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Abstract

We consider Benney’s equations, and their reductions to systems with finitely
many Riemann invariants. The equations describing these reductions were
given in [5] and a construction of a class of their solutions was briefly described
there. Here we discuss the properties of these equations in more detail, and in-
vestigate the relationship between these and Loewner’s [11] theory of conformal
mappings of slit domains. A dense family of explicit solutions is constructed.

1 Introduction

Benney’s equations [1], are, in their original form:





ut + uux −
(∫ y

0
ux dy

)

uy + hx = 0,

ht +
∂

∂x

(∫ h

0
u dy

)

= 0.
(1)
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They describe long waves on a shallow inviscid, incompressible fluid. Here u(x, y, t)
is the horizontal component of the fluid velocity, while h(x, t) is the height of the
free surface above the flat rigid bottom y = 0. The equations were derived on the
assumption that the horizontal length scales are much greater than the depth of the
fluid.
Benney showed that if moment variables An are defined by:

An(x, t) =
∫ h

0
un(x, y, t) dy, n = 0, 1, 2, . . . ,

they satisfy an infinite autonomous system, known as Benney’s moment equations:

Ant + A
n+1
x + nAn−1A0x = 0, n = 0, 1, 2, . . . . (2)

Another system which gives rise to the same system of moment equations is a Vlasov
equation:

ft + pfx − A
0
xfp = 0. (3)

Here f(x, p, t) is a distribution function in the (x, p)-plane. It will not necessarily be
positive, but for the transformation to (1) to make sense, it must be of definite sign.
The moments An are here defined by:

An(x, t) =
∫ ∞

−∞
pnf(x, p, t) dp.

Benney showed that the system has infinitely many conserved densities, polynomial
in the moments An. One construction of these, due to Kupershmidt and Manin [2],
uses the generating function:

λ(x, q, t) = q +
∞∑

n=0

An/qn+1. (4)

This can be understood as the asymptotic series as q → ∞ of either of the two
singular integrals:

= q +
∫ h

0
1/(q − u) dy (5)

= q +
∫ ∞

−∞

f

q − p
dp. (6)

For definiteness, we take the principal value of these integrals, (5) and (6). Later we
will choose a different definition, where the path of integration is indented, to make
the integral analytic in the upper half q-plane. If we calculate the first derivatives
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of λ with respect to x, q and t, and use the equation of motion (1), (2), or (3) then,
allowing q to depend on x and t, we find:

λt + qλx =
∂λ

∂q
(qt + qqx + A

0
x).

Then, if q is held constant, λ satisfies a Vlasov equation of the same form as (3),

λt + qλx − A
0
x

∂λ

∂q
= 0, (7)

while if λ is held constant, then q satisfies the conservation equation

qt + (q
2/2 + A0)x = 0 (8)

so if we invert the formal series (4), in the form

q(x, λ, t) = λ−
∞∑

n=0

Hn/λn+1, (9)

we see that each Hn is a polynomial in the moments, and is a conserved density of
(2). Further, if ∂λ/∂q vanishes for some qi, the corresponding value λi = λ(qi) is a
Riemann invariant, with characteristic speed qi:

(λi)t + qi(λi)x = 0. (10)

2 The reduction problem

An interesting problem, first studied in [5] is to find and classify those solutions of
(2) in which only finitely many of the moments An are independent of one another.
Many such reductions are known. One well known example is the Zakharov reduction
[3], which can be derived as the dispersionless limit of the vector NLS. It is given by:

An =
N∑

i=1

hi(ui)
n,

for if hi(x, t), ui(x, t), i = 1, . . . , N , satisfy the reduced equations of motion

{
(hi)t + (uihi)x = 0,
(ui)t + ui(ui)x + A

0
x = 0,
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then the An all satisfy (2). Hence the An are all expressible in terms of 2N independent
dynamical variables. Another reduction is the dispersionless (N − 1)-parameter Lax
reduction [7]; here the An are given by:

λ = q +
∞∑

n=0

An/qn+1 = (qN +
N−2∑

n=0

NUnq
N−n−2)1/N . (11)

so the moments Ai are all polynomials in the coefficients Ui. Benney’s equations then
reduce to the set of N − 1 equations

(Un)t + (Un+1)x − (N − n− 1)(U0)xUn−1 = 0, 0 ≤ n < N − 2, (12)

where UN−1 is taken to be zero. Both these reductions are Hamiltonian systems of
hydrodynamic type, and, as seen above, they can be diagonalised - written in terms
of Riemann invariants. Hence they can be solved by the hodograph transformation
[4].
To discuss the general properties of such reductions, we consider the consistency

conditions which they must satisfy. We may suppose, without loss of generality,
that the first N moments are independent variables, while the higher moments are
functions of them (cf. [5]):

Ak = ak(A0, ..., AN−1), k ≥ N.

The equations of motion for (A0, ..., AN−1) then become:

−Ajt = A
j+1
x + jAj−1A0x, j ≤ N − 2,

−AN−1t =
N−1∑

i=0

∂aN

∂Ai
Aix + (N − 1)A

N−2A0x,
(13)

while each higher moment (aN , ....) must satisfy the overdetermined system:

−akt =
N−2∑

j=0

∂ak

∂Aj
(Aj+1x + jAj−1A0x) +

∂ak

∂AN−1

(
N−1∑

i=0

∂aN

∂Ai
Aix + (N − 1)A

N−2A0x

)

=
N−1∑

j=0

∂ak+1

∂Aj
Ajx + ka

k−1A0x

Hence we find, on comparing coefficients of ∂Aj/∂x, the system

∂ak+1

∂Aj
=
∂ak

∂AN−1
∂aN

∂Aj
+
∂ak

∂Aj−1
1 ≤ j ≤ N − 1,

∂ak+1

∂A0
=
N−1∑

i=0

iAi−1
∂ak

∂Ai
+
∂ak

∂AN−1
∂aN

∂A0
− kak−1.

(14)
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The compatibility condition for these with k = N , gives a system S of N(N − 1)/2
nonlinear second order equations for the single unknown aN(A0, ..., AN−1). It can be
shown by induction that if S is satisfied then the analogous compatibility conditions
for ak in (14) with k > N , are satisfied too.
The simplest such system is found by setting N = 2; on denoting x = A0, y = A1

and z = a2 + (A0)2/2, we find that z satisfies the Monge–Ampère equation:

zxx + zyzxy − zxzyy + 1 = 0. (15)

If two new variables, the characteristic speeds u and v, are defined as

(−zy ±
√
z2y + 4zx)/2,

then this equation is transformed to an inhomogeneous hydrodynamic type system:
{
ux = vuy − 1

u−v
vx = uvy +

1
u−v .

(16)

This has one obvious hydrodynamic type conserved density (u + v), together with
several involving x, y and z explicitly. There is also a first-order integral (u− v)(u2y−
v2y); which does not fit into this pattern.
This system was also derived in another context, in [9, 10] where the conditions

for two quadratic Hamiltonians to be in involution were studied.
It can be shown, using a general result of Haantjes [8] that the reduced equations

of motion (13) corresponding to any solution of S can be diagonalised (in the domain
where the reduced system is hyperbolic), so it is reasonable to regard the moments
An as functions of the N Riemann invariants λi, each satisfying the equation (10).
The Vlasov equation (3) is then satisfied if

(p− qi)
∂f

∂λi
−
∂A0

∂λi
fp = 0,

and thus, on dividing by fp, we get:

∂p

∂λi
= −

∂A0

∂λi

p− qi
. (17)

The consistency conditions for these equations are:

∂2A0

∂λi∂λj
=
2∂A

0

∂λi

∂A0

∂λj

(qi − qj)2
,

∂qj

∂λi
=

∂A0

∂λi

(qi − qj)
.

(18)
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for each pair i 6= j. The solutions of this system are parametrised by 2N functions
of a single variable. Half of these are inessential, corresponding to the freedom to
reparametrise each λi separately without changing the form of (21), but the other N
functions distinguish essentially different reductions.
We can study the case N = 2 in more detail after a change of variables, using the

conserved densities A0 and A1 as dependent variables. The equations of motion (2)
give:

∂A1

∂λi
= qi
∂A0

∂λi
.

Then, on substituting for qi, (17) becomes:

∂p

∂λi
=

(
∂A0

∂λi

)2 /
(

p
∂A0

∂λi
−
∂A1

∂λi

)

,

and (18) then becomes:

∂2A0

∂λ1∂λ2
=

2
(
∂A0

∂λ1

)3 (
∂A0

∂λ2

)3

(
∂A1

∂λ1

∂A0

∂λ2
− ∂A1

∂λ2

∂A0

∂λ1

)2 ,

∂2A1

∂λ1∂λ2
=

(
∂A0

∂λ1

)2 (
∂A0

∂λ2

)2
(
∂A1

∂λ1

∂A0

∂λ2
+ ∂A1

∂λ2

∂A0

∂λ1

)

(
∂A1

∂λ1

∂A0

∂λ2
− ∂A1

∂λ2

∂A0

∂λ1

)2 .

(19)

We believe this form will be particularly convenient for investigating the open
question of whether the equation (15) is Darboux integrable.

3 A family of solutions

The following construction of some solutions of (18) was sketched in [5].
Since (3) and (7) have the same form, and in particular, the same characteristics,

any relation such as f(x, p, t) = F (λ(x, p, t)) is preserved by the dynamics. The
definition (6) for the generating function λ then becomes a nonlinear singular integral
equation:

λ(q) = q + P
∫ ∞

−∞
F (λ(p))

dp

q − p
. (20)

It is useful here to define a function λ+(q), where instead of taking the principal value
of the integral in (6), we indent the contour to pass below the point q, so that λ+
then can be analytically continued throughout the upper half q-plane. On the real
q-axis we have:

λ+ = λ− iπf.
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If F ≤ 0 then we may describe some solutions of (20) in terms of a conformal mapping
of a slit domain. The construction is to take the upper half complex plane Λ+, and
to draw some fixed Jordan arc Im(λ+) = −πF (Re(λ+)), from the real axis as far as
some end point λ∗0. Then we position a point λ

∗ on this arc (the position of this point
depends on a parameter u1) and make a slit along the arc from the real axes to λ

∗.
The function q(λ+), satisfying the equation (8), is determined uniquely by three

properties:

(i) q is real and continuous on the real λ+-axis and on both sides of the slit;

(ii) it is analytic in the cut half plane Λ+;

(iii) as |λ+| → ∞, with Im(λ+) > 0, then q = λ+ + O(1/λ+). The conserved den-
sities Hn, and hence the moments An, are then obtained from the asymptotics
of q(λ+) as |λ+| → ∞, by (9).

The equation of motion (8), expanded near the end point λ∗ of the slit then shows
that λ∗ is a Riemann invariant, with characteristic speed q(λ∗), for the derivative
∂(λ+)
∂q
vanishes there.
This construction may be generalised at once to the case of N non-intersecting

slits along fixed paths given by Im(λ+) = −πFj(Re(λ+)) each starting on the real
λ+-axis and ending in a branch point λ

∗
j ; these λ

∗
j(x, t) are the N Riemann invariants

of the system, and their characteristic speeds are q(λ∗j). The solution of the system
(18) thus can be reduced to the Riemann mapping problem for the half-plane with
N slits.

4 The Löwner equations and the Bieberbach Con-

jecture

The constructions of the previous sections bear a remarkable resemblance with the
celebrated Löwner (or Loewner) parametric method in the theory of extremal uni-
valent conformal mappings [13]. The Löwner method proved to be fruitful in the
final solution of the Bieberbach Conjecture (see an exposition of the history of this
Conjecture in [14]). Let us recall the main landmarks: if an analytic function

f(z) = z +
∞∑

n=2

anz
n (21)

(compare with (4)) is univalent in the unit disk D = {|z| < 1} (that is it maps D
injectively) then the Bieberbach Conjecture states that |ak| ≤ k. Originally proved by
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Bieberbach himself in 1916 for k = 2 and by Löwner [11] for k = 3, the problem stim-
ulated a great deal of effort, and many more partial results were obtained. In 1984,
the conjecture was completely proved by de Branges, who essentially used Löwner’s
method. This consisted in using one-parameter families of univalent mappings f(z, t)
satisfying the Löwner ordinary differential equation

∂f(z, t)

∂t
=
1

t
∙
1 + κ(t)f(z, t)

1− κ(t)f(z, t)
f(z, t) (22)

with a continuous function κ(t), |κ(t)| ≡ 1 and the initial data f(z, 0) ≡ z. The
solution of (22) maps the interior of the unit disk D onto D \ S(t) where S(t) is a
slit (its shape is fixed and depends on the choice of the function κ(t)) growing from
the boundary of D in the same way as our slits in the previous section. Actually our
equation (17) for N = 1 is a form of (22) for the upper half plane! So the general
case (17) with N > 1 describes a family of “generalized multi-parameter Löwner
slit mappings” as explained in the previous section. The main complication for the
case of several parameters is the compatibility conditions (18) for the parametric
multipliers ∂A

0

∂λi
— analogues of the parametric multiplier 1/t in (22) — and “slit

shape-descriptors” qj — analogues of κ(t).
A number of remarkable results for a similar problem of description of extremal

bounded univalent functions have been obtained ([17], [16]). Such functions map D
onto D with several (forked in general) slits. For our case this suggests that the map-
pings which will be constructed below in section 5 are extremals of the functionals
Hn in (9) so the explicit algebraic reductions of section 5 should be considered “soli-
tonic solutions” of (17)–(18); for the case N = 2 we obtain “solitons” for (15). These
properties of our explicit solutions will be discussed in a subsequent publication.

5 A class of explicit algebraic mappings

In some cases the mapping described in Section 3 can be constructed in explicit
terms; in particular, if the cuts are taken along the N − 1 rays Rj through the origin
arg(λ+) = jπ/N , 1 ≤ j ≤ N − 1, this construction gives the dispersionless Lax
reduction (11) ([7]):

λ =
N∏

i=1

(q − pi)
1/N ,

N∑

i=1

pi = 0.

(23)
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More generally, the (positive) angles αiπ between these rays can be chosen arbitrarily,
by putting

λ+ =
N∏

i=1

(q − pi)
αi ,

N∑

i=1

αi = 1,
N∑

i=1

αipi = 0.

(24)

The characteristic speeds qi are given, in this case, by the algebraic equation:

∂ log(λ+)

∂q
=
N∑

i=1

αi

q − pi
= 0, (25)

which will have at mostN−1 roots qi, interlacing the zeroes pi; the Riemann invariants
are the critical values λ∗i = λ+(qi).
We show how, starting form (23), a more general explicitM -parametric reductions

with M curvilinear slits may be constructed. Firstly we construct two such Lax
mappings

λ(1)(q) =




∫ q

0
N(M + 1)

N(M+1)−1∏

i=1

(q − v(1)i ) dq + v
(1)
N(M+1)





1
N(M+1)

=

(
PMN(q, v

(1)
1 , . . . , v

(1)
N(M+1))

) 1
N(M+1)

, (26)

λ(2)(q) =




∫ q

0
N(M + 1)

N(M+1)−1∏

i=1

(q − v(2)i ) dq + v
(2)
N(M+1)





1
N(M+1)

=

(
PMN(q, v

(2)
1 , . . . , v

(2)
N(M+1))

) 1
N(M+1)

, (27)

with polynomial PMN ; the constants v
(1)
s , v

(2)
s will be chosen later;

∑N(M+1)−1
s=1 v(k)s = 0.

Obviously the corresponding characteristic velocities of the reduced Benney systems
(10) are v(1)s , v

(2)
s and the Riemann invariants are λ

(1)
s = λ

(1)(v(1)s ), λ
(2)
s = λ

(2)(v(2)s );
arg(λ(1)s ) = arg(λ

(2)
s ) = sπ/N(M + 1), 1 ≤ s ≤ N(M + 1) − 1; only the moduli of

λ(1)s and λ
(2)
s differ. Now we choose v

(1)
s , v

(2)
s in such a way that all |λ

(1)
s | = |λ

(2)
s |

except |λ(1)N | > |λ
(2)
N |, |λ

(1)
2N | > |λ

(2)
2N |, . . . , |λ

(1)
MN | > |λ

(2)
MN |. This is achieved by choos-

ing algebraic functions vs(u1, . . . , uN(M+1)) — solutions of the following polynomial
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system






|λs|N(M+1) = |λs(vs)|N(M+1) = PMN(vs, v1, v2, . . . , vN(M+1)) = cs,

for 1 ≤ s ≤ N(M + 1)− 1, s 6= N, 2N, . . . ,MN ;

|λkN |N(M+1) = |λkN(vkN)|N(M+1) =
PMN(vkN , v1, v2, . . . , vN(M+1)) = uk, for k = 1, 2, . . . ,M ;

N(M+1)−1∑

s=1

vs = 0;

(28)

then we fix cs for both λ
(1), λ(2), fix u

(2)
k , and choose some variable parameters u

(1)
k ,

u
(1)
k > u

(2)
k . Then v

(1)
s = vs(u

(1)
k ), v

(2)
s = vs(u

(2)
k ) will guarantee |λ

(1)
s | = |λ

(2)
s | except

|λ(1)kN | > |λ
(2)
kN |.

The composite mapping

λ̂ =
(
λ(2)

)−1
◦ λ(1) (29)

is correctly defined on the upper half plane Λ+ mapping it onto Λ+ withM curvilinear
slits — images of the “upper” segments of the rays RkN of λ

(1) which are longer than
the rays of λ(2). Varying u

(1)
k and retaining u

(2)
k fixed (as well as cs) we get the desired

M -parametric slit mapping λ̂(u
(2)
1 , . . . , u

(2)
M ); other rays Rs, s 6= N, 2N, . . . disappear

after (λ(2))−1. Provided N may be chosen arbitrarily big we obtain for any given M
a family of explicit algebraic mappings with M curvilinear slits whose shapes depend
on arbitrary many additional parameters cs, u

(1)
k . In the next Section we show that

these M -parameter solutions of (14) form a locally dense subset of the set of all
(hyperbolic) M -parametric reductions of (2).

6 Local density of the family (29) of explicit al-

gebraic solutions

First of all we choose some star-shaped domain D in the upper half plane given
in polar coordinates by some positive continuous piecewise-analytic function ρ(θ),
D = {z : |z| < ρ(arg(z)), Im(z) > 0}. Let N increase and M be fixed; we set

u
(2)
k = ρ(

kNπ
N(M+1)

), cs = ρ(
sπ

N(M+1)
) in (28) in order to obtain the mapping λ(2) which

converges to a mapping λ̃(2) of the upper half plane Λ+ onto Λ+\D due to the classical
Caratheodory kernel theorem [12, Ch. II, § 5], [13, Ch. 3, § 3.1]. For λ(1) we have the
same ck in (28) and M free parameters u

(1)
k > ρ(

kNπ
N(M+1)

); λ(1) converges to a mapping

λ̃(1) of Λ+ onto Λ+ \ (D ∪RN ∪ . . . ∪RMN) where RkN are rectilinear segments along
the rays arg(z) = kNπ/N(M + 1). Since the parts of the boundary of D between
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RkN and R(k+1)N may be chosen arbitrarily we may expect that the mapping λ̃(q) =(
λ̃(2)

)−1
◦ λ̃(1) will give an arbitrary M -slit mapping described in Section 3. Here we

prove a weaker local version of such a density theorem, similar to the “completeness”
result proved in [15] for some (2+1)-dimensional solitonic equations of geometric

origin. Namely if we choose
(
u
(1)
kN

)N(M+1)
=
(
u
(2)
kN

)N(M+1)
+ ε (so the resulting M

slits are small enough) then for arbitrary K the first K coefficients in the expansions
zk(ε) = z

0
k + z

1
kε + z

2
kε
2 + . . . of the equations describing the slits may be chosen

arbitrary for N big enough.
Now one may reduce this local density problem for M slits to the case of 1 slit:

choosing D to be the half-circle everywhere except near the rays RkN where small
perturbations of its shape will be taken we see that λ̃(2)(q) may be represented as

an appropriate composition of mappings λ̃
(2)
(k) which are constructed using D(k) —

half circles with only one perturbation near RkN , k = 1, . . . ,M and the mapping
μ : Λ+ \ D(0) → Λ+; D(0) = {z : |z| < 1, Im(z) > 0} is the (unperturbed) half-circle.
Due to the Rado theorem [12, Ch. II, § 5, Th. 2], the Weierstrass uniform convergence
theorem [12, Ch. I, § 1, Th. 1], and the standard Schwartz symmetry principle applied
to each λ̃(k) near another ray RmN we conclude that a small (by value, not necessary by
curvature) perturbation in D(k) near RkN will have infinitesimal influence on the m-th
slit at the point of the boundary of D compared to the influence of the perturbation
of D(m) near RmN for m 6= k.
Thus we need to prove the local density result for M = 1 only which is achieved

with the standard technique of conformal mappings [12] since we have the necesary
parametric freedom here (1 function of 1 variable — the variation of the boundary of
D).

7 Further questions

The family of hyperbolic reductions described above suggests a more detailed study
of the case of non-hyperbolic reductions where we would not have fixed slits; such
study should use the technique developed in [16] for univalent bounded mappings.
Another question to be investigated in more detail concerns the characterisation of
these mappings as extrema of the conserved densities.
There is also the question of the Hamiltonian and geometrical properties of these

reductions of the Benney hierarchy, in particular a Riemannian metric, and how these
relate to the corresponding N-parameter family of univalent functions.
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