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1 1st order PDEs & the method of characteristics

1.1 The derivation of the auxiliary equations

Consider the semi-linear 1st order partial differential equation2 (PDE)

P (x, y)ux +Q(x, y)uy = R(x, y, u) (1.1)

where P and Q are continuous functions and R is not necessarily linear3 in u.

Consider solutions represented as a family of surfaces (which one depends on our boundary

conditions). Below is a picture of one of these surfaces which we’ll call

F (x, y, u) = 0 u = u(x, y) (1.2)

in (x, y, u)-space.

y

x

u

F (x, y, u) = 0

Because F = 0 in (1.2), it must be true that dF = 0 and so the chain rule gives

0 = dF = Fxdx+ Fydy + Fudu (1.3)

du = uxdx+ uydy (1.4)

Combining these two gives

0 = Fxdx+ Fydy +
(
uxdx+ uydy

)
Fu . (1.5)

Re-arranging terms we have

ux
[
Fudx

]
+ uy

[
Fudy

]
= −

[
Fxdx+ Fydy

]
. (1.6)

Now compare this with our PDE in (1.1) : a comparison of coefficients gives

Fudx = P ; Fudy = Q ; −
[
Fxdx+ Fydy

]
= R . (1.7)

Now, because −
[
Fxdx+Fydy

]
= Fudu we can represent (1.7) as a series of ratios which are

called the auxiliary equations

2The subscript notation ux = ∂u/∂x and uxy = ∂
2u/∂x∂y etc is used throughout.

3This PDE is also said to be quasi-linear if P and Q are dependent on u.
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dx

P
=

dy

Q
=
du

R
R 6= 0 (1.8)

dx

P
=

dy

Q
= 0 and du = 0 (R = 0) (1.9)

1. The first pair in the auxiliary equations can be re-written as a differential equation in

x, y without reference to u
dy

dx
=
Q(x, y)

P (x, y)
. (1.10)

In principle, this can be solved to give

λ(x, y) = c1 (1.11)

where c1 is a constant of integration. These curves or lines are called the characteristics

or characteristic curves of the PDE4. They form a family of curves because of the

arbitrariness of the constant c1.

2. If R = 0 we have du = 0 as in the second line of (1.8), in which case u = const = c2
on characteristics.

If R 6= 0 as in the first line of (1.8) then one of the other pair of differential equations
must be solved to get u = g(x, y, c2) on characteristics λ(x, y) = c1, where c2 is another

constant of integration.

3. The two arbitrary constants c1 and c2 can be thought of as being related by an arbitrary

function c2 = f
(
c1
)
.

1.2 Seven examples

Example 1 : Consider the simple PDE

ux + uy = 0 . (1.12)

Solution : Obviously P = 1 , Q = 1 and R = 0. Therefore the auxiliary equations (1.8) are

dx

1
=
dy

1
and du = 0 . (1.13)

Clearly the characteristics are the family of curves y = x+ c1 on which u = const = c2. The

arbitrary constants c1 and c2 are related by c2 = f
(
c1
)
in which case u = f

(
x − y

)
for an

4They are also sometimes referred to as Riemann invariants,
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arbitrary differentiable function f : this is the general solution. It can easily be checked

that this is indeed a solution of (1.13) by writing X = x− y and u = f(X). Then

ux = Xxf
′(X) uy = Xyf

′(X) (1.14)

However, Xx = 1 and Xy = −1 and so ux + uy = 0.

For Example 1, the characteristics are

the family of straight lines y = x+c1.

y

x

Example 2 : Consider the simple PDE

xux − yuy = 0 . (1.15)

subject to the boundary conditions u = x4 on the line y = x.

Solution : Obviously P = x, Q = −y and R = 0. Therefore the auxiliary equations (1.8) are

dx

x
= −

dy

y
and du = 0 . (1.16)

Clearly the characteristics come from
∫
dx

x
+

∫
dy

y
= const (1.17)

from which we discover that ln(xy) = const. Thus the characteristics are the family of

hyperbolae xy = c1. On these characteristics u = const = c2 in which case

u = f
(
xy
)

(1.18)

for an arbitrary differentiable function f : this is the general solution. It can easily be checked

that this is indeed a solution of (1.15) by writing X = xy and u = f(X). Then ux = Xxf
′(X)

and uy = Xyf
′(X) with Xx = y and Xy = x and so xux − yuy = 0.

Application of the BCs u = x4 on the line y = x now determines f because on y = x

x4 = f
(
x2
)

(1.19)

and so f(t) = t2 : however, f(t) is only defined5 for t ≥ 0. Thus our solution is

u(x, y) = x2y2 xy ≥ 0 , (1.20)

which means that it is only valid in the 1st and 3rd quadrants of the characteristic plane.

5The variable t is simply the argument of the function f(t) : the fact that it is called t has no meaning –

we could designate it by any symbol we wish.
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For Example 2, the characteristics are

the family of hyperbolae xy = c1 ≥ 0.

y

x

Example 3 : Consider the PDE

xux + yuy = u . (1.21)

subject to the boundary conditions u = y2 on the line x = 1.

Solution : Clearly P = x , Q = y and R = u. Therefore the auxiliary equations (1.8) are

dx

x
=
dy

y
=
du

u
. (1.22)

Clearly the characteristics come from

∫
dy

y
−
∫
dx

x
= const (1.23)

from which we discover that ln
(
y/x
)
= const. Thus the characteristics are the family of

lines y = x c1 : these are a fan of straight lines all passing through the origin. Now

integrate one of the other pair (either will do) : ln
(
u/x

)
= const which means that u = x c2.

Therefore, on characteristics

u = xf
(
y/x
)

(1.24)

for an arbitrary differentiable function f : this is the general solution. Now applying the BCs :

u = y2 on x = 1 we obtain f(y) = y2. Therefore, with these BCs, the solution is

u = x
(
y/x
)2
= y2/x . (1.25)

Example 4 : Consider the PDE

yux + xuy = x
2 + y2 , (1.26)

subject to the boundary conditions

u =

{
1 + x2 on y = 0

1 + y2 on x = 0
(1.27)

Solution : P = y , Q = x and R = x2 + y2. Therefore the auxiliary equations (1.8) are

dx

y
=
dy

x
=

du

x2 + y2
. (1.28)
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Characteristics come from the integral
∫
(xdx− ydy) = const (1.29)

which gives x2 − y2 = c1 and

du = y−1
(
x2 + y2

)
dx

= ydx+ x2y−1dx

= ydx+ xdy on characteristics

= d(xy) (1.30)

which integrates to

u = xy + c2 . (1.31)

Therefore, as the general solution, we have

u = xy + f
(
x2 − y2

)
. (1.32)

Applying the BCs :

1 + x2 = f(x2) ⇒ f(t) = 1 + t , t ≥ 0 ,

1 + y2 = f(−y2) ⇒ f(t) = 1− t , t ≤ 0 . (1.33)

Thus we end up with

f(t) = 1 + |t| (1.34)

so

u = xy + 1 + |x2 − y2| . (1.35)

Example 5 : (Exam 2001) Show that the PDE

yux − 3x
2yuy = 3x

2u , (1.36)

has a general solution of the form

yu(x, y) = f
(
x3 + y

)
(1.37)

where f is an arbitrary function.

(i) If you are given that

u(0, y) = y−1tanh y (1.38)

on the line x = 0, show that

yu(x, y) = tanh
(
x3 + y

)
. (1.39)

(ii) If you given that u(x, 1) = x6 on y = 1 show that

yu(x, y) =
(
x3 + y − 1

)2
. (1.40)
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Solution : P = y, Q = −3x2y and R = 3x2u. Thus the auxiliary equations are

dx

y
= −

dy

3x2y
=

du

3x2u
, (1.41)

which gives characteristics as solutions of dy/dx = −3x2. These are the family of curves
y + x3 = c1. Then we also have

du

u
= −

dy

y
, (1.42)

from which we discover that ln uy = const or uy = c2. Therefore the general solution is

yu(x, y) = f(y + x3) . (1.43)

Then, on x = 0,
f(y)

y
=
tanh y

y
(1.44)

in which case f(y) = tanh y and so

yu(x, y) = tanh (y + x3) . (1.45)

However, for the other BC u(x, 1) = x6 , we have x6 = f(1 + x3) from which we find

f(t) = (t− 1)2 where t = 1 + x3. With these BCs, the solution is

yu(x, y) =
(
y + x3 − 1

)2
. (1.46)

Example 6 : (Exam 2002) Show that the PDE

yux + xuy = 4xy
3 , (1.47)

has a general solution of the form

u(x, y) = y4 + f
(
y2 − x2

)
(1.48)

where f is an arbitrary function. If you are given that u(0, y) = 0 and u(x, 0) = −x4, show
that the solution is

u(x, y) = 2x2y2 − x4 . (1.49)

Solution : The auxiliary equations are

dx

y
=
dy

x
=

du

4xy3
. (1.50)

Characteristics come from the integration of xdx = ydy thereby giving and so y2 − x2 = c1.

We also have du = 4y3dy resulting in u = y4 + c2, thereby giving the general solution

u(x, y) = y4 + f
(
y2 − x2

)
. (1.51)
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Applying the two boundary conditions gives

0 = y4 + f
(
y2
)

⇒ f(t) = −t2 t ≥ 0

−x4 = f
(
− x2

)
⇒ f(t) = −t2 t ≤ 0 (1.52)

Thus we have

u(x, y) = y4 −
(
y2 − x2

)2
= 2x2y2 − x4 . (1.53)

One can check directly that this is indeed a solution.

Example 7 : (Exam 2003) Show that the PDE

y2ux + x
2uy = 2xy

2 , (1.54)

has a general solution of the form

u(x, y) = x2 + f
(
y3 − x3

)
(1.55)

where f is an arbitrary function.

(i) If u(0, y) = −y6 and u(x, 0) = x2 − x6 show that

u(x, y) = x2 − x6 + 2x3y3 − y6 (1.56)

and

(ii) If u(0, y) = exp(y3) and u(x, 0) = x2 + exp(−x3) show that

u(x, y) = x2 + exp(y3 − x3) . (1.57)

Solution : The auxiliary equations are

dx

y2
=
dy

x2
=

du

2xy2
. (1.58)

Characteristics come from the integration of x2dx = y2dy thereby giving the family of curves

y3 − x3 = c1. We also have du = 2xdx giving u = x2 + c2. Thus the general solution is

u(x, y) = x2 + f
(
y3 − x3

)
. (1.59)

Applying the two boundary conditions gives :

(i) For u(0, y) = −y6 and u(x, 0) = x2 − x6

− y6 = f(y3) ⇒ f(t) = −t2

x2 − x6 = x2 + f
(
− x3

)
⇒ f(t) = −t2 (1.60)

Therefore

u(x, y) = x2 −
(
y3 − x3

)2
= x2 − x6 + 2x3y3 − y6 . (1.61)
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(ii) For u(0, y) = exp(y3) and u(x, 0) = x2 + exp(−x3)

exp(y3) = f(y3) ⇒ f(t) = exp t

x2 + exp(−x3
)
= x2 + f(−x3) ⇒ f(t) = exp t (1.62)

Therefore, with f(t) = exp t the solution with these BCs is

u(x, y) = x2 + exp
(
y3 − x3

)
. (1.63)

2 Characteristics and 2nd order PDEs

2.1 Derivation of two sets of characteristics

Consider the class of 2nd order PDEs

Ruxx + 2Suxy + Tuyy = f (2.1)

where uxx, uyy & uxy are 2nd derivatives & R, S, T and f are functions of x, y, u, ux & uy.

For motivational purposes let us return to the class of 1st order semi-linear equations

Pux +Quy = R . (2.2)

Together with uxdx+ uydy = du, these can be written as

(
P Q

dx dy

)(
ux
uy

)

=

(
R

du

)

. (2.3)

However, from the auxiliary equations for (2.2)

dx

P
=
dy

Q
=
du

R
(2.4)

which, can be re-expressed as

det

(
P Q

dx dy

)

= 0 , (2.5)

the 2× 2 matrix on the LHS in (2.3) has zero determinant. This means that solutions for ux
and uy are not unique : characteristics are a family of curves, so ux and uy may differ on each

curve within the family.

Keeping this property in mind for the 2nd order class in (2.1) we use the chain rule to find

dF for a function

dF = Fxdx+ Fydy (2.6)

and then take F = ux and F = uy in turn.

d(ux) = uxxdx+ uxydy (2.7)

d(uy) = uxydx+ uyydy . (2.8)
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Together with (2.1) we now have a 3× 3 system :




R 2S T

dx dy 0

0 dx dy








uxx
uxy
uyy



 =




f

d(ux)

d(uy)



 . (2.9)

Zero determinant of the 3× 3 on the LHS side of (2.9) gives6

R(dy)2 − 2S dxdy + T (dx)2 = 0 (2.10)

which leads to the following formal classification :

Classification :

R

(
dy

dx

)2
− 2S

(
dy

dx

)

+ T = 0 , (2.11)

which has two roots
dy

dx
=
S ±
√
S2 −RT
R

. (2.12)

In principle, this provides us with two ODEs to solve : call these solutions ξ(x, y) = c1 and

η(x, y) = c2 ; these are our two sets of characteristic curves.

1. When S2 > RT the two roots are real : the PDE is classed as HYPERBOLIC ;

2. When S2 < RT the roots form a complex conjugate pair : the PDE is classed as

ELLIPTIC ;

3. When S2 = RT the double root is real : the PDE is classed as PARABOLIC .

A transformation of the PDE from derivatives in x, y into one in ξ, η produces the canonical

form of the PDE :

1. In the hyperbolic case we use ξ(x, y) and η(x, y) as the new co-ordinates in place of

x , y : these arise from integration of the two real solutions of (2.12).

2. The new co-ordinates ξ(x, y) and η(x, y) arise from the real and imaginary parts of the

complex conjugate pair of solutions of (2.12).

3. In the parabolic there is only one real (double) root ξ(x, y) of (2.12) : the other η(x, y)

may be chosen at will, usually for convenience ; for instance, if ξ = x+ y then it might

be convenient to choose η = x+ y for simplicity.

6Note the negative sign on the central term −2S dxdy in contrast to the positive sign in the PDE (2.1).
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2.2 Six Examples

Example 1 : The standard form of the wave equation is uxx − c−2utt = 0 but under the

transformation y = ct we obatin uxx − uyy = 0.

Solution : R = 1, S = 0 and T = −1. Thus R2−ST = 1 and we have a hyperbolic PDE.
(2.11) is (

dy

dx

)2
− 1 = 0 (2.13)

which has two real roots dy/dx = ±1. Thus our two sets of characteristics are

ξ = x+ y = c1 η = x− y = c2 . (2.14)

Clearly, therefore, the characteristics are two families of straight lines, the first of gradient +1

and the second −1.

For both Examples 1 & 2, the charac-

teristics are the 2 families of straight

lines x− y = c2 and x+ y = c1.

y

x

Now transform into the new co-ordinates ξ = x+ y , η = x− y. The chain rule gives

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
;

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
(2.15)

into which the definitions of ξ, η allow us to write ξx = 1, ηx = 1, ξy = 1 and ηy = −1.

∂

∂x
=
∂

∂ξ
+
∂

∂η
;

∂

∂y
=
∂

∂ξ
−
∂

∂η
(2.16)

Thus we have ux = uξ + uη and uy = uξ − uη. Moreover,

uxx =

(
∂

∂ξ
+
∂

∂η

)

(uξ + uη) ; uyy =

(
∂

∂ξ
−
∂

∂η

)

(uξ − uη) (2.17)

Thus we have

uxx = uξξ + 2uξη + uηη ; uyy = uξξ − 2uξη + uηη (2.18)

and so our PDE transforms to

0 = uxx − uyy = 4uξη . (2.19)
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The canonical form is uξη = 0. This can be integrated wrt ξ directly to give

uη = F (η) , (2.20)

where F is an arbitrary function of η, and then again wrt η

u(ξ, η) =

∫
F (η) dη + g(ξ)

= = f(η) + g(ξ) . (2.21)

Both f and g are arbitrary functions. Thus we have the general solution

u(x, y) = f(x− y) + g(x+ y) . (2.22)

Example 2 : Consider the PDE uxx + 2uxy + uyy = 0 : in this case R = 1, S = 1 and T = 1

so R2 − ST = 0. Thus the PDE is parabolic : (2.11) is

(
dy

dx
− 1

)2
= 0 (2.23)

which has a double real root dy/dx = 1. Thus one characteristic curve is

η = x− y (2.24)

and we have a free choice with the other : for convenience we choose this as ξ = x+ y, which

makes (ξ, η) the same as Example 1. Then we have

uxx = uξξ + 2uξη + uηη

uyy = uξξ − 2uξη + uηη

uxy = uξξ − uηη (2.25)

and so our PDE transforms to

0 = uxx + 2uxy + uyy = 4uξξ . (2.26)

Integration wrt ξ gives

uξ = f(η) (2.27)

for arbitrary f , and again

u(ξ, η) = ξf(η) + g(η) (2.28)

for arbitrary g. In terms of x, y this becomes

u(x, y) = (x+ y)f(x− y) + g(x− y) . (2.29)

One can check by direct differentiation – provided f, g have continuous second derivatives –

that (2.29) is a solution.
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Example 3 : Consider the PDE uxx + x2uyy = 0 : in this case R = 1, S = 0 and T = x2 so

R2 − ST = −x2 < 0. Thus the PDE is elliptic. (2.11) is

(
dy

dx

)2
+ x2 = 0 . (2.30)

Is there a natural canonical form? The formal solution of (2.30) is the complex function

y ± 1
2
ix2 = c1,2 . (2.31)

We could choose ξ and η as the real and imaginary parts respectively (or v-v). Take ξ = 1
2
x2

and η = y, then
∂

∂x
= x

∂

∂ξ

∂

∂y
=
∂

∂η
(2.32)

Thus ux = xuξ and uy = uη. Differentiating again is tricky because we have mixed old/new

derivatives on the RHS of ux = xuξ. To find uxx we use the product rule, differentiating wrt

x first and then using the chain rule

uxx = uξ + x
∂

∂x
uξ = uξ + x

2uξξ ,

uyy = uηη . (2.33)

Thus the PDE is

0 = uxx + x
2uyy = x

2 (uξξ + uηη) + uξ (2.34)

and so the canonical form is

uξξ + uηη +
1

2ξ
uξ = 0 . (2.35)

Example 4 (exam 05) : Consider the PDE 8uxx − 6uxy + uyy + 4 = 0. Show that this
is hyperbolic and that the characteristics are ξ = x + 2y and η = x + 4y. Hence show the

canonical form is uξη = 1. If u = cosh x & uy = 2sinh x on y = 0 , show that the solution is

u = ξη − 1
2
(ξ2 + η2) + cosh ξ . (2.36)

Solution : In this case R = 8, S = −3 and T = 1 so S2 − RT = 1. Thus the PDE is

hyperbolic. (2.11) is

8

(
dy

dx

)2
+ 6

dy

dx
+ 1 = 0 , (2.37)

which factorizes to (

4
dy

dx
+ 1

)(

2
dy

dx
+ 1

)

= 0 , (2.38)

so ξ = x+ 2y and η = x+ 4y as required. Now we transform to canonical variables

ux = uξ + uη uy = 2uξ + 4uη (2.39)
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and

uxx = uξξ + 2uξη + uηη ,

uxy = 2uξξ + 6uξη + 4uηη ,

uyy = 4uξξ + 16uξη + 16uηη . (2.40)

Therefore

0 = 8uxx − 6uxy + uyy + 4

= uξξ(8− 12 + 4) + uξη(16− 36 + 16) + uηη(8− 24 + 16) + 4

= 4− 4uξη . (2.41)

Thus we have the canonical form uξη = 1 which integrates to

u = ξη + F (η) +G(ξ) . (2.42)

Applying the BCs : on y = 0 we have ξ = η = x : with u = cosh x

cosh x = F (x) +G(x) + x2 . (2.43)

and with uy = 2sinh x

2sinh x =

{

2

(
∂

∂ξ
+ 2

∂

∂η

)

[F (η) +G(ξ) + ξη]

}

y=0

= 2 {G′(x) + 3x+ 2F ′(x)} (2.44)

Integrating this gives

G(x) + 2F (x) = cosh x−
3

2
x2 + c (2.45)

Solving for F (x) and G(x) between (2.45) and (2.43) gives

F (x) = c− 1
2
x2 G(x) = cosh x− 1

2
x2 − c (2.46)

in which case (2.42) becomes

u(ξ, η) = cosh ξ − 1
2

(
ξ2 + η2

)
+ ξη . (2.47)

Expressing this in x, y-coordinates it is found that

u(x, y) = cosh (x+ 2y)− 2y2 . (2.48)

Example 5 (exam 2003) : Consider the 2nd order PDE

y2
∂2u

∂x2
= x2

∂2u

∂y2
. (2.49)
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Show firstly that is is hyperbolic in nature. Secondly show that it has characteristics

ξ = y2 + x2 = const , η = y2 − x2 = const . (2.50)

Thirdly, show that its canonical form in characteristic variables is given by

∂2u

∂ξ∂η
=

1

2(ξ2 − η2)

(

η
∂u

∂ξ
− ξ

∂u

∂η

)

. (2.51)

Solution : (i) R = y2, S = 0 and T = −x2. Thus

y2
(
dy

dx

)2
= x2 (2.52)

so we have a hyperbolic PDE with two roots: ξ = y2 + x2 = const and η = y2 − x2 = const.

(ii) Using the chain rule we have

ux = ξxuξ + ηxuη = 2x(uξ − uη) uy = ξyuξ + ηyuη = 2y(uξ + uη) (2.53)

Using the product rule, and the fact that

∂

∂x
= 2x

(
∂

∂ξ
−
∂

∂η

)
∂

∂y
= 2y

(
∂

∂ξ
+
∂

∂η

)

(2.54)

we have

uxx = 2(uξ − uη) + 4x
2(uξξ − 2uξη + uηη)

uyy = 2(uξ + uη) + 4y
2(uξξ + 2uξη + uηη) (2.55)

Substituting this into y2uxx−x2uyy = 0, we get the answer, using the fact that y2 = 1
2
(ξ+η)

and x2 = 1
2
(ξ − η) so 4x2y2 = ξ2 − η2.

Example 6 (exam 2004) : Consider the 2nd order PDE

y2
∂2u

∂x2
−
∂2u

∂y2
= 0 . (2.56)

Show firstly that is is hyperbolic in nature. Secondly show that it has characteristics

ξ = 1
2
y2 + x = const η = 1

2
y2 − x = const . (2.57)

Thirdly, show that its canonical form in characteristic variables is given by

∂2u

∂ξ∂η
+

1

4(ξ + η)

(
∂u

∂ξ
+
∂u

∂η

)

= 0 . (2.58)

Solution: (i) R = y2, S = 0 and T = −1. Thus S2−RT = y2 > 0 so we have a hyperbolic
PDE with

y2
(
dy

dx

)2
= 1 . (2.59)
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Integration gives two roots: ξ = 1
2
y2 + x = const and η = 1

2
y2 − x = const.

(ii) Using the chain rule we have

ux = ξxuξ + ηxuη = uξ − uη uy = ξyuξ + ηyuη = y(uξ + uη) (2.60)

Using the product rule, and the fact that

∂

∂x
=
∂

∂ξ
−
∂

∂η

∂

∂y
= y

(
∂

∂ξ
+
∂

∂η

)

(2.61)

we have

uxx = uξξ − 2uξη + uηη uyy = (uξ + uη) + y
2(uξξ + 2uξη + uηη) (2.62)

Substituting this into y2uxx− uyy = 0, we get the answer, using the fact that y2 = ξ + η and
x = 1

2
(ξ − η).

3 The wave equation – a hyperbolic PDE

3.1 Physical derivation

α

T1

β

T2

δs

x
x x+ δx

In the figure consider a string in motion whose vertical displacement is u(x, t) at the point x

is taken as a snapshot at time t : it is assumed that (i) the vertical displacement is very small

so that the angles |α| and |β| are small ; (ii) stretching of the string is sufficiently negligible
that there is no horizontal motion. Thus, resolving horizontally, T1 cosα = T2 cos β ≈ T (the

tension). Now consider the small arc-length of string δs between the co-ordinate points x and

x + δx. Because the angles are small δs ' δx. If ρ is the string mass/unit density then the

vertical equation of motion for our small element of string of mass ρδx is

ρδx
∂2u

∂t2
= T2 sin β − T1 sinα (3.1)

The smallness of |α| and |β| allow us to write sinα ≈ tanα and sin β ≈ tan β to convert
(3.1) to

ρδx
∂2u

∂t2
= T (tan β − tanα) (3.2)
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However

tanα =

(
∂u

∂x

)

x

tan β =

(
∂u

∂x

)

x+δx

(3.3)

Thus (3.2) can be written as

∂2u

∂t2
=
T

ρ

((
∂u
∂x

)
x+δx
−
(
∂u
∂x

)
x

δx

)

(3.4)

Therefore, in the limit δx→ 0 (3.4) becomes

∂2u

∂t2
=
T

ρ

∂2u

∂x2
(3.5)

Tρ−1 has the dimensions of a squared velocity, denoted as c2, which is constant for a chosen

string with a fixed tension T . With

c2 =
T

ρ
(3.6)

(3.5) becomes the wave equation

∂2u

∂x2
−
1

c2
∂2u

∂t2
= 0 . (3.7)

3.2 d’Alembert’s solution of the wave equation

We now wish to solve the wave equation (3.7) subject to initial conditions on the initial shape

u(x, 0) and the initial velocity ∂u(x, 0)/∂t

u(x, 0) = h(x)
∂

∂t
u(x, 0) =

∂

∂t
u(x, t)

∣
∣
∣
∣
t=0

= v(x) (3.8)

where h(x) and v(x) are given functions. In example 1 in §2.2 we found the general solution
of uxx − uyy = 0 in (2.22). With y = ct this is

u(x, t) = f(x− ct) + g(x+ ct) (3.9)

where, so far, f and g are arbitrary functions. Applying (3.8)

f(x) + g(x) = h(x) g′(x)− f ′(x) =
1

c
v(x) . (3.10)

Integrating the latter equation from an arbitrary point x = a to x and then adding and

subtracting, it is found that

f(x) = 1
2
h(x)−

1

2c

∫ x

a

v(ξ)dξ −
1

2c
[g(a)− f(a)]

g(x) = 1
2
h(x) +

1

2c

∫ x

a

v(ξ)dξ +
1

2c
[g(a)− f(a)] (3.11)
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Now substitute this into (3.9) with x→ x− ct in f(x) and x→ x+ ct in g(x) to get

u(x, t) = 1
2
{h(x− ct) + h(x+ ct)}+

1

2c

∫ x+ct

x−ct
v(ξ) dξ . (3.12)

This is the d’Alembert’s solution which is valid on an infinite domain : note that the pair

of terms that contain the point x = a cancel leaving no trace.

3.3 Waves on a guitar string : Separation of variables

The same initial conditions as above in (3.2) are now used but now with boundary conditions

that fix the ends of a finite string down at x = 0 and x = L.

u(x, t)

x

x = Lx = 0

Now try a solution in the form

u(x, t) = X(x)T (t) (3.13)

which is substituted into the wave equation

∂2u

∂x2
−
1

c2
∂2u

∂t2
= 0 (3.14)

to get
X ′′

X
=
1

c2
T ′′

T
. (3.15)

Note that the LHS is a function of x but not t while the RHS is a function of t but not x.

Thus we can write
X ′′

X
= −λ2

T ′′

T
= −λ2c2 , (3.16)

where −λ2 is an arbitrary constant7. The ODE for X is X ′′ + λ2X = 0 which has a solution

X(x) = A cosλx+B sinλx . (3.17)

Applying the BC that u(x, 0) = 0 for all values of t means that X(0) = 0 from which it is

deduced that A = 0 : likewise from X(L) = 0 it is deduced that

B sinλL = 0 . (3.18)

7The choice of a negative constant is explained lower down.
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B = 0 is the trivial solution : sinλL = 0 gives an infinite number of solutions for λ, namely

λn =
nπ

L
n = 0, ±1, ±2 . . . (3.19)

giving an infinite set of solutions

Xn(x) = Bn sin
(nπx
L

)
. (3.20)

Here is the reason for a negative choice of the constant in (3.16) : a positive choice of

constant +λ2 would have made sin(λL) into sinh (λL). This has only one root at λ = 0

which corresponds to the trivial solution.

The time part in (3.16) can now be easily solved

Tn = Cn sin (ωnt) +Dn cos (ωnt) . (3.21)

where the infinite set of frequencies8 ωn are defined by ωn =
nπc
L
. This means that there is an

infinite set of solutions un = XnTn which can be summed to form the general solution. In so

doing the products of arbitrary constants BnCn etc are re-labelled

u(x, t) =
∞∑

n=1

sin
(nπx
L

)
[cn sin (ωnt) + dn cos (ωnt)] . (3.22)

Now apply the initial conditions from (3.8)

u(x, 0) = h(x) ;
∂

∂t
u(x, 0) = v(x) . (3.23)

The first says that

h(x) =
∞∑

n=1

dn sin
(nπx
L

)
(3.24)

This is the half-range Fourier series of h(x) on [0, L] which was discussed regarding

“periodic extension”; this means that the series can be inverted to find dn

dn =
2

L

∫ L

0

h(x) sin
(nπx
L

)
dx . (3.25)

Applying the second initial condition gives

v(x) =
∞∑

n=1

c̃n sin
(nπx
L

)
(3.26)

where c̃n = cnnπc/L. We have

c̃n =
2

L

∫ L

0

v(x) sin
(nπx
L

)
dx . (3.27)

8ω1 is the fundamental frequency ; ω2 is the 1st harmonic etc. Note that all harmonics are summed in the

solution. It is the balance of these that gives a musical instrument its quality.
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Question : Is this consistent with d’Alembert’s solution? For simplicity, take v = 0 so the

string is released from rest. The solution in (3.22) is

u(x, t) =
∞∑

n=1

dn sin
(nπx
L

)
cos

(
nπct

L

)

. (3.28)

Now use a standard trig formula to write this as

u(x, t) =
∞∑

n=1

1
2
dn

{

sin

(
nπx+ ct)

L

)

+ sin

(
nπ(x− ct)

L

)}

(3.29)

which is in the D’Alembert form.

Example Take the string from rest (v = 0) and h(x) as a “tent function” of height d at the

mid-point x = 1
2
L.

h(x) =

{
2d
L
x 0 ≤ x ≤ 1

2
L

2d
(
1− x

L

)
1
2
L ≤ x ≤ L .

The Fourier series for this – with no working – contains only odd sine-terms

u(x, t) =
8d

π2

∞∑

r=0

(−1)r

(2r + 1)2
sin

(
(2r + 1)πx

L

)

cos

(
(2r + 1)πct

L

)

. (3.30)

Note that the coefficients of the higher harmonics die off as n−2.

4 Laplace’s equation – an elliptic PDE

The simplest elliptic PDE is Laplace’s equation in cartesian co-ordinates where R = T = 1

and S = 0

uxx + uyy = 0 S2 −RT = −1 < 0 . (4.1)

In two-dimensions, the method of separation of variables is useful but needs to be considered

in the context of the BCs. Solutions in terms of polar co-ordinates will be our concern of the

subsection §4.2 concerning flow around a cylinder. First we look at a simpler problem.

4.1 An infinite strip

Physically Laplace’s equation often occurs in situations where the diffusive flow of heat or

some other scalar in a two-dimensional piece of material is governed by the diffusion or heat

equation ut = α∇2u where ∇2 is the Laplacian ∇2 = ∂2/∂x2 + ∂2/∂y2. When the system

has reached a steady state – so ut = 0 – we are left with the problem of solving Laplace’s

equation (4.1). The strip below is an example of how to solve this with a set of given boundary

conditions (BCs).
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y

x

u ↑ 0 as y →∞

uxx + uyy = 0

u = f(x)

u = 0 u = 0

π

Figure : The region is a strip bounded between x = 0 (y-axis) and x = π on which u = 0 while

u = f(x) on y = 0.

The infinite strip, as in the figure above, has u = 0 on the sides and u = f(x), a given

function, on the bottom edge. To remain physical it is also necessary to insist that u→ 0 as
y →∞. Inside the strip u satisfies Laplace’s equation (4.1) which we attempt to solve by the
method of separation of variables

u(x, y) = X(x)Y (y) (4.2)

and thus (4.1) becomes X ′′Y +XY ′′ = 0. Therefore

X ′′

X
= −

Y ′′

Y
= −λ2 (4.3)

the choice of ± on the far RHS is dependent on the BCs. Clearly we have the two ODEs

X ′′ + λ2X = 0 Y ′′ − λ2Y = 0 (4.4)

whose solution is

X = A cosλx+B sinλx , Y = Ceλy +De−λy . (4.5)

The BC at x = 0 insists that A = 0 and at x = π that sinλπ = 0. Thus λn = n where n

is an integer. For n > 0 we must also choose C = 0 to be sure that there is no exponential

growth as y →∞. We are left with a summed infinite set of solutions

u(x, y) =
∞∑

n=1

bne
−ny sinnx (4.6)

To find the bn requires the use of the last BC u = f(x) on y = 0

f(x) =
∞∑

n=1

bn sinnx . (4.7)
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This is the Fourier sine-series expansion of f(x) on [0, π] which inverts to

bn =
2

π

∫ π

0

f(x) sinnx dx . (4.8)

For example, if f(x) = 1 – that is, a uniform value – then

bn =

{
0 n even
4
nπ

n odd
(4.9)

With n = 2r + 1, our solution is

u(x, y) =
4

π

∞∑

r=1

e−(2r+1)y
(
sin(2r + 1)x

2r + 1

)

. (4.10)

Note that this solution correctly decays exponentially as y → ∞ and is zero at x = 0 and
x = π.

4.2 Fluid flow around a cylinder

4.2.1 Laplace’s equation in polar co-ordinates

Consider Laplace’s equation in polar co-ordinates (see handout on The Chain Rule)

∂2Φ

∂r2
+
1

r

∂Φ

∂r
+
1

r2
∂2Φ

∂θ2
= 0. (4.11)

Looking for separable solutions of the form Φ(r, θ) = R(r)H(θ) we find

r2

R

(

R′′ +
1

r
R′
)

= −
H ′′

H
= λ2. (4.12)

Choosing the separation constant negative anticipates solutions for H(θ) that need to be

periodic. Solving H ′′ + λ2H = 0 gives

H(θ) = A cosλθ +B sinλθ. (4.13)

When λ 6= 0 solving R′′ + 1
r
R′ − λ2

r2
R = 0 gives

R(r) = a rλ + b r−λ . (4.14)

If we require Φ(r, θ) to be continuous9 in θ; that is, Φ(r, θ) = Φ(r, θ + 2nπ), then λ = n (an

integer). The general 2π-periodic solution of (4.11) is

Φ(r, θ) =
∞∑

n=1

(
an r

n + bn r
−n
)
(An cosnθ +Bn sinnθ) . (4.15)

9The case with λ = 0 where H(θ) = Ãθ + B̃ and R(r) = ã ln r + b̃ is not 2π-periodic in θ.
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4.2.2 Calculating the flow around the cylinder

Consider an incompressible irrotational 2D fluid with velocity vector u flowing past a cylinder

of radius a, as in the figure : the centre of the cylinder can be considered to be at r = 0. At

r = ±∞ the flow is laminar : that is, u = (0, U) where U is a constant.

U →

r = a

•

(i) The divergence-free condition divu = 0 means that a stream function ψ(x, y) exists

u = (ψy,−ψx) = îψy − ĵψx.

Irrotational flow (curlu = 0) means that

∣
∣
∣
∣
∣
∣
∣

î ĵ k̂

∂x ∂y ∂z
ψy −ψx 0

∣
∣
∣
∣
∣
∣
∣
= 0

Thus we have Laplace’s equation for the stream function

ψxx + ψyy = 0 ⇒
∂2ψ

∂r2
+
1

r

∂ψ

∂r
+
1

r2
∂2ψ

∂θ2
= 0. (4.16)

(ii) The alternative way, using the potential, starts from curlu = 0. This means that a

potential function φ exists such that u = ∇φ = îφx + ĵφy. From divu = 0, we have
Laplace’s equation ∇2φ = φxx + φyy = 0 which is also (4.11) in polar co-ordinates.

Thus we want to solve (4.16) under the circumstance where the fluid, of constant horizontal

speed U at infinity, flows past a solid cylinder of radius a centred at the origin. The fact that

no fluid can cross the surface of the cylinder translates into the boundary condition

∂ψ

∂θ

∣
∣
∣
∣
r=a

= 0 . (4.17)

Since the flow at r = ±∞ is horizontal we have u = U î+ 0ĵ there, which means that

ψ = Uy = Ur sin θ at r =∞. (4.18)

We want to solve Laplace’s equation (4.16) in the infinite domain around the cylinder of radius

a with prescribed BCs (4.17) and (4.18). Separating the n = 1 term from the rest of the
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infinite sum in (4.15) we have

ψ(r, θ) =
(
a1 r + b1 r

−1
)
(A1 cos θ +B1 sin θ)

+
∞∑

n=2

(
an r

n + bn r
−n
)
(An cosnθ +Bn sinnθ) . (4.19)

Applying the BC in (4.18) we find that

a1B1 = U A1 = 0 (4.20)

and all coefficients An = Bn = 0 for n ≥ 2. This leaves us with

ψ = U

(

r +
b1

a1

1

r

)

sin θ. (4.21)

Finally applying the BC (4.17) at r = a we find b1/a1 = −a2 giving the stream function as

ψ = U

(

r −
a2

r

)

sin θ. (4.22)

5 The diffusion equation – a parabolic PDE

Consider a very thin metal bar on the x-axis on [0, L], as in the figure below, with temperature

u = 0 at both ends. For standard materials, the equation that normally governs heat flow is

the diffusion equation10

ut = κuxx (5.1)

where κ is a material constant (thermal conductivity) which has the dimensions (length)2/time.

In this section we solve two problems : on a finite one-dimensional domain [0, L] and similarity

solutions on an infinite domain.

5.1 Separation of variables on a finite domain

x = 0 x = L

u = 0 u = 0

u(x, 0) = f(x) at t = 0

The BCS are u = 0 on both x = 0 and x = L with11 an initial distribution of temperature

u(x, 0) = f(x). Separation of variables

u(x, t) = X(x)T (t) (5.2)

10In 2 dimensions the equivalent is ut = κ∇2u where ∇2 is the Laplacian ∇2 = ∂2/∂x2 + ∂2/∂y2.
11If the end conditions are different, say u = 0 at x = 0 and u = u0 at x = L, then the following trick is

useful : define u(x, t) = u0x/L + v(x, t) with v = 0 on x = 0 and x = L with v satisfying vt = κvxx, then

the problem reduces to the one solved above with u = 0 at both ends.
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gives
X ′′

X
=
1

κ

T ′

T
= −λ2 (5.3)

for which we write

X ′′ + λ2X = 0 with X(0) = X(L) = 0 . (5.4)

This we have solved before : (5.4) gives X = A cosλx + B sinλx in which A = 0 because

X(0) = 0, whereas

sinλL = 0 ⇒ λn =
nπ

L
with Xn(x) = Bn sin

(nπx
L

)
. (5.5)

The time part T ′ = −λ2κT solves to become

Tn(t) = Tn,0 exp

(

−
n2π2κt

L2

)

(5.6)

Thus the general solution is a linear sum of all the solutions for each n

u(x, t) =
∞∑

n=1

bn exp

(

−
n2π2κt

L2

)

sin
(nπx
L

)
, (5.7)

where the constants BnTn,0 = bn. Applying the ICs gives

f(x) =
∞∑

n=1

bn sin
(nπx
L

)
, (5.8)

and, as before, this Fourier half-range series can be inverted to give the bn

bn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx . (5.9)

5.2 Similarity solutions on an infinite domain

The diffusion equation in one-dimension is ut = κuxx has been solved above on a domain

of finite length. What if L = ∞? Clearly, the method of separation of variables no longer
works and we need a different approach. The key lies in κ, the diffusion coefficient, which has

dimension L2T−1. If we are looking for solutions on an infinite domain −∞ ≤ x ≤ ∞ where
there is no natural length scale, then we can use the dimensionless variable

η =
x
√
κt

(5.10)

and look for solutions in the form

u(x, t) = tpg(η) (5.11)
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where the number p and the function g(η) are to be determined. Substituting (5.11) into

ut = κuxx we find that

tp−1
(
pg −

η

2
g′ − g′′

)
= 0 (5.12)

and so

g′′ +
η

2
g′ = pg. (5.13)

This is difficult to solve for arbitrary values of p but for special values we can do something.

1. Take p = 0 and (5.13) is easily solved to give

g′(η) = Ae−η
2/4 (5.14)

where A is a constant. Integrating again we have

g(η) = A

∫ η

−∞
e−η

′2/4 dη′. (5.15)

This gives a full solution for u(x, t)

u(x, t) = A

∫ x√
κt

−∞
e−η

′2/4 dη′ = 2A
√
π erf

(
x

2
√
κt

)

(5.16)

where the error function erf (ξ) is defined as erf (ξ) = 1√
π

∫ ξ
−∞ e

−y2 dy. This has the

property that erf (∞) = 1.

2. Now define G = g eη
2/4 and we observe that 5.13) can be transformed into

G′′ −
η

2
G′ = (p+ 1/2)G. (5.17)

This has the trivial solution G = b = const provided p = −1/2. Hence

g(η) = b e−η
2/4. (5.18)

This gives a full solution for u(x, t) in the form

u(x, t) = b t−1/2e−
x2

4κt . (5.19)
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