THE CHAIN RULE IN PARTIAL DIFFERENTIATION

1 Simple chain rule

If w = u(z,y) and the two independent variables z and y are each a function of just one
other variable ¢ so that z = z(t) and y = y(t), then to find du/dt we write down the

differential of u 5 5
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Then taking limits dxz — 0, dy — 0 and §t — 0 in the usual way we have
du Oudzx  Oudy

dt Oz dt | Oy dt

Note we only need straight ‘d’s’ in dz/dt and dy/dt because x and y are function of one
variable ¢t whereas u is a function of both x and y.

(2)

2 Chain rule for two sets of independent variables

If w = u(z,y) and the two independent variables x,y are each a function of two new
independent variables s,t then we want relations between their partial derivatives.

1. When v = wu(x,y), for guidance in working out the chain rule, write down the
differential 5 5
u u
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then when = = z(s,t) and y = y(s,t) (which are known functions of s and t), the
chain rule for us and u; in terms of u, and u, is
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2. Conversely, when u = u(s, t), for guidance in working out the chain rule write down
the differential 5 5
u U
ou=—0s+—d0t+... 6
R R (6)
then when s = s(z,y) and ¢t = t(z,y) (which are known functions of = and y) the

chain rule for u, and u, in terms of us and w; is
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3. It is important to note that: % #* (%) etc. Why? Because % means

differentiating s w.r.t « holding y constant whereas % means differentiating = w.r.t

s holding ¢t constant. This is the most commonly made mistake.



3 Polar co-ordinates

We want to transform from Cartesian co-ordinates in the two independent variables (z, y)
to two new independent variables (r,0) which are polar co-ordinates. The pair (r,0)
therefore play the role of (s,t) in (4), (5), (7) and (8). The relation between these two
sets of variables with x and y expressed in terms of r and 0 is

x=rcosf, y=rsinfd 9)
whereas the other way round we have

r? = 2% + 4%, 6 = tan~!
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From (9) we have
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From (10) we have
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Now we are ready to use the chain rule as in (3) and (4):
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Conversely
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Exercise: From (16) and (17) we can write the derivative operations 6% and 8% as

0 0 sinf\ 0 0 . 0 cosf\ 0O
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Use the expression for 8% on %Z in (16) to find uy, in terms of u,,, u.9, ugg and u, and

ug. Do the same to find u,,. Then show
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Note that % = cos f whereas % = cos 0, illustrating Item 3 at the bottom of the previous page.



4 Laplace’s equation: changing from Cartesian to polar co-
ordinates

Laplace’s equation (a partial differential equation or PDE) in Cartesian co-ordinates is
Ugg + Uyy = 0. (20)

We would like to transform to polar co-ordinates. In the handout on the chain rule (side
2) we found that the z and y-derivatives of u transform into polar co-ordinates in the
following way:

Uy = (cos ) u, — (SH;9> ug uy = (sin0) u, + (Cofe) ug. (21)
Likewise the operation % becomes
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and the operation g—y becomes
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Hence 5 9 N -
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2 from (22) u, from (21)

Now we work this out using the product rule. Remember that u, and ug are functions of
both r and 6. We get
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Now we do the same for u,, to get
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and therefore
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Summing (25) and (27) and remembering that cos? 6 + sin? § = 1, we find that
1
Uggy + Uyy = Upp + ;ur + ﬁuee (28)
and so Laplace’s equation converts to
1 1
Upy + —Ur + —ZUgg = 0. (29)
r r



