p2q1.
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Similarly to {L2,H} = 0, we get {L3,H} = 0. By cyclic permutation of
indices, we get all the Poisson brackets:

{L1, L2} = −L3

{L2, L3} = −L1

{L3, L1} = −L2

Then, for instance,

{{L1, L2}, L1} = −{L3, L1} = L2,

{{L1, L1}, L2} = −{0, L2} = 0,

{{L2, L1}, L1} = {L3, L1} = −L2,

which add to zero as required. Other cases are similar or easier.

3. We see, by the chain rule,

{L3,K} = 2L1{L3, L1}+ 2L2{L3, L2} = −2L1L2 + 2L2L1 = 0.

4. The Hamiltonian is ω.(p ∧ q).

Thus Hamilton’s equations, with parameter θ are

d

dθ
q = q ∧ ω,

d

dθ
p = p ∧ ω,

which describe rigid rotation about the axis ω, by an angle θ, if |ω| = 1.

4.3.3 Integrable systems- Hamiltonian description

If a Hamiltonian system with N degrees of freedom has N integrals of motion
Ii, i = 1, . . . , N , which are all in involution, {Ii, Ij} = 0, then it can be solved
by quadratures; the condition that all the Ii are in involution is the concise
statement, in terms of Poisson brackets, of the compatibility condition men-
tioned before. This result was proved by Liouville, while Arnol’d strengthened
the result - if the motion of such an integrable system is bounded, then the
N -dimensional level set Ii = ci is an N -torus, the product of N circles.

In the last example, the motion of a particle in a central potential is seen
to be integrable; a set of three Poisson commuting integrals is: I1 = H,I2 = L3

and I3 = K.
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Chapter 5

Small oscillations and
normal modes

This section is concerned with equilibria and their stability properties. We need
to understand:

• What do we mean by an equilibrium for a Lagrangian system?

• What do we mean by stability?

• We would like to classify equilibria by their stability properties.

• We want to find approximate equations of motion valid near an equilib-
rium.

• We would like to solve these approximate equations.

We start with a natural definition:
An equilibrium of a time-independent Lagrangian system is a configuration

which is independent of time.
Now the Euler-Lagrange equations read

d

dt
(
∂L̃

∂q̇j
) =

∂L̃

∂qj
, (5.1)

so that equilibrium configurations satisfy

∂L̃

∂qj
= 0, (5.2)

as well as
q̇j = 0. (5.3)

We wish to Taylor expand the Lagrangian about some equilibrium configuration
q0, so we put q = q(0) + εq(1), and q̇ = εq̇(1),where we suppose 0 < ε� 1.
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We get
L = L(0) + εL(1) + ε2L(2) + O(ε3),

where

L(0) = L(q(0),0), (5.4)

L(1) =
D∑
i=1

∂L

∂q̇i
(q(0),0)q̇

(1)
i , (5.5)

L(2) =

D∑
i=1

D∑
j=1

1

2

∂2L

∂q̇i∂q̇j
(q(0),0)q̇

(1)
i q̇

(1)
j + (5.6)

∂2L

∂q̇i∂qj
(q(0),0)q̇

(1)
i q

(1)
j +

1

2

∂2L

∂qi∂qj
(q(0),0)q

(1)
i q

(1)
j . (5.7)

Here we note that the equilibrium position q(0) is a constant, so our coordinates
are the displacements q(1). The Euler-Lagrange equation is linear in L, so it
is the sum of the Euler-Lagrange equations due to the separate terms εnL(n).
Now L(0) is a constant, and gives no contribution. Further εL(1) is clearly a

time derivative - the coefficient of q̇
(1)
i is a constant - and we can verify that the

Euler-Lagrange equation generated by any exact time derivative is zero. Why
is this? The leading term in the equation of motion is thus the Euler-Lagrange
equation for ε2L(2), and any corrections will be of order O(ε3). We may ignore
these correction terms so long as ε can be treated as small, that is, that the
system is near the equilibrium.

We rewrite L(2) as

L(2) =
1

2
(q̇(1))TAq̇(1) + (q̇(1))TBq(1) − 1

2
(q(1))TCq(1).

Here A, B and C are the matrices of the second derivatives of L at the equilib-
rium configuration:

Aij =
∂2L

∂q̇i∂q̇j
(q(0),0), (5.8)

Bij =
∂2L

∂q̇i∂qj
(q(0),0), (5.9)

Cij = − ∂2L

∂qi∂qj
(q(0),0). (5.10)

The minus sign in our definition of C is for convenience later on. We see, by
the usual symmetry of the second derivatives, that A and C are symmetric
matrices. Further we know that in most ‘physical’ Lagrangians, A corresponds
to the kinetic energy, a sum of squares. Hence A must be a positive definite
matrix in such cases.

The Euler-Lagrange equation for L(2) is:

Aq̈(1) = (BT −B)q̇(1) − Cq(1).
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We note that this is a constant coefficient linear system of ordinary differential
equations, which we will solve in the usual way below. Note also that if B is
symmetric, then it does not contribute to the equation of motion at all - in this
case the term

(q(1))TBq̇(1) =
1

2

d

dt
(q(1))TBq(1),

is an exact time derivative. We have seen that exact time derivatives in the
Lagrangian do not contribute to the Euler-Lagrange equation.

5.0.4 Example

A particle moves in one dimension with Lagrangian

L =
1

2
mẋ2 − V (x),

and we are interested in motion near an equilibrium point, where V ′(0) = 0.
We can always choose our origin to be the equilibrium point. Write x = εx(1),
with 0 < ε� 1, so

L =
ε2

2
m ˙x(1)

2 − V (0)− εV ′(0)x1 − ε2

2
V ′′(0)(x(1))2 + O(ε3).

Here the constant term V (0) is irrelevant to the motion, and the O(ε) term
vanishes, so that the leading term is:

L2 =
1

2
mẋ1

2 − 1

2
V ′′(x0)(x1)2.

Thus the (1× 1 !) matrices A, B and C are here

A = m (5.11)

B = 0 (5.12)

C = V ′′(0) (5.13)

and the linearised equation of motion about the equilibrium point is

mẍ1 = −V ′′(x0)x1.

We see that the solutions x1(t) of this are all bounded if V ′′(x0) > 0, and that
there are unbounded solutions if V ′′(x0) ≤ 0.

Specifically, the solution of the linearised Euler-Lagrange equation is:

x1 = X(1) cos(ωt) +
Ẋ(1)

ω
sin(ωt),

with the arbitrary constants depending on the initial conditions:

X(1) = x(1)(0),
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Ẋ(1) = ẋ(1)(0),

and where the frequency is given by

ω2 = C/A.

If C < 0, the solution is written instead in terms of exponentials or hyperbolic
functions, all of which grow as t → ±∞. In the marginal case C = 0, the
solution is linear in time, so any non-stationary solution is unbounded.

We will be able to generalise this result to systems with many degrees of
freedom.

54



5.0.5 Example - the compound pendulum

Recall we had found the Lagrangian of this system to be:

L =
m1

2
l21θ̇1

2
+
m2

2
(l21θ̇1

2
+2l1l2 cos(θ1−θ2)θ̇1θ̇2+l22θ̇2

2
)+m1gl1 cos(θ1)+m2g(l1 cos(θ1)+l2 cos(θ2)).

Let us set l1 = l2 = l, m1 = m2 = m, for simplicity.

L =
m

2
l2θ̇1

2
+
m

2
(l2θ̇1

2
+2l2 cos(θ1−θ2)θ̇1θ̇2+l2θ̇2

2
)+2mgl cos(θ1)+mgl cos(θ2).

An equilibrium position is found where θ1 = θ2 = 0. There are others - what
are they?

Now we put θ1 = εq1, θ2 = ε(q2 − q1) again with 0 < ε� 1, and we find

L(2) =
m

2
l2q̇1

2 +
ml2

2
q̇2
2 −

mgl

2
q2
1 −

mgl

2
(q2

1 + (q2 − q1)2).

This choice of coordinates q1, q2 has the effect of making A diagonal. We will
see a general way of doing this below. Reading off the coefficients we find the
(2× 2) matrices A, B and C to be:

A = ml2
(

2 0
0 1

)
, (5.14)

B =

(
0 0
0 0

)
, (5.15)

C = mgl

(
3 −1
−1 1

)
. (5.16)

We can see that in general, as in these two cases, wherever L is an even function
of the velocity components, the matrix B must always vanish, since q̇TBq is an
odd function of the velocity vector.
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This term may well be non-zero, though, where L contains terms linear in
the velocity components. The most important such cases giving non-zero B are
where there is a magnetic term ẋ ·A in the Lagrangian, or where we consider
motion in a rotating frame, giving Coriolis terms.

5.0.6 Example - a spherical pendulum in a rotating frame

A spherical pendulum with mass m, and length l is viewed in axes rotating
about a vertical axis through the point of support, with angular velocity ω.

The kinetic energy is

T =
m

2
((ẋ+ ωy)2 + (ẏ − ωx)2 + ż2) (5.17)

=
m

2
((ẋ2 + ẏ2 + ż2) + 2ω(ẋy − ẏx) + ω2(x2 + y2)), (5.18)

in spherical polars, where the azimuthal angle φ is measured from an axis ro-
tating with angular velocity ω. The potential energy is

V = mgz.

Hence the Lagrangian is:

L =
m

2
((ẋ2 + ẏ2 + ż2) + 2ω(ẋy − ẏx) + ω2(x2 + y2))−mgz.

Now the constraint is solved to give:

z = −
√
l2 − x2 − y2,

and

ż =
xẋ+ yẏ√
l2 − x2 − y2

.

Expanding about the equilibrium (x, y, z) = (0, 0,−l) + ε(x(1), y(1), 0) + O(ε2)
we get

L(2) =
m

2
(( ˙x(1)

2
+ ˙y(1)

2
)+2ω( ˙x(1)y(1)− ˙y(1)x(1))+ω2((x(1))2+(y(1))2))−mg

2l
(x(1))2 + (y(1))2.

We can now read off A, B and C:

A =

(
m 0
0 m

)
, (5.19)

B =

(
0 mω
−mω 0

)
, (5.20)

C =

(
mgl 0

0 mgl

)
. (5.21)

Exercise Repeat this calculation for the other equilibrium (x, y, z) = (0, 0,−l).
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5.1 The linearised Euler-Lagrange equation

In all these cases, the Euler-Lagrange equation is linear, with constant coeffi-
cients, of the form:

Aẍ(1) = (BT −B)ẋ(1) − Cx(1).

It is possible to solve this in the usual way substituting

x = x0 exp(iΩt),

where we make no particular assumptions about the possibly complex numbers
Ω. We thus get a kind of quadratic eigenvalue problem:

(AΩ2 + i(BT −B)Ω− C)x0 = 0,

so that Ω must solve the characteristic equation:

∆(Ω) = det(AΩ2 + i(BT −B)Ω− C) = 0.

The motion will only be bounded for all t if all the 2N roots of this equation
Ωi are real. Now it is straightforward to see that this polynomial ∆(Ω) has
real coefficients if A, B and C are real, (compare the transposed and complex
conjugate problems, noting that A and B are symmetric, and BT − B is anti-
symmetric) so all the roots Ω must either be real, or else must come in complex
conjugate pairs.

For the cases where B vanishes, this question is much easier to treat. We
will only consider this time-reversible case below. This clearly includes all La-
grangians of the form L = T − V , with T being a positive definite quadratic
form in the velocities, and V being independent of them. Such a Lagrangian is
known sometimes as a ‘natural mechanical system’.

In the case B = 0, the above characteristic equation reduces to:

det(AΩ2 − C) = 0.

Now we know that both A and C are symmetric, and that the kinetic energy
matrix A is positive definite.

The problem would be easy if both A and C were diagonal - then the pos-
sible roots Ω2

i are just given by the ratios of the diagonal terms Ω2
i = Cii/Aii.

We will construct a transformation which diagonalises A, then C, and which
hence reduces the general case to this simpler one. We will see that the eigen-
values Ω2

i are all real, and hence that the eigenfrequencies Ωi are either real or
imaginary. We start with the Lagrangian of the linearised equation, dropping
the superscripts (1) and (2) on the coordinates and Lagrangian:

L =
1

2
(q̇)TAq̇− 1

2
(q)TCq.

We are free to transform q by any constant linear invertible matrix U , say:

q = U q̃,
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without changing the form of L, which becomes:

L̃ =
1

2
( ˙̃q)TUTAU ˙̃q− 1

2
(q̃)TUTCU q̃.

Then A is replaced by Ã = UTAU , C by C̃ = UTCU , which are still both
symmetric, and the Lagrangian has the same form as before:

L̃ =
1

2
( ˙̃q)T Ã ˙̃q− 1

2
(q̃)T C̃q̃.

It is simplest to break up the transformation we need into three separate steps,
first simplifying A and then C:

1. We know A is a symmetic, positive definite matrix, so all its eigenvectors
can all be chosen to be orthogonal, and we can choose them to have unit
modulus. Then the matrix U1 whose columns are these eigenvectors is
orthogonal, and Ã = UT1 AU1 is a diagonal matrix, whose diagonal terms
are the eigenvalues of A. All these terms are positive, for A is positive
definite. We can thus write Ã = D̃2. D is a real diagonal nonsingular
matrix. Thus our Lagrangian is now:

L̃ =
1

2
˙̃q
T
D̃2 ˙̃q− 1

2
q̃T C̃q̃.

It is sometimes easier to use a non-orthogonal U1 for this stage; provided
the transformed Ã = UT1 AU1 is a diagonal matrix, it does not matter.
The choice of an orthogonal U1 is just for convenience, to prove A can be
diagonalised.

2. Now let us transform coordinates again:

q̂ = Dq̃

Then the Lagrangian becomes:

L̂ =
1

2
˙̂q
T ˙̂q− 1

2
q̂TD−1C̃D−1q̂.

Let us write Ĉ = D−1C̃D−1, so the Lagrangian is

L̂ =
1

2
˙̂q
T ˙̂q− 1

2
q̂T Ĉq̂.

Hence the matrix A has been eliminated, and the matrix C has been
replaced by the new symmetric matrix Ĉ.

3. Now we may perform another orthogonal transformation:

q̂ = U2q̄,
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The Lagrangian is now

L̄ =
1

2
˙̄q
T
UT2 U2 ˙̄q− 1

2
q̄TUT2 ĈU2q̄.

if U2 is orthogonal, then UT2 U2 = I, the identity; hence the kinetic energy
term is unchanged in form, being just a sum of squares of the ˙̄qi. Note
that U2 must be orthogonal if the simplified form of the kinetic term is to
be preserved. The potential energy is also identical in form, except that
Ĉ has been replaced by C̄ = UT2 ĈU2, giving

L̄ =
1

2
˙̄q
T ˙̄q− 1

2
q̄T C̄q̄.

Since Ĉ is symmetric, we may choose U2 to be the matrix whose columns
are its orthonormal eigenvectors. Then C̄ is the diagonal matrix of the
eigenvalues of Ĉ, and we know that these are all real, for real symmetric
Ĉ. The Lagrangian has been reduced to:

L̄ =

N∑
i=1

(
1

2
˙̄qi

2 − 1

2
C̄iiq̄i

2).

This is the Lagrangian forN uncoupled harmonic oscillators; the Euler-Lagrange
equations separate to:

¨̄qi = −C̄iiq̄i.
The eigenfrequencies are ωi =

√
C̄ii. We see that they are real if the eigenvalues

C̄ii of C are positive; that is, if C is a positive definite matrix. This corresponds
to the equilibrium point being a local maximum of L, (minimum of V ) with
respect to the qi. Note that negative eigenvalues corrispond to imaginary eigen-
frequencies - that is to growing or decaying real exponentials. In this case the
equilibrium is unstable.

Now the eigenvectors x̂i of Ĉ with eigenvalue ω2
i are mutually orthogonal,

so long as ω2
i 6= ω2

j ; and if the latter condition does not hold, we can choose the
eigenvectors to be orthogonal in any case. We can also normalise the eigenvec-
tors:

x̂Ti x̂j = δij .

In the original coordinates, xi = U1D
−1x̂i, this result reads:

xTi Axj = δij .

Further, the result
x̂Ti Ĉx̂j = ω2

i δij

translates back to give:
xTi Cxj = ω2

i δij .

These vectors xi, each with its exp(±iωit) time dependence, are a basis of solu-
tions for the original linearised system. They are called the normal modes of
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the linearised system. Specifically, the solution of the linearised Euler-Lagrange
equation is:

x =

D∑
i=1

xi(ai cos(ωit) + bi sin(ωt)),

with the 2N arbitrary constants depending on the initial conditions. Using the
orthogonality of the normal mode eigenvectors with respect to the matrix A, if
we dot this solution with xTj we get:

xTj Ax =

D∑
i=1

xTj Axi(ai cos(ωit) + bi sin(ωit))

= (aj cos(ωjt) + bj sin(ωjt)),

so that aj = xTj Ax|t=0, and similarly, ωjbj = xTj Aẋ|t=0.
Finally we can consider what happens if a system with an equilibrium de-

pends on a parameter s in such a way that for some value s = 0, say, an
eigenfrequency of the equilibrium changes sign. This corresponds to loss of sta-
bility of the equilibrium; to study the system near this point it is usually best
to consider higher order terms in the expansion of the Lagrangian, for the cor-
responding term in L(2) vanishes. The study of such changes in the qualitative
behaviour of a dynamical system is known as bifurcation theory. We will see
some simple examples in the problems.
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5.2 Example - the compound pendulum

We saw the Lagrangian of the linearised compound pendulum with equal masses
m and equal lengths l was:

L =
1

2
(q̇)TAq̇− 1

2
(q)TCq,

where q = (θ1, θ1 + θ2)T , and:

A = ml2
(

1 0
0 1

)
,

B =

(
0 0
0 0

)
,

C = mgl

(
3 −1
−1 1

)
.

In these coordinates, A is diagonal, so we go to step 2. We have

D = l
√
m

(
1 0
0 1

)
,

so with q̃ = Dq, we get:

Ã = D−1AD−1 =

(
1 0
0 1

)
,

B̃ =

(
0 0
0 0

)
,

C̃ = D−1CD−1 =
g

l

(
3 −1
−1 1

)
.

Now, for step 3, it remains to diagonalise C̃. The characteristic equation is

det

(
3g
l
− ω2 − g

l− g
l

g
l
− ω2

)
= 0.

This is
2g2

l2
− 4g

l
ω2 + ω4 = 0,

giving the two eigenfrequencies ω±:

ω2
+ =

g

l
(2 +

√
2),

ω2
− =

g

l
(2−√2).

We note that for this equilibrium, both eigenfrequencies are real. This is because
this equilibrium point is a minimum of the potential, so C is positive definite.
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For the high-frequency mode with frequency ω+, the unnormalised eigenvector
is

q̃+ =

(
1

1−√2

)
,

while for the low-frequency mode, with frequency ω1, the unnormalised eigen-
vector is

q̃− =

(
1

1 +
√

2

)
Finally, undoing step 1 by returning to the (θ1, θ2) coordinates,

θ+ = 1
l
√
m

(
1
−√2

)
,

and

θ− = 1
l
√
m

(
1

+
√

2

)
,

We note that the two bobs move in opposite directions in the high-frequency
mode, the same direction in the low frequency mode.

5.2.1 The linearised solution

Taking real linear combinations of the 2 normal modes, the solution is easily
found to be

θ(1)(t) = a

(
1
−√2

)
exp(iω+t) + a∗

(
1
−√2

)
exp(−iω+t)

+b

(
1

+
√

2

)
exp(iω−t) + b∗

(
1

+
√

2

)
exp(−iω−t) (3)

Here a and b are arbitrary complex constants.
Note that here the ratio of the eigenfrequencies is

ω+/ω− =

√
2 +
√

2

2−√2
,

which is the irrational number (1 +
√

2), so the solution θ(t)is a non-periodic
function of time.

In general, if the N eigenfrequencies are not rationally related, as is usually
the case, then the general solution will not be periodic as the periods of the
different modes have no common multiple. However, if the period ratios of
the different modes are all rational, the motion will repeat after any common
multiple of the different periods.
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5.3 Example - a linear triatomic molecule

Three atoms of masses m, M and m are arranged along a straight line with
coordinates x1, x2, x3. They are coupled by a potential V (x3−x2)+V (x2−x1),
so the Lagrangian is:

L =
1

2
(mẋ2

1 +Mẋ2
2 +mẋ2

3)− V (x3 − x2)− V (x2 − x1).

We suppose the equilibrium spacing of the atoms is a, so we require V ′(a) = 0.
The linearised Lagrangian is then:

L(2) =
1

2
(m ˙x(1)

2

1 +M ˙x(1)
2

2 +m ˙x(1)
2

3)− V ′′(a)

2
((x

(1)
3 − x(1)

2 )2 + (x
(1)
2 − x(1)

1 )2).

We can thus read off A and C:

A =

m 0 0
0 M 0
0 0 m

 , (5.22)

C = V ′′(a)

 1 −1 0
−1 2 −1
0 −1 1

 . (5.23)

With this choice of coordinates, A is already diagonal, so we proceed to stage
2. We write A = D2,

D =

√m 0 0
0

√
M 0

0 0
√
m

 ,

and set x̃ = Dx(1). Then the new Lagrangian L̃ is given by

L̃ =
1

2
˙̃x
T ˙̃x− 1

2
x̃TD−1CD−1x̃.

Thus

C̃ = V ′′(a)


1
m

− 1√
mM

0

− 1√
mM

2
M

− 1√
mM

0 − 1√
mM

1
m

 .

The squared eigenfrequencies are the eigenvalues of C̃ which is clearly symmet-
ric. The characteristic equation is

(
V ′′

m
− ω2)2(

2V ′′

M
− ω2)− 2V ′′2

mM
(
V ′′

m
− ω2) = 0.

Hence ω2
1 = 0, ω2

2 = V ′′
m

and ω2
3 = V ′′( 1

m
+ 2

M
).
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• The (unnormalised) eigenvector x̃1 is seen to be:

x̃1 =

 √m√M√
m

 ,

so the corresponding x(1)
1 in the original coordinates is

x(1)
1 =

 1
1
1

 ,

which corresponds to translations of the whole system without changing
the relative positions. Such symmetries always correspond to vanishing
eigenfrequencies, though not conversely.

• The (unnormalised) eigenvector x̃2 is seen to be:

x̃2 =

 √m0
−√m

 ,

so the corresponding x(1)
2 is

x(1)
2 =

 1
0
−1

 ,

where the two masses m move in opposite directions and the other mass
M is stationary.

• The (unnormalised) eigenvector x̃3 is seen to be:

x̃3 =


1√
m

− 2√
M

1√
m

 ,

so the corresponding x(1) is

x(1)
3 =

 1
m− 2
M
1
m

 ,

where the two masses m move in the same direction and the central mass
M moves in the opposite direction to them.

We calculate that |x̃1|2 = 2m+M , |x̃2|2 = 2m and |x̃3|2 = 2/m+ 4/M .
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So

x(1)T

1 Ax(1)
1 = 2m+M, (5.24)

x(1)T

2 Ax(1)
2 = 2m (5.25)

x(1)T

3 Ax(1)
3 = 2/m+ 4/M. (5.26)

.
We can verify directly that

x(1)T

1 Ax(1)
1 = (2m+M)ω1

1 , (5.27)

x(1)T

2 Ax(1)
2 = 2mω2

2 (5.28)

x(1)T

3 Ax(1)
3 = (2/m+ 4/M)ω2

3 . (5.29)

.
It is important to realise that the discrete reflection symmetry of the lin-

earised Lagrangian - it is unchanged if x
(1)
1 and x

(1)
3 are exchanged - makes the

spectrum easier to calculate, as each normal mode (or in general, eigenspace)
must be mapped into itself by any discrete symmetry. This approach makes it
possible to work out huge problems such as the normal modes of the ’Buckyball’
C60 molecule, which apparently would involve diagonalising a (180×180) matrix
(there are 3 degrees of freedom for each atom), by only diagonalising blocks no
larger than (5× 5) instead.

5.4 The harmonic chain

The method even extends to systems with infinitely many degres of freedom,
such as a chain of masses m each joined to its 2 neighbours by springs of strength
k. The Lagrangian is

L =

∞∑
n=−∞

(
m

2
ẋ2
i −

k

2
(xi+1 − xi)2),

which is already quadratic. The matrix A = mI, while C = k(−∆ + 2I −∆T ),
where ∆ij = δi, (j + 1) is the matrix with ones immediately below the diagonal,
and zeroes everywhere else. The eigenvalue problem

Cx = λx

reads
k(−xn+1 + 2xn − xn−1) = λxn+1,

and this is a constant coefficient linear difference equation. The bounded eigen-
functions are xn = zn, with |z| = 1, and k(2− z − z−1) = λi. This is the basis
for the discrete Fourier transform. The eigenfrequencies are thus

ω2 =
k

m
(2− z − z−1) =

4k

m
sin2(θ),

with z = exp(iθ/2). Note that there is a continuous spectrum of eigenfunctions.
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5.4.1 Exercises

• What if the masses are close together ε� 1 apart, and m/ε = ρ, k = εκ?
How does the system behave for waves of wavelength O(1)?

• What if the chain consists of two different sorts of atom, masses m and
M , alternating along the line, still with nearest neighbour interactions?
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5.5 Problems

1. Coupled pendula Two identical simple pendula of length l and massmoscillate
in the (x, z) plane as shown:

They are coupled by a spring joining the two masses, whose elastic en-
ergy is k

2 (x1 − x2)2, where x1 and x2 are the horizontal displacements of
the masses from their equilibrium. Find the Lagrangian for the system
and hence find the Lagrangian for the linearised motion where |xi| � l.
Assume gravity acts in the negative z direction.

The system is started with x1 = 0, ẋ1 = v, x2 = ẋ2 = 0. Describe
the motion of the two pendula. What happens in the limit 0 < k � 1?
Solution The Lagrangian is

L =
m

2
(ẋ2

1 + ż2
1 + ẋ2

2 + ż2
2)−mg(z1 + z2)− k

2
(x1 − x2)2.

Here zi = −√l2 − x2
i , and żi = xiẋi/zi. Then expanding for small xi,

retaining only quadratic terms,

L =
m

2
(ẋ2

1 + ẋ2
2)− mg

2l
(x2

1 + x2
2)− k

2
(x1 − x2)2.

Thus

A =

(
m 0
0 m

)
,

B =

(
0 0
0 0

)
,

C =

(
mg
l

+ k −k
−k mg

l
+ k

)
.

The characteristic equation for the eigenfrequencies ωi is thus:∣∣∣∣ gl + k
m
− ω2 − k

m

− k
m

g
l

+ k
m
− ω2

∣∣∣∣ = 0.

Hence ω2
1 = g

l
or ω2

2 = g
l

+2 k
m
. The unnormalised eigenvectors are (1, 1)T

and (1,−1)T , both being symmetrical, one with the pendula moving in
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phase, in which the spring never stretches, the other with them exactly out
of phase so the extension of the spring is (x1 − x2) = 2x1. The solution
with the given initial data is:(

x1

x2

)
=

v

2ω1

(
1
1

)
sin(ω1t) +

v

2ω2

(
1
−1

)
sin(ω2t)

=
v

2

(
sin(ω1t)/ω1 + sin(ω2t)/ω2

sin(ω1t)/ω1 − sin(ω2t)/ω2

)
.

Here initially pendulum one is set swinging, but after a time T = π/(ω1−
ω2), the second pendulum is moving and the first is stationary. For very
small k, the frequencies are almost identical and the time-scale T is cor-
respondingly very long. The pendula are almost uncoupled.

2. Two particles of mass m, are joined together and to two fixed points
distance 3a apart by springs of unstretched length a and spring constants
k, 2k and k, as in the diagram.

They are free to move along the line between the two points. Calculate
the normal modes of the system.

Solution The Lagrangian is

L =
m

2
(ẋ2

1 + ẋ2
2)− k

2
x2

1 − k(x1 − x2)2 − k

2
x2

2.

Thus

A =

(
m 0
0 m

)
,
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B =

(
0 0
0 0

)
,

C =

(
3k −2k
−2k 3k

)
.

and the characteristic equation is

5
k2

m2
− 6

k

m
ω2 + ω4 = 0.

Hence ω1 =
√

k
m

, with eigenvector (1, 1) and ω2 =
√

5k
m

, with eigenvector

(1,−1). Again the eigenvectors are invariant under the discrete symmetry
of the system which exchanges the values of x1 and x2.

3. * A mass m hangs from a spring with spring constant k. The top end of
the spring is attached to the free end of a rope which passes around a light
wheel of radius a, whose axis is horizontal. A mass 2m is fixed to the cir-
cumference of the wheel. Find the equilibria, and the normal modes about
each equilibrium, with their characteristic frequencies. Which equilibrium
is stable?

Solution Take z to be the vertical coordinate of the mass m, measured
downwards, and θ to be the rotation of the wheel anticlockwise; say θ = 0
when the mass 2m is at the lowest point. The extension of the spring is
then (z − aθ − l0), l0 being a constant, the value of (z − aθ) when the
spring has zero tension - its precise value turns out to be irrelevant. The
Lagrangian is then:

L =
m

2
ż2 +ma2θ̇2 +mgz − k

2
(z − aθ − l0)2 + 2mga cos(θ).

The equilibrium configurations are given by the two equations:

∂L

∂z
= mg − k(z − aθ − l0) = 0,

∂L

∂θ
= ka(z − aθ − l0)− 2mga sin(θ).
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Hence two equlibria are

θ =
π

6
, z =

aπ

6
+ l0 +

mg

k
,

and

θ =
5π

6
, z =

5aπ

6
+ l0 +

mg

k
.

The other solutions differ from one or other of these by a full rotation of
the wheel.

Expanding L about these equilibria we get

L(2) =
1

2
(ż(1), θ̇(1))A

(
ż(1)

θ̇(1)

)
− 1

2
(z(1), θ(1))C

(
z(1)

θ(1)

)
.

Here

A =

(
m 0
0 2ma2

)
,

C =

(
k −ka
−ka ka2 + 2mga cos(θ)

)
.

The squared eigenfrequencies are thus the eigenvalues of

Ĉ =

(
k
m

− k

m
√

2

− k

m
√

2
k

2m + g
a

cos(θ)

)
.

Here cos(θ) = σ
√

3
2 , with the sign σ = +1 for the first equilibrium, σ = −1

for the other. Note that l0 has dropped out from this expression.

The characteristic equation is

ω4 − ω2(
3k

m
+ σ

g
√

3

2a
) + σ

kg
√

3

2ma
= 0.

With σ = 1, the two roots for ω2 are real and positive,

ω2 =
3k

2m
+
g
√

3

4a
)±

√
9k2

4m2
− kg

√
3

4ma
+

3g2

16a2
,

so the equilibrium is stable. It is a minimum of the potential. With σ =
−1, one of the two roots for ω2 is negative,

ω2 =
3k

2m
− g
√

3

4a
)±

√
9k2

4m2
+

3kg
√

3

4ma
+

3g2

16a2
,

so the equilibrium is unstable. It corresponds to a saddle point of the
potential.
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The unnormalised eigenvectors of Ĉ are( k√
2

k − ω2m

)
,

so those of the original problem are:(
k√
2

k−mω2√
2

)
.

4. A guitar string has Lagrangian∫ L

0

σ

2
(
∂y

∂t
)2 − T

√
1 + (

∂y

∂x
)2dx

where the mass density of the string is σ, the tension is T , and the length of
the string is L. Show that as in the finite-dimensional case, the linearised
Euler-Lagrange equation is the same as the Euler-Lagrange equation for
the quadratic approximation to the Lagrangian L(2). By looking for expo-
nential time-dependence in the linearised equation, find the normal modes.

Solution The quadratic approximation to the Lagrangian is:

L(2) =

∫ L

0

σ

2
(
∂y

∂t
)2 − T

2
(
∂y

∂x
)2dx,

and its EL equation is:
σytt = Tyxx.

This is the same as the linearisation of the EL equation of the full Lagrangian.
The normal modes have dependence y = exp(−iωt)u(x), so the eigenfunction
u(x) satisfies

uxx = −σω
2

T
u.

The appropriate boundary conditions for a guitar string are u(0) = u(L) = 0,
so the normal modes are:

un = sin(nπx/L),

for any positive integer n, and the corresponding eigenfrequencies are then

ωn =

√
T

σ

nπ

L
.
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Chapter 6

Rigid bodies

6.1 Kinematics

A rigid body is a system with (very) many particles, satisfying very many con-
straints, that all the interparticle distances, angles etc., are constant. Let us
consider two particles with positions xi and xj , and separation v = xi − xj .
The constraint for these two particles is then |v|2 = constant. Now the time
derivative v̇, of any vector v of constant length, is perpendicular to it, v̇ ·v = 0.

We now choose 3 such vectors, fixed in the body, v1, v2, v3, which we choose
to form a right-handed orthonormal frame; that is:

vi · vj = δij,

with
v1 ∧ v2 = v3.

These vectors can be used as the columns of an orthogonal matrix

V = (v1, v2, v3).

Any other vector u fixed in the body, such as the vector from one point to
another, will have constant components Ui with respect to this frame:

u =

3∑
i=1

Uivi,

Ui = vi · u = vTi u.

That is, if u has components, with respect to a basis fixed in space, uiU1

U2

U3

 =

 vT1vT2
vT3

u1

u2

u3

.
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Then we may write this as a matrix equation:

U = V Tu,

and the inverse map is (since V is orthogonal):

u = V U

It is therefore sufficient to study the motion of the orthonormal frame V . Below,
we will consistently use upper-case bold letters to denote vectors in the body
frame, and the corresponding lower-case letters for the same vectors in terms of
the space frame.

V is orthogonal, so that:
V V T = I.

Differentiating this relation with respect to time, we find:

V̇ V T + V V̇ T = 0.

That is, V̇ V T ≡ V̇ V −1 is antisymmetric.
Similarly we find

V T V̇ + V̇ TV = 0.

Thus, V T V̇ ≡ V −1V̇ is also antisymmetric.
Let us write:

V̇ V −1 = ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

Now let us diferentiate the time dependent components in space u of a
vector U which is fixed in the body.

u̇ = V̇U

= V̇ V TU.

Thus
u̇ = ωu

so that the first component, for instance, reads:

u̇1 = −ω3u2 + ω2u3,

and similarly for the other components - if we construct a vector ω= (ω1, ω2, ω3),
we can rewrite all of these as

u̇= ωu = ω ∧ u.
Any vector fixed in the body will evolve in the same way, in particular the

separation between two points in the body xi − xj does so. If we label one such
point x0 for reference:

ẋi = ω ∧ (xi − x0) + ẋ0.
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The quantity ω is called the angular velocity in space; the unit vector ω/|ω|is
called the axis of rotation. If ω is time-dependent, as will generally be the case,
it is safer to call ω/|ω| the instantaneous axis of rotation. The quantity ẋ0 is
the velocity of the reference particle - this depends on our choice of x0 unless
ω = 0.

We recall that V −1V̇ is also antisymmetric; we will write

V −1V̇ = Ω =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 .

The vector Ω= (Ω1,Ω2,Ω3) is known as the angular velocity in the body.
To understand the relation between Ω and ω, we may verify, for instance

Ω1 = ( 0 0 1 ) Ω

 0
1
0



= ( 0 0 1 )V T V̇ V TV

 0
1
0


= vT3 ωv2

= v3 · (ω ∧ v2)

= ω · (v2 ∧ v3) = v1 · ω,
and similarly for the other components. Thus we should consider Ω as the
collection of components of ω, with respect to the rotating frame.

Ω =

 v1 · ω
v2 · ω
v3 · ω

 = V Tω.

That is ω and Ω transform between the two frames in the same way as vectors.

6.2 The Kinetic energy

The kinetic energy is
T =

∑N
i=1

mi
2 |ẋi|2

=
∑N
i=1

mi
2 (|ω ∧ (xi − x0) + ẋ0|2

=
∑N
i=1

mi
2 (|ω ∧ (xi − x0)|2+2ω ∧ (xi − x0) · ẋ0 + |ẋ0|2).

Here the sum over all the particles could easily be replaced by an integral
over the body, weighted by a mass density ρ((xi − x0)):

T =
∫ ρ(x)

2 (|ω ∧ (xi − x0)|2 + 2(ω ∧ (xi − x0)) · ẋ0 + |ẋ0|2)d3x.

74



This will make sense in many applications. If we allow ρ(x)to be a sum of
δ-functions, then this formula reduces to the previous one.

There are two easy ways in which this expression can be simplified. One is
where the reference point x0 is fixed in space. Then both terms involving ẋ0 will
vanish, giving

T =
∑N
i=1

mi
2 |ω ∧ (xi − x0)|2,

a quadratic expression in ω.
Alternatively we may choose x0 to be the centre of mass of the body. Then

the vector
∑
mi(xi − x0) will vanish, the velocity of this point of the body is

v0 = ẋ0, and we can expand T as follows:

T =
∑N
i=1

mi
2 (|ω ∧ (x− x0) + v0)|2

=
∑N
i=1

mi
2 (|ω ∧ (x− x0)|2 + 2(ω ∧ ((x− x0)) · v0 + |v0|2)

=
∑N
i=1

mi
2 (|ω ∧ (x− x0)|2 + |v0|2).

The crucial point here is that the linear terms in x− x0 all vanish.
T can thus be decomposed into the sum of a term quadratic in ω, the ro-

tational kinetic energy, and another term, quadratic in v0, the translational
kinetic energy. The translational term is:

T trans=
∑N
i=1

mi
2 |v0|2 = M

2 |v0|2.
where M is the total mass of the body.

We write the rotational term as:

T rot=
∑N
i=1

mi
2 (|ω ∧ (x− x0)|2

= 1
2ω

T Iω.

Here I is a symmetric 3 × 3 matrix, called the inertia tensor. Expanding
the vector product and rewriting in terms of scalar products, using the standard
identity:

|a ∧ b|2 = |a|2|b|2 − (a · b)2,

we find
Iij =

∫
ρ(x)(|x− x0|2δij − (x− x0)i(x− x0)j)d3x.

Exercise Check this.
Since I is real and symmetric, its eigenvectors may be taken to be orthogonal;

they must be orthogonal if the eigenvalues are distinct. These eigenvectors are
called the principal axes of inertia, and the eigenvalues are called the princi-
pal moments of inertia. These eigenvalues are always positive, as the kinetic
energy is positive. The principal axes are a natural choice for an orthonormal
frame fixed in the body.

We may also define an inertia tensor, with the same formula, about any
point x0, whether or not it is the centre of mass. Note that in such cases the
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linear term in (x−x0) will not necessarily vanish; however it also involves the
velocity v0, so the term will also vanish if x0 is a fixed point in space.

This is important in applications, e.g. if an axle does not pass through the
centre of mass of a wheel. In balancing a wheel, the centre of mass must be
aligned with the axle, and the axis of inertia with the axis of rotation. Otherwise
the wheel will tend to wobble.

Exercise A body of mass M has inertia tensor I0 about its centre of mass,
x0. What is its inertia tensor about the origin?

Exercise A body of mass M has inertia tensor

I0 =

 3 0 0
0 2 0
0 0 1


about the origin with respect to the (i, j, k) axes. What is the inertia tensor
with respect to axes ((i− j)/√2, (i+ j)/

√
2, k)? If the new axes are given by

3 orthonormal vectors (u, v, w), what is the inertia tensor in this frame? Hint:
construct an orthogonal matrix from (u, v, w). We will need to transform
vectors and tensors frequently between, for example, a frame fixed in space, such
as (i, j, k), and a frame fixed in a rotating body - the principal axes of inertia
are often a very convenient choice.

Exercise A rigid body consists of a single point particle of mass m at the
point (x, y, z). What is its inertia tensor about the origin?

6.3 Angular momentum

We have seen previously that if a Lagrangian system has rotational symmetry,
there is a conserved quantity corresponding to this by Noether’s theorem, the
angular momentum. If an N -body system has rigid constraints maintained by
forces acting along the lines between the bodies, we may see this directly:

mi
d2

dt2xi =
∑N
j=1fij,

we see that
d
dt

∑N
i=1mixi ∧ ẋi

=
∑N
i=1

∑N
j=1xi ∧ fij

=
∑N
i=1

∑N
j=i+1(xi − xj) ∧ fij = 0.

where in the last line we used Newton’s 3rd law fij + fji = 0.This result holds
in particular for a Lagrangian system with the constraint terms λij|xi−xj|, as
then

fij = λij(xi − xj)/|xi − xj|.
Now this vector conserved quantity, the angular momentum,

j =
∑N
i=1mixi ∧ ẋi
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is constant in a fixed (space) frame of reference. For definiteness we will call
j the angular momentum in space. Below we will need to work out the
components in a frame (v1, v2, v3) fixed in the body; if we write

Ji = vi · j,
the vector J = (J1, J2, J3) is called the angular momentum in the body.

If the body is subjected to external forces fi on the i-th particle, we generalise
this result on the constancy of j to

d
dtj =

∑N
i=1xi ∧ fi

=
∑N
i=1((xi − x0) + x0) ∧ fi

=
∑N
i=1x0 ∧ fi +

∑N
i=1(xi − x0) ∧ fi

= x0 ∧ f + g.

Here the first term is the vector product of the (arbitrary) position vector x0

with the total force f on the body, while the second term

g =
∑N
i=1(xi − x0) ∧ fi

is called the total couple exerted by these forces about the point x0. It will be
convenient in applications to choose x0 in some particular convenient way - it
could be a fixed point of the body, or the origin, or the centre of mass of the
body.

If a body of mass M is rotating with angular velocity ω and its centre of
mass x0 is moving with velocity v0, the velocity v at a point x is:

v = v0 + ω ∧ (x− x0),

so we find
j =

∑N
i=1mixi ∧ (v0 + ω ∧ (x− x0))

=
∑N
i=1mi(x0 + (xi − x0)) ∧ (v0 + ω ∧ (x− x0))

= Mx0 ∧ v0 +
∑N
i=1mi(xi − x0) ∧ (ω ∧ (xi − x0)).

Here, as before, the terms linear in
∑N
i=1mi(xi − x0) all vanish if x0 is the

centre of mass. The first term is the angular momentum of a point mass M with
velocity v0 at the point x0. The second term is linear in ω; using the identity

a ∧ (b ∧ a) = b(a · a)− a(a · b)
we may rewrite:

j =
∑N
i=1mi(xi −X) ∧ (ω ∧ (x−X))

=
∑N
i=1miω((xi −X) · (x−X))− (xi −X)(ω · (x−X)),

so that, in vector form, we have:

j= Iω.

The inertia tensor acts on the angular velocity vector, giving the angular mo-
mentum vector. This will not in general be parallel to the angular velocity, unless
this is parallel to a principal axis of inertia.
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6.4 Euler’s equations

Let us consider a body with inertia tensor I, subject to zero net force f , but with
a couple g about its centre of mass. Then, in a non-rotating frame with origin
at the centre of mass,

d
dtj = g,

and
j = Iω.

The difficulty with this equation is that I depends on the orientation of the body
which is changing. It is much easier to treat in the frame which is corotating
with the body - if the eigenvalues of I are distinct, then the normalised eigenvec-
tor matrix V =(v1, v2, v3) defines a suitable frame, in which I is particularly
simple, and constant. Then the angular momentum in the body is given by:

J = V T j =

 v1 · j
v2 · j
v3 · j

 .
Thus, if we differentiate,

J̇ = V T j̇ + ˙V T j = V Tg + ˙V TV V T j

= V Tg + ΩTV T j

G− Ω ∧ J.
Here G denotes the couple expressed in terms of the body frame, G =

V T g,and we have defined, as above the antisymmetric 3× 3 matrix

Ω = V T V̇ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 .

and the vector Ω= (Ω1,Ω2,Ω3)T . The matrix Ω acts on vectors in the same way
as the vector product with the vector Ω:

Ωv = Ω ∧ v,
for any vector v. The term −Ω ∧ J can be understood by considering the
motion in the space frame with zero couple; then j̇ = 0. In a frame rotating
with angular velocity ω in space, Ω in that frame, the angular momentum must
rotate backwards - with angular velocity −Ω in the body frame, to remain fixed
in the space frame.

Since the components of J and of Ω are related by the constant, diagonal
inertia tensor,

J =

 I1 0 0
0 I2 0
0 0 I3

Ω =

 I1Ω1

I2Ω2

I3Ω3

,
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the equation of motion
J̇ + Ω ∧ J = G

is expanded as  I1
dΩ1

dt

I2
dΩ2

dt

I3
dΩ3

dt

+

 (I3 − I2)Ω2Ω3

(I1 − I3)Ω3Ω1

(I2 − I1)Ω1Ω2

 =

G1

G2

G3

 .

These are known as Euler’s equations for a rotating body.

6.4.1 The Euler Top

Let us consider a body which rotates freely in the absence of an applied couple.
Then Euler’s equations are: I1

dΩ1

dt

I2
dΩ2

dt

I3
dΩ3

dt

+

 (I3 − I2)Ω2Ω3

(I1 − I3)Ω3Ω1

(I2 − I1)Ω1Ω2

 =

 0
0
0

 .

We may solve this almost immediately once we identify 2 conserved quantities.
One is the energy:

E =
1

2

3∑
i=1

IiΩ
2
i ,

while the other is
|J |2=

∑3
i=1 I

2
i Ω2

i ,

Since J is only rotated with angular velocity −Ω, its modulus cannot change.

Qualitative dynamics

The level set of the energy is an ellipsoid

3∑
i=1

IiΩ
2
i = K1,

and the level set of the second constant is another ellipsoid

3∑
i=1

I2
i Ω2

i = K2.

These will typically intersect in sets of dimension (3−2) = 1 a union of curves,
which must be closed. We want to investigate what these look like - they are the
orbits of the system. For definiteness let us suppose I1 > I2 > I3. We see that

I1 ≥ K2

K1
≥ I3
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If the upper bound is attained

I1 =
K2

K1

then Ω points along the minor axis of the energy ellipsoid (1, 0, 0)T , while if the
lower bound is attained,

K2

K1
= I3

then Ω points along the major axis of the energy ellipsoid (0, 0, 1)T . In these
cases the closed curves degenerate to the ends of the axes. For

I1 >
K2

K1
> I2

t0he curves are small loops around the ends of the minor axis, getting larger as
the ratio drops towards I2. Similarly for

I2 >
K2

K1
> I3

the curves are small loops around the ends of the major axis, getting larger as
the ratio drops towards I2. In these cases the motion is confined to a simple
closed curve, and the angular momentum in the body precesses around it with
some finite period.

The most interesting case is where

K2

K1
= I2

which is satisfied in particular when Ω points along the ’mean’ axis of the energy
ellipsoid (0, 1, 0)T . Expanding K2 = I2K1 we get:

I1(I1 − I2)Ω2
1 = I3(I2 − I3)Ω2

3,

so the set we want is the intersection of the ellipsoid with the union of two
planes:

Ω1 = ±Ω3

√
I3(I2 − I3)

I1(I1 − I2)
.

Linearised dynamics

We can look at the linearised motion near the (1, 0, 0)T axis; let 0 < ε� 1, and

Ω =

Ω
(0)
1

0
0

+ ε

Ω
(1)
1

Ω
(1)
2

Ω
(1)
3

,
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and Euler’s equations become to first order

I1
dΩ

(1)
1

dt
= 0,

0I2
dΩ

(1)
2

dt
+ (I1 − I3)Ω

(0)
1 Ω

(1)
3 = 0,

I3
dΩ

(1)
3

dt
+ (I2 − I1)Ω

(0)
1 Ω

(1)
2 = 0,

Since I1 > I2 > I3, it follows that the motion of ω(1) is oscillatory, going like
exp(ipt), with

p2 =
(I1 − I3)(I1 − I2)

I2I3
(Ω

(0)
1 )2 > 0.

Similarly we can show that motion about the third axis is stable. In either
of these cases if the body starts spinning about an axis near the major or minor
axis, it remains spinning about a nearby axis for all t.

However motions started near the second axis are linearly unstable, and per-
turbations will grow or decay like exp(±λt), with

λ2 =
(I1 − I2)(I2 − I3)

I1I3
(Ω

(0)
2 )2.

Thus motions started near the mean axis of inertia do not remain there - if the
motion starts near the positive mean axis, it will be spinning about an axis near
the negative mean axis some finite (possibly long) time later.

DEMONSTRATION

6.4.2 The heavy symmetric top

THIS SECTION WAS OMITTED FROM LECTURES A top of mass
M has fixed point at the origin, and centre of mass (0, 0, h) with respect to the
principal axes, fixed in the body. It is subject to a gravitational field (0, 0,−g)
which is fixed in space. In the body frame, this gives a time-dependent force of
constant modulus, F . The couple in the body frame is then:

G =

 0
0
h

 ∧ F
Since F is a vector in the body frame which is fixed in space, it satisfies: Ḟ1

Ḟ2

Ḟ3

 = −
Ω1

Ω2

Ω3

 ∧
F1

F2

F3

 ,

while Euler’s equations are: I1
dΩ1

dt

I2
dΩ2

dt

I3
dΩ3

dt

+

 (I3 − I2)Ω2Ω3

(I1 − I3)Ω3Ω1

(I2 − I1)Ω1Ω2

 =

 0
0
h

 ∧
F1

F2

F3

 =

−hF2

hF1

0

 .
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We will study a special case of this system using another approach below; here
we only note that if I1 = I2 these equations simplify. It is then possible to find
enough conserved quantities to solve the system explicitly.

Exercise How many can you find? Most other cases of these equations are
not exactly solvable, and the motion is chaotic.

6.5 The Euler Angles

A different approach to the description of a rotating body is to choose a set of 3
coordinates which parametrise our configuration space - the set of orthonormal
frames. Euler described the following way of doing this. The key idea is that an
orthonormal frame in R2 can be written as(

i′
j′

)
=

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)
,

so the unit vector ialong the x−axis is rotated anticlockwise by an angle φ into
v1, and the y-axis is similarly rotated into v2.

We can extend this to construct a 1-parameter family of orthonormal frames
in R3 just by adding an unchanged z-axis: i′j′

k

= V1 =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

 ,

This matrix describes a rotation by an angle φ about the z-axis. We could
similarly rotate by an angle θ about the y-axis:

V2 =

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 .

Now if we compose these two transformations, we can arrange for the original
axes (i, j, k) to be rotated first about the k axis to (i′, j′, k), then about j′, to
new axes  i′′j′

k′

= V2

 i′j′
k

 = V2V1

=

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1


=

 cos(θ) cos(φ) cos(θ) sin(φ) − sin(θ)
− sin(φ) cos(φ) 0

sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)


We see that k′ can be pointed anywhere on the unit sphere by suitably chosen

(θ, φ), as the bottom row of this matrix corresponds to taking spherical polars on
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the unit sphere. Note however that given k′, the angles (θ, φ) are not determined
uniquely, particularly if θ = nπ, when φ is undetermined - what is the longitude
at the North pole?

To complete the construction, we now rotate again by an angle ψ about this
k′ axis. This is given by a matrix

V3 =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 ,

which takes the axes (i′′, j′, k′) to new axes (i′′′, j′′, k′) given by:

V =

 i′′′j′′
k′

= V3

 i′′j′
k′

 = V2V1

=

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1


=

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 cos(θ) cos(φ) cos(θ) sin(φ) − sin(θ)
− sin(φ) cos(φ) 0

sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)


=

 cos(ψ) cos(θ) cos(φ)− sin(ψ) sin(φ) cos(ψ) cos(θ) sin(φ) + sin(ψ) cos(φ) − cos(ψ) sin(θ)
− sin(ψ) cos(θ) cos(φ)− cos(ψ) sin(φ) − sin(ψ) cos(θ) sin(φ) + cos(ψ) cos(φ) sin(ψ) sin(θ)

sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)

 .

The exact formula here is less important that the way it was constructed.
This is the most general possible orthogonal 3× 3 matrix with determinant +1.
The parameters (φ, θ, ψ) are caled the Euler angles.

Let us suppose that a body is rotating, and the axes (i′′′, j′′, k′) are fixed in
it; then the angular velocity in the body frame is given by:

Ω = V̇ V T ,

which will be linear in (φ̇, θ̇, ψ̇). Transforming this antisymmetric matrix into a
vector, as above, we get

Ω = φ̇k + θ̇j′ + ψ̇k′.

We can then calculate the kinetic and potential energy of a body in terms of the
Euler angles and their derivatives.
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6.6 The symmetric top

6.6.1 The symmetric rotator

A rigid body of mass M is free to rotate about any axis through a fixed point.
Its inertia tensor about the fixed point is, in the principal axes,

I =

 I1 0 0
0 I1 0
0 0 I3

 .

That is, the first and second principal moments are equal. This will be true for
instance if the body is a homogeneous solid of revolution about the third axis.

The angular velocity,

Ω = φ̇k + θ̇j′ + ψ̇k′,

needs to be projected onto the ’body’ axes (i′′′, j′′, k′)

Ω =

Ω · i′′′
Ω · j′′
Ω · k′



= φ̇

− cos(ψ) sin(θ)
sin(ψ) sin(θ)

cos(θ)

+ θ̇

 sin(ψ)
cos(ψ)

0

+ ψ̇

 0
0
1

.
Hence the kinetic energy is found to be

I1

2
(−φ̇ cos(ψ) sin(θ)+θ̇ sin(ψ))2+

I1

2
(φ̇ sin(ψ) sin(θ)+θ̇ cos(ψ))2+

I3

2
(φ̇ cos(θ)+ψ̇)2

=
I1

2
(θ̇2 + sin2(θ)φ̇2) +

I3

2
(ψ̇ + cos(θ)φ̇)2.

This is the Lagrangian of the symmetric rotator, or equivalently, the kinetic
energy of the symmetric top.

6.6.2 The symmetric top

The symmetric top is a symmetric rotator whose centre of mass is on its sym-
metry axis, and which is subject to a uniform gravitational field, acting in the
negative z-direction in the space frame. The centre of mass of the body is as-
sumed to lie on the third principal axis (the symmetry axis) through the fixed
point, a distance h from it.
PICTURE

The potential energy is then, in terms of Euler angles,

Mk′ · k= Mgh cos(θ)
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Hence the Lagrangian is:

L =
I1

2
(θ̇2 + sin2(θ)φ̇) +

I3

2
(ψ̇ + cos(θ)φ̇)2 −Mgh cos(θ).

6.6.3 Symmetries and conserved quantities

We will be able to solve this system exactly. There are two symmetries - the
system is invariant under rotations in both φ and ψ - rotations about the k and
k′′ axes. That is, rotations about a vertical axis in space, or rotations about
the 3rd principal axis (symmetry axis) of the body. The corresponding Noether
integrals, the conjugate momenta to these two angles, are:

pφ = I1 sin2(θ)φ̇+ I3(ψ̇ + cos(θ)φ̇) cos(θ),

and
pψ = I3(ψ̇ + cos(θ)φ̇).

These will have constant value throughout the evolution of the system. We will
treat them as constants when solving for the evolution of θ.

6.6.4 The Hamiltonian

The other canonical momentum coordinate is

pθ = I1θ̇.

Hence the Hamiltonian is found to be:
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H =
1

2I1
(p2
θ +

(pφ − pψ cos(θ))2)

sin2(θ)
) +

p2
ψ

2I3
+Mgh cos(θ).

6.6.5 Nutation - motion in θ

Now, if H = e, a constant, and pφ and pψ are replaced by their constant values,
then

p2
θ = 2eI1 − (pφ − pψ cos(θ))2

sin2(θ)
− I1p

2
ψ

I3
− 2MghI1 cos(θ).

Writing cos(θ) = x, we get

p2
θ =

2eI1(1− x2)− (pφ − pψx)2 − I1p
2
ψ

I3
(1− x2)− 2MghI1(x− x3)

1− x2
.

The numerator here is a cubic in x with real coefficients. If the constants e, pφ,
pψ are given values corresponding to real initial conditions, then this numerator
will be non-negative somewhere in −1 ≤ x ≤ 1. However, at x = ±1, the
numerator is clearly negative, being −(pφ ∓ pψ)2 there. Hence the cubic has
two roots x± in this interval. Then cos(θ) will oscillate between the two turning
points x±. This motion is called nutation - ’nodding’ in Latin.

Since ẋ = − sin(θ)(̇θ), and (̇θ) = pθ
I1

, we find:

I2
1 ẋ

2 = 2eI1(1− x2)− (pφ − pψx)2 − I1p
2
ψ

I3
(1− x2)− 2MghI1(x− x3),

which can be solved in terms of the Weierstrass elliptic function ℘(u). This is
the most fundamental elliptic function, and satisfies:

℘′2 = 4℘3 − g2℘− g3,

where g2 and g3 are arbitrary constants. Since ẋ2 is cubic in x, we can write

x = α℘(βt) + γ,

for some definite constants α, β and γ.

6.6.6 Precession - motion in φ

The equation for the evolution of ψ is

φ̇ =
(pφ − pψx)

I1(1− x2)

This is singular at θ = 0, θ = π, where φ is undefined. It also has a simple zero
at

x0 =
pφ

pψ
,
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which may or may not lie between the two turning points of x, x±.
If it does not, then φ will be monotonic in t. The axis of the top moves

steadily round the vertical.
The motion is more interesting when the zero x0 lies between the two turning

points x− < x0 < x+, for then φ̇ is negative for large x > x0, and positive for
x < x0. The axis moves in loops:
PICTURE

There is a transitional case when x0 = x+; in this case the loops shrink to
cusps, and the loops swing downwards from these. Then φ̇ vanishes at x = x+,
but is otherwise always positive.
PICTURE

It is instructive to consider why it is that the other case x0 = x− cannot
occur for real initial conditions; at a cusp the kinetic energy is a minimum, so
the potential energy must be a maximum. The cusp must be at the top of the
loop.
DEMONSTRATION

6.7 Problems 5

1. Triangular Lamina OAB is a uniform triangular plate (lamina) lying in
the x − y-plane, whose vertices are at O = (0, 0, 0), A = (a, 0, 0) and
B = (0, b, 0). It has total mass M . Show that the inertia tensor about the
origin O is

I ′ =

 1
6Mb2 − 1

12Mab 0
− 1

12Mab 1
6Ma2 0

0 0 1
6M(a2 + b2)

 .

Find the centre of mass G of the lamina, and calculate directly the inertia
tensor about G. Hence verify the ‘Parallel axis theorem’ in this case, that
the inertia tensor about O is given by the sum of the inertia tensor about
G and the inertia tensor about O of a point mass M at G.

2. Wobbling plate Show that for a uniform disc of mass m and radius a in
the x − y plane, the principal moments of inertia about the centre are
ma2

4 , ma2

4 and ma2

2 . Suppose the disc spins about its symmetry axis, and
is then slightly perturbed. Show that it makes two small wobbles for every
revolution of the disc.

3. Control of a satellite A satellite is equipped with attitude jets which can
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exert a specified couple,

G = G1(t)e1 +G2(t)e2 +G3(t)e3

to control its orientation. Here the vectors ei are the principal axes of the
inertia tensor, whose principal moments are I1 and I2 = I3. Write down
Euler’s equations for the satellite.

Initially the satellite spins about its axis of symmetry with constant angular
velocity Ωe1, but a couple G = (0, G2(t), 0) is applied. Here

G2(t) = G for0 ≤ t ≤ t0,
= 0 otherwise.

Here G is a constant. Show that for t > t0, the angular momentum J in
the body describes a circle on the sphere |J| = constant, and that the axis
e1 points towards the centre of this circle. Hence show that in a frame
of reference fixed in space, the axis e1 moves around a circle on the unit
sphere. What vector quantity points towards the centre of the circle? What
is the orientation of the angular velocity vector? Show that the angle α
between J and e1 is given by

cos(α) =
I1√

I2
1 + 2 G2

ω2∆2 (1− cos(Ω∆t0))
,

where ∆ = I1−I2
I2

.

4. The symmetric top The Lagrangian for a heavy symmetric top pivoted at
a point on its axis of symmetry is, as in the notes:

L =
I1

2
(θ̇2 + sin2(θ)φ̇) +

I3

2
(ψ̇ + cos(θ)φ̇)2 −Mgh cos(θ).

Here I1 = I2 6= I3 are the principal moments, and θ, φ and ψ are the
Euler angles. Here M is the mass of the top and l is the distance of the
pivot from the centre of mass and g is the acceleration due to gravity.

Describe all solutions in which θ is constant;

(a) If θ = 0, and φ̇ + ψ̇ = ω, show that this is a ’relative equilibrium’
- that is a configuration in which the motion is steady, though the
system is non-stationary. When is this configuration, where the top
spins vertically on its axis, stable?

(b) find the value of θ corresponding to given φ̇ and ψ̇, (which should
now be taken as independent). Are these ’relative equilibria’ stable to
small perturbations in θ?

It may be helpful to write the Hamiltonian in the form

H =
p2
θ

2I1
+ U(θ).
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Chapter 7

Courseworks, Examples and
Solutions

7.1 Buckling in a strut

A straight uniform horizontal bar of length L is subjected to a horizontal com-
pression force F . It deforms, so that at a position a distance s along the bar,
the line of the bar is rotated by an angle θ(s).

The elastic energy in the bar is known to be

E =

∫ L

0

k

2
(
dθ

ds
)2ds.

The work done by the force is

W =

∫ L

0

F (1− cos(θ))ds.

The bar takes up a configuration which minimises the total energy E −W .

1. Write down the Euler-Lagrange equation satisfied by θ(s).
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Solution Write E −W =
∫ L

0
fds, and the Euler-Lagrange equation is:

d

ds

∂f

∂θs
=
∂f

∂θ
,

which is, explicitly,

k
d2θ

ds2
= −F sin(θ).

(3 marks)

2. Find the conserved quantity which follows from the fact that the problem
has no explicit s-dependence. Sketch the solutions θ(s) if |θ| < π. (Hint -
compare with a more familiar mechanical system, satisfying an analogous
equation). What are the corresponding shapes of the bar?

Solution The quantity required is

Q = θs
∂f

∂θs
− f

=
k

2
θ2
s + F (cos(θ)− 1).

(3 marks) This system has the same Euler-Lagrange equation as the sim-
ple pendulum; it is well known that for small amplitude max|θ| < π the
solutions of this are oscillatory.

(4 marks)

3. Linearise the equation of motion, assuming that |θ| << 1. If the bar is
clamped at both ends so that

θ(0) = θ(L) = 0,

show that a non-zero solution exists for L
√
F/k = π, but not for any

smaller value of L.

Solution The linearised equation is:

k
d2θ

ds2
= −Fθ.
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(3 marks)

With the given boundary condition at s = 0, we get

θ = A sin(

√
F

k
s),

where A is an arbitrary constant. This can not satisfy the condition at

s = L, except for A = 0, for
√

F
k
L < π. (3 marks)

4. If the boundary condition is replaced by

θ(0) =
dθ

ds
(L) = 0,

find the critical value of L below which the bar does not buckle.

Solution As above,

θ = A sin(

√
F

k
s),

but the condition at s = L is now θs|s=L = 0, giving

A cos(

√
F

k
L) = 0,

and now A can only be non-zero if the cos vanishes. This does not happen

for
√

F
k
L < π/2. Hence the critical L is:

L =

√
k

F

π

2
.

(4 marks)

7.2 A charged particle in an electromagnetic field

1. The Lagrangian for a particle moving in three dimensions in a time-
independent magnetic field with vector potential A(x) is given by:

L =
m

2
|ẋ|2 + eA(x)·ẋ. (7.1)

Write L as the sum of two homogeneous functions of the ẋ, L2 and L1,
say, of degrees 2 and 1 respectively. The energy is given, as usual by:

E =

3∑
i=1

ẋi
∂L

∂ẋi
− L;

evaluate this using Euler’s theorem.

Hence show that |ẋ| = constant, so the magnetic field does no work. What
can you say about the acceleration ẍ?
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2. Calculate the Euler-Lagrange equations for the Lagrangian (7.1), and ver-
ify directly that |ẋ| =constant.

Now repeat the calculation for the more general Lagrangian, which also
includes a scalar potential φ(x),

L =
m

2
|ẋ|2 + eA(x).ẋ + eφ(x).

Find the Euler-Lagrange equations for this Lagrangian.

Show that these can be written as

mẍ = e(ẋ ∧B + E),

and find explicit expressions for the magnetic field B and the electric
field E.

3. Calculate the effect on the motion if the vector potential A, is changed by
adding to it the gradient of a scalar ψ(x):

A′ = A +∇ψ(x).

Find the the difference ∆L between the two Lagrangians L′ and L, given
by (7.1) using the vector potentials A′ and A respectively; find the Euler-
Lagrange equation corresponding to ∆L, and explain your result.

4. Consider the simple case A = (0, 0, x), φ = x. Identify the symmetries of
the Lagrangian, and derive the corresponding conserved quantities using
Noether’s theorem. Find and then solve the Euler-Lagrange equations, and
describe the motion of the particle.

7.2.1 Solution

1. The Lagrangian is given by:

L = L1 + L2

L2 =
m

2
|ẋ|2L1 = eA(x)·ẋ.

The energy is given, as usual by:

E =

3∑
i=1

ẋi
∂L

∂ẋi
− L

= (2L2 + L1)− (L2 + L1)

= L2;

using Euler’s theorem. Now L is independent of t, so Ė = 0. Hence |ẋ|2 =
constant, so the magnetic field does no work. Differentiating this, we find
the acceleration ẍ must satisfy ẍ ·ẋ = 0. It is perpendicular to the velocity.
(3 marks)
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2. To calculate the Euler-Lagrange equations for the Lagrangian (7.1), we
write L in components:

L =
m

2
|ẋ|2 + eA(x).ẋ

=
m

2

3∑
i=1

ẋ2
i + eAi(x1, x2, x3)ẋi.

Hence the momentum is given by the sum of a kinetic and potential term:

∂L

∂ẋi
= mẋi + eAi(x1, x2, x3),

and
∂L

∂xi
=

3∑
j=1

e
∂Aj

∂xi
ẋj ,

changing the dummy index. Now the total t-derivative of the momentum
is:

mẍi + e

3∑
j=1

∂Ai

∂xj
ẋj ,

so that the equation of motion becomes:

mẍi = e

3∑
j=1

(
∂Aj

∂xi
ẋj − ∂Ai

∂xj
ẋj (7.2)

that is,
mẍ = eẋ ∧ (∇∧A). (7.3)

so the acceleration is clearly perpendicular to the velocity.

(4 marks)

Now repeating the calculation for the more general Lagrangian,

L =
m

2
|ẋ|2 + eA(x).ẋ + eφ(x).

The Euler-Lagrange equation for this Lagrangian is the same as before,
only with an additional term:

mẍ = e(ẋ ∧ (∇∧A) +∇φ) (7.4)

These can be written as

mẍ = e(ẋ ∧B + E),

where the magnetic field B = ∇∧A and the electric field E = ∇φ.

(2 marks)
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If the vector potential A, is changed by adding to it the gradient of a scalar
ψ(x):

A′ = A +∇ψ(x).

The difference ∆L between the two Lagrangians L′ and L, given by (7.1)
using the vector potentials A′ and A respectively is

∆L = e∇ψ·ẋ.
Now the only term in the Euler-Lagrange equation here is proportional to:

∇∧ (∇ψ),

which vanishes identically.

(2 marks)

Any Lagrangian which can be written as an exact time derivative, as this
can, leads to an action integral depending only on the end points:∫ t2

t1

∆Ldt =

∫ t2

t1

d

dt
(eψ)dt = eψ|t2t1 .

This cannot change if the path is varied keeping the end points fixed. So
the Euler-Lagrange equation must be trivial.

3. In the case A = (0, 0, x1), φ = x1, some more obvious symmetries of the
Lagrangian, with their Noether integrals, are

• L is independent of x2, so p2 = mẋ2 is conserved.

• L is independent of x3, so p3 = mẋ3 + ex1 is conserved.

• L is independent of t, so E = m
2 |ẋ|2 − ex1 is conserved.

(2 marks)

There is one other, rather less straightforward:

• If x1 → x1 + ε, then

L→ L+ ε(eẋ3 + e) = L+ ε
d

dt
(ex3 + et)

so x1-translation is also a symmetry. Using Noether’s theorem, this
gives the conserved quantity

I = mẋ1 − ex3 − et.
(1 mark)

The Euler-Lagrange equations are

mẍ = e(ẋ ∧ (∇∧A) +∇φ)

= e((ẋ1, ẋ2, ẋ3) ∧ (0,−1, 0) + e(1, 0, 0),

that is:

m(ẍ1, ẍ2, ẍ3) = e(1 + ẋ3, 0,−ẋ1).
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(2 marks)

Combining the first and third components:

m(ẍ1 − iẍ3) = ie(ẋ1 − iẋ3) + e,

so that
ẋ1 − iẋ3 = V exp(iet/m) + i,

giving for some arbitrary complex constants R, X,

x1 − ix3 = R exp(iet/m) + it+X.

The real and imaginary parts of this give x1 and x3. Also we get, for
arbitrary real constants y0, v0,

x2 = y0 + v0t

Thus the motion consists of a circular motion with frequency e/m in the
(x1, x3)-plane, superimposed with a steady drift in the direction (0, v0,−1).

(3 marks)

7.3 Angular momentum - worked exercise.

1. Consider the two functions L1, L2 for a system with three degrees of free-
dom:

L1 = p2q3 − p3q2,

L2 = p3q1 − p1q3.

2. Show directly that they both Poisson commute with the Hamiltonian for a
particle in a central potential:

H =
|p|2
2m

+ V (|q|).

3. Show that L3 defined by L3 = −{L1, L2} is not identically zero and verify
directly that {L3,H} = 0. Verify directly that L1, L2 and L3 satisfy the
Jacobi identity.

4. Show that L3 and K = L2
1 + L2

2 + L2
3 do Poisson commute.

5. Find Hamilton’s equations, when the Hamiltonian is ω1L1 + ω2 + ω3L3,
and you may assume ω is a unit vector. What is the geometrical meaning
of these equations? That is, what is the corresponding symmetry of H?
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7.3.1 Solution

1. Direct calculation:

{L1,H} =
∂L1

∂q
.
∂H

∂p
− ∂L1

∂p
.
∂H

∂q
=

p2
∂H

∂p3
− p3

∂H

∂p2
+ q2

∂H

∂q3
− q3

∂H

∂q2
=

p2
p3

m
− p3

p2

m
+ (q2

q3

|q| − q3
q2

|q| )V
′(|q|)
= 0.

Also {L2,H} = 0, similarly.

2. Direct calculation:

{L1, L2} =
∂L1

∂q
.
∂L2

∂p
− ∂L1

∂p
.
∂L2

∂q
=

p2
∂L2

∂p3
− p3

∂L2

∂p2
+ q2

∂L2

∂q3
− q3

∂L2

∂q2
=

p2q1 − p3.0 + q2(−p1)− q3.0 =

−(p1q2 − p2q3),

so that
L3 = p1q2 − p2q1.

Similarly to {L2,H} = 0, we get {L3,H} = 0. By cyclic permutation of
indices, we get all the Poisson brackets:

{L1, L2} = −L3

{L2, L3} = −L1

{L3, L1} = −L2

Then, for instance,

{{L1, L2}, L1} = −{L3, L1} = L2,

{{L1, L1}, L2} = −{0, L2} = 0,

{{L2, L1}, L1} = {L3, L1} = −L2,

which add to zero as required. Other cases are similar or easier.

3. We see, by the chain rule,

{L3,K} = 2L1{L3, L1}+ 2L2{L3, L2} = −2L1L2 + 2L2L1 = 0.
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4. The Hamiltonian is ω.(p ∧ q).

Thus Hamilton’s equations, with parameter θ are

d

dθ
q = q ∧ ω,

d

dθ
p = p ∧ ω,

which describe rigid rotation about the axis ω, by an angle θ, if |ω| = 1.

7.4 Normal modes - coursework

A mass m hangs vertically from a spring with spring constant k. The top end
of the spring is attached to the free end of a rope which passes around a light
wheel of radius a, which is free to rotate about its horizontal axis. A mass 2m
is fixed to the circumference of the wheel. The first mass is free to move in the
vertical direction.

Find the equilibria, and the normal modes about each equilibrium, with their
characteristic frequencies. Which equilibrium is stable?
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