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Abstract

Geogdzhaev’s method is used to derive the solution to the initial value problem of
any dispersionless Lax equation. The particular case of the dispersionless Boussinesq
equation is worked out in detail and possible generalisations are considered.

1 Introduction

There has been much progress recently on Hamiltonian systems of the form:

∂λi

∂t
= u ji (λ)

∂λj

∂x
(1)

Whenever such a system admits a change of variables which diagonalises the matrix uji ,
so that the equation can be reduced to Riemann invariant form,

∂λi

∂t
= vi(λ)

∂λi

∂x
(2)

and it also possesses non-trivial symmetries in the same diagonal form, then it can be
solved exactly. Two important examples of such systems are Whitham’s equations [1,2]
and Benney’s equations [3,4,5,6]. In [7] Tsarev showed how such diagonalisable systems
can be solved; he gave the generalised hodograph solution

x+ vi(λ)t = wi(λ) (3)
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Here the functions wi satisfy a set of linear equations; these are the compatibility condi-
tions between (2) and a symmetry of it:

∂λi

∂s
= wi(λ)

∂λi

∂x
(4)

In [8] Geogdzhaev showed how the classical solution to the simplest such system:

∂u

∂t
= u
∂u

∂x
(5)

the dispersionless KdV equation, could be considered as the appropriate limit of the
solution of the KdV via the inverse scattering transform (but see also the work of Lax
and Levermore [9]). There and in [10] he also considered the Zakharov reduction of the
Benney hierarchy

∂ui

∂t
= ui
∂ui

∂x
+
N∑

j=1

∂hj

∂x

∂hi

∂t
=
∂(uihi)

∂x
(6)

This system may be considered as the quasi-classical, or dispersionless, limit of the N-
component vector NLS equation. In [11] we showed how these results could be interpreted
in terms of canonical transformations.
Here we consider another reduction of the Benney hierarchy, the dispersionless Lax

equations [12].

2 Dispersionless Lax Equations

The Benney hierarchy admits many reductions. Among the simplest are the following,
derived by the Gel’fand–Dikii ‘fractional power’ ansatz. We denote:

Λ = pN + A0p
N−2 + ∙ ∙ ∙+ AN−2 (7)

and then construct the Hamiltonians, polynomial in p and the (N − 1) variables Ai(x):

Hm = ((Λ)
m/N)+ (8)

Here the fractional power is to be regarded as a formal series in p, with leading term pm,
and the subscript + denotes its polynomial part. The equations of motion of the hierarchy
are then

∂Λ

∂tm
= {Hm,Λ} (9)



Here the braces denote the canonical Poisson bracket with respect to x and p. We note
that the right–hand side is identically zero if N divides m. It is useful to denote λ =
Λ1/N . Below we will perform a canonical transformation to variables where λ is the new
momentum; then the new Hamiltonian is just λm.
It is necessary to suppose that the polynomial Λ(p) has N distinct real zeroes, p1 >

p2 > . . . > pN ; it will have (N−1) distinct real turning points between these, and we may
see, from (9), that the values of Λ at these turning points are Riemann invariants. We
denote the stationary value of Λ found between pk+1 and pk as Λk, and the corresponding
value of p as p̃k. It is convenient to suppose that as x → −∞ each of these Riemann
invariants tends monotonically to zero, so that in this limit Λ → pN , and hence (p−λ)→ 0.
The generating function of the canonical transformation we need is

S(x, λ) =
∫ x

−∞
(p(x′, λ)− λ)dx′ + λx (10)

(always supposing the potentials Ai tend to zero sufficiently rapidly that this integral
converges).We then have

p(x, λ) =
∂S

∂x
(11)

while ξ, the canonical conjugate of λ, is given by

ξ =
∂S

∂λ
(12)

We will be able to rewrite the equations of motion in the new variables below, but first it
is important to make the definition of S as precise as possible. We choose λ to be analytic
except on the real p-axis, between pN and p1. Just above the real p-axis, between pk+1
and pk, λ has the argument kπ/N ; just below the cut, it has the argument −kπ/N . In
the λ-plane, this segment of the real p-axis thus appears as a pair of cuts, stretching along
the rays arg(λ) = ±kπ/N , as far as the branch points λk and λ∗k, where

λNk = Λk (13)

which was defined above. This choice of λ satisfies

λ = p+O(1/p) (14)

as |p| → ∞. The inverse function p(x, λ) is then seen to be analytic for all λ not on the
rays

arg(λ) = ±kπ/N (15)

where k = 1, . . . , N − 1. On either side of these cuts, p(x, λ) is real, between pk+1 and pk;
at the branch point λk, p takes the value p̃k. Since the Riemann invariants Λk approach



zero monotonically as x→ −∞, so do the 2(N − 1) branch points λk and λ∗k. Therefore,
for any λ on the ray arg(λ) = kπ/N , either p(x, λ) is analytic for all x, or there is some
unique value of x, x∗k(λ) say, such that λk(x

∗
k) = λ. Since, for x > x

∗
k(λ), p(x, λ) is real,

we find that the imaginary part of S is independent of x:

Im(S(x, λ)) =
∫ x∗

k
(λ)

−∞
Im(p(x′, λ)− λ)dx′ + x∗k(λ)Im(λ) (16)

3 The Time Evolution

The time dependence of p(x, λ) is as follows:

∂p

∂tm
=
∂

∂x
Hm(p(x, λ), x) (17)

We thus obtain the Hamilton-Jacobi equation:

∂S

∂tm
= Hm(p(x, λ), x)− λ

m = Hm(
∂S

∂x
, x)− λm (18)

Therefore if arg(λ) = kπ/N and x > x∗k(λ), Hm(p(x, λ)) is real, and we hence have:

∂

∂tm
Im(S(x, λ)) = −Im(λm) (19)

It is thus rather more convenient to consider, instead of S, the function

Φ = S + λmtm (20)

since Im(Φ) is time-independent on the cuts. Now, since p and Φ are both analytic away
from the cuts, so is the expression

Ψ = Φ−Hm(p, x)tm − px (21)

Since the term Hmtm + px is real on the cuts, evidently Im(Ψ) = Im(Φ) there. Finally
we note that, since S = λx+O(1/λ),

Ψ = O(1/λ) (22)

as |λ| → ∞.



4 The Inverse Problem

Since Ψ is analytic away from the cuts, and tends to zero at infinity, we have, by Cauchy’s
theorem,

Ψ(x, λ′) = −
1

2πi

∮

Γ

Ψ(x, λ)

p(x, λ)− p(x, λ′)
∂p

∂λ
dλ (23)

Here Γ is a contour which encircles the cuts anti–clockwise, but does not enclose λ′. We
may write Γ = Γ−−Γ+, where Γ+ is in the upper half λ-plane, Γ− in the lower. Clearly we
may replace Ψ by Φ in the integral without changing its value, as the difference between
them is an entire function of p. Thus we obtain:

Φ(x, λ′)−Hm(p(x, λ
′), x)tm − p(x, λ

′)x =

−
1

2πi

∮

Γ

Φ(x, λ)

p(x, λ)− p(x, λ′)
∂p

∂λ
dλ (24)

Differentiating with respect to λ′, and denoting ∂Hm/∂p as vm, we get:

∂Φ

∂λ′
−
∂p

∂λ′
(x+ vm(p(x, λ

′), x)tm) =

−
∂p

∂λ′
1

2πi

∮

Γ

Φ

(p(x, λ)− p(x, λ′))2
∂p

∂λ
dλ =

−
∂p

∂λ′
1

2πi

∮

Γ

∂Φ

∂λ

dλ

p(x, λ)− p(x, λ′)
=

∂p

∂λ′
1

π

∫

Γ+

∂ImΦ

∂λ

dλ

p(x, λ)− p(x, λ′)
(25)

Here we have first integrated by parts, and then collapsed Γ onto the cuts, noting that
Φ|Γ+ = Φ

∗|Γ− . At the (N − 1) points λk(x), the derivative ∂λ/∂p vanishes, while ∂Φ/∂λ
is bounded. Thus the residue ∂Φ/∂p vanishes also. We therefore obtain:

x+ vm(p̃k(x), x)tm = −
1

π

∫

Γ+

∂ImΦ

∂λ

dλ

p(x, λ)− p̃k(x)
(26)

Here the left-hand side is precisely Tsarev’s generalised hodograph formula, while the
right-hand side has no x-dependence, except through the potentials Ai(x). The equations
may thus be regarded as a set of N − 1 equations, depending on the parameters x and
tm, for the N − 1 potentials Ai.



5 The Dispersionless Boussinesq Equation

This, after the dispersionless KdV, is the simplest system in this class; however it is
sufficiently complicated to illustrate the method. The equation of motion is, from (10):

Λ = p3 + A0p+ A1

∂Λ

∂t2
= {p2 +

2

3
A0,Λ} (27)

or, more explicitly:
∂A0

∂t2
= 2
∂A1

∂x

∂A1

∂t2
= −
2

3
A0
∂A0

∂x
(28)

The function p(x, λ) is given by:

p =
3

√

(λ3 − A1 +
√
(λ3 − A1)2 + 4(A0/3)3)/2

+
3

√

(λ3 − A1 −
√
(λ3 − A1)2 + 4(A0/3)3)/2 (29)

The branch cuts for the two functions λ(p) and p(λ), as well as the contour Γ, are shown
below.

Figure 1: The branch cuts of the function λ(p) and the contours Γ± in the p-plane.

The two characteristic speeds are:

p̃1 =
√
−A0/3



p̃2 = −
√
−A0/3 (30)

while the corresponding branch points in the upper half λ-plane are:

λ1 = α
3
√
−2(−A0/3)3/2 − A1

λ2 = α
2 3
√
−2(−A0/3)3/2 + A1 (31)

where α denotes exp(iπ/3). We assume that A0 < 0, so that the system is hyperbolic,
and further that 4A30 + 27A

2
1 < 0, so that the cubic has three distinct real roots.

We then obtain:
Φ =

∫ x

−∞
(p(x′, λ)− λ)dx′ + λx

x±
√
−A0/3 t2 =

1

π

∫ ∞+iε

−∞+iε

1

p(x, λ)∓
√
−A0/3

d(ImΦ(λ(p, x))) (32)

In the inversion formula, we note that Φ is real except between the roots of Λ(p).

6 Conclusions

Here we have seen how the Cauchy problem for dispersionless Lax equations may be
solved in an effective, explicit way by considering the generating function of a canonical
transformation. Although the technical details of the method depend on the specific
problem studied, the principle is the same in each case. It is therefore reasonable to hope
that similarly effective solutions may be obtained to other open problems in this class.
Some important examples are:

1. The Benney equations. These are equivalent to the Vlasov equation:

∂f

∂t2
+ p
∂f

∂x
−
∂A0

∂x

∂f

∂p
= 0

An =
∫ ∞

−∞
pnf dp (33)

Here, in some cases, (with f < 0) we can obtain an equation like (25), but it is not
clear how we can use this to obtain the solution of the problem.

2. The Whitham equations.
∂λi

∂tn
=
ωn

ω1
(λi, λ)

∂λi

∂x
(34)



Here the ωi are meromorphic differentials on the Riemann surface

μ2 =
2g∏

0

(λ− λi) (35)

The differential ω1 plays a role analogous to the momentum p, and we may construct
a generating function S as above. The inversion problem is much more difficult,
however, as the Cauchy kernel no longer takes a simple form.

3. The Zabolotskaya–Khokhlov equation.

∂2A0

∂t3∂x
+
1

2

∂2A 20
∂x2

=
∂2A0

∂t22
(36)

Although this is intimately connected with the Benney hierarchy, it is not itself
a member of the class of systems (1); instead it arises as a consistency condition
between different equations in the Benney hierarchy. Also its initial value problem
is essentially different; only the moment A0 is given, throughout the (x, t2)-plane.
It has been shown [13] that the initial value problem for this system is equivalent
to the inverse scattering problem for the Hamilton-Jacobi equation

∂S

∂t2
= (
∂S

∂x
)2 + 2A0(x, t2) (37)

This difficult problem is the classical limit of the inverse problem for the time-
dependent Schrödinger equation, solved by Manakov [14].
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Figure 2: The branch cuts of the function p(λ) and the contours Γ± in the λ-plane.


