

Ae2 Mathematics : 1st and 2nd order PDEs

J. D. Gibbon

(Professor J. D Gibbon¹, Dept of Mathematics)

j.d.gibbon@ic.ac.uk

<http://www2.imperial.ac.uk/~jdg>

These notes are not identical word-for-word with my lectures which will be given on a WB. Some of these notes may contain more examples than the corresponding lecture while in other cases the lecture may contain more detailed working. I will not be handing out copies of these notes – **you are therefore advised to attend lectures and take your own.**

Contents

1	1st order PDEs & the method of characteristics	1
1.1	The derivation of the auxiliary equations	1
1.2	Seven examples	2
2	Characteristics and 2nd order PDEs	8
2.1	Derivation of two sets of characteristics	8
2.2	Six Examples	10
3	The wave equation – a hyperbolic PDE	15
3.1	Physical derivation	15
3.2	d'Alembert's solution of the wave equation	16
3.3	Waves on a guitar string: Separation of variables	17
4	Laplace's equation – an elliptic PDE	19
4.1	An infinite strip	19
4.2	Fluid flow around a cylinder	21
4.2.1	Laplace's equation in polar co-ordinates	21
4.2.2	Calculating the flow around the cylinder	22
5	The diffusion equation – a parabolic PDE	23
5.1	Separation of variables on a finite domain	23
5.2	Similarity solutions on an infinite domain	24

¹Do not confuse me with Dr J. Gibbons who is also in the Mathematics Dept.

1 1st order PDEs & the method of characteristics

1.1 The derivation of the auxiliary equations

Consider the semi-linear 1st order partial differential equation² (PDE)

$$P(x, y)u_x + Q(x, y)u_y = R(x, y, u) \quad (1.1)$$

where P and Q are continuous functions and R is not necessarily linear³ in u .

Consider solutions represented as a family of surfaces (which one depends on our boundary conditions). Below is a picture of one of these surfaces which we'll call

$$F(x, y, u) = 0 \quad u = u(x, y) \quad (1.2)$$

in (x, y, u) -space.

Because $F = 0$ in (1.2), it must be true that $dF = 0$ and so the chain rule gives

$$0 = dF = F_x dx + F_y dy + F_u du \quad (1.3)$$

$$du = u_x dx + u_y dy \quad (1.4)$$

Combining these two gives

$$0 = F_x dx + F_y dy + (u_x dx + u_y dy) F_u. \quad (1.5)$$

Re-arranging terms we have

$$u_x [F_u dx] + u_y [F_u dy] = -[F_x dx + F_y dy]. \quad (1.6)$$

Now compare this with our PDE in (1.1): a comparison of coefficients gives

$$F_u dx = P; \quad F_u dy = Q; \quad -[F_x dx + F_y dy] = R. \quad (1.7)$$

Now, because $-[F_x dx + F_y dy] = F_u du$ we can represent (1.7) as a series of ratios which are called the **auxiliary equations**

²The subscript notation $u_x = \partial u / \partial x$ and $u_{xy} = \partial^2 u / \partial x \partial y$ etc is used throughout.

³This PDE is also said to be quasi-linear if P and Q are dependent on u .

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{du}{R} \quad R \neq 0 \quad (1.8)$$

$$\frac{dx}{P} = \frac{dy}{Q} = 0 \quad \text{and} \quad du = 0 \quad (R = 0) \quad (1.9)$$

1. The first pair in the auxiliary equations can be re-written as a differential equation in x, y without reference to u

$$\frac{dy}{dx} = \frac{Q(x, y)}{P(x, y)}. \quad (1.10)$$

In principle, this can be solved to give

$$\lambda(x, y) = c_1 \quad (1.11)$$

where c_1 is a constant of integration. These curves or lines are called the **characteristics** or **characteristic curves** of the PDE⁴. They form a family of curves because of the arbitrariness of the constant c_1 .

2. If $R = 0$ we have $du = 0$ as in the second line of (1.8), in which case $u = \text{const} = c_2$ on characteristics.

If $R \neq 0$ as in the first line of (1.8) then one of the other pair of differential equations must be solved to get $u = g(x, y, c_2)$ on characteristics $\lambda(x, y) = c_1$, where c_2 is another constant of integration.

3. The two arbitrary constants c_1 and c_2 can be thought of as being related by an arbitrary function $c_2 = f(c_1)$.

1.2 Seven examples

Example 1: Consider the simple PDE

$$u_x + u_y = 0. \quad (1.12)$$

Solution: Obviously $P = 1$, $Q = 1$ and $R = 0$. Therefore the auxiliary equations (1.8) are

$$\frac{dx}{1} = \frac{dy}{1} \quad \text{and} \quad du = 0. \quad (1.13)$$

Clearly the characteristics are the family of curves $y = x + c_1$ on which $u = \text{const} = c_2$. The arbitrary constants c_1 and c_2 are related by $c_2 = f(c_1)$ in which case $u = f(x - y)$ for an

⁴They are also sometimes referred to as Riemann invariants,

arbitrary differentiable function f : **this is the general solution.** It can easily be checked that this is indeed a solution of (1.13) by writing $X = x - y$ and $u = f(X)$. Then

$$u_x = X_x f'(X) \quad u_y = X_y f'(X) \quad (1.14)$$

However, $X_x = 1$ and $X_y = -1$ and so $u_x + u_y = 0$.

For Example 1, the characteristics are the family of straight lines $y = x + c_1$.

Example 2 : Consider the simple PDE

$$xu_x - yu_y = 0. \quad (1.15)$$

subject to the boundary conditions $u = x^4$ on the line $y = x$.

Solution : Obviously $P = x$, $Q = -y$ and $R = 0$. Therefore the auxiliary equations (1.8) are

$$\frac{dx}{x} = -\frac{dy}{y} \quad \text{and} \quad du = 0. \quad (1.16)$$

Clearly the characteristics come from

$$\int \frac{dx}{x} + \int \frac{dy}{y} = \text{const} \quad (1.17)$$

from which we discover that $\ln(xy) = \text{const}$. **Thus the characteristics are the family of hyperbolae** $xy = c_1$. On these characteristics $u = \text{const} = c_2$ in which case

$$u = f(xy) \quad (1.18)$$

for an arbitrary differentiable function f : this is the general solution. It can easily be checked that this is indeed a solution of (1.15) by writing $X = xy$ and $u = f(X)$. Then $u_x = X_x f'(X)$ and $u_y = X_y f'(X)$ with $X_x = y$ and $X_y = x$ and so $xu_x - yu_y = 0$.

Application of the BCs $u = x^4$ on the line $y = x$ now determines f because on $y = x$

$$x^4 = f(x^2) \quad (1.19)$$

and so $f(t) = t^2$: however, $f(t)$ is only defined⁵ for $t \geq 0$. Thus our solution is

$$u(x, y) = x^2 y^2 \quad xy \geq 0, \quad (1.20)$$

which means that it is only valid in the 1st and 3rd quadrants of the characteristic plane.

⁵The variable t is simply the argument of the function $f(t)$: the fact that it is called t has no meaning – we could designate it by any symbol we wish.

For Example 2, the characteristics are the family of hyperbolae $xy = c_1 \geq 0$.

Example 3: Consider the PDE

$$xu_x + yu_y = u. \quad (1.21)$$

subject to the boundary conditions $u = y^2$ on the line $x = 1$.

Solution: Clearly $P = x$, $Q = y$ and $R = u$. Therefore the auxiliary equations (1.8) are

$$\frac{dx}{x} = \frac{dy}{y} = \frac{du}{u}. \quad (1.22)$$

Clearly the characteristics come from

$$\int \frac{dy}{y} - \int \frac{dx}{x} = \text{const} \quad (1.23)$$

from which we discover that $\ln(y/x) = \text{const}$. **Thus the characteristics are the family of lines** $y = x c_1$: **these are a fan of straight lines all passing through the origin**. Now integrate one of the other pair (either will do): $\ln(u/x) = \text{const}$ which means that $u = x c_2$. Therefore, on characteristics

$$u = x f(y/x) \quad (1.24)$$

for an arbitrary differentiable function f : this is the general solution. Now applying the BCs: $u = y^2$ on $x = 1$ we obtain $f(y) = y^2$. Therefore, with these BCs, the solution is

$$u = x(y/x)^2 = y^2/x. \quad (1.25)$$

Example 4: Consider the PDE

$$yu_x + xu_y = x^2 + y^2, \quad (1.26)$$

subject to the boundary conditions

$$u = \begin{cases} 1 + x^2 & \text{on } y = 0 \\ 1 + y^2 & \text{on } x = 0 \end{cases} \quad (1.27)$$

Solution: $P = y$, $Q = x$ and $R = x^2 + y^2$. Therefore the auxiliary equations (1.8) are

$$\frac{dx}{y} = \frac{dy}{x} = \frac{du}{x^2 + y^2}. \quad (1.28)$$

Characteristics come from the integral

$$\int (xdx - ydy) = \text{const} \quad (1.29)$$

which gives $x^2 - y^2 = c_1$ and

$$\begin{aligned} du &= y^{-1}(x^2 + y^2)dx \\ &= ydx + x^2y^{-1}dx \\ &= ydx + xdy \quad \text{on characteristics} \\ &= d(xy) \end{aligned} \quad (1.30)$$

which integrates to

$$u = xy + c_2. \quad (1.31)$$

Therefore, as the general solution, we have

$$u = xy + f(x^2 - y^2). \quad (1.32)$$

Applying the BCs:

$$\begin{aligned} 1 + x^2 &= f(x^2) \Rightarrow f(t) = 1 + t, \quad t \geq 0, \\ 1 + y^2 &= f(-y^2) \Rightarrow f(t) = 1 - t, \quad t \leq 0. \end{aligned} \quad (1.33)$$

Thus we end up with

$$f(t) = 1 + |t| \quad (1.34)$$

so

$$u = xy + 1 + |x^2 - y^2|. \quad (1.35)$$

Example 5 : (Exam 2001) Show that the PDE

$$yu_x - 3x^2yu_y = 3x^2u, \quad (1.36)$$

has a general solution of the form

$$yu(x, y) = f(x^3 + y) \quad (1.37)$$

where f is an arbitrary function.

(i) If you are given that

$$u(0, y) = y^{-1}\tanh y \quad (1.38)$$

on the line $x = 0$, show that

$$yu(x, y) = \tanh(x^3 + y). \quad (1.39)$$

(ii) If you given that $u(x, 1) = x^6$ on $y = 1$ show that

$$yu(x, y) = (x^3 + y - 1)^2. \quad (1.40)$$

Solution : $P = y$, $Q = -3x^2y$ and $R = 3x^2u$. Thus the auxiliary equations are

$$\frac{dx}{y} = -\frac{dy}{3x^2y} = \frac{du}{3x^2u}, \quad (1.41)$$

which gives characteristics as solutions of $dy/dx = -3x^2$. These are the family of curves $y + x^3 = c_1$. Then we also have

$$\frac{du}{u} = -\frac{dy}{y}, \quad (1.42)$$

from which we discover that $\ln uy = \text{const}$ or $uy = c_2$. Therefore the general solution is

$$yu(x, y) = f(y + x^3). \quad (1.43)$$

Then, on $x = 0$,

$$\frac{f(y)}{y} = \frac{\tanh y}{y} \quad (1.44)$$

in which case $f(y) = \tanh y$ and so

$$yu(x, y) = \tanh(y + x^3). \quad (1.45)$$

However, for the other BC $u(x, 1) = x^6$, we have $x^6 = f(1 + x^3)$ from which we find $f(t) = (t - 1)^2$ where $t = 1 + x^3$. With these BCs, the solution is

$$yu(x, y) = (y + x^3 - 1)^2. \quad (1.46)$$

Example 6 : (Exam 2002) Show that the PDE

$$yu_x + xu_y = 4xy^3, \quad (1.47)$$

has a general solution of the form

$$u(x, y) = y^4 + f(y^2 - x^2) \quad (1.48)$$

where f is an arbitrary function. If you are given that $u(0, y) = 0$ and $u(x, 0) = -x^4$, show that the solution is

$$u(x, y) = 2x^2y^2 - x^4. \quad (1.49)$$

Solution : The auxiliary equations are

$$\frac{dx}{y} = \frac{dy}{x} = \frac{du}{4xy^3}. \quad (1.50)$$

Characteristics come from the integration of $xdx = ydy$ thereby giving and so $y^2 - x^2 = c_1$. We also have $du = 4y^3dy$ resulting in $u = y^4 + c_2$, thereby giving the general solution

$$u(x, y) = y^4 + f(y^2 - x^2). \quad (1.51)$$

Applying the two boundary conditions gives

$$\begin{aligned} 0 &= y^4 + f(y^2) \Rightarrow f(t) = -t^2 \quad t \geq 0 \\ -x^4 &= f(-x^2) \Rightarrow f(t) = -t^2 \quad t \leq 0 \end{aligned} \quad (1.52)$$

Thus we have

$$u(x, y) = y^4 - (y^2 - x^2)^2 = 2x^2y^2 - x^4. \quad (1.53)$$

One can check directly that this is indeed a solution.

Example 7 : (Exam 2003) Show that the PDE

$$y^2u_x + x^2u_y = 2xy^2, \quad (1.54)$$

has a general solution of the form

$$u(x, y) = x^2 + f(y^3 - x^3) \quad (1.55)$$

where f is an arbitrary function.

(i) If $u(0, y) = -y^6$ and $u(x, 0) = x^2 - x^6$ show that

$$u(x, y) = x^2 - x^6 + 2x^3y^3 - y^6 \quad (1.56)$$

and

(ii) If $u(0, y) = \exp(y^3)$ and $u(x, 0) = x^2 + \exp(-x^3)$ show that

$$u(x, y) = x^2 + \exp(y^3 - x^3). \quad (1.57)$$

Solution : The auxiliary equations are

$$\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{du}{2xy^2}. \quad (1.58)$$

Characteristics come from the integration of $x^2dx = y^2dy$ thereby giving the family of curves $y^3 - x^3 = c_1$. We also have $du = 2xdx$ giving $u = x^2 + c_2$. Thus the general solution is

$$u(x, y) = x^2 + f(y^3 - x^3). \quad (1.59)$$

Applying the two boundary conditions gives :

(i) For $u(0, y) = -y^6$ and $u(x, 0) = x^2 - x^6$

$$\begin{aligned} -y^6 &= f(y^3) \Rightarrow f(t) = -t^2 \\ x^2 - x^6 &= x^2 + f(-x^3) \Rightarrow f(t) = -t^2 \end{aligned} \quad (1.60)$$

Therefore

$$u(x, y) = x^2 - (y^3 - x^3)^2 = x^2 - x^6 + 2x^3y^3 - y^6. \quad (1.61)$$

(ii) For $u(0, y) = \exp(y^3)$ and $u(x, 0) = x^2 + \exp(-x^3)$

$$\begin{aligned} \exp(y^3) &= f(y^3) \Rightarrow f(t) = \exp t \\ x^2 + \exp(-x^3) &= x^2 + f(-x^3) \Rightarrow f(t) = \exp t \end{aligned} \quad (1.62)$$

Therefore, with $f(t) = \exp t$ the solution with these BCs is

$$u(x, y) = x^2 + \exp(y^3 - x^3). \quad (1.63)$$

2 Characteristics and 2nd order PDEs

2.1 Derivation of two sets of characteristics

Consider the class of 2nd order PDEs

$$Ru_{xx} + 2Su_{xy} + Tu_{yy} = f \quad (2.1)$$

where u_{xx} , u_{yy} & u_{xy} are 2nd derivatives & R , S , T and f are functions of x , y , u , u_x & u_y .

For motivational purposes let us return to the class of 1st order semi-linear equations

$$Pu_x + Qu_y = R. \quad (2.2)$$

Together with $u_x dx + u_y dy = du$, these can be written as

$$\begin{pmatrix} P & Q \\ dx & dy \end{pmatrix} \begin{pmatrix} u_x \\ u_y \end{pmatrix} = \begin{pmatrix} R \\ du \end{pmatrix}. \quad (2.3)$$

However, from the auxiliary equations for (2.2)

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{du}{R} \quad (2.4)$$

which, can be re-expressed as

$$\det \begin{pmatrix} P & Q \\ dx & dy \end{pmatrix} = 0, \quad (2.5)$$

the 2×2 matrix on the LHS in (2.3) has zero determinant. This means that solutions for u_x and u_y are not unique: characteristics are a *family* of curves, so u_x and u_y may differ on each curve within the family.

Keeping this property in mind for the 2nd order class in (2.1) we use the chain rule to find dF for a function

$$dF = F_x dx + F_y dy \quad (2.6)$$

and then take $F = u_x$ and $F = u_y$ in turn.

$$d(u_x) = u_{xx} dx + u_{xy} dy \quad (2.7)$$

$$d(u_y) = u_{xy} dx + u_{yy} dy. \quad (2.8)$$

Together with (2.1) we now have a 3×3 system :

$$\begin{pmatrix} R & 2S & T \\ dx & dy & 0 \\ 0 & dx & dy \end{pmatrix} \begin{pmatrix} u_{xx} \\ u_{xy} \\ u_{yy} \end{pmatrix} = \begin{pmatrix} f \\ d(u_x) \\ d(u_y) \end{pmatrix}. \quad (2.9)$$

Zero determinant of the 3×3 on the LHS side of (2.9) gives⁶

$$R(dy)^2 - 2Sdxdy + T(dx)^2 = 0 \quad (2.10)$$

which leads to the following formal classification :

Classification :

$$R \left(\frac{dy}{dx} \right)^2 - 2S \left(\frac{dy}{dx} \right) + T = 0, \quad (2.11)$$

which has two roots

$$\frac{dy}{dx} = \frac{S \pm \sqrt{S^2 - RT}}{R}. \quad (2.12)$$

In principle, this provides us with two ODEs to solve: call these solutions $\xi(x, y) = c_1$ and $\eta(x, y) = c_2$; **these are our two sets of characteristic curves.**

1. When $S^2 > RT$ the two roots are real: the PDE is classed as **HYPERBOLIC**;
2. When $S^2 < RT$ the roots form a complex conjugate pair: the PDE is classed as **ELLIPTIC**;
3. When $S^2 = RT$ the double root is real: the PDE is classed as **PARABOLIC**.

A transformation of the PDE from derivatives in x, y into one in ξ, η produces the *canonical form* of the PDE :

1. In the hyperbolic case we use $\xi(x, y)$ and $\eta(x, y)$ as the new co-ordinates in place of x, y : these arise from integration of the two real solutions of (2.12).
2. The new co-ordinates $\xi(x, y)$ and $\eta(x, y)$ arise from the real and imaginary parts of the complex conjugate pair of solutions of (2.12).
3. In the parabolic there is only one real (double) root $\xi(x, y)$ of (2.12): the other $\eta(x, y)$ may be chosen at will, usually for convenience; for instance, if $\xi = x + y$ then it might be convenient to choose $\eta = x + y$ for simplicity.

⁶Note the negative sign on the central term $-2Sdxdy$ in contrast to the positive sign in the PDE (2.1).

2.2 Six Examples

Example 1: The standard form of the wave equation is $u_{xx} - c^{-2}u_{tt} = 0$ but under the transformation $y = ct$ we obtain $u_{xx} - u_{yy} = 0$.

Solution: $R = 1$, $S = 0$ and $T = -1$. Thus $R^2 - ST = 1$ and we have a **hyperbolic PDE**. (2.11) is

$$\left(\frac{dy}{dx}\right)^2 - 1 = 0 \quad (2.13)$$

which has two real roots $dy/dx = \pm 1$. Thus our two sets of characteristics are

$$\xi = x + y = c_1 \quad \eta = x - y = c_2. \quad (2.14)$$

Clearly, therefore, the characteristics are two families of straight lines, the first of gradient +1 and the second -1.

For both Examples 1 & 2, the characteristics are the 2 families of straight lines $x - y = c_2$ and $x + y = c_1$.

Now transform into the new co-ordinates $\xi = x + y$, $\eta = x - y$. The chain rule gives

$$\frac{\partial}{\partial x} = \xi_x \frac{\partial}{\partial \xi} + \eta_x \frac{\partial}{\partial \eta}; \quad \frac{\partial}{\partial y} = \xi_y \frac{\partial}{\partial \xi} + \eta_y \frac{\partial}{\partial \eta} \quad (2.15)$$

into which the definitions of ξ , η allow us to write $\xi_x = 1$, $\eta_x = 1$, $\xi_y = 1$ and $\eta_y = -1$.

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta}; \quad \frac{\partial}{\partial y} = \frac{\partial}{\partial \xi} - \frac{\partial}{\partial \eta} \quad (2.16)$$

Thus we have $u_x = u_\xi + u_\eta$ and $u_y = u_\xi - u_\eta$. Moreover,

$$u_{xx} = \left(\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta}\right)(u_\xi + u_\eta); \quad u_{yy} = \left(\frac{\partial}{\partial \xi} - \frac{\partial}{\partial \eta}\right)(u_\xi - u_\eta) \quad (2.17)$$

Thus we have

$$u_{xx} = u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta}; \quad u_{yy} = u_{\xi\xi} - 2u_{\xi\eta} + u_{\eta\eta} \quad (2.18)$$

and so our PDE transforms to

$$0 = u_{xx} - u_{yy} = 4u_{\xi\eta}. \quad (2.19)$$

The **canonical form** is $u_{\xi\eta} = 0$. This can be integrated wrt ξ directly to give

$$u_\eta = F(\eta), \quad (2.20)$$

where F is an arbitrary function of η , and then again wrt η

$$\begin{aligned} u(\xi, \eta) &= \int F(\eta) d\eta + g(\xi) \\ &= f(\eta) + g(\xi). \end{aligned} \quad (2.21)$$

Both f and g are arbitrary functions. Thus we have the general solution

$$u(x, y) = f(x - y) + g(x + y). \quad (2.22)$$

Example 2 : Consider the PDE $u_{xx} + 2u_{xy} + u_{yy} = 0$: in this case $R = 1$, $S = 1$ and $T = 1$ so $R^2 - ST = 0$. Thus the PDE is **parabolic**: (2.11) is

$$\left(\frac{dy}{dx} - 1 \right)^2 = 0 \quad (2.23)$$

which has a double real root $dy/dx = 1$. Thus one characteristic curve is

$$\eta = x - y \quad (2.24)$$

and we have a free choice with the other: for convenience we choose this as $\xi = x + y$, which makes (ξ, η) the same as Example 1. Then we have

$$\begin{aligned} u_{xx} &= u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta} \\ u_{yy} &= u_{\xi\xi} - 2u_{\xi\eta} + u_{\eta\eta} \\ u_{xy} &= u_{\xi\xi} - u_{\eta\eta} \end{aligned} \quad (2.25)$$

and so our PDE transforms to

$$0 = u_{xx} + 2u_{xy} + u_{yy} = 4u_{\xi\xi}. \quad (2.26)$$

Integration wrt ξ gives

$$u_\xi = f(\eta) \quad (2.27)$$

for arbitrary f , and again

$$u(\xi, \eta) = \xi f(\eta) + g(\eta) \quad (2.28)$$

for arbitrary g . In terms of x, y this becomes

$$u(x, y) = (x + y)f(x - y) + g(x - y). \quad (2.29)$$

One can check by direct differentiation – provided f, g have continuous second derivatives – that (2.29) is a solution.

Example 3 : Consider the PDE $u_{xx} + x^2 u_{yy} = 0$: in this case $R = 1$, $S = 0$ and $T = x^2$ so $R^2 - ST = -x^2 < 0$. Thus the PDE is **elliptic**. (2.11) is

$$\left(\frac{dy}{dx}\right)^2 + x^2 = 0. \quad (2.30)$$

Is there a natural canonical form? The formal solution of (2.30) is the complex function

$$y \pm \frac{1}{2}ix^2 = c_{1,2}. \quad (2.31)$$

We could choose ξ and η as the real and imaginary parts respectively (or v-v). Take $\xi = \frac{1}{2}x^2$ and $\eta = y$, then

$$\frac{\partial}{\partial x} = x \frac{\partial}{\partial \xi} \quad \frac{\partial}{\partial y} = \frac{\partial}{\partial \eta} \quad (2.32)$$

Thus $u_x = xu_\xi$ and $u_y = u_\eta$. Differentiating again is tricky because we have mixed old/new derivatives on the RHS of $u_x = xu_\xi$. To find u_{xx} we use the product rule, differentiating wrt x first and then using the chain rule

$$\begin{aligned} u_{xx} &= u_\xi + x \frac{\partial}{\partial x} u_\xi = u_\xi + x^2 u_{\xi\xi}, \\ u_{yy} &= u_{\eta\eta}. \end{aligned} \quad (2.33)$$

Thus the PDE is

$$0 = u_{xx} + x^2 u_{yy} = x^2 (u_{\xi\xi} + u_{\eta\eta}) + u_\xi \quad (2.34)$$

and so the canonical form is

$$u_{\xi\xi} + u_{\eta\eta} + \frac{1}{2\xi} u_\xi = 0. \quad (2.35)$$

Example 4 (exam 05) : Consider the PDE $8u_{xx} - 6u_{xy} + u_{yy} + 4 = 0$. Show that this is hyperbolic and that the characteristics are $\xi = x + 2y$ and $\eta = x + 4y$. Hence show the canonical form is $u_{\xi\eta} = 1$. If $u = \cosh x$ & $u_y = 2\sinh x$ on $y = 0$, show that the solution is

$$u = \xi\eta - \frac{1}{2}(\xi^2 + \eta^2) + \cosh \xi. \quad (2.36)$$

Solution : In this case $R = 8$, $S = -3$ and $T = 1$ so $S^2 - RT = 1$. Thus the PDE is **hyperbolic**. (2.11) is

$$8 \left(\frac{dy}{dx}\right)^2 + 6 \frac{dy}{dx} + 1 = 0, \quad (2.37)$$

which factorizes to

$$\left(4 \frac{dy}{dx} + 1\right) \left(2 \frac{dy}{dx} + 1\right) = 0, \quad (2.38)$$

so $\xi = x + 2y$ and $\eta = x + 4y$ as required. Now we transform to canonical variables

$$u_x = u_\xi + u_\eta \quad u_y = 2u_\xi + 4u_\eta \quad (2.39)$$

and

$$\begin{aligned} u_{xx} &= u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta}, \\ u_{xy} &= 2u_{\xi\xi} + 6u_{\xi\eta} + 4u_{\eta\eta}, \\ u_{yy} &= 4u_{\xi\xi} + 16u_{\xi\eta} + 16u_{\eta\eta}. \end{aligned} \quad (2.40)$$

Therefore

$$\begin{aligned} 0 &= 8u_{xx} - 6u_{xy} + u_{yy} + 4 \\ &= u_{\xi\xi}(8 - 12 + 4) + u_{\xi\eta}(16 - 36 + 16) + u_{\eta\eta}(8 - 24 + 16) + 4 \\ &= 4 - 4u_{\xi\eta}. \end{aligned} \quad (2.41)$$

Thus we have the **canonical form** $u_{\xi\eta} = 1$ which integrates to

$$u = \xi\eta + F(\eta) + G(\xi). \quad (2.42)$$

Applying the BCs: on $y = 0$ we have $\xi = \eta = x$: with $u = \cosh x$

$$\cosh x = F(x) + G(x) + x^2. \quad (2.43)$$

and with $u_y = 2\sinh x$

$$\begin{aligned} 2\sinh x &= \left\{ 2 \left(\frac{\partial}{\partial\xi} + 2 \frac{\partial}{\partial\eta} \right) [F(\eta) + G(\xi) + \xi\eta] \right\}_{y=0} \\ &= 2 \{G'(x) + 3x + 2F'(x)\} \end{aligned} \quad (2.44)$$

Integrating this gives

$$G(x) + 2F(x) = \cosh x - \frac{3}{2}x^2 + c \quad (2.45)$$

Solving for $F(x)$ and $G(x)$ between (2.45) and (2.43) gives

$$F(x) = c - \frac{1}{2}x^2 \quad G(x) = \cosh x - \frac{1}{2}x^2 - c \quad (2.46)$$

in which case (2.42) becomes

$$u(\xi, \eta) = \cosh \xi - \frac{1}{2}(\xi^2 + \eta^2) + \xi\eta. \quad (2.47)$$

Expressing this in x, y -coordinates it is found that

$$u(x, y) = \cosh(x + 2y) - 2y^2. \quad (2.48)$$

Example 5 (exam 2003): Consider the 2nd order PDE

$$y^2 \frac{\partial^2 u}{\partial x^2} = x^2 \frac{\partial^2 u}{\partial y^2}. \quad (2.49)$$

Show firstly that is is hyperbolic in nature. Secondly show that it has characteristics

$$\xi = y^2 + x^2 = \text{const}, \quad \eta = y^2 - x^2 = \text{const}. \quad (2.50)$$

Thirdly, show that its canonical form in characteristic variables is given by

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = \frac{1}{2(\xi^2 - \eta^2)} \left(\eta \frac{\partial u}{\partial \xi} - \xi \frac{\partial u}{\partial \eta} \right). \quad (2.51)$$

Solution: (i) $R = y^2$, $S = 0$ and $T = -x^2$. Thus

$$y^2 \left(\frac{dy}{dx} \right)^2 = x^2 \quad (2.52)$$

so we have a hyperbolic PDE with two roots: $\xi = y^2 + x^2 = \text{const}$ and $\eta = y^2 - x^2 = \text{const}$.

(ii) Using the chain rule we have

$$u_x = \xi_x u_\xi + \eta_x u_\eta = 2x(u_\xi - u_\eta) \quad u_y = \xi_y u_\xi + \eta_y u_\eta = 2y(u_\xi + u_\eta) \quad (2.53)$$

Using the product rule, and the fact that

$$\frac{\partial}{\partial x} = 2x \left(\frac{\partial}{\partial \xi} - \frac{\partial}{\partial \eta} \right) \quad \frac{\partial}{\partial y} = 2y \left(\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} \right) \quad (2.54)$$

we have

$$\begin{aligned} u_{xx} &= 2(u_\xi - u_\eta) + 4x^2(u_{\xi\xi} - 2u_{\xi\eta} + u_{\eta\eta}) \\ u_{yy} &= 2(u_\xi + u_\eta) + 4y^2(u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta}) \end{aligned} \quad (2.55)$$

Substituting this into $y^2 u_{xx} - x^2 u_{yy} = 0$, we get the answer, using the fact that $y^2 = \frac{1}{2}(\xi + \eta)$ and $x^2 = \frac{1}{2}(\xi - \eta)$ so $4x^2 y^2 = \xi^2 - \eta^2$.

Example 6 (exam 2004): Consider the 2nd order PDE

$$y^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0. \quad (2.56)$$

Show firstly that is is hyperbolic in nature. Secondly show that it has characteristics

$$\xi = \frac{1}{2}y^2 + x = \text{const} \quad \eta = \frac{1}{2}y^2 - x = \text{const}. \quad (2.57)$$

Thirdly, show that its canonical form in characteristic variables is given by

$$\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{1}{4(\xi + \eta)} \left(\frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} \right) = 0. \quad (2.58)$$

Solution: (i) $R = y^2$, $S = 0$ and $T = -1$. Thus $S^2 - RT = y^2 > 0$ so we have a hyperbolic PDE with

$$y^2 \left(\frac{dy}{dx} \right)^2 = 1. \quad (2.59)$$

Integration gives two roots: $\xi = \frac{1}{2}y^2 + x = \text{const}$ and $\eta = \frac{1}{2}y^2 - x = \text{const}$.

(ii) Using the chain rule we have

$$u_x = \xi_x u_\xi + \eta_x u_\eta = u_\xi - u_\eta \quad u_y = \xi_y u_\xi + \eta_y u_\eta = y(u_\xi + u_\eta) \quad (2.60)$$

Using the product rule, and the fact that

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \xi} - \frac{\partial}{\partial \eta} \quad \frac{\partial}{\partial y} = y \left(\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} \right) \quad (2.61)$$

we have

$$u_{xx} = u_{\xi\xi} - 2u_{\xi\eta} + u_{\eta\eta} \quad u_{yy} = (u_\xi + u_\eta) + y^2(u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta}) \quad (2.62)$$

Substituting this into $y^2 u_{xx} - u_{yy} = 0$, we get the answer, using the fact that $y^2 = \xi + \eta$ and $x = \frac{1}{2}(\xi - \eta)$.

3 The wave equation – a hyperbolic PDE

3.1 Physical derivation

In the figure consider a string in motion whose vertical displacement is $u(x, t)$ at the point x is taken as a snapshot at time t : it is assumed that (i) the vertical displacement is very small so that the angles $|\alpha|$ and $|\beta|$ are small; (ii) stretching of the string is sufficiently negligible that there is no horizontal motion. Thus, resolving horizontally, $T_1 \cos \alpha = T_2 \cos \beta \approx T$ (the tension). Now consider the small arc-length of string δs between the co-ordinate points x and $x + \delta x$. Because the angles are small $\delta s \simeq \delta x$. If ρ is the string mass/unit density then the vertical equation of motion for our small element of string of mass $\rho \delta x$ is

$$\rho \delta x \frac{\partial^2 u}{\partial t^2} = T_2 \sin \beta - T_1 \sin \alpha \quad (3.1)$$

The smallness of $|\alpha|$ and $|\beta|$ allow us to write $\sin \alpha \approx \tan \alpha$ and $\sin \beta \approx \tan \beta$ to convert (3.1) to

$$\rho \delta x \frac{\partial^2 u}{\partial t^2} = T(\tan \beta - \tan \alpha) \quad (3.2)$$

However

$$\tan \alpha = \left(\frac{\partial u}{\partial x} \right)_x \quad \tan \beta = \left(\frac{\partial u}{\partial x} \right)_{x+\delta x} \quad (3.3)$$

Thus (3.2) can be written as

$$\frac{\partial^2 u}{\partial t^2} = \frac{T}{\rho} \left(\frac{\left(\frac{\partial u}{\partial x} \right)_{x+\delta x} - \left(\frac{\partial u}{\partial x} \right)_x}{\delta x} \right) \quad (3.4)$$

Therefore, in the limit $\delta x \rightarrow 0$ (3.4) becomes

$$\frac{\partial^2 u}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 u}{\partial x^2} \quad (3.5)$$

$T\rho^{-1}$ has the dimensions of a squared velocity, denoted as c^2 , which is constant for a chosen string with a fixed tension T . With

$$c^2 = \frac{T}{\rho} \quad (3.6)$$

(3.5) becomes the wave equation

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0. \quad (3.7)$$

3.2 d'Alembert's solution of the wave equation

We now wish to solve the wave equation (3.7) subject to initial conditions on the initial shape $u(x, 0)$ and the initial velocity $\partial u(x, 0)/\partial t$

$$u(x, 0) = h(x) \quad \frac{\partial}{\partial t} u(x, 0) = \frac{\partial}{\partial t} u(x, t) \Big|_{t=0} = v(x) \quad (3.8)$$

where $h(x)$ and $v(x)$ are given functions. In example 1 in §2.2 we found the general solution of $u_{xx} - u_{yy} = 0$ in (2.22). With $y = ct$ this is

$$u(x, t) = f(x - ct) + g(x + ct) \quad (3.9)$$

where, so far, f and g are arbitrary functions. Applying (3.8)

$$f(x) + g(x) = h(x) \quad g'(x) - f'(x) = \frac{1}{c} v(x). \quad (3.10)$$

Integrating the latter equation from an arbitrary point $x = a$ to x and then adding and subtracting, it is found that

$$\begin{aligned} f(x) &= \frac{1}{2} h(x) - \frac{1}{2c} \int_a^x v(\xi) d\xi - \frac{1}{2c} [g(a) - f(a)] \\ g(x) &= \frac{1}{2} h(x) + \frac{1}{2c} \int_a^x v(\xi) d\xi + \frac{1}{2c} [g(a) - f(a)] \end{aligned} \quad (3.11)$$

Now substitute this into (3.9) with $x \rightarrow x - ct$ in $f(x)$ and $x \rightarrow x + ct$ in $g(x)$ to get

$$u(x, t) = \frac{1}{2} \{h(x - ct) + h(x + ct)\} + \frac{1}{2c} \int_{x-ct}^{x+ct} v(\xi) d\xi. \quad (3.12)$$

This is the **d'Alembert's solution** which is valid on an infinite domain: note that the pair of terms that contain the point $x = a$ cancel leaving no trace.

3.3 Waves on a guitar string: Separation of variables

The same initial conditions as above in (3.2) are now used but now with boundary conditions that fix the ends of a **finite** string down at $x = 0$ and $x = L$.

Now try a solution in the form

$$u(x, t) = X(x)T(t) \quad (3.13)$$

which is substituted into the wave equation

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0 \quad (3.14)$$

to get

$$\frac{X''}{X} = \frac{1}{c^2} \frac{T''}{T}. \quad (3.15)$$

Note that the LHS is a function of x but not t while the RHS is a function of t but not x . Thus we can write

$$\frac{X''}{X} = -\lambda^2 \quad \frac{T''}{T} = -\lambda^2 c^2, \quad (3.16)$$

where $-\lambda^2$ is an arbitrary constant⁷. The ODE for X is $X'' + \lambda^2 X = 0$ which has a solution

$$X(x) = A \cos \lambda x + B \sin \lambda x. \quad (3.17)$$

Applying the BC that $u(x, 0) = 0$ for all values of t means that $X(0) = 0$ from which it is deduced that $A = 0$: likewise from $X(L) = 0$ it is deduced that

$$B \sin \lambda L = 0. \quad (3.18)$$

⁷The choice of a negative constant is explained lower down.

$B = 0$ is the trivial solution: $\sin \lambda L = 0$ gives an infinite number of solutions for λ , namely

$$\lambda_n = \frac{n\pi}{L} \quad n = 0, \pm 1, \pm 2 \dots \quad (3.19)$$

giving an infinite set of solutions

$$X_n(x) = B_n \sin\left(\frac{n\pi x}{L}\right). \quad (3.20)$$

Here is the reason for a negative choice of the constant in (3.16): a positive choice of constant $+\lambda^2$ would have made $\sin(\lambda L)$ into $\sinh(\lambda L)$. This has only one root at $\lambda = 0$ which corresponds to the trivial solution.

The time part in (3.16) can now be easily solved

$$T_n = C_n \sin(\omega_n t) + D_n \cos(\omega_n t). \quad (3.21)$$

where the infinite set of frequencies⁸ ω_n are defined by $\omega_n = \frac{n\pi c}{L}$. This means that there is an infinite set of solutions $u_n = X_n T_n$ which can be summed to form the general solution. In so doing the products of arbitrary constants $B_n C_n$ etc are re-labelled

$$u(x, t) = \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{L}\right) [c_n \sin(\omega_n t) + d_n \cos(\omega_n t)]. \quad (3.22)$$

Now apply the initial conditions from (3.8)

$$u(x, 0) = h(x); \quad \frac{\partial}{\partial t} u(x, 0) = v(x). \quad (3.23)$$

The first says that

$$h(x) = \sum_{n=1}^{\infty} d_n \sin\left(\frac{n\pi x}{L}\right) \quad (3.24)$$

This is the half-range Fourier series of $h(x)$ on $[0, L]$ which was discussed regarding “periodic extension”; this means that the series can be inverted to find d_n

$$d_n = \frac{2}{L} \int_0^L h(x) \sin\left(\frac{n\pi x}{L}\right) dx. \quad (3.25)$$

Applying the second initial condition gives

$$v(x) = \sum_{n=1}^{\infty} \tilde{c}_n \sin\left(\frac{n\pi x}{L}\right) \quad (3.26)$$

where $\tilde{c}_n = c_n n\pi c / L$. We have

$$\tilde{c}_n = \frac{2}{L} \int_0^L v(x) \sin\left(\frac{n\pi x}{L}\right) dx. \quad (3.27)$$

⁸ ω_1 is the fundamental frequency; ω_2 is the 1st harmonic etc. Note that all harmonics are summed in the solution. It is the balance of these that gives a musical instrument its quality.

Question : Is this consistent with d'Alembert's solution? For simplicity, take $v = 0$ so the string is released from rest. The solution in (3.22) is

$$u(x, t) = \sum_{n=1}^{\infty} d_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{n\pi ct}{L}\right). \quad (3.28)$$

Now use a standard trig formula to write this as

$$u(x, t) = \sum_{n=1}^{\infty} \frac{1}{2} d_n \left\{ \sin\left(\frac{n\pi x + ct}{L}\right) + \sin\left(\frac{n\pi(x - ct)}{L}\right) \right\} \quad (3.29)$$

which is in the D'Alembert form.

Example Take the string from rest ($v = 0$) and $h(x)$ as a "tent function" of height d at the mid-point $x = \frac{1}{2}L$.

$$h(x) = \begin{cases} \frac{2d}{L}x & 0 \leq x \leq \frac{1}{2}L \\ 2d\left(1 - \frac{x}{L}\right) & \frac{1}{2}L \leq x \leq L. \end{cases}$$

The Fourier series for this – with no working – contains only odd sine-terms

$$u(x, t) = \frac{8d}{\pi^2} \sum_{r=0}^{\infty} \frac{(-1)^r}{(2r+1)^2} \sin\left(\frac{(2r+1)\pi x}{L}\right) \cos\left(\frac{(2r+1)\pi ct}{L}\right). \quad (3.30)$$

Note that the coefficients of the higher harmonics die off as n^{-2} .

4 Laplace's equation – an elliptic PDE

The simplest elliptic PDE is Laplace's equation in cartesian co-ordinates where $R = T = 1$ and $S = 0$

$$u_{xx} + u_{yy} = 0 \quad S^2 - RT = -1 < 0. \quad (4.1)$$

In two-dimensions, the method of separation of variables is useful but needs to be considered in the context of the BCs. Solutions in terms of polar co-ordinates will be our concern of the subsection §4.2 concerning flow around a cylinder. First we look at a simpler problem.

4.1 An infinite strip

Physically Laplace's equation often occurs in situations where the diffusive flow of heat or some other scalar in a two-dimensional piece of material is governed by the *diffusion* or *heat equation* $u_t = \alpha \nabla^2 u$ where ∇^2 is the Laplacian $\nabla^2 = \partial^2/\partial x^2 + \partial^2/\partial y^2$. When the system has reached a steady state – so $u_t = 0$ – we are left with the problem of solving Laplace's equation (4.1). The strip below is an example of how to solve this with a set of given boundary conditions (BCs).

Figure : The region is a strip bounded between $x = 0$ (y-axis) and $x = \pi$ on which $u = 0$ while $u = f(x)$ on $y = 0$.

The infinite strip, as in the figure above, has $u = 0$ on the sides and $u = f(x)$, a given function, on the bottom edge. To remain physical it is also necessary to insist that $u \rightarrow 0$ as $y \rightarrow \infty$. Inside the strip u satisfies Laplace's equation (4.1) which we attempt to solve by the method of separation of variables

$$u(x, y) = X(x)Y(y) \quad (4.2)$$

and thus (4.1) becomes $X''Y + XY'' = 0$. Therefore

$$\frac{X''}{X} = -\frac{Y''}{Y} = -\lambda^2 \quad (4.3)$$

the choice of \pm on the far RHS is dependent on the BCs. Clearly we have the two ODEs

$$X'' + \lambda^2 X = 0 \quad Y'' - \lambda^2 Y = 0 \quad (4.4)$$

whose solution is

$$X = A \cos \lambda x + B \sin \lambda x, \quad Y = C e^{\lambda y} + D e^{-\lambda y}. \quad (4.5)$$

The BC at $x = 0$ insists that $A = 0$ and at $x = \pi$ that $\sin \lambda \pi = 0$. Thus $\lambda_n = n$ where n is an integer. For $n > 0$ we must also choose $C = 0$ to be sure that there is no exponential growth as $y \rightarrow \infty$. We are left with a summed infinite set of solutions

$$u(x, y) = \sum_{n=1}^{\infty} b_n e^{-ny} \sin nx \quad (4.6)$$

To find the b_n requires the use of the last BC $u = f(x)$ on $y = 0$

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx. \quad (4.7)$$

This is the Fourier sine-series expansion of $f(x)$ on $[0, \pi]$ which inverts to

$$b_n = \frac{2}{\pi} \int_0^\pi f(x) \sin nx \, dx. \quad (4.8)$$

For example, if $f(x) = 1$ – that is, a uniform value – then

$$b_n = \begin{cases} 0 & n \text{ even} \\ \frac{4}{n\pi} & n \text{ odd} \end{cases} \quad (4.9)$$

With $n = 2r + 1$, our solution is

$$u(x, y) = \frac{4}{\pi} \sum_{r=1}^{\infty} e^{-(2r+1)y} \left(\frac{\sin((2r+1)x)}{2r+1} \right). \quad (4.10)$$

Note that this solution correctly decays exponentially as $y \rightarrow \infty$ and is zero at $x = 0$ and $x = \pi$.

4.2 Fluid flow around a cylinder

4.2.1 Laplace's equation in polar co-ordinates

Consider Laplace's equation in polar co-ordinates (see handout on The Chain Rule)

$$\frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} = 0. \quad (4.11)$$

Looking for separable solutions of the form $\Phi(r, \theta) = R(r)H(\theta)$ we find

$$\frac{r^2}{R} \left(R'' + \frac{1}{r} R' \right) = -\frac{H''}{H} = \lambda^2. \quad (4.12)$$

Choosing the separation constant negative anticipates solutions for $H(\theta)$ that need to be periodic. Solving $H'' + \lambda^2 H = 0$ gives

$$H(\theta) = A \cos \lambda \theta + B \sin \lambda \theta. \quad (4.13)$$

When $\lambda \neq 0$ solving $R'' + \frac{1}{r} R' - \frac{\lambda^2}{r^2} R = 0$ gives

$$R(r) = a r^\lambda + b r^{-\lambda}. \quad (4.14)$$

If we require $\Phi(r, \theta)$ to be continuous⁹ in θ ; that is, $\Phi(r, \theta) = \Phi(r, \theta + 2n\pi)$, then $\lambda = n$ (an integer). The general 2π -periodic solution of (4.11) is

$$\Phi(r, \theta) = \sum_{n=1}^{\infty} (a_n r^n + b_n r^{-n}) (A_n \cos n\theta + B_n \sin n\theta). \quad (4.15)$$

⁹The case with $\lambda = 0$ where $H(\theta) = \tilde{A}\theta + \tilde{B}$ and $R(r) = \tilde{a} \ln r + \tilde{b}$ is not 2π -periodic in θ .

4.2.2 Calculating the flow around the cylinder

Consider an incompressible irrotational 2D fluid with velocity vector \mathbf{u} flowing past a cylinder of radius a , as in the figure: the centre of the cylinder can be considered to be at $r = 0$. At $r = \pm\infty$ the flow is laminar: that is, $\mathbf{u} = (0, U)$ where U is a constant.

$$U \rightarrow$$

(i) The divergence-free condition $\operatorname{div} \mathbf{u} = 0$ means that a stream function $\psi(x, y)$ exists

$$\mathbf{u} = (\psi_y, -\psi_x) = \hat{\mathbf{i}}\psi_y - \hat{\mathbf{j}}\psi_x.$$

Irrotational flow ($\operatorname{curl} \mathbf{u} = 0$) means that

$$\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \partial_x & \partial_y & \partial_z \\ \psi_y & -\psi_x & 0 \end{vmatrix} = 0$$

Thus we have Laplace's equation for the stream function

$$\psi_{xx} + \psi_{yy} = 0 \quad \Rightarrow \quad \frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = 0. \quad (4.16)$$

(ii) The alternative way, using the potential, starts from $\operatorname{curl} \mathbf{u} = 0$. This means that a potential function ϕ exists such that $\mathbf{u} = \nabla\phi = \hat{\mathbf{i}}\phi_x + \hat{\mathbf{j}}\phi_y$. From $\operatorname{div} \mathbf{u} = 0$, we have Laplace's equation $\nabla^2\phi = \phi_{xx} + \phi_{yy} = 0$ which is also (4.11) in polar co-ordinates.

Thus we want to solve (4.16) under the circumstance where the fluid, of constant horizontal speed U at infinity, flows past a solid cylinder of radius a centred at the origin. The fact that no fluid can cross the surface of the cylinder translates into the boundary condition

$$\left. \frac{\partial \psi}{\partial \theta} \right|_{r=a} = 0. \quad (4.17)$$

Since the flow at $r = \pm\infty$ is horizontal we have $\mathbf{u} = U\hat{\mathbf{i}} + 0\hat{\mathbf{j}}$ there, which means that

$$\psi = Uy = Ur \sin \theta \quad \text{at} \quad r = \infty. \quad (4.18)$$

We want to solve Laplace's equation (4.16) in the infinite domain around the cylinder of radius a with prescribed BCs (4.17) and (4.18). Separating the $n = 1$ term from the rest of the

infinite sum in (4.15) we have

$$\begin{aligned}\psi(r, \theta) &= (a_1 r + b_1 r^{-1}) (A_1 \cos \theta + B_1 \sin \theta) \\ &+ \sum_{n=2}^{\infty} (a_n r^n + b_n r^{-n}) (A_n \cos n\theta + B_n \sin n\theta) .\end{aligned}\quad (4.19)$$

Applying the BC in (4.18) we find that

$$a_1 B_1 = U \quad A_1 = 0 \quad (4.20)$$

and all coefficients $A_n = B_n = 0$ for $n \geq 2$. This leaves us with

$$\psi = U \left(r + \frac{b_1}{a_1} \frac{1}{r} \right) \sin \theta. \quad (4.21)$$

Finally applying the BC (4.17) at $r = a$ we find $b_1/a_1 = -a^2$ giving the stream function as

$$\psi = U \left(r - \frac{a^2}{r} \right) \sin \theta. \quad (4.22)$$

5 The diffusion equation – a parabolic PDE

Consider a very thin metal bar on the x -axis on $[0, L]$, as in the figure below, with temperature $u = 0$ at both ends. For standard materials, the equation that normally governs heat flow is the **diffusion equation**¹⁰

$$u_t = \kappa u_{xx} \quad (5.1)$$

where κ is a material constant (thermal conductivity) which has the dimensions $(\text{length})^2/\text{time}$. In this section we solve two problems: on a finite one-dimensional domain $[0, L]$ and similarity solutions on an infinite domain.

5.1 Separation of variables on a finite domain

$$\begin{array}{c} x = 0 \quad x = L \\ \hline u = 0 \quad [\quad] \quad u = 0 \\ u(x, 0) = f(x) \text{ at } t = 0 \end{array}$$

The BCS are $u = 0$ on both $x = 0$ and $x = L$ with¹¹ an initial distribution of temperature $u(x, 0) = f(x)$. Separation of variables

$$u(x, t) = X(x)T(t) \quad (5.2)$$

¹⁰In 2 dimensions the equivalent is $u_t = \kappa \nabla^2 u$ where ∇^2 is the Laplacian $\nabla^2 = \partial^2/\partial x^2 + \partial^2/\partial y^2$.

¹¹If the end conditions are different, say $u = 0$ at $x = 0$ and $u = u_0$ at $x = L$, then the following trick is useful: define $u(x, t) = u_0 x/L + v(x, t)$ with $v = 0$ on $x = 0$ and $x = L$ with v satisfying $v_t = \kappa v_{xx}$, then the problem reduces to the one solved above with $u = 0$ at both ends.

gives

$$\frac{X''}{X} = \frac{1}{\kappa} \frac{T'}{T} = -\lambda^2 \quad (5.3)$$

for which we write

$$X'' + \lambda^2 X = 0 \quad \text{with} \quad X(0) = X(L) = 0. \quad (5.4)$$

This we have solved before: (5.4) gives $X = A \cos \lambda x + B \sin \lambda x$ in which $A = 0$ because $X(0) = 0$, whereas

$$\sin \lambda L = 0 \quad \Rightarrow \quad \lambda_n = \frac{n\pi}{L} \quad \text{with} \quad X_n(x) = B_n \sin \left(\frac{n\pi x}{L} \right). \quad (5.5)$$

The time part $T' = -\lambda^2 \kappa T$ solves to become

$$T_n(t) = T_{n,0} \exp \left(-\frac{n^2 \pi^2 \kappa t}{L^2} \right) \quad (5.6)$$

Thus the general solution is a linear sum of all the solutions for each n

$$u(x, t) = \sum_{n=1}^{\infty} b_n \exp \left(-\frac{n^2 \pi^2 \kappa t}{L^2} \right) \sin \left(\frac{n\pi x}{L} \right), \quad (5.7)$$

where the constants $B_n T_{n,0} = b_n$. Applying the ICs gives

$$f(x) = \sum_{n=1}^{\infty} b_n \sin \left(\frac{n\pi x}{L} \right), \quad (5.8)$$

and, as before, this Fourier half-range series can be inverted to give the b_n

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \left(\frac{n\pi x}{L} \right) dx. \quad (5.9)$$

5.2 Similarity solutions on an infinite domain

The diffusion equation in one-dimension is $u_t = \kappa u_{xx}$ has been solved above on a domain of *finite length*. What if $L = \infty$? Clearly, the method of separation of variables no longer works and we need a different approach. The key lies in κ , the diffusion coefficient, which has dimension $L^2 T^{-1}$. If we are looking for solutions on an infinite domain $-\infty \leq x \leq \infty$ where there is no natural length scale, then we can use the **dimensionless** variable

$$\eta = \frac{x}{\sqrt{\kappa t}} \quad (5.10)$$

and look for solutions in the form

$$u(x, t) = t^p g(\eta) \quad (5.11)$$

where the number p and the function $g(\eta)$ are to be determined. Substituting (5.11) into $u_t = \kappa u_{xx}$ we find that

$$t^{p-1} \left(pg - \frac{\eta}{2} g' - g'' \right) = 0 \quad (5.12)$$

and so

$$g'' + \frac{\eta}{2} g' = pg. \quad (5.13)$$

This is difficult to solve for arbitrary values of p but for special values we can do something.

1. Take $p = 0$ and (5.13) is easily solved to give

$$g'(\eta) = A e^{-\eta^2/4} \quad (5.14)$$

where A is a constant. Integrating again we have

$$g(\eta) = A \int_{-\infty}^{\eta} e^{-\eta'^2/4} d\eta'. \quad (5.15)$$

This gives a full solution for $u(x, t)$

$$u(x, t) = A \int_{-\infty}^{\frac{x}{\sqrt{\kappa t}}} e^{-\eta'^2/4} d\eta' = 2A\sqrt{\pi} \operatorname{erf}\left(\frac{x}{2\sqrt{\kappa t}}\right) \quad (5.16)$$

where the *error function* $\operatorname{erf}(\xi)$ is defined as $\operatorname{erf}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\xi} e^{-y^2} dy$. This has the property that $\operatorname{erf}(\infty) = 1$.

2. Now define $G = g e^{\eta^2/4}$ and we observe that (5.13) can be transformed into

$$G'' - \frac{\eta}{2} G' = (p + 1/2)G. \quad (5.17)$$

This has the trivial solution $G = b = \text{const}$ provided $p = -1/2$. Hence

$$g(\eta) = b e^{-\eta^2/4}. \quad (5.18)$$

This gives a full solution for $u(x, t)$ in the form

$$u(x, t) = b t^{-1/2} e^{-\frac{x^2}{4\kappa t}}. \quad (5.19)$$