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1 1st order PDEs & the method of characteristics

1.1 The derivation of the auxiliary equations
Consider the semi-linear 1st order partial differential equation® (PDE)

P(a,y)us + Qa, y)u, = R(z,y,u) (L.1)
where P and @ are continuous functions and R is not necessarily linear® in w.

Consider solutions represented as a family of surfaces (which one depends on our boundary
conditions). Below is a picture of one of these surfaces which we'll call

F(z,y,u) =0 u=u(z,y) (1.2)

in (z,y,u)-space.

F(z,y,u) =0

Because F' = 0 in (1.2), it must be true that dF' = 0 and so the chain rule gives

0=dF = Fydx+ F,dy+ F,du
du = ugzdxr + u,dy

Combining these two gives
0 = Fydz + F,dy + (uzdm + uydy) F,. (1.5)
Re-arranging terms we have
Uy [Fudz] + uy[Fudy| = —[Fodz + F,dy] . (1.6)
Now compare this with our PDE in (1.1): a comparison of coefficients gives
F,dx = P; F,dy=Q:; —[Fpdx + F,dy] = R. (1.7)

Now, because — | F,dz + F,dy| = F,du we can represent (1.7) as a series of ratios which are
called the auxiliary equations

2The subscript notation u, = du/dz and u,, = 8%u/dxdy etc is used throughout.
3This PDE is also said to be quasi-linear if P and @ are dependent on wu.
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= 0-% R#0 (1.8)
de. _ dy _ _ _
5 = Q_o and  du=0 (R=0) (1.9)

1. The first pair in the auxiliary equations can be re-written as a differential equation in
x,y without reference to u

dy _ Q(z,y)
= = ) 1.10
&~ P(r.y) 110
In principle, this can be solved to give
Mz,y) = ¢ (1.11)

where ¢, is a constant of integration. These curves or lines are called the characteristics
or characteristic curves of the PDE*. They form a family of curves because of the
arbitrariness of the constant c;.

2. If R =0 we have du = 0 as in the second line of (1.8), in which case u = const = ¢,
on characteristics.

If R # 0 as in the first line of (1.8) then one of the other pair of differential equations
must be solved to get u = g(z, ¥y, c2) on characteristics A\(x,y) = ¢;, where ¢y is another
constant of integration.

3. The two arbitrary constants ¢; and ¢, can be thought of as being related by an arbitrary

function ¢y = f(cl).

1.2 Seven examples

Example 1: Consider the simple PDE
Uy +uy, =0. (1.12)

Solution: Obviously P =1, @ =1 and R = 0. Therefore the auxiliary equations (1.8) are

dr _dy

1 1 and du=0. (1.13)

Clearly the characteristics are the family of curves ¥y = x + ¢; on which u = const = ¢,. The
arbitrary constants ¢; and ¢, are related by ¢; = f(c;) in which case u = f(z — y) for an

4They are also sometimes referred to as Riemann invariants,
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arbitrary differentiable function f: this is the general solution. It can easily be checked
that this is indeed a solution of (1.13) by writing X =z —y and u = f(X). Then

= X, f'(X) uy = X, f'(X) (1.14)
However, X, =1 and X, = —1 and so u, + u, = 0.

For Example 1, the characteristics are
the family of straight lines y = x+c;.

Y

Example 2: Consider the simple PDE
—yu, =0. (1.15)
subject to the boundary conditions u = z* on the line y = z.
Solution: Obviously P = z, @ = —y and R = 0. Therefore the auxiliary equations (1.8) are
d d
o W and du=0. (1.16)
z Yy
Clearly the characteristics come from

/dm /— — const (1.17)

from which we discover that In(xy) = const. Thus the characteristics are the family of
hyperbolae zy = ¢;. On these characteristics u = const = ¢, in which case

= f(zy) (1.18)

for an arbitrary differentiable function f : this is the general solution. It can easily be checked
that this is indeed a solution of (1.15) by writing X = zy and u = f(X). Then u, = X, f'(X)
and u, = X, f'(X) with X, =y and X, = = and so zu, — yu, = 0.

Application of the BCs u = z* on the line y = x now determines f because on y =

zt = f(2?) (1.19)
and so f(t) = t*: however, f(t) is only defined® for ¢ > 0. Thus our solution is
u(z,y) = 2%y xy >0, (1.20)

which means that it is only valid in the 1st and 3rd quadrants of the characteristic plane.

®The variable t is simply the argument of the function f(¢): the fact that it is called ¢ has no meaning —
we could designate it by any symbol we wish.
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For Example 2, the characteristics are

the family of hyperbolae zy = ¢; > 0.

Example 3 : Consider the PDE
TUy + YUy = U. (1.21)

subject to the boundary conditions u = 32 on the line z = 1.

Solution: Clearly P =z, @ =y and R = u. Therefore the auxiliary equations (1.8) are

i _ay_ L
x y u '

Clearly the characteristics come from

d d
/_y _/_:1: = const (1.23)
y x

from which we discover that In (y/z) = const. Thus the characteristics are the family of
lines y = z¢;: these are a fan of straight lines all passing through the origin. Now
integrate one of the other pair (either will do): In (u/z) = const which means that u = z c,.
Therefore, on characteristics

u=zf(y/z) (1.24)

for an arbitrary differentiable function f : this is the general solution. Now applying the BCs:
u=1y%on x = 1 we obtain f(y) = y?. Therefore, with these BCs, the solution is

u:x(y/x)szZ/x. (1.25)

Example 4 : Consider the PDE
Yu, + zu, = ¢ + 9, (1.26)
subject to the boundary conditions

[ 1+2® on y=0

= 1.2
¢ {1—|—y2 on =0 (1.27)

Solution: P =y, Q =z and R = 2 + y*. Therefore the auxiliary equations (1.8) are

de dy du
? = T 7 (1.28)
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Characteristics come from the integral

/(xdx — ydy) = const
which gives 22 — y? = ¢; and

du = y* (x2 + y2)dx
= ydr + 2%y 'dw

= ydzx + xdy on characteristics

= d(zy)

which integrates to
u=2xYy+cCy.

Therefore, as the general solution, we have
u=zy+ f(z* —y?) .
Applying the BCs:
1+2° = f(2?) = f(t)=1+t,
L+y* = f(-y*) =f)=1-t,

Thus we end up with
f) =1+t
o)
u=xy+1+ 2% —y?.

Example 5: (Exam 2001) Show that the PDE
YUy — ngyuy = 3z%u,
has a general solution of the form

yu(z,y) = f(2* +y)

where f is an arbitrary function.
(i) If you are given that
u(0,y) =y~ 'tanhy
on the line x = 0, show that
yu(z,y) = tanh (z° + y) .
(ii) If you given that u(z,1) = z° on y = 1 show that

yulz,y) = («° +y—1)".

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)
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Solution: P =y, Q = —32%y and R = 3zu. Thus the auxiliary equations are

dx dy du
Y 3%  32%u (L41)

which gives characteristics as solutions of dy/dx = —3z% These are the family of curves
y + 22 = ¢;. Then we also have
d d
“_ 9 (1.42)
u y

from which we discover that In uy = const or uy = c5. Therefore the general solution is

yu(z,y) = fly +2°). (1.43)
Then, on z = 0,
fly) _ tanhy (1.44)
y y

in which case f(y) = tanhy and so

yu(z,y) = tanh (y + 2°). (1.45)

6 6

However, for the other BC u(z,1) = 2%, we have 2° = f(1 + 23) from which we find
f(t) = (t — 1)* where t = 1 + z®. With these BCs, the solution is

yu(z,y) = (y +2° — 1)2 : (1.46)
Example 6: (Exam 2002) Show that the PDE
YU, + ru, = day® (1.47)
has a general solution of the form
u(z,y) =y* + f(y* — %) (1.48)
where f is an arbitrary function. If you are given that u(0,y) = 0 and u(z,0) = —z*, show
that the solution is
u(z,y) = 220°y* — x*. (1.49)
Solution : The auxiliary equations are
d d d
A (1.50)

y x :4xy3'

Characteristics come from the integration of xdz = ydy thereby giving and so 3* — 2% = ¢;.
We also have du = 433dy resulting in u = y* + ¢, thereby giving the general solution

u(z,y) =y' + fy* —2?). (1.51)
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Applying the two boundary conditions gives

0 = y'+f¥) = [fO=-t* t>0
—z* = f(-12°) =  f(t)=—-t* t<0 (1.52)

Thus we have
2
u(z,y) =y' — (y* —2°)" = 22%* — 2. (1.53)

One can check directly that this is indeed a solution.

Example 7: (Exam 2003) Show that the PDE
vPu, + 2°u, = 2zy° (1.54)
has a general solution of the form
u(z,y) = 2 + f(y3 — x3) (1.55)

where f is an arbitrary function.

(i) If u(0,y) = —y® and u(z,0) = 2% — 2° show that
u(z,y) = 2% — 25 + 223y® — o/ (1.56)
and
(ii) If u(0,y) = exp(y®) and u(z,0) = z* + exp(—z?) show that
u(z,y) = 2* + exp(y® — 2%) . (1.57)
Solution : The auxiliary equations are

dr dy  du
yz_x2_2xy2'

(1.58)

Characteristics come from the integration of 22dx = y?dy thereby giving the family of curves

3 = ¢;. We also have du = 2xdx giving u = 2% + c5. Thus the general solution is

y -z
u(z,y) =2+ f(y* — 2°) . (1.59)

Applying the two boundary conditions gives:

(i) For u(0,y) = —¢°® and u(z,0) = 2? — 2°

-y = fly') = f)y=-t
?—2% = 2®+ f(—2%) = f(t) = —t? (1.60)

Therefore
u(w,y) = % — (y° —a%)" = 2% — b + 20%° — P, (1.61)
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(i) For u(0,y) = exp(y?) and u(z,0) = 22 + exp(—a?)

exp(y’) = f(y’) =  f(t) =expt
2® +exp(—2®) = 2*+ f(—2°) = f(t) =expt (1.62)

Therefore, with f(t) = expt the solution with these BCs is

u(z,y) = 2> +exp (y° — 2°). (1.63)

2 Characteristics and 2nd order PDEs

2.1 Derivation of two sets of characteristics

Consider the class of 2nd order PDEs
Rugy + 28Ugy + Tuy, = f (2.1)

where vy, Uy, & Uy, are 2nd derivatives & R, S, T and f are functions of z, y, u, u, & w,.

For motivational purposes let us return to the class of 1st order semi-linear equations
Pu, + Quy, = R. (2.2)

Together with u,dx + u,dy = du, these can be written as

(o i) ()= () 2

However, from the auxiliary equations for (2.2)

de dy du
el A 2.4
P Q R (2:4)
which, can be re-expressed as
P Q
det = 2.

the 2 x 2 matrix on the LHS in (2.3) has zero determinant. This means that solutions for wu,
and u, are not unique: characteristics are a family of curves, so u, and u, may differ on each
curve within the family.
Keeping this property in mind for the 2nd order class in (2.1) we use the chain rule to find
dF for a function
dF = F,dx + F,dy (2.6)

and then take I' = u, and F' = u, in turn.

d(uy) = Ugeds + ugydy
d(uy) = ugydr + uy,dy.
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Together with (2.1) we now have a 3 x 3 system:

R 25 T Uy f
de dy 0 Uy | = | d(uz) | - (2.9)
0 dx dy Uy d(uy)

Zero determinant of the 3 x 3 on the LHS side of (2.9) gives®
R(dy)? — 28 dzdy + T(dz)* = 0 (2.10)

which leads to the following formal classification :

Classification:

dy\’ dy
RI=Z2) —95( =2 T — 2.11
(daz) (d:v) + ’ ( )
which has two roots
dy S++S52—RT
2 ) 2.12
dz R ( )

In principle, this provides us with two ODEs to solve : call these solutions &(z,y) = ¢; and
n(x,y) = co; these are our two sets of characteristic curves.

1. When S? > RT the two roots are real : the PDE is classed as HYPERBOLIC ;

2. When S? < RT the roots form a complex conjugate pair: the PDE is classed as
ELLIPTIC;

3. When S? = RT the double root is real: the PDE is classed as PARABOLIC .

A transformation of the PDE from derivatives in x,y into one in &, n produces the canonical
form of the PDE:

1. In the hyperbolic case we use &£(z,y) and n(z,y) as the new co-ordinates in place of
x,y: these arise from integration of the two real solutions of (2.12).

2. The new co-ordinates &(z,y) and n(x,y) arise from the real and imaginary parts of the
complex conjugate pair of solutions of (2.12).

3. In the parabolic there is only one real (double) root £(z,y) of (2.12): the other n(z,y)
may be chosen at will, usually for convenience; for instance, if £ = x 4 y then it might
be convenient to choose n = x + y for simplicity.

SNote the negative sign on the central term —2S dxdy in contrast to the positive sign in the PDE (2.1).
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2.2 Six Examples

10

Example 1: The standard form of the wave equation is u,; — ¢ 2uy = 0 but under the

transformation y = ct we obatin g, — u,, = 0.
Solution: R=1,S=0and T'= —1. Thus R? — ST = 1 and we have a hyperbolic PDE.

(2.11) is

dy
dx

E=r+y=c

2
)—1:0

which has two real roots dy/dx = +1. Thus our two sets of characteristics are

N=T—Yy==Cy.

(2.13)

(2.14)

Clearly, therefore, the characteristics are two families of straight lines, the first of gradient +1

and the second —1.

For both Examples 1 & 2, the charac-
teristics are the 2 families of straight
linesx —y =co and z 4+ y = ¢;.

Now transform into the new co-ordinates £ = x + vy, 1 =z —y. The chain rule gives

8_—§8__|_ a_
or " og nxan,

9 0 ., 9
By Yo ' Moy

(2.15)

into which the definitions of &, n allow us to write {, =1, 1, =1, {, =1 and n, = —1.

0 0.0
ox  0¢  On’

Thus we have u, = u¢ + u, and u, = ue

0 4 0 (e + )

86 877 3 n
Thus we have

Ugr = uf§ + 2“577 + U’WI ;

and so our PDE transforms to
0 = ugy

0 o 0

dy 9 on

— u,. Moreover,

Uyy = Uge — 2Ugy + Uy

— Uyy = 4u§,7 .

(2.16)

(2.18)

(2.19)
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The canonical form is ug, = 0. This can be integrated wrt £ directly to give
where F' is an arbitrary function of 7, and then again wrt 7

u(e,n) = / F(n)dn + g(€)
= i)+ e©). (2.21)

Both f and g are arbitrary functions. Thus we have the general solution
u(@,y) = flz—y)+g9(z+y). (2.22)

Example 2: Consider the PDE u,, + 2y, +uy, = 0: inthiscase R=1,S=1and T =1
so R? — ST = 0. Thus the PDE is parabolic: (2.11) is

(Z—Z - 1)2 =0 (2.23)

which has a double real root dy/dxz = 1. Thus one characteristic curve is
n=x—y (2.24)

and we have a free choice with the other: for convenience we choose this as £ = x + y, which
makes (£,n) the same as Example 1. Then we have

Upr = U& + 2u§n -+ unn
Uyy = Uge — 2Ugy + Uy
Uzy = Ugg = Uny (2.25)
and so our PDE transforms to
0 = Uy + 2Ugy + Uyy = duge . (2.26)
Integration wrt & gives
ug = f(n) (2.27)
for arbitrary f, and again
u(&,n) =&f(n) +g9(n) (2.28)

for arbitrary g. In terms of z, y this becomes

uw(z,y) = (@+y)flz—y)+g(z—y). (2.29)

One can check by direct differentiation — provided f, g have continuous second derivatives —
that (2.29) is a solution.
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Example 3: Consider the PDE u,, + :c2uyy =0:inthiscase R=1, S=0and T = 2% so
R?* — ST = —x? < 0. Thus the PDE is elliptic. (2.11) is

dy 2+x2—0 (2.30)
dx o '

Is there a natural canonical form? The formal solution of (2.30) is the complex function

Y+ Liz® =cp 5. (2.31)

We could choose £ and 7 as the real and imaginary parts respectively (or v-v). Take £ = 1z?

and n =y, then
0 0 0 0

or "¢ dy  n
Thus u, = zu¢ and u, = u,. Differentiating again is tricky because we have mixed old/new
derivatives on the RHS of u, = zu,. To find u,, we use the product rule, differentiating wrt
x first and then using the chain rule

(2.32)

Ugy = Ug + $8—xu§ = U¢ + x2u§5 y
Uy = Upy- (2.33)
Thus the PDE is
0= Upy + x2uyy = z? (uee + Upy) + ue (2.34)
and so the canonical form is 1
Uge + Upy + il% =0. (2.35)

Example 4 (exam 05): Consider the PDE 8u,, — 6u,, + uy, +4 = 0. Show that this
is hyperbolic and that the characteristics are £ = x + 2y and n = x + 4y. Hence show the
canonical form is ug, = 1. If u = coshz & u, = 2sinhz on y = 0, show that the solution is

u=¢&n— (& +1n°) +cosh . (2.36)

Solution: In thiscase R =8, S = —3and T = 1so S? — RT = 1. Thus the PDE is
hyperbolic. (2.11) is

8 @ 2%—6@+1—0 (2.37)
dx dx 7 ’
which factorizes to p p
Yy Yy
4= +1 2-Z+1] =0 2.38
( dz + ) ( dx + ) ’ ( )

so £ = x + 2y and n = = + 4y as required. Now we transform to canonical variables

Uy = Ug + Uy uy = 2ue + 4u, (2.39)
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and
Upy = Uge + 2Ugy + Uy,
ul,y = 21&55 + 6u5,7 + 4u,7,7 s
Uyy = 4uge + 16ug, + 16w, .
Therefore

0 = Bugy — Obuyy +uy, +4

= Uge(8 — 12 +4) + ug,y (16 — 36 + 16) + u,y, (8 — 24 + 16) + 4

= 4 —4duyg,.
Thus we have the canonical form u¢, = 1 which integrates to
w= &+ F() +G(&).
Applying the BCs: on y = 0 we have £ =1 = z: with u = coshz
coshz = F(x) + G(z) + 22.

and with u, = 2sinh x

2sinhz = {2 (S_g+2§_n> [F(n)+G(€)+8ﬂ}

= 2{G'(z) + 3z + 2F'(x)}

y=0

Integrating this gives
3
G(x) +2F(z) = coshx — §CL'2 +c

Solving for F'(z) and G(z) between (2.45) and (2.43) gives

2

F(z)=c— iz G(z) = coshz — 12® — ¢

N

in which case (2.42) becomes
u(é, ) = cosh& — 3 (& +n?) +&n.
Expressing this in x, y-coordinates it is found that
u(z,y) = cosh (z + 2y) — 2y°.

Example 5 (exam 2003): Consider the 2nd order PDE

0%u 0%
Yy — =1"—.
0x? 0y?

13

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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Show firstly that is is hyperbolic in nature. Secondly show that it has characteristics
£ =y* +2” = const, n =1y* — z* = const. (2.50)

Thirdly, show that its canonical form in characteristic variables is given by

0%u 1 ( ou 8u)
= — —&— ). 2.51
gen ~ 2@ ) \"oe o 290
Solution: (i) R=9y% S=0and T = —x?. Thus
dy 2
2 (Y _ o
Yy (dm) x (2.52)

so we have a hyperbolic PDE with two roots: & = 3% + 22 = const and 7 = y? — 2? = const.

(i) Using the chain rule we have
Uy = EaUg + Moty = 23 (ug — uy) Uy = §yue + Myuy = 2y (ue + uy) (2.53)

Using the product rule, and the fact that

0 0 0 0 1, 0
7 =2 (3~ ) 7= (5 ) (25
we have
Use = 2(ug — up) + 42 (uge — 2ugy + uyy)
Uy = 2(uge +uy) + 4y2(u§§ + 2ugy + unn) (2.55)

Substituting this into y?u,, — x%u,, = 0, we get the answer, using the fact that y* = 1(£+n)
and 2?2 = (£ — ) so 4x?y? = & — 0.

Example 6 (exam 2004): Consider the 2nd order PDE

,0%u  Pu

i 2.56
Vo o (2.56)

Show firstly that is is hyperbolic in nature. Secondly show that it has characteristics
= 1y® + x = const = 1y — 1 = const. (2.57)

Thirdly, show that its canonical form in characteristic variables is given by

0%u 1 <8u 8u>
+ —+— ) =0. 2.58
ocn  a(e+m) \o€ o (2:5%)
Solution: (i) R=9% S=0and T = —1. Thus S? — RT = y? > 0 so we have a hyperbolic

PDE with )
dy
2(=2) =1. 2.
y (dx) (2.59)
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Integration gives two roots: & = 1y? + z = const and = ly? — z = const.
(i) Using the chain rule we have

Uy = &g + NolUy = Ug — Uy uy = Eyug + Myuy = y(ue + uy) (2.60)

Using the product rule, and the fact that

g o9 0 0 a 0
9 _9 0 9 _ (L9 2.61
oz~ 9€ oy 5= (5 ) (261)
we have
Uzg = Uge — 2Ugy + Uny Uyy = (ug +uy) +y* (uge + 2ugy + Upy) (2.62)

Substituting this into y?u,, — u,, = 0, we get the answer, using the fact that y* = £ +7 and

z=1(§—n).

3 The wave equation — a hyperbolic PDE

3.1 Physical derivation

ds

T AN

T T+ dx

In the figure consider a string in motion whose vertical displacement is u(z,t) at the point z
is taken as a snapshot at time ¢ : it is assumed that (i) the vertical displacement is very small
so that the angles |a| and |3| are small; (ii) stretching of the string is sufficiently negligible
that there is no horizontal motion. Thus, resolving horizontally, T cosaw = T cos B ~ T' (the
tension). Now consider the small arc-length of string ds between the co-ordinate points x and
x + dx. Because the angles are small s ~ dx. If p is the string mass/unit density then the
vertical equation of motion for our small element of string of mass pdz is

0%u _ :
p5$w =TysinfB — Ty sina (3.1)

The smallness of |a| and |5| allow us to write sina ~ tana and sin 3 ~ tan 3 to convert
(3.1) to

p(Sxa—tZ =T(tan§ — tan «) (3.2)
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However

ou Ju
tan o = (a)z tan § = (%>I+M (3.3)

Thus (3.2) can be written as

Pu T ((%)mz - (%L) (3.4)

- p o

Therefore, in the limit z — 0 (3.4) becomes
Pu T O*u
o por (39

Tp~! has the dimensions of a squared velocity, denoted as c?, which is constant for a chosen
string with a fixed tension T". With

= — 3.6
; (3.6)
(3.5) becomes the wave equation
Pu 1 0%u

3.2 d'Alembert’s solution of the wave equation

We now wish to solve the wave equation (3.7) subject to initial conditions on the initial shape
u(z,0) and the initial velocity du(z,0)/0t
0

u(z,0) = h(x) g

u(z,0) = —u(z,t)| =v(x) (3.8)

t=0
where h(z) and v(z) are given functions. In example 1 in §2.2 we found the general solution
of Uyy — Uy, = 0in (2.22). With y = ct this is

u(z,t) = f(x —ct) + g(x + ct) (3.9)
where, so far, f and g are arbitrary functions. Applying (3.8)
f(@) +g(x) = h(z) g'(x) = fl(x) = %v(af) : (3.10)

Integrating the latter equation from an arbitrary point x = a to = and then adding and
subtracting, it is found that

fla) = hia) = o [ o€~ 5 lote) - £(@)
1 1

oa) = 3ha)+ o [ v+ lol) — o) (311)
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Now substitute this into (3.9) with © — x — ¢t in f(z) and x — x + ct in g(z) to get
1 T+ct
u(z,t) = 3 {h(z —ct) + h(x + ct)} + %/ v(€) dE. (3.12)

r—ct

This is the d’Alembert’s solution which is valid on an infinite domain: note that the pair
of terms that contain the point x = a cancel leaving no trace.

3.3 Waves on a guitar string: Separation of variables

The same initial conditions as above in (3.2) are now used but now with boundary conditions
that fix the ends of a finite string down at z = 0 and = = L.

Now try a solution in the form
u(z,t) = X (2)T(t) (3.13)

which is substituted into the wave equation

*u 1 0%

o " @or =" (3.14)
to get
X// 1 T//

Note that the LHS is a function of z but not ¢ while the RHS is a function of ¢ but not z.

Thus we can write
XI/ 5 T//
_— = —)\ _— =
X T

where —\? is an arbitrary constant”. The ODE for X is X” + A2X = 0 which has a solution

—\3, (3.16)

X(z) = Acos Az + Bsin Az (3.17)

Applying the BC that u(z,0) = 0 for all values of ¢ means that X (0) = 0 from which it is
deduced that A = 0: likewise from X (L) = 0 it is deduced that

Bsin AL =0. (3.18)

"The choice of a negative constant is explained lower down.
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B = 0 is the trivial solution: sin AL = 0 gives an infinite number of solutions for A, namely

An:% n=0,+1, £2. .. (3.19)

giving an infinite set of solutions

(3.20)

TL7T£L‘)

Xn(.T) = Bn sin (T

Here is the reason for a negative choice of the constant in (3.16): a positive choice of
constant +A? would have made sin(AL) into sinh (AL). This has only one root at A = 0
which corresponds to the trivial solution.

The time part in (3.16) can now be easily solved
T,, = Cy sin (wyt) + D,, cos (wpt) . (3.21)

where the infinite set of frequencies® w,, are defined by w,, = “7¢. This means that there is an
infinite set of solutions u,, = X,,T;, which can be summed to form the general solution. In so
doing the products of arbitrary constants B,,C,, etc are re-labelled

nmwx

u(z,t) = Z sin (T) [en sin (wypt) + dy, cos (wpt)] - (3.22)

n=1

Now apply the initial conditions from (3.8)

u(z,0) = h(x); %u(w, 0) =v(x). (3.23)

The first says that
> nmwT
h(z) = dysin | — (3.24)
S0 (%)

This is the half-range Fourier series of h(z) on [0, L] which was discussed regarding
“periodic extension”; this means that the series can be inverted to find d,,

d, = %/OL h(x) sin (%) dz. (3.25)

Applying the second initial condition gives

= nmx
=3 sin (2 3.26
v(x) n:1c s1n( 7 ) (3.26)
where ¢, = ¢,nme/L. We have

2 nwx

Cp = 7 /OLv(x) sin (T) dx . (3.27)

w1 is the fundamental frequency ; ws is the 1st harmonic etc. Note that all harmonics are summed in the
solution. It is the balance of these that gives a musical instrument its quality.

8
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Question : Is this consistent with d'Alembert’s solution? For simplicity, take v = 0 so the
string is released from rest. The solution in (3.22) is

- t
u(z,t) = Zdn sin <n_zx) cos <n7Ich ) . (3.28)
n=1

Now use a standard trig formula to write this as

u(z,t) = g 1d, {sin (@) + sin (M) } (3.29)

which is in the D'Alembert form.

Example Take the string from rest (v = 0) and h(z) as a “tent function” of height d at the
mid-point x = 1L.

2 o, 0<x<IL
h(z) = L =r=
(=) {Zd(l—z) \L<z<L.

The Fourier series for this — with no working — contains only odd sine-terms

_ 8d ) (@2r+ ) (2r + 1)mct
= 27“ n 1 ( 7 ) cos ( 7 : (3.30)

r=0

Note that the coefficients of the higher harmonics die off as n=2.

4 Laplace’s equation — an elliptic PDE

The simplest elliptic PDE is Laplace's equation in cartesian co-ordinates where R =T =1
and S =0
Uy + Uyy = 0 S?—RT=-1<0. (4.1)

In two-dimensions, the method of separation of variables is useful but needs to be considered
in the context of the BCs. Solutions in terms of polar co-ordinates will be our concern of the
subsection §4.2 concerning flow around a cylinder. First we look at a simpler problem.

4.1 An infinite strip

Physically Laplace's equation often occurs in situations where the diffusive flow of heat or
some other scalar in a two-dimensional piece of material is governed by the diffusion or heat
equation u; = aV?u where V? is the Laplacian V? = 92/9z% + 0%/0y*. When the system
has reached a steady state — so u; = 0 — we are left with the problem of solving Laplace’s
equation (4.1). The strip below is an example of how to solve this with a set of given boundary
conditions (BCs).
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Yy
uT0 as y — oo
u=20 u$$+uyy:0 u=20
u = f(x)

™
Figure: The region is a strip bounded between x = 0 (y-axis) and x = m on which u = 0 while
u= f(x) ony =0.

The infinite strip, as in the figure above, has u = 0 on the sides and u = f(z), a given
function, on the bottom edge. To remain physical it is also necessary to insist that u — 0 as
y — o0. Inside the strip u satisfies Laplace's equation (4.1) which we attempt to solve by the
method of separation of variables

u(z,y) = X(2)Y () (4.2)
and thus (4.1) becomes X"Y + XY” = 0. Therefore

X// Y/I

< % —\? (4.3)

the choice of 4+ on the far RHS is dependent on the BCs. Clearly we have the two ODEs
X"+ XX =0 Y - XY =0 (4.4)
whose solution is
X = Acos\x + Bsin Az, Y =Ce + De ™, (4.5)

The BC at x = 0 insists that A = 0 and at x = 7 that sin A\w = 0. Thus \,, = n where n
is an integer. For n > 0 we must also choose C' = 0 to be sure that there is no exponential
growth as y — oo. We are left with a summed infinite set of solutions

u(z,y) = Z b,e” " sin nx (4.6)
n=1
To find the b,, requires the use of the last BC u = f(z) on y =0

f(z) = Z b, sinnz . (4.7)
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This is the Fourier sine-series expansion of f(x) on [0, 7] which inverts to

b, = %/OW f(z)sinnz dzx. (4.8)

For example, if f(z) =1 — that is, a uniform value — then

0 neven
b = 4.9
" { L nodd (49)
With n = 2r + 1, our solution is
4N _ sin(2r + 1)z
_ = E : @r+l)y (2202 F )7 ) 4.10

Note that this solution correctly decays exponentially as y — oo and is zero at + = 0 and

r =T.

4.2 Fluid flow around a cylinder
4.2.1 Laplace's equation in polar co-ordinates
Consider Laplace's equation in polar co-ordinates (see handout on The Chain Rule)

#0100 1o
or:  ror  r?06?
Looking for separable solutions of the form ®(r,0) = R(r)H () we find

— 0. (4.11)

2 1 H/I
% (R” + ;R’) =7 = A2, (4.12)

Choosing the separation constant negative anticipates solutions for H () that need to be
periodic. Solving H"” + A\>H = ( gives

H(0) = Acos A0 + Bsin \f. (4.13)
When X # 0 solving R” + 1R’ — X R = 0 gives
R(r) =ar*+br . (4.14)

If we require ®(r,0) to be continuous® in §; that is, ®(r,0) = ®(r,0 + 2nr), then A =n (an
integer). The general 27-periodic solution of (4.11) is

O(r,0) = Z (an r" +b, 7’_") (A, cosnf + B, sinnf) . (4.15)

n=1

9The case with A\ = 0 where H(#) = A + B and R(r) = a Inr + b is not 2m-periodic in .
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4.2.2 Calculating the flow around the cylinder

Consider an incompressible irrotational 2D fluid with velocity vector u flowing past a cylinder
of radius a, as in the figure: the centre of the cylinder can be considered to be at » = 0. At
r = %00 the flow is laminar: that is, u = (0, U) where U is a constant.

U —

(i) The divergence-free condition divu = 0 means that a stream function ¢ (z,y) exists

u = (djy; _Q/Ja:> = i% - ij

Irrotational flow (curl w = 0) means that

i 7k
8, 8, 0.|=0
% _¢x 0

Thus we have Laplace’s equation for the stream function

0% 10w 13 _

Yooty =0 = Sot oot Som =0 (4.16)

(i) The alternative way, using the potential, starts from curlu = 0. This means that a
potential function ¢ exists such that u = V¢ = i¢, + j¢,. From divu = 0, we have
Laplace’s equation V?¢ = ¢, + ¢, = 0 which is also (4.11) in polar co-ordinates.

Thus we want to solve (4.16) under the circumstance where the fluid, of constant horizontal
speed U at infinity, flows past a solid cylinder of radius a centred at the origin. The fact that
no fluid can cross the surface of the cylinder translates into the boundary condition

o B
%= 0. (4.17)

Since the flow at r = 400 is horizontal we have u = Uz + Oj' there, which means that
¥ =Uy=Ursinf at r = 00. (4.18)

We want to solve Laplace’s equation (4.16) in the infinite domain around the cylinder of radius
a with prescribed BCs (4.17) and (4.18). Separating the n = 1 term from the rest of the
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infinite sum in (4.15) we have

Y(r,0) = (arr+bir") (Aicosf+ Bysind)

M]3

+ (an r" +b, 7“_”) (A, cosnb + B, sinnf) . (4.19)

Il
¥

n

Applying the BC in (4.18) we find that
CL1B1 =U Al =0 (420)

and all coefficients A,, = B,, = 0 for n > 2. This leaves us with

b 1
Y=U <r + —1—) sin . (4.21)
ar
Finally applying the BC (4.17) at r = a we find b;/a; = —a?® giving the stream function as
a2
v=U <T — —) sin 6. (4.22)
r

95 The diffusion equation — a parabolic PDE

Consider a very thin metal bar on the z-axis on [0, L], as in the figure below, with temperature
u = 0 at both ends. For standard materials, the equation that normally governs heat flow is
the diffusion equation'’

Up = KlUgy (5.1)

where k is a material constant (thermal conductivity) which has the dimensions (length)?/time.
In this section we solve two problems: on a finite one-dimensional domain [0, L] and similarity
solutions on an infinite domain.

5.1 Separation of variables on a finite domain

z=0 z=1L
u:O’ ‘u:O

u(z,0) = f(x) att =0

The BCS are u = 0 on both z = 0 and # = L with!! an initial distribution of temperature
u(z,0) = f(z). Separation of variables

u(z,t) = X(x)T(t) (5.2)

0In 2 dimensions the equivalent is u; = KV?u where V2 is the Laplacian V2 = 92 /022 + 02 /0y>.

1f the end conditions are different, say « = 0 at x = 0 and v = ug at x = L, then the following trick is
useful : define u(z,t) = upz/L + v(z,t) with v =0 on x = 0 and x = L with v satisfying v; = kv, then
the problem reduces to the one solved above with © = 0 at both ends.
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gives
X/l 1 T/
I )2 5.3
X kT (5:3)
for which we write
X"+XX =0 with X(0)=X(L)=0. (5.4)

This we have solved before: (5.4) gives X = Acos Az + Bsin Az in which A = 0 because
X (0) =0, whereas

nm

SmAL=0 = A==  with  X,(2) = Bysin ("—7> . (5.5)
The time part 7" = —\2xT solves to become
n’nlkt
30 = Toa o (-1 (5.6

Thus the general solution is a linear sum of all the solutions for each n

= n?m?kt nrx
u(z,t) =) b,exp (— ) sin (— ) , (5.7)
S s (25) n ()

where the constants B, T}, o = b,. Applying the ICs gives

fla) = ibn sin (%) , (5.8)

and, as before, this Fourier half-range series can be inverted to give the b,
9 L
b, = z/o f(z)sin (?) dx . (5.9)

5.2 Similarity solutions on an infinite domain

The diffusion equation in one-dimension is u; = kKu,, has been solved above on a domain
of finite length. What if L = o0o? Clearly, the method of separation of variables no longer
works and we need a different approach. The key lies in k, the diffusion coefficient, which has
dimension L>T~!. If we are looking for solutions on an infinite domain —oo < z < oo where
there is no natural length scale, then we can use the dimensionless variable

(5.10)

and look for solutions in the form
u(z,t) =t g(n) (5.11)
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where the number p and the function g(n) are to be determined. Substituting (5.11) into
U = KUy, We find that

=t (pg - gg’ — g”) =0 (5.12)
and so 0
g + 59’ = pg. (5.13)

This is difficult to solve for arbitrary values of p but for special values we can do something.
1. Take p =0 and (5.13) is easily solved to give
g =Aem/ (5.14)
where A is a constant. Integrating again we have

n 2
g(n) = A/ ey (5.15)

This gives a full solution for u(x,t)

\/% 2 x
u(z,t) = A e dn =24 Werf( ) 5.16
@n=af” ) = 2Avrerf (= (5.16)
where the error function erf (§) is defined as erf (§) = \/%? ffoo e v*dy. This has the

property that erf (c0) = 1.
2. Now define G = ge”’/* and we observe that 5.13) can be transformed into
G — ga' = (p+1/2)G. (5.17)
This has the trivial solution G = b = const provided p = —1/2. Hence
g(n) =be /4, (5.18)
This gives a full solution for u(x,t) in the form

22
u(z,t) = bt 1 2e i, (5.19)
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