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Abstract We consider a family of N -parameter reductions of Benney’s
equations, introduced in [1] as a generalisation of the dispersionless Lax equa-
tions. Using Geogdzhaev’s method [2], we solve the initial value problem for
the reduced system. This construction is carried out explicitly for the reduc-
tion associated with an elliptic curve.

1 Introduction

There has been much interest [3], [4], [5] in nonlinear integrable Hamiltonian
systems of hydrodynamic type, that is, of the form

∂ui

∂t
+ vij
∂uj

∂x
= 0,

which possess many conserved densities H(u), independent of the derivatives
of the ui, or equivalently, are expressible in Riemann invariant form

∂λi

∂t
+ μi(λ)

∂λi

∂x
= 0, (1)

where λi are the Riemann invariants and μ
i are the characteristic speeds.

Tsarev [5] has shown how the general solution of these may be constructed;
if

x− μi(λ)t = wi(λ), (2)
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and the wi satisfy the over-determined linear system

∂wi

∂λj

wi − wj
=

∂μi

∂λj

μi − μj
, i 6= j,

then solving the N equations (2) for the λi gives an implicit solution of
equation (1). One hierarchy which can be viewed as underlying many of
these is the Benney hierarchy [6]. The simplest of these is a nonlinear Vlasov
equation [7]

∂f

∂t2
+ p
∂f

∂x
−
∂A0

∂x

∂f

∂p
= 0, f = f(x, p, t). (3)

This is formally completely integrable in the sense of possessing infinitely
many conserved densities polynomial in the moments An =

∫∞
−∞ p

nfdp, a
Hamiltonian structure of Lie-Poisson type [8], [9], and hence infinitely many
commuting flows. However the initial value problem has not been solved in
general.
It is possible to reduce the hierarchy to a simpler system, in which only N

of the moments An are independent–this was discussed in [10], [11]. Each of
these reduced systems, with N independent variables, can be written in terms
of N Riemann invariants; one can therefore construct their general solution
in the form (2). In this paper we discuss how the general construction of
these reductions can also be used to solve the initial value problem for the
reduced equations. We obtain here an implicit solution (18) in Tsarev’s
hodograph form, but depending explicitly on the initial data. Such initial
value problems have been solved in some special cases; in [2], [14] Geogdzhaev
solved the dispersionless KdV and the Zakharov reduction of the Benney
hierarchy, while in [13] Kodama solved the dispersionless Toda and Gibbons
and Kodama [1] solved the dispersionless Lax equations.
The outline of this paper is as follows: In §2 we recall the Benney hierarchy

and its reductions. In §3 we construct a canonical transformation to new
coordinates in which the equations of motion are trivial, and hence solve
the initial value problem for the N -reduction. In §4 this construction is
worked out in detail for a special case, which can be parametrised by elliptic
functions, and it is solved in §5. Further work is discussed in §6.

2 The Benney Hierarchy

The well known Benney’s equations were derived from the equations of an
incompressible perfect fluid by Benney in 1973 [6]. This system can be rep-
resented by the Vlasov equation, equation (3); if the moments An are defined
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by:

An =

∫ ∞

−∞
pnfdp,

then we recover the moment equations:

∂An

∂t
+
∂An+1

∂x
+ nAn−1

∂A0

∂x
= 0, n = 0, 1, ∙ ∙ ∙ .

The equations of motion have the Lie-Poisson structure

∂f

∂t
+ {
δH

δf
, f}p,x = 0, (4)

where {, }p,x is the canonical Poisson bracket with respect to p and x. For
Benney’s equations, the Hamiltonian is H = 1

2
H2 =

1
2
(A2 + A

2
0), so that

δH
δf
= 1
2
p2 + A0. It was shown in [6] that the system has infinitely many

conservation laws and hence it is formally a completely integrable system.
A generating function p(λ) for the conserved densities can be constructed as
follows [8] [9]. Consider

λR(p) = p+ P

∫
f(x, p′, t)

p− p′
dp′, (5)

where P
∫
denotes the Cauchy principal value of the integral. It has the

asymptotic series (provided all the An exist)

λR = p+
A0

p
+
A1

p2
+ ∙ ∙ ∙ (6)

as |p| → ∞. λR satisfies [7] [8]

∂λR

∂t2
+ p
∂λR

∂x
−
∂A0

∂x

∂λR

∂p
= 0. (7)

Note that equation (7) has the same characteristics as (3). By holding λR
constant in the above, we obtain

∂p

∂t2
+
∂

∂x
(
1

2
p2 + A0) = 0.

The inverse of series (6) is an asymptotic series for p(λR),

p(λR) = λR −
H0

λR
−
H1

λ2R
−
H2

λ3R
− ∙ ∙ ∙ .
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We thus see that the Hn are conserved densities of the hierarchy. Any of
the Hn could be used as the Hamiltonian in (4). We then define the Benney
hierarchy as the commuting family of evolution equations

∂f

∂tn
+
1

n
{
δHn

δf
, f} = 0. (8)

It is convenient to denote hn =
1
n
δHn
δf
, which can be shown to be the unique

polynomial in p such that

hn(p)−
λnR
n
= O(

1

p
)

as |p| → ∞. λR satisfies an analogous equation to (8)

∂λR

∂tn
+ {hn, λR} = 0. (9)

If we consider a point (p̂, λ̂R), say, such that
∂λR
∂p
|p=p̂ = 0, equation (9)

becomes,
∂λ̂R

∂tn
+ μn(p̂)

∂λ̂R

∂x
= 0. (10)

Thus, λ̂R is a Riemann invariant with characteristic speed μn =
∂hn
∂p
.

We are now able to construct a family of distribution functions f(p, x, t)
which depend only on N Riemann invariants λ̂i(x, t). If in (5), instead of
taking a principal value integral along the real p-axis, we integrate along an
indented contour Λ, which passes below the point p, a new function λ+(p)
can be defined:

λ+(p) = p+

∫

Λ

f(x, p′, t)

p− p′
dp′, (11)

λ+ has the same asymptotics as λR but possesses an analytic continuation in
=m(p) > 0: if f satisfies a Hölder condition, then the Plemelj formulae for
λ+ give

λ+ = λR − iπf

as =m(p)→ 0+ [12]. Since f and λ are advected unchanged along the same
characteristics, it follows that if at any time, in any region of the x-p plane,
the relation: f = F (λ) holds, then this relation will continue to hold as
the region is carried around the plane. We now suppose that each line x =
constant passes through N disjoint such intervals Ij, with f = Fj(λR) in
the j-th region, and f = 0 otherwise. Then, (we have suppressed the x, t
dependence) equation (11) becomes:

λ+(p) = p+
N∑

j=1

∫

Λ

Fj(λR(p
′))

p− p′
dp′. (12)
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It is clear that the new function λ+(p) is analytic in the upper half p– plane,
and on Ij it takes the value λR− iπFj(λR). On the boundary, therefore, (12)
maybe interpreted as a nonlinear singular integral equation for λ+(p).
A family of solutions of this equation depending on N parameters λ̂i(x, t)

was constructed in [1] and discussed in more detail in [10], [11]. We sum-
marise this construction here: consider the upper half λ plane Γ+, and, N
fixed Jordan arcs ci in Γ+, which intersect the real axis at points λ

0
i . An ar-

bitrary point λ̂i is taken on each ci. A function p(λ+, λ̂i) is then constructed
with the following properties,

(a) It has branch points at λ̂i. The branch cuts γi are taken to run from
λ̂i back to λ

0
i along ci.

(b) p(λ+, λ̂i) is real on the real λ+–axis and on both sides of each γi.

(c) p(λ+, λ̂i) is analytic away from the cuts, and bounded on them.

(d) As |λ| → ∞, with =m(λ+) ≥ 0, p(λ+, λ̂i) has the expansion

p(λ+, λ̂i) ∼ λ+ +O(
1

λ+
).

It is important that the cut half plane must be simply connected, so we
require that these curves do not intersect one another. Note that the cuts γi
are given by the relation

=m(λ+) = −πFi(<e(λ+)),

We see that the Fi must all be continuous and negative. We then let the
function p(λ+, λ̂i) depend on x, t only through the N independent variables
λ̂i(x, t). At each turning point p̂k, we have

λ+ = λ̂k +
1

2

∂2λ

∂p2
|p=p̂k (p− p̂k)

2 +O((p− p̂k)
3),

and hence if ∂
2λ
∂p2
|p=p̂k 6= 0, we obtain:

p = p̂k +O((λ− λ̂k)
1
2 ). (13)

At each of the N points λ̂i, we then get the generalisation of (10)

∂λ̂i

∂tn
+ μn(p̂i)

∂λ̂i

∂x
= 0. (14)

Hence we have the following:
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Theorem 2.1 The Benney hierarchy

∂λ+

∂tn
+ {hn, λ+} = 0,

restricted to the solutions of

λ+(p) = p+
N∑

j=1

∫

Λ

Fj(λR(p
′))

p− p′
dp′,

constructed above, reduces to a diagonalisable Hamiltonian system of hydro-
dynamic type.

In this paper, we use the formal integrability of the Benney hierarchy to
solve the initial value problem of this reduced hierarchy explicitly. This has
been done for a few special cases [2], [14], [13], [1], but the construction is
generalised here for arbitrary Jordan arcs ci.

3 The Inverse Scattering Problem

3.1 A Canonical Transformation

We suppose, for convenience, that the initial data λ̂i(x)|t=0 satisfy

∂λ̂i

∂x
6= 0, ∀x,

and as x→ −∞, we require that λ̂i(x) |t=0→ λi0 sufficiently rapidly that
∫ x

−∞
(p(λ, x′)− λ) dx

converges. We then seek a mapping from the slit half plane Γ+ to the upper
half p-plane, which is the inverse of the analytic function λ+(p) given by
equation (12).1

In order to solve the reduced equation of motion (14), we perform a
transformation from the canonical variables (x, p) to the pair (η, λ), and a
new set of Hamiltonians kn(η, λ). The kn will shown to be independent of η,
so that the characteristics of the transformed equations become fixed straight
lines. Since λ̂i → λ0i sufficiently fast as x→ −∞, it follows that |p− λ| → 0

1for brevity, we will use λ̂ to denote the set {λ̂i, i = 1, ∙ ∙ ∙ , N} and λ for λ+ hereafter.
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rapidly for =m(p) > 0. We may thus construct a generating function for the
transformation, following [2], [14], we have,

S(x, λ, t) =

∫ x

−∞
(p(λ, λ̂)− λ)dx′ + λx. (15)

We recall that p depends on x and t only through the finitely many Riemann
invariants λ̂. We then have

p =
∂S

∂x
, η =

∂S

∂λ

kn =
∂S

∂tn
+ hn.

On integrating (13) and changing the integration variable from x to λ̂k, we
see that near the branch point λ̂k(x), S has the behaviour:

S = Sk +O((λ− λ̂k)
3
2 ), (16)

where Sk is non-singular. We note that η is bounded at the branch points.
On differentiating (15) with respect to tn, using the equation of motion

∂p
∂tn
+

∂
∂x
(hn) = 0. and integrating with respect to x, we get:

∂S

∂tn
= −hn(

∂S

∂x
, x) +

λn

n
,

so that kn =
λn

n
. With this Hamiltonian, Hamilton’s equations are

dλ

dtn
= 0

dη

dtn
= λn−1,

and hence the characteristics are the lines λ = constant, as required.

3.2 The Inverse Transformation

To invert this transformation, we need to reconstruct S(x, λ) from its asymp-
totics at ∞ and its discontinuities on the curves ci. At some point λi on the
curve ci, either p(λ,λ̂) is analytic for all x, or there exists some x

∗
i such that

λi = λ̂i(x
∗
i ). For x > x

∗
i , p(λ,λ̂) is real, thus the imaginary part of S is inde-

pendent of x. We know that S ∼ λx + O( 1
λ
) as |λ| → ∞, and we therefore

consider the function Ξ defined by

Ξ(x, λ) = S(x, λ)−
λn

n
tn − p(λ, λ̂)x+ hn(p(λ, λ̂))tn,
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which has asymptotics O( 1
λ
) as |λ| → ∞. Further we define

Ω(x, λ) = S(x, λ)−
λn

n
tn, (17)

Theorem 3.1 The solution of the reduced hierarchy

∂λ̂i

∂tn
+ μn(p̂i)

∂λ̂i

∂x
= 0

is given by the hodograph equations

x− μn(p̂i)tn = −
1

π

∑

j

P

∫

γj

d{=m(Ω(x, λ))}

p(λ, λ̂)− p̂i
.

Proof. Since p and hn are real on the cuts, the cuts grow monotonically in
x, and =m(Ω) = =m(S) − =m(λn)

n
tn, it follows that =m(Ω) is independent

of time on the cuts. It may thus be determined once and for all, from the
initial data λ̂i(x, 0). Further, we note that =m(Ω) = =m(Ξ). If we take a
curve L (see fig. 1 ) to be our contour, then by Cauchy’s theorem, for λ′ in
Γ+ − ∪Ni−1(γi) we have;

Ξ(x, λ′) =
1

2πi

∮

L

Q(λ, λ′) Ξ(x, λ) dλ,

where Q(λ, λ′) denotes the Cauchy kernel:

(p(λ, λ̂)− p(λ′, λ̂))−1
∂p(λ, λ̂)

∂λ
.

Splitting L into a large semi-circle γc, the real axis γ̃ and the cuts γi, we get,

Ξ(x, λ′) =
1

2πi

∫

γ̃+
∑
j γj+γc

Q(λ, λ′) Ξ(x, λ) dλ.

Now since Ξ(x, λ) and (p(λ, λ̂)− p(λ′, λ̂))−1 are both O( 1
λ
) as |λ| → ∞, the

integral over γc must vanish. Thus

Ξ(x, λ′) =
1

2πi

∫

γ̃+
∑
j γj

Q(λ, λ′) Ξ(x, λ) dλ.

Since p and hn are real on the real axis γ̃ and on the cuts γi

Ξ(x, λ′) =
1

2πi

∫

γ̃+
∑
j γj

Q(λ, λ′) <e(Ξ(x, λ)) dλ

+
1

2π

∑

j

∫

γj

Q(λ, λ′) =m(Ξ(x, λ)) dλ.
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(note that <e(Ξ(x, λ)) = <e(Ω(x, λ)) − p(λ, λ̂)x + hn(p(λ, λ̂), x)tn.) Now
we let λ′ → γj, so that p(λ′,λ̂) is real. Thus, if we indent γj to avoid the
singularity at λ′,

<e(Ξ(x, λ′)) + i=m(Ξ(x, λ′)) =
1

2πi

∫

γ̃

Q(λ, λ′) <e(Ξ(x, λ)) dλ

+
1

2πi

∑

j

P

∫

γj

Q(λ, λ′) <e(Ξ(x, λ)) dλ+
1

2
<e(Ξ(x, λ′))

+
1

2π

∑

j

P

∫

γj

Q(λ, λ′) =m(Ξ(x, λ)) dλ+
i

2
=m(Ξ(x, λ′)).

Collecting real parts on both sides, we have the Plemelj formula:

<e(Ξ(x, λ′)) =
1

π

∑

j

P

∫

γj

Q(λ, λ′) =m(Ξ(x, λ)) dλ

Now we differentiate this with respect to p(λ′,λ̂). We denote the speeds
∂hn(p)
∂p
by μn(p). Recalling that μn and p are real on the cuts as we indicated

before, we see that

∂ <e(Ξ(x, λ′))

∂p(λ′, λ̂)
=
1

π

∑

j

P

∫

γj

Q̃(λ, λ′) d{=m(Ξ(x, λ))}.

Here Q̃(λ, λ′) = (p(λ, λ̂)− p(λ′, λ̂))−1. This is just,

∂λ′

∂p

∂ <e(Ω(x, λ′))
∂λ′

− {x− μn(p)tn} =
1

π

∑

j

P

∫

γj

Q̃(λ, λ′) d{=m(Ξ(x, λ))}.

As we let λ′ approach λ̂i,
∂λ′

∂p
→ 0. Further by using equation (13) and (16),

we find
Ω = (nonsingular) +O(λ− λ̂i)

3
2

and also ∂λ
∂p
= O(λ− λ̂i)

1
2 near λ̂i, so that

∂
∂λ′
<e(Ω(x, λ′)) is bounded there,

thus ∂
∂p
<e(Ω(x, λ′)) must vanish at the branch point λ̂i. Consequently, we

obtain finally, the stated result:

x− μn(p̂i)tn = −
1

π

∑

j

P

∫

γj

d{=m(Ω(x, λ))}

p(λ, λ̂)− p̂i
. (18)

�

9



Formally, this is the same as Tsarev’s hodograph solution (2). In Tsarev’s
formula the wi are the characteristic speeds corresponding to any symmetry
of the system. For Benney’s equations, any such wi can be expressed in the
form of the right hand side of (18). To see this, we write the right hand side
of (18) as

−
1

π

∑

j

P

∫

γj

1

p(λ, λ̂)− p̂i

∂Ω

∂λ
dλ =

1

π

∑

j

P

∫

γj

∂Q(λ, λ̂)

∂p̂i
Ω dλ.

The expression Q(λ, λ̂) has the expansion for large λ:

1

λ
+

∞∑

1

m
hm(p̂i)

λm+1

and so its p̂i derivative has the expansion

∞∑

1

m
μm(p̂i)

λm+1
,

where the μm are the characteristic velocities of the different flows of the
hierarchy. We can thus think of the right hand side of (18) as a generating
formula for all such characteristic velocities. When Ω is constructed from
the initial data as above, this construction gives the required solution of the
initial value problem.

4 Elliptic Reductions

One of the simplest examples of this type of reduction is the elliptic case. We
consider two regions Γ1 and Γ2, where Γ1 is the upper half of the complex
p-plane, with six points marked on the real axis p1 < p̂1 < p2 < p3 < p̂2 < p4;
Γ2 is the upper half complex λ-plane with two vertical slits <e(λ) = λ01 and
<e(λ) = λ02, stretching from λ

0
1 to λ̂1and from λ

0
2 to λ̂2 (see fig. 2a, 2b). We

construct the unique conformal map between these two regions satisfying
λ = p+O(1

p
) as p→∞. This is of Schwarz-Christoffel type [15]:

λ(p) = p+

∫ p

−∞
{ϕ(p′)− 1} dp′; (19)

where ϕ(p) is ∏2
i=1(p− p̂i)√∏4
i=1(p− pi)

=
p2 − αp− β
√∏4

i=1(p− pi)
.
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This form guarantees that the interior angles at the vertices λ(p1), λ(p2),
λ(p3) and λ(p4) are

π
2
, and at λ̂1 and λ̂2 they are 2π. We impose four side

conditions, firstly that the pairs λ(p1) and λ(p2) and λ(p3) and λ(p4) should
coincide, and secondly that they take some prescribed constant real value:

λ(p1) = λ(p2) = λ
0
1,

λ(p3) = λ(p4) = λ
0
2.

We can replace one of these conditions by the condition that the residue at
infinity of the integrand ϕ(p) be zero. This can be satisfied by setting α to
be

α =
4∑

i=1

pi

2
. (20)

Then the map depends on only two parameters, which we take to be
=m(λ̂1) and =m(λ̂2). The differential

∏2
i=1(p− p̂i)√∏4
i=1(p− pi)

dp

is an Abelian differential of second kind on the elliptic Riemann surface

r21(p) =
4∏

1

(p− pi).

This can be constructed as two copies of the complex p-plane; the sheets are
joined along the two intervals [p1, p2] and [p3, p4]. The basis of cycles on this
surface consists of the a–cycle which we take to be a closed loop on one of
these sheets, circling the cut [p1, p2] in the positive sense, and the b–cycle
which passes from the interval [p3, p4] to the interval [p1, p2] on the upper
sheet, crosses the branch cut and returns to [p3, p4] on the lower sheet.
We emphasise that a and b intersect in only one point. The integral

around the a-cycle vanishes:
∮

a

ϕ(p) dp = 0,

while the corresponding integral around the b–cycle does not. Note that the
condition on the a–cycle can be satisfied by fixing β to be

β =

∫ p2

p1

(p2 − αp) dp
√∏4

i=1(p− pi)

/∫ p2

p1

dp
√∏4

i=1(p− pi)
. (21)
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The mapping (19) is calculated explicitly in the appendix. The solution is

λ(p) =
1

k
{γ(χ+ χ0) + γ(χ− χ0)}+ C,

where γ(χ) = −ζ(χ) + ζ(ω1)
ω1
χ, and χ, χ0 and k are given by

℘(χ) =
1

(p4 − p)
−
∑

i

1

3(p4 − pi)

℘(χ0) = −
∑

i

1

3(p4 − pi)
= ν,

k =

√

−
4

∏3
i=1(p4 − pi)

.

Here ζ is the Weierstrass zeta function.

5 Solutions Of The Inverse Problem

The characteristic speeds of the elliptic reduction (19) are found to be:
(
p̂1
p̂2

)

=

(
1
2
(α−

√
α2 − 4β)

1
2
(α +

√
α2 − 4β)

)

,

where α and β are defined by equation (20),(21):

α =
4∑

i=1

pi

2

and

β =

∫ p2

p1

(p2 − αp) dp
√∏4

i=1(p− pi)

/∫ p2

p1

dp
√∏4

i=1(p− pi)
.

The Riemann invariants are given by,

λ̂1 =
1

k
{γ(χ1 + χ0) + γ(χ1 − χ0)}+ C,

λ̂2 =
1

k
{γ(χ2 + χ0) + γ(χ2 − χ0)}+ C,

where χ1 and χ2 are given by:

χ1 = ℘−1{
1

p4 − p̂1
−
∑

i

1

3(p4 − pi)
},

χ2 = ℘−1{
1

p4 − p̂2
−
∑

i

1

3(p4 − pi)
}.
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Here the inverse Weierstrass function is defined to take values in the rectangle
0 ≤ <e(℘−1) ≤ ω1 and 0 ≤ =m(℘−1) ≤ ω3, and is therefore single valued in
the upper half p–plane. If p(λ, λ̂) which is a single valued map from Γ2 to
Γ1, is defined as the inverse function of λ(p), given by (30), then we have,
from the results of §2:

Ω|t=0=
∫ x

−∞
(p(λ, λ̂)− λ)dx′ + λx.

The solution is then given by the hodograph formula (18),

x−
1

2
(α∓

√
α2 − 4β)t2 = −

1

π

∑

j

P

∫

γj

d(=m(Ω(x, λ)))

p(λ, λ̂)− (α∓
√
α2 − 4β)

. (22)

We recall that the only independent variables here are =m(λ̂1) and =m(λ̂2),
and all the other quantities are defined in terms of these. Hence this formula
gives two equations for these two unknowns, which are indeed determined
implicitly as functions of x and t, for t small enough.

6 Conclusions And Further Problems

The reductions of the Benney hierarchy to N Riemann invariants, con-
structed in [10], are integrable systems of hydrodynamic type. Their general
solution is given by the hodograph formula. By considering the canonical
transformation which maps the characteristics of the Benney equation to
straight lines, and its inversion, we are able to obtain the precise solution of
the initial value problem, equation (18). This can in principle be applied to
any reduction of the class. We have carried it out specifically for the case
of two slits given by (22), in which λ(p) is found in terms of Weierstrass
ζ functions. We may extend this approach to the case of N straight slits
<e(λ) = λoi ; the map λ(p) may be written down in Schwarz-Christoffel form
as before, reducing to a hyperelliptic integral of genus (N−1), but it is much
harder to obtain explicit formulae in this case. Such a formula does exist
however and the method of [17] may be useful here. However, this has not
yet led to an effective result. It should be stressed that this hyperelliptic re-
duction of the Benney hierarchy is, despite some strong similarities, distinct
from the Whitham equations discussed in [18] and elsewhere.
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Appendix

We recall that the integral under consideration is:

λ(p) = p+

∫ p

−∞
{ϕ(p′)− 1} dp′, ϕ(p) =

p2 − αp− β
√∏4

i=1(p− pi)
.

Lemma 7.1 ϕ(p) dp is reduced by the transformation

p = p4 −
1

℘(χ)− ℘(χ0)
, dp =

℘′(χ)

(℘(χ)− ℘(χ0))2
dχ (23)

to

k
{a℘(χ)2 + b℘(χ) + c}
(℘(χ)− ℘(χ0))2

dχ, (24)

where a, b and c are polynomials in p4 and

℘(χ) =
1

(p4 − p)
−
∑

i

1

3(p4 − pi)

℘(χ0) = −
∑

i

1

3(p4 − pi)
= ν, k =

√
4

−
∏3
i=1(p4 − pi)

, (25)

here we have introduced the Weierstrass elliptic ℘ function [16] with half
periods ωi, i = 1, 2, satisfying =mω2ω1 > 0, and ℘

′(χ) is given by the standard
expression:

℘′2(χ) = 4℘3(χ)− g2 ℘(χ)− g3,

= 4
∏
(℘− ei).

Proof. This can be achieved by substituting equation (23) into ϕ(p) dp, we
reduce it to the following form:

ϕ(p) dp =

k
{ (p24 − αp4 − β)℘(χ)

2

℘′(χ)(℘(χ)− ℘(χ0))2
+
(α− 2p4 − 2ν(p24 − αp4 − β))℘(χ)

℘′(χ)(℘(χ)− ℘(χ0))2

+
ν2(p24 − αp4 − β)− ν(α− 2p4) + 1

℘′(χ)(℘(χ)− ℘(χ0))2

}
d℘(χ).

Letting a, b, c denote the coefficients of ℘2(χ), ℘(χ) and 1 respectively, we
have the required equation (24). �
Since the residue at p = ∞ of ϕ(p) dp is required to be zero, the following
result must hold.
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Proposition 7.1 The residue of the expression

k
{a℘(χ)2 + b℘(χ) + c}
(℘(χ)− ℘(χ0))2

dχ (26)

must vanish at χ = ±χ0 mod 2ωi.

Proof. We note that ℘(χ) is an even function, and that as χ→ ±χ0, p→∞.
We expand equation (26) near χ = ±χ0. The coefficient of 1

χ±χ0
is

k

℘′(χ0)3

{
b℘′(χ0)

2 + 2a℘(χ0)℘
′(χ0)

2 − (c+ b℘(χ0) + a℘(χ0)
2)℘′′(χ0)

}
. (27)

Since (c+ b℘(χ0) + a℘(χ0)
2) = 1, which can be verified by a direct substitu-

tion, we simplify the residue (27) to,

k

℘′(χ0)3
(b℘′(χ0)

2 + 2a℘(χ0)℘
′(χ0)

2 − ℘′′(χ0)). (28)

A straightforward calculation gives,

℘′(χ0)
2 = k2 = −

4
∏3
i=1(p4 − pi)

,

℘′′(χ0) =
1

2
℘′(χ0)

2(
∑

i

−(p4 − pi)). (29)

Substituting equations (25) and (29) into expression (28), the result follows.

�
We can now do the integration with the aid of the following,

Lemma 7.2

ϕ1 = k
{a℘(χ)2 + b℘(χ) + c}
(℘(χ)− ℘(χ0))2

differs only by a constant from

ϕ2 = k
{a℘(χ0)2 + b℘(χ0) + c}

℘′(χ0)2
{℘(χ+ χ0) + ℘(χ− χ0)}.

Proof. Since rational combinations of elliptic functions are elliptic, so are
ϕ1 and ϕ2. Now we look at the expansions for both expressions near χ = χ0,

ϕ1 ∼ k
a℘(χ0)

2 + b℘(χ0) + c

℘′(χ0)2
(

1

(χ− χ0)2
+ θ1(χ)),
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ϕ2 ∼ k
a℘(χ0)

2 + b℘(χ0) + c

℘′(χ0)2
(

1

(χ− χ0)2
+ θ2(χ)).

where θ1 and θ2 are analytic functions in χ near χ0. Similarly, near χ = −χ0,
we have

ϕ1 ∼ k
a℘(−χ0)2 + b℘(−χ0) + c

℘′(−χ0)2
(

1

(χ+ χ0)2
+ θ̃1(χ)),

ϕ2 ∼ k
a℘(−χ0)2 + b℘(−χ0) + c

℘′(−χ0)2
(

1

(χ+ χ0)2
+ θ̃2(χ)).

where θ̃1 and θ̃2 denote analytic functions in χ near −χ0. Now consider
the elliptic function ϕ3 = ϕ1 − ϕ2, since ϕ1 and ϕ2 have the same leading
terms in the expansion at the two singularities ±χ0, and there are no other
singularities, for the singularity at χ = 0 is removable. It follows that ϕ3
is holomorphic and elliptic and therefore must be a constant by Liouville’s
theorem. Thus, if we let this constant be c1, ϕ dp becomes

ϕ(p) dp = k
{a℘(χ0)2 + b℘(χ0) + c}

℘′(χ0)2
{℘(χ+ χ0) + ℘(χ− χ0) + c1}dχ.

�
Since the derivative of the Weierstrass zeta function ζ(χ) is −℘(χ), we have

λ(p) = −
1

k
{ζ(χ+ χ0) + ζ(χ− χ0)− 2

ζ(ω1)

ω1
χ}+ C

=
1

k
{γ(χ+ χ0) + γ(χ− χ0)}+ C. (30)

We note that λ(p) is periodic in χ with period 2ω1, for the integral around the

a-cycle vanishes, hence c1 = −2
ζ(ω1)
ω1
. The constant of integration C should

be chosen so that λ(p) has asymptotics p+O(1
p
) near infinity. The function

γ defined by −ζ(χ) + ζ(ω1)
ω1
χ, is periodic with period 2ω1. However it is not

itself an elliptic function, for 2ω2 is not a period:

γ(χ+ 2ω2) = γ(χ) +
πi

ω1
6= γ(χ).
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