Ae2 Mathematics: 1st and 2nd order PDEs

J. D. Gibbon
(Professor J. D Gibbon ${ }^{1}$, Dept of Mathematics)
j.d.gibbon@ic.ac.uk
http://www2.imperial.ac.uk/~jdg

Abstract

These notes are not identical word-for-word with my lectures which will be given on a WB. Some of these notes may contain more examples than the corresponding lecture while in other cases the lecture may contain more detailed working. I will not be handing out copies of these notes - you are therefore advised to attend lectures and take your own.

Contents

1 1st order PDEs \& the method of characteristics 1
1.1 The derivation of the auxiliary equations 1
1.2 Seven examples . 2

2 Characteristics and 2nd order PDEs 8
2.1 Derivation of two sets of characteristics 8
2.2 Six Examples . 10

3 The wave equation - a hyperbolic PDE 15
3.1 Physical derivation . 15
3.2 d'Alembert's solution of the wave equation 16
3.3 Waves on a guitar string: Separation of variables 17

4 Laplace's equation - an elliptic PDE 19
4.1 An infinite strip . 19
4.2 Fluid flow around a cylinder . 21
4.2.1 Laplace's equation in polar co-ordinates 21
4.2.2 Calculating the flow around the cylinder 22

5 The diffusion equation - a parabolic PDE 23
5.1 Separation of variables on a finite domain 23
5.2 Similarity solutions on an infinite domain 24
${ }^{1}$ Do not confuse me with Dr J. Gibbons who is also in the Mathematics Dept.

1 1st order PDEs \& the method of characteristics

1.1 The derivation of the auxiliary equations

Consider the semi-linear 1st order partial differential equation ${ }^{2}$ (PDE)

$$
\begin{equation*}
P(x, y) u_{x}+Q(x, y) u_{y}=R(x, y, u) \tag{1.1}
\end{equation*}
$$

where P and Q are continuous functions and R is not necessarily linear ${ }^{3}$ in u.
Consider solutions represented as a family of surfaces (which one depends on our boundary conditions). Below is a picture of one of these surfaces which we'll call

$$
\begin{equation*}
F(x, y, u)=0 \quad u=u(x, y) \tag{1.2}
\end{equation*}
$$

in (x, y, u)-space.

Because $F=0$ in (1.2), it must be true that $d F=0$ and so the chain rule gives

$$
\begin{align*}
0=d F & =F_{x} d x+F_{y} d y+F_{u} d u \tag{1.3}\\
d u & =u_{x} d x+u_{y} d y \tag{1.4}
\end{align*}
$$

Combining these two gives

$$
\begin{equation*}
0=F_{x} d x+F_{y} d y+\left(u_{x} d x+u_{y} d y\right) F_{u} . \tag{1.5}
\end{equation*}
$$

Re-arranging terms we have

$$
\begin{equation*}
u_{x}\left[F_{u} d x\right]+u_{y}\left[F_{u} d y\right]=-\left[F_{x} d x+F_{y} d y\right] . \tag{1.6}
\end{equation*}
$$

Now compare this with our PDE in (1.1) : a comparison of coefficients gives

$$
\begin{equation*}
F_{u} d x=P ; \quad F_{u} d y=Q ; \quad-\left[F_{x} d x+F_{y} d y\right]=R . \tag{1.7}
\end{equation*}
$$

Now, because $-\left[F_{x} d x+F_{y} d y\right]=F_{u} d u$ we can represent (1.7) as a series of ratios which are called the auxiliary equations

[^0]\[

$$
\begin{array}{llrl}
\frac{d x}{P} & =\frac{d y}{Q}=\frac{d u}{R} & R \neq 0 \\
\frac{d x}{P} & =\frac{d y}{Q}=0 \quad \text { and } \quad d u=0 & (R=0) \tag{1.9}
\end{array}
$$
\]

1. The first pair in the auxiliary equations can be re-written as a differential equation in x, y without reference to u

$$
\begin{equation*}
\frac{d y}{d x}=\frac{Q(x, y)}{P(x, y)} \tag{1.10}
\end{equation*}
$$

In principle, this can be solved to give

$$
\begin{equation*}
\lambda(x, y)=c_{1} \tag{1.11}
\end{equation*}
$$

where c_{1} is a constant of integration. These curves or lines are called the characteristics or characteristic curves of the PDE^{4}. They form a family of curves because of the arbitrariness of the constant c_{1}.
2. If $R=0$ we have $d u=0$ as in the second line of (1.8), in which case $u=$ const $=c_{2}$ on characteristics.

If $R \neq 0$ as in the first line of (1.8) then one of the other pair of differential equations must be solved to get $u=g\left(x, y, c_{2}\right)$ on characteristics $\lambda(x, y)=c_{1}$, where c_{2} is another constant of integration.
3. The two arbitrary constants c_{1} and c_{2} can be thought of as being related by an arbitrary function $c_{2}=f\left(c_{1}\right)$.

1.2 Seven examples

Example 1: Consider the simple PDE

$$
\begin{equation*}
u_{x}+u_{y}=0 . \tag{1.12}
\end{equation*}
$$

Solution: Obviously $P=1, Q=1$ and $R=0$. Therefore the auxiliary equations (1.8) are

$$
\begin{equation*}
\frac{d x}{1}=\frac{d y}{1} \quad \text { and } \quad d u=0 . \tag{1.13}
\end{equation*}
$$

Clearly the characteristics are the family of curves $y=x+c_{1}$ on which $u=$ const $=c_{2}$. The arbitrary constants c_{1} and c_{2} are related by $c_{2}=f\left(c_{1}\right)$ in which case $u=f(x-y)$ for an

[^1]arbitrary differentiable function f : this is the general solution. It can easily be checked that this is indeed a solution of (1.13) by writing $X=x-y$ and $u=f(X)$. Then
\[

$$
\begin{equation*}
u_{x}=X_{x} f^{\prime}(X) \quad u_{y}=X_{y} f^{\prime}(X) \tag{1.14}
\end{equation*}
$$

\]

However, $X_{x}=1$ and $X_{y}=-1$ and so $u_{x}+u_{y}=0$.

For Example 1, the characteristics are the family of straight lines $y=x+c_{1}$.

Example 2: Consider the simple PDE

$$
\begin{equation*}
x u_{x}-y u_{y}=0 . \tag{1.15}
\end{equation*}
$$

subject to the boundary conditions $u=x^{4}$ on the line $y=x$.
Solution: Obviously $P=x, Q=-y$ and $R=0$. Therefore the auxiliary equations (1.8) are

$$
\begin{equation*}
\frac{d x}{x}=-\frac{d y}{y} \quad \text { and } \quad d u=0 . \tag{1.16}
\end{equation*}
$$

Clearly the characteristics come from

$$
\begin{equation*}
\int \frac{d x}{x}+\int \frac{d y}{y}=\text { const } \tag{1.17}
\end{equation*}
$$

from which we discover that $\ln (x y)=$ const. Thus the characteristics are the family of hyperbolae $x y=c_{1}$. On these characteristics $u=$ const $=c_{2}$ in which case

$$
\begin{equation*}
u=f(x y) \tag{1.18}
\end{equation*}
$$

for an arbitrary differentiable function f : this is the general solution. It can easily be checked that this is indeed a solution of (1.15) by writing $X=x y$ and $u=f(X)$. Then $u_{x}=X_{x} f^{\prime}(X)$ and $u_{y}=X_{y} f^{\prime}(X)$ with $X_{x}=y$ and $X_{y}=x$ and so $x u_{x}-y u_{y}=0$.
Application of the BCs $u=x^{4}$ on the line $y=x$ now determines f because on $y=x$

$$
\begin{equation*}
x^{4}=f\left(x^{2}\right) \tag{1.19}
\end{equation*}
$$

and so $f(t)=t^{2}$: however, $f(t)$ is only defined ${ }^{5}$ for $t \geq 0$. Thus our solution is

$$
\begin{equation*}
u(x, y)=x^{2} y^{2} \quad x y \geq 0 \tag{1.20}
\end{equation*}
$$

which means that it is only valid in the 1st and 3rd quadrants of the characteristic plane.

[^2]For Example 2, the characteristics are the family of hyperbolae $x y=c_{1} \geq 0$.

Example 3: Consider the PDE

$$
\begin{equation*}
x u_{x}+y u_{y}=u . \tag{1.21}
\end{equation*}
$$

subject to the boundary conditions $u=y^{2}$ on the line $x=1$.
Solution: Clearly $P=x, Q=y$ and $R=u$. Therefore the auxiliary equations (1.8) are

$$
\begin{equation*}
\frac{d x}{x}=\frac{d y}{y}=\frac{d u}{u} . \tag{1.22}
\end{equation*}
$$

Clearly the characteristics come from

$$
\begin{equation*}
\int \frac{d y}{y}-\int \frac{d x}{x}=\text { const } \tag{1.23}
\end{equation*}
$$

from which we discover that $\ln (y / x)=$ const. Thus the characteristics are the family of lines $y=x c_{1}$: these are a fan of straight lines all passing through the origin. Now integrate one of the other pair (either will do) : $\ln (u / x)=$ const which means that $u=x c_{2}$. Therefore, on characteristics

$$
\begin{equation*}
u=x f(y / x) \tag{1.24}
\end{equation*}
$$

for an arbitrary differentiable function f : this is the general solution. Now applying the BCs: $u=y^{2}$ on $x=1$ we obtain $f(y)=y^{2}$. Therefore, with these BC s, the solution is

$$
\begin{equation*}
u=x(y / x)^{2}=y^{2} / x . \tag{1.25}
\end{equation*}
$$

Example 4: Consider the PDE

$$
\begin{equation*}
y u_{x}+x u_{y}=x^{2}+y^{2}, \tag{1.26}
\end{equation*}
$$

subject to the boundary conditions

$$
u=\left\{\begin{array}{lll}
1+x^{2} & \text { on } & y=0 \tag{1.27}\\
1+y^{2} & \text { on } & x=0
\end{array}\right.
$$

Solution : $P=y, Q=x$ and $R=x^{2}+y^{2}$. Therefore the auxiliary equations (1.8) are

$$
\begin{equation*}
\frac{d x}{y}=\frac{d y}{x}=\frac{d u}{x^{2}+y^{2}} . \tag{1.28}
\end{equation*}
$$

Characteristics come from the integral

$$
\begin{equation*}
\int(x d x-y d y)=\text { const } \tag{1.29}
\end{equation*}
$$

which gives $x^{2}-y^{2}=c_{1}$ and

$$
\begin{align*}
d u & =y^{-1}\left(x^{2}+y^{2}\right) d x \\
& =y d x+x^{2} y^{-1} d x \\
& =y d x+x d y \quad \text { on characteristics } \\
& =d(x y) \tag{1.30}
\end{align*}
$$

which integrates to

$$
\begin{equation*}
u=x y+c_{2} . \tag{1.31}
\end{equation*}
$$

Therefore, as the general solution, we have

$$
\begin{equation*}
u=x y+f\left(x^{2}-y^{2}\right) . \tag{1.32}
\end{equation*}
$$

Applying the BCs:

$$
\begin{array}{lll}
1+x^{2}=f\left(x^{2}\right) & \Rightarrow f(t)=1+t, & t \geq 0 \\
1+y^{2}=f\left(-y^{2}\right) & \Rightarrow f(t)=1-t, & t \leq 0 \tag{1.33}
\end{array}
$$

Thus we end up with

$$
\begin{equation*}
f(t)=1+|t| \tag{1.34}
\end{equation*}
$$

so

$$
\begin{equation*}
u=x y+1+\left|x^{2}-y^{2}\right| . \tag{1.35}
\end{equation*}
$$

Example 5: (Exam 2001) Show that the PDE

$$
\begin{equation*}
y u_{x}-3 x^{2} y u_{y}=3 x^{2} u, \tag{1.36}
\end{equation*}
$$

has a general solution of the form

$$
\begin{equation*}
y u(x, y)=f\left(x^{3}+y\right) \tag{1.37}
\end{equation*}
$$

where f is an arbitrary function.
(i) If you are given that

$$
\begin{equation*}
u(0, y)=y^{-1} \tanh y \tag{1.38}
\end{equation*}
$$

on the line $x=0$, show that

$$
\begin{equation*}
y u(x, y)=\tanh \left(x^{3}+y\right) . \tag{1.39}
\end{equation*}
$$

(ii) If you given that $u(x, 1)=x^{6}$ on $y=1$ show that

$$
\begin{equation*}
y u(x, y)=\left(x^{3}+y-1\right)^{2} . \tag{1.40}
\end{equation*}
$$

Solution: $P=y, Q=-3 x^{2} y$ and $R=3 x^{2} u$. Thus the auxiliary equations are

$$
\begin{equation*}
\frac{d x}{y}=-\frac{d y}{3 x^{2} y}=\frac{d u}{3 x^{2} u}, \tag{1.41}
\end{equation*}
$$

which gives characteristics as solutions of $d y / d x=-3 x^{2}$. These are the family of curves $y+x^{3}=c_{1}$. Then we also have

$$
\begin{equation*}
\frac{d u}{u}=-\frac{d y}{y}, \tag{1.42}
\end{equation*}
$$

from which we discover that $\ln u y=$ const or $u y=c_{2}$. Therefore the general solution is

$$
\begin{equation*}
y u(x, y)=f\left(y+x^{3}\right) . \tag{1.43}
\end{equation*}
$$

Then, on $x=0$,

$$
\begin{equation*}
\frac{f(y)}{y}=\frac{\tanh y}{y} \tag{1.44}
\end{equation*}
$$

in which case $f(y)=\tanh y$ and so

$$
\begin{equation*}
y u(x, y)=\tanh \left(y+x^{3}\right) . \tag{1.45}
\end{equation*}
$$

However, for the other $\mathrm{BC} u(x, 1)=x^{6}$, we have $x^{6}=f\left(1+x^{3}\right)$ from which we find $f(t)=(t-1)^{2}$ where $t=1+x^{3}$. With these BCs , the solution is

$$
\begin{equation*}
y u(x, y)=\left(y+x^{3}-1\right)^{2} . \tag{1.46}
\end{equation*}
$$

Example 6: (Exam 2002) Show that the PDE

$$
\begin{equation*}
y u_{x}+x u_{y}=4 x y^{3}, \tag{1.47}
\end{equation*}
$$

has a general solution of the form

$$
\begin{equation*}
u(x, y)=y^{4}+f\left(y^{2}-x^{2}\right) \tag{1.48}
\end{equation*}
$$

where f is an arbitrary function. If you are given that $u(0, y)=0$ and $u(x, 0)=-x^{4}$, show that the solution is

$$
\begin{equation*}
u(x, y)=2 x^{2} y^{2}-x^{4} . \tag{1.49}
\end{equation*}
$$

Solution : The auxiliary equations are

$$
\begin{equation*}
\frac{d x}{y}=\frac{d y}{x}=\frac{d u}{4 x y^{3}} . \tag{1.50}
\end{equation*}
$$

Characteristics come from the integration of $x d x=y d y$ thereby giving and so $y^{2}-x^{2}=c_{1}$. We also have $d u=4 y^{3} d y$ resulting in $u=y^{4}+c_{2}$, thereby giving the general solution

$$
\begin{equation*}
u(x, y)=y^{4}+f\left(y^{2}-x^{2}\right) . \tag{1.51}
\end{equation*}
$$

Applying the two boundary conditions gives

$$
\begin{array}{rlrlrl}
0 & =y^{4}+f\left(y^{2}\right) & \Rightarrow & f(t)=-t^{2} & t \geq 0 \\
-x^{4} & =f\left(-x^{2}\right) & \Rightarrow \quad f(t)=-t^{2} & t \leq 0 \tag{1.52}
\end{array}
$$

Thus we have

$$
\begin{equation*}
u(x, y)=y^{4}-\left(y^{2}-x^{2}\right)^{2}=2 x^{2} y^{2}-x^{4} \tag{1.53}
\end{equation*}
$$

One can check directly that this is indeed a solution.
Example 7: (Exam 2003) Show that the PDE

$$
\begin{equation*}
y^{2} u_{x}+x^{2} u_{y}=2 x y^{2}, \tag{1.54}
\end{equation*}
$$

has a general solution of the form

$$
\begin{equation*}
u(x, y)=x^{2}+f\left(y^{3}-x^{3}\right) \tag{1.55}
\end{equation*}
$$

where f is an arbitrary function.
(i) If $u(0, y)=-y^{6}$ and $u(x, 0)=x^{2}-x^{6}$ show that

$$
\begin{equation*}
u(x, y)=x^{2}-x^{6}+2 x^{3} y^{3}-y^{6} \tag{1.56}
\end{equation*}
$$

and
(ii) If $u(0, y)=\exp \left(y^{3}\right)$ and $u(x, 0)=x^{2}+\exp \left(-x^{3}\right)$ show that

$$
\begin{equation*}
u(x, y)=x^{2}+\exp \left(y^{3}-x^{3}\right) \tag{1.57}
\end{equation*}
$$

Solution : The auxiliary equations are

$$
\begin{equation*}
\frac{d x}{y^{2}}=\frac{d y}{x^{2}}=\frac{d u}{2 x y^{2}} . \tag{1.58}
\end{equation*}
$$

Characteristics come from the integration of $x^{2} d x=y^{2} d y$ thereby giving the family of curves $y^{3}-x^{3}=c_{1}$. We also have $d u=2 x d x$ giving $u=x^{2}+c_{2}$. Thus the general solution is

$$
\begin{equation*}
u(x, y)=x^{2}+f\left(y^{3}-x^{3}\right) . \tag{1.59}
\end{equation*}
$$

Applying the two boundary conditions gives:
(i) For $u(0, y)=-y^{6}$ and $u(x, 0)=x^{2}-x^{6}$

$$
\begin{align*}
-y^{6} & =f\left(y^{3}\right) \quad \Rightarrow \quad f(t)=-t^{2} \\
x^{2}-x^{6} & =x^{2}+f\left(-x^{3}\right) \quad \Rightarrow \quad f(t)=-t^{2} \tag{1.60}
\end{align*}
$$

Therefore

$$
\begin{equation*}
u(x, y)=x^{2}-\left(y^{3}-x^{3}\right)^{2}=x^{2}-x^{6}+2 x^{3} y^{3}-y^{6} . \tag{1.61}
\end{equation*}
$$

(ii) For $u(0, y)=\exp \left(y^{3}\right)$ and $u(x, 0)=x^{2}+\exp \left(-x^{3}\right)$

$$
\begin{align*}
\exp \left(y^{3}\right) & =f\left(y^{3}\right) \quad \Rightarrow \quad f(t)=\exp t \\
x^{2}+\exp \left(-x^{3}\right) & =x^{2}+f\left(-x^{3}\right) \quad \Rightarrow \quad f(t)=\exp t \tag{1.62}
\end{align*}
$$

Therefore, with $f(t)=\exp t$ the solution with these BCs is

$$
\begin{equation*}
u(x, y)=x^{2}+\exp \left(y^{3}-x^{3}\right) . \tag{1.63}
\end{equation*}
$$

2 Characteristics and 2nd order PDEs

2.1 Derivation of two sets of characteristics

Consider the class of 2nd order PDEs

$$
\begin{equation*}
R u_{x x}+2 S u_{x y}+T u_{y y}=f \tag{2.1}
\end{equation*}
$$

where $u_{x x}, u_{y y} \& u_{x y}$ are 2nd derivatives \& R, S, T and f are functions of $x, y, u, u_{x} \& u_{y}$. For motivational purposes let us return to the class of 1st order semi-linear equations

$$
\begin{equation*}
P u_{x}+Q u_{y}=R . \tag{2.2}
\end{equation*}
$$

Together with $u_{x} d x+u_{y} d y=d u$, these can be written as

$$
\left(\begin{array}{cc}
P & Q \tag{2.3}\\
d x & d y
\end{array}\right)\binom{u_{x}}{u_{y}}=\binom{R}{d u} .
$$

However, from the auxiliary equations for (2.2)

$$
\begin{equation*}
\frac{d x}{P}=\frac{d y}{Q}=\frac{d u}{R} \tag{2.4}
\end{equation*}
$$

which, can be re-expressed as

$$
\operatorname{det}\left(\begin{array}{cc}
P & Q \tag{2.5}\\
d x & d y
\end{array}\right)=0
$$

the 2×2 matrix on the LHS in (2.3) has zero determinant. This means that solutions for u_{x} and u_{y} are not unique: characteristics are a family of curves, so u_{x} and u_{y} may differ on each curve within the family.

Keeping this property in mind for the 2nd order class in (2.1) we use the chain rule to find $d F$ for a function

$$
\begin{equation*}
d F=F_{x} d x+F_{y} d y \tag{2.6}
\end{equation*}
$$

and then take $F=u_{x}$ and $F=u_{y}$ in turn.

$$
\begin{align*}
d\left(u_{x}\right) & =u_{x x} d x+u_{x y} d y \tag{2.7}\\
d\left(u_{y}\right) & =u_{x y} d x+u_{y y} d y . \tag{2.8}
\end{align*}
$$

Together with (2.1) we now have a 3×3 system:

$$
\left(\begin{array}{ccc}
R & 2 S & T \tag{2.9}\\
d x & d y & 0 \\
0 & d x & d y
\end{array}\right)\left(\begin{array}{l}
u_{x x} \\
u_{x y} \\
u_{y y}
\end{array}\right)=\left(\begin{array}{c}
f \\
d\left(u_{x}\right) \\
d\left(u_{y}\right)
\end{array}\right)
$$

Zero determinant of the 3×3 on the LHS side of (2.9) gives 6

$$
\begin{equation*}
R(d y)^{2}-2 S d x d y+T(d x)^{2}=0 \tag{2.10}
\end{equation*}
$$

which leads to the following formal classification:

Classification :

$$
\begin{equation*}
R\left(\frac{d y}{d x}\right)^{2}-2 S\left(\frac{d y}{d x}\right)+T=0 \tag{2.11}
\end{equation*}
$$

which has two roots

$$
\begin{equation*}
\frac{d y}{d x}=\frac{S \pm \sqrt{S^{2}-R T}}{R} \tag{2.12}
\end{equation*}
$$

In principle, this provides us with two ODEs to solve: call these solutions $\xi(x, y)=c_{1}$ and $\eta(x, y)=c_{2}$; these are our two sets of characteristic curves.

1. When $S^{2}>R T$ the two roots are real: the PDE is classed as HYPERBOLIC;
2. When $S^{2}<R T$ the roots form a complex conjugate pair: the PDE is classed as ELLIPTIC;
3. When $S^{2}=R T$ the double root is real: the PDE is classed as PARABOLIC .

A transformation of the PDE from derivatives in x, y into one in ξ, η produces the canonical form of the PDE:

1. In the hyperbolic case we use $\xi(x, y)$ and $\eta(x, y)$ as the new co-ordinates in place of x, y : these arise from integration of the two real solutions of (2.12).
2. The new co-ordinates $\xi(x, y)$ and $\eta(x, y)$ arise from the real and imaginary parts of the complex conjugate pair of solutions of (2.12).
3. In the parabolic there is only one real (double) root $\xi(x, y)$ of (2.12) : the other $\eta(x, y)$ may be chosen at will, usually for convenience; for instance, if $\xi=x+y$ then it might be convenient to choose $\eta=x+y$ for simplicity.
[^3]
2.2 Six Examples

Example 1: The standard form of the wave equation is $u_{x x}-c^{-2} u_{t t}=0$ but under the transformation $y=c t$ we obatin $u_{x x}-u_{y y}=0$.
Solution : $R=1, S=0$ and $T=-1$. Thus $R^{2}-S T=1$ and we have a hyperbolic PDE. (2.11) is

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)^{2}-1=0 \tag{2.13}
\end{equation*}
$$

which has two real roots $d y / d x= \pm 1$. Thus our two sets of characteristics are

$$
\begin{equation*}
\xi=x+y=c_{1} \quad \eta=x-y=c_{2} . \tag{2.14}
\end{equation*}
$$

Clearly, therefore, the characteristics are two families of straight lines, the first of gradient +1 and the second -1 .

For both Examples $1 \& 2$, the characteristics are the 2 families of straight lines $x-y=c_{2}$ and $x+y=c_{1}$.

Now transform into the new co-ordinates $\xi=x+y, \quad \eta=x-y$. The chain rule gives

$$
\begin{equation*}
\frac{\partial}{\partial x}=\xi_{x} \frac{\partial}{\partial \xi}+\eta_{x} \frac{\partial}{\partial \eta} ; \quad \frac{\partial}{\partial y}=\xi_{y} \frac{\partial}{\partial \xi}+\eta_{y} \frac{\partial}{\partial \eta} \tag{2.15}
\end{equation*}
$$

into which the definitions of ξ, η allow us to write $\xi_{x}=1, \eta_{x}=1, \xi_{y}=1$ and $\eta_{y}=-1$.

$$
\begin{equation*}
\frac{\partial}{\partial x}=\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta} ; \quad \quad \frac{\partial}{\partial y}=\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta} \tag{2.16}
\end{equation*}
$$

Thus we have $u_{x}=u_{\xi}+u_{\eta}$ and $u_{y}=u_{\xi}-u_{\eta}$. Moreover,

$$
\begin{equation*}
u_{x x}=\left(\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\right)\left(u_{\xi}+u_{\eta}\right) ; \quad u_{y y}=\left(\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta}\right)\left(u_{\xi}-u_{\eta}\right) \tag{2.17}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
u_{x x}=u_{\xi \xi}+2 u_{\xi \eta}+u_{\eta \eta} ; \quad \quad u_{y y}=u_{\xi \xi}-2 u_{\xi \eta}+u_{\eta \eta} \tag{2.18}
\end{equation*}
$$

and so our PDE transforms to

$$
\begin{equation*}
0=u_{x x}-u_{y y}=4 u_{\xi \eta} . \tag{2.19}
\end{equation*}
$$

The canonical form is $u_{\xi \eta}=0$. This can be integrated wrt ξ directly to give

$$
\begin{equation*}
u_{\eta}=F(\eta), \tag{2.20}
\end{equation*}
$$

where F is an arbitrary function of η, and then again wrt η

$$
\begin{align*}
u(\xi, \eta) & =\int F(\eta) d \eta+g(\xi) \\
& ==f(\eta)+g(\xi) \tag{2.21}
\end{align*}
$$

Both f and g are arbitrary functions. Thus we have the general solution

$$
\begin{equation*}
u(x, y)=f(x-y)+g(x+y) \tag{2.22}
\end{equation*}
$$

Example 2: Consider the PDE $u_{x x}+2 u_{x y}+u_{y y}=0$: in this case $R=1, S=1$ and $T=1$ so $R^{2}-S T=0$. Thus the PDE is parabolic : (2.11) is

$$
\begin{equation*}
\left(\frac{d y}{d x}-1\right)^{2}=0 \tag{2.23}
\end{equation*}
$$

which has a double real root $d y / d x=1$. Thus one characteristic curve is

$$
\begin{equation*}
\eta=x-y \tag{2.24}
\end{equation*}
$$

and we have a free choice with the other: for convenience we choose this as $\xi=x+y$, which makes (ξ, η) the same as Example 1. Then we have

$$
\begin{align*}
u_{x x} & =u_{\xi \xi}+2 u_{\xi \eta}+u_{\eta \eta} \\
u_{y y} & =u_{\xi \xi}-2 u_{\xi \eta}+u_{\eta \eta} \\
u_{x y} & =u_{\xi \xi}-u_{\eta \eta} \tag{2.25}
\end{align*}
$$

and so our PDE transforms to

$$
\begin{equation*}
0=u_{x x}+2 u_{x y}+u_{y y}=4 u_{\xi \xi} . \tag{2.26}
\end{equation*}
$$

Integration wrt ξ gives

$$
\begin{equation*}
u_{\xi}=f(\eta) \tag{2.27}
\end{equation*}
$$

for arbitrary f, and again

$$
\begin{equation*}
u(\xi, \eta)=\xi f(\eta)+g(\eta) \tag{2.28}
\end{equation*}
$$

for arbitrary g. In terms of x, y this becomes

$$
\begin{equation*}
u(x, y)=(x+y) f(x-y)+g(x-y) . \tag{2.29}
\end{equation*}
$$

One can check by direct differentiation - provided f, g have continuous second derivatives that (2.29) is a solution.

Example 3: Consider the PDE $u_{x x}+x^{2} u_{y y}=0$: in this case $R=1, S=0$ and $T=x^{2}$ so $R^{2}-S T=-x^{2}<0$. Thus the PDE is elliptic. (2.11) is

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)^{2}+x^{2}=0 \tag{2.30}
\end{equation*}
$$

Is there a natural canonical form? The formal solution of (2.30) is the complex function

$$
\begin{equation*}
y \pm \frac{1}{2} i x^{2}=c_{1,2} \tag{2.31}
\end{equation*}
$$

We could choose ξ and η as the real and imaginary parts respectively (or v -v). Take $\xi=\frac{1}{2} x^{2}$ and $\eta=y$, then

$$
\begin{equation*}
\frac{\partial}{\partial x}=x \frac{\partial}{\partial \xi} \quad \frac{\partial}{\partial y}=\frac{\partial}{\partial \eta} \tag{2.32}
\end{equation*}
$$

Thus $u_{x}=x u_{\xi}$ and $u_{y}=u_{\eta}$. Differentiating again is tricky because we have mixed old/new derivatives on the RHS of $u_{x}=x u_{\xi}$. To find $u_{x x}$ we use the product rule, differentiating wrt x first and then using the chain rule

$$
\begin{align*}
u_{x x} & =u_{\xi}+x \frac{\partial}{\partial x} u_{\xi}=u_{\xi}+x^{2} u_{\xi \xi} \\
u_{y y} & =u_{\eta \eta} . \tag{2.33}
\end{align*}
$$

Thus the PDE is

$$
\begin{equation*}
0=u_{x x}+x^{2} u_{y y}=x^{2}\left(u_{\xi \xi}+u_{\eta \eta}\right)+u_{\xi} \tag{2.34}
\end{equation*}
$$

and so the canonical form is

$$
\begin{equation*}
u_{\xi \xi}+u_{\eta \eta}+\frac{1}{2 \xi} u_{\xi}=0 . \tag{2.35}
\end{equation*}
$$

Example 4 (exam 05): Consider the PDE $8 u_{x x}-6 u_{x y}+u_{y y}+4=0$. Show that this is hyperbolic and that the characteristics are $\xi=x+2 y$ and $\eta=x+4 y$. Hence show the canonical form is $u_{\xi \eta}=1$. If $u=\cosh x \& u_{y}=2 \sinh x$ on $y=0$, show that the solution is

$$
\begin{equation*}
u=\xi \eta-\frac{1}{2}\left(\xi^{2}+\eta^{2}\right)+\cosh \xi . \tag{2.36}
\end{equation*}
$$

Solution: In this case $R=8, S=-3$ and $T=1$ so $S^{2}-R T=1$. Thus the PDE is hyperbolic. (2.11) is

$$
\begin{equation*}
8\left(\frac{d y}{d x}\right)^{2}+6 \frac{d y}{d x}+1=0 \tag{2.37}
\end{equation*}
$$

which factorizes to

$$
\begin{equation*}
\left(4 \frac{d y}{d x}+1\right)\left(2 \frac{d y}{d x}+1\right)=0 \tag{2.38}
\end{equation*}
$$

so $\xi=x+2 y$ and $\eta=x+4 y$ as required. Now we transform to canonical variables

$$
\begin{equation*}
u_{x}=u_{\xi}+u_{\eta} \quad u_{y}=2 u_{\xi}+4 u_{\eta} \tag{2.39}
\end{equation*}
$$

and

$$
\begin{align*}
& u_{x x}=u_{\xi \xi}+2 u_{\xi \eta}+u_{\eta \eta}, \\
& u_{x y}=2 u_{\xi \xi}+6 u_{\xi \eta}+4 u_{\eta \eta}, \\
& u_{y y}=4 u_{\xi \xi}+16 u_{\xi \eta}+16 u_{\eta \eta} . \tag{2.40}
\end{align*}
$$

Therefore

$$
\begin{align*}
0 & =8 u_{x x}-6 u_{x y}+u_{y y}+4 \\
& =u_{\xi \xi}(8-12+4)+u_{\xi \eta}(16-36+16)+u_{\eta \eta}(8-24+16)+4 \\
& =4-4 u_{\xi \eta} . \tag{2.41}
\end{align*}
$$

Thus we have the canonical form $u_{\xi \eta}=1$ which integrates to

$$
\begin{equation*}
u=\xi \eta+F(\eta)+G(\xi) \tag{2.42}
\end{equation*}
$$

Applying the BCs : on $y=0$ we have $\xi=\eta=x$: with $u=\cosh x$

$$
\begin{equation*}
\cosh x=F(x)+G(x)+x^{2} . \tag{2.43}
\end{equation*}
$$

and with $u_{y}=2 \sinh x$

$$
\begin{align*}
2 \sinh x & =\left\{2\left(\frac{\partial}{\partial \xi}+2 \frac{\partial}{\partial \eta}\right)[F(\eta)+G(\xi)+\xi \eta]\right\}_{y=0} \\
& =2\left\{G^{\prime}(x)+3 x+2 F^{\prime}(x)\right\} \tag{2.44}
\end{align*}
$$

Integrating this gives

$$
\begin{equation*}
G(x)+2 F(x)=\cosh x-\frac{3}{2} x^{2}+c \tag{2.45}
\end{equation*}
$$

Solving for $F(x)$ and $G(x)$ between (2.45) and (2.43) gives

$$
\begin{equation*}
F(x)=c-\frac{1}{2} x^{2} \quad G(x)=\cosh x-\frac{1}{2} x^{2}-c \tag{2.46}
\end{equation*}
$$

in which case (2.42) becomes

$$
\begin{equation*}
u(\xi, \eta)=\cosh \xi-\frac{1}{2}\left(\xi^{2}+\eta^{2}\right)+\xi \eta . \tag{2.47}
\end{equation*}
$$

Expressing this in x, y-coordinates it is found that

$$
\begin{equation*}
u(x, y)=\cosh (x+2 y)-2 y^{2} . \tag{2.48}
\end{equation*}
$$

Example 5 (exam 2003) : Consider the 2nd order PDE

$$
\begin{equation*}
y^{2} \frac{\partial^{2} u}{\partial x^{2}}=x^{2} \frac{\partial^{2} u}{\partial y^{2}} . \tag{2.49}
\end{equation*}
$$

Show firstly that is is hyperbolic in nature. Secondly show that it has characteristics

$$
\begin{equation*}
\xi=y^{2}+x^{2}=\text { const }, \quad \eta=y^{2}-x^{2}=\text { const } . \tag{2.50}
\end{equation*}
$$

Thirdly, show that its canonical form in characteristic variables is given by

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial \xi \partial \eta}=\frac{1}{2\left(\xi^{2}-\eta^{2}\right)}\left(\eta \frac{\partial u}{\partial \xi}-\xi \frac{\partial u}{\partial \eta}\right) . \tag{2.51}
\end{equation*}
$$

Solution: (i) $R=y^{2}, S=0$ and $T=-x^{2}$. Thus

$$
\begin{equation*}
y^{2}\left(\frac{d y}{d x}\right)^{2}=x^{2} \tag{2.52}
\end{equation*}
$$

so we have a hyperbolic PDE with two roots: $\xi=y^{2}+x^{2}=$ const and $\eta=y^{2}-x^{2}=$ const.
(ii) Using the chain rule we have

$$
\begin{equation*}
u_{x}=\xi_{x} u_{\xi}+\eta_{x} u_{\eta}=2 x\left(u_{\xi}-u_{\eta}\right) \quad u_{y}=\xi_{y} u_{\xi}+\eta_{y} u_{\eta}=2 y\left(u_{\xi}+u_{\eta}\right) \tag{2.53}
\end{equation*}
$$

Using the product rule, and the fact that

$$
\begin{equation*}
\frac{\partial}{\partial x}=2 x\left(\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta}\right) \quad \frac{\partial}{\partial y}=2 y\left(\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\right) \tag{2.54}
\end{equation*}
$$

we have

$$
\begin{align*}
& u_{x x}=2\left(u_{\xi}-u_{\eta}\right)+4 x^{2}\left(u_{\xi \xi}-2 u_{\xi \eta}+u_{\eta \eta}\right) \\
& u_{y y}=2\left(u_{\xi}+u_{\eta}\right)+4 y^{2}\left(u_{\xi \xi}+2 u_{\xi \eta}+u_{\eta \eta}\right) \tag{2.55}
\end{align*}
$$

Substituting this into $y^{2} u_{x x}-x^{2} u_{y y}=0$, we get the answer, using the fact that $y^{2}=\frac{1}{2}(\xi+\eta)$ and $x^{2}=\frac{1}{2}(\xi-\eta)$ so $4 x^{2} y^{2}=\xi^{2}-\eta^{2}$.
Example 6 (exam 2004) : Consider the 2nd order PDE

$$
\begin{equation*}
y^{2} \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{2.56}
\end{equation*}
$$

Show firstly that is is hyperbolic in nature. Secondly show that it has characteristics

$$
\begin{equation*}
\xi=\frac{1}{2} y^{2}+x=\text { const } \quad \eta=\frac{1}{2} y^{2}-x=\text { const } . \tag{2.57}
\end{equation*}
$$

Thirdly, show that its canonical form in characteristic variables is given by

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial \xi \partial \eta}+\frac{1}{4(\xi+\eta)}\left(\frac{\partial u}{\partial \xi}+\frac{\partial u}{\partial \eta}\right)=0 \tag{2.58}
\end{equation*}
$$

Solution: (i) $R=y^{2}, S=0$ and $T=-1$. Thus $S^{2}-R T=y^{2}>0$ so we have a hyperbolic PDE with

$$
\begin{equation*}
y^{2}\left(\frac{d y}{d x}\right)^{2}=1 \tag{2.59}
\end{equation*}
$$

Integration gives two roots: $\xi=\frac{1}{2} y^{2}+x=$ const and $\eta=\frac{1}{2} y^{2}-x=$ const.
(ii) Using the chain rule we have

$$
\begin{equation*}
u_{x}=\xi_{x} u_{\xi}+\eta_{x} u_{\eta}=u_{\xi}-u_{\eta} \quad u_{y}=\xi_{y} u_{\xi}+\eta_{y} u_{\eta}=y\left(u_{\xi}+u_{\eta}\right) \tag{2.60}
\end{equation*}
$$

Using the product rule, and the fact that

$$
\begin{equation*}
\frac{\partial}{\partial x}=\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta} \quad \frac{\partial}{\partial y}=y\left(\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\right) \tag{2.61}
\end{equation*}
$$

we have

$$
\begin{equation*}
u_{x x}=u_{\xi \xi}-2 u_{\xi \eta}+u_{\eta \eta} \quad u_{y y}=\left(u_{\xi}+u_{\eta}\right)+y^{2}\left(u_{\xi \xi}+2 u_{\xi \eta}+u_{\eta \eta}\right) \tag{2.62}
\end{equation*}
$$

Substituting this into $y^{2} u_{x x}-u_{y y}=0$, we get the answer, using the fact that $y^{2}=\xi+\eta$ and $x=\frac{1}{2}(\xi-\eta)$.

3 The wave equation - a hyperbolic PDE

3.1 Physical derivation

In the figure consider a string in motion whose vertical displacement is $u(x, t)$ at the point x is taken as a snapshot at time t : it is assumed that (i) the vertical displacement is very small so that the angles $|\alpha|$ and $|\beta|$ are small; (ii) stretching of the string is sufficiently negligible that there is no horizontal motion. Thus, resolving horizontally, $T_{1} \cos \alpha=T_{2} \cos \beta \approx T$ (the tension). Now consider the small arc-length of string δs between the co-ordinate points x and $x+\delta x$. Because the angles are small $\delta s \simeq \delta x$. If ρ is the string mass/unit density then the vertical equation of motion for our small element of string of mass $\rho \delta x$ is

$$
\begin{equation*}
\rho \delta x \frac{\partial^{2} u}{\partial t^{2}}=T_{2} \sin \beta-T_{1} \sin \alpha \tag{3.1}
\end{equation*}
$$

The smallness of $|\alpha|$ and $|\beta|$ allow us to write $\sin \alpha \approx \tan \alpha$ and $\sin \beta \approx \tan \beta$ to convert (3.1) to

$$
\begin{equation*}
\rho \delta x \frac{\partial^{2} u}{\partial t^{2}}=T(\tan \beta-\tan \alpha) \tag{3.2}
\end{equation*}
$$

However

$$
\begin{equation*}
\tan \alpha=\left(\frac{\partial u}{\partial x}\right)_{x} \quad \tan \beta=\left(\frac{\partial u}{\partial x}\right)_{x+\delta x} \tag{3.3}
\end{equation*}
$$

Thus (3.2) can be written as

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{T}{\rho}\left(\frac{\left(\frac{\partial u}{\partial x}\right)_{x+\delta x}-\left(\frac{\partial u}{\partial x}\right)_{x}}{\delta x}\right) \tag{3.4}
\end{equation*}
$$

Therefore, in the limit $\delta x \rightarrow 0$ (3.4) becomes

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{T}{\rho} \frac{\partial^{2} u}{\partial x^{2}} \tag{3.5}
\end{equation*}
$$

$T \rho^{-1}$ has the dimensions of a squared velocity, denoted as c^{2}, which is constant for a chosen string with a fixed tension T. With

$$
\begin{equation*}
c^{2}=\frac{T}{\rho} \tag{3.6}
\end{equation*}
$$

(3.5) becomes the wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=0 \tag{3.7}
\end{equation*}
$$

3.2 d'Alembert's solution of the wave equation

We now wish to solve the wave equation (3.7) subject to initial conditions on the initial shape $u(x, 0)$ and the initial velocity $\partial u(x, 0) / \partial t$

$$
\begin{equation*}
u(x, 0)=h(x) \quad \frac{\partial}{\partial t} u(x, 0)=\left.\frac{\partial}{\partial t} u(x, t)\right|_{t=0}=v(x) \tag{3.8}
\end{equation*}
$$

where $h(x)$ and $v(x)$ are given functions. In example 1 in $\S 2.2$ we found the general solution of $u_{x x}-u_{y y}=0$ in (2.22). With $y=c t$ this is

$$
\begin{equation*}
u(x, t)=f(x-c t)+g(x+c t) \tag{3.9}
\end{equation*}
$$

where, so far, f and g are arbitrary functions. Applying (3.8)

$$
\begin{equation*}
f(x)+g(x)=h(x) \quad g^{\prime}(x)-f^{\prime}(x)=\frac{1}{c} v(x) . \tag{3.10}
\end{equation*}
$$

Integrating the latter equation from an arbitrary point $x=a$ to x and then adding and subtracting, it is found that

$$
\begin{align*}
& f(x)=\frac{1}{2} h(x)-\frac{1}{2 c} \int_{a}^{x} v(\xi) d \xi-\frac{1}{2 c}[g(a)-f(a)] \\
& g(x)=\frac{1}{2} h(x)+\frac{1}{2 c} \int_{a}^{x} v(\xi) d \xi+\frac{1}{2 c}[g(a)-f(a)] \tag{3.11}
\end{align*}
$$

Now substitute this into (3.9) with $x \rightarrow x-c t$ in $f(x)$ and $x \rightarrow x+c t$ in $g(x)$ to get

$$
\begin{equation*}
u(x, t)=\frac{1}{2}\{h(x-c t)+h(x+c t)\}+\frac{1}{2 c} \int_{x-c t}^{x+c t} v(\xi) d \xi \tag{3.12}
\end{equation*}
$$

This is the d'Alembert's solution which is valid on an infinite domain: note that the pair of terms that contain the point $x=a$ cancel leaving no trace.

3.3 Waves on a guitar string: Separation of variables

The same initial conditions as above in (3.2) are now used but now with boundary conditions that fix the ends of a finite string down at $x=0$ and $x=L$.

Now try a solution in the form

$$
\begin{equation*}
u(x, t)=X(x) T(t) \tag{3.13}
\end{equation*}
$$

which is substituted into the wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=0 \tag{3.14}
\end{equation*}
$$

to get

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}=\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T} \tag{3.15}
\end{equation*}
$$

Note that the LHS is a function of x but not t while the RHS is a function of t but not x. Thus we can write

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}=-\lambda^{2} \quad \frac{T^{\prime \prime}}{T}=-\lambda^{2} c^{2} \tag{3.16}
\end{equation*}
$$

where $-\lambda^{2}$ is an arbitrary constant ${ }^{7}$. The ODE for X is $X^{\prime \prime}+\lambda^{2} X=0$ which has a solution

$$
\begin{equation*}
X(x)=A \cos \lambda x+B \sin \lambda x \tag{3.17}
\end{equation*}
$$

Applying the BC that $u(x, 0)=0$ for all values of t means that $X(0)=0$ from which it is deduced that $A=0$: likewise from $X(L)=0$ it is deduced that

$$
\begin{equation*}
B \sin \lambda L=0 \tag{3.18}
\end{equation*}
$$

[^4]$B=0$ is the trivial solution : $\sin \lambda L=0$ gives an infinite number of solutions for λ, namely
\[

$$
\begin{equation*}
\lambda_{n}=\frac{n \pi}{L} \quad n=0, \pm 1, \pm 2 \ldots \tag{3.19}
\end{equation*}
$$

\]

giving an infinite set of solutions

$$
\begin{equation*}
X_{n}(x)=B_{n} \sin \left(\frac{n \pi x}{L}\right) . \tag{3.20}
\end{equation*}
$$

Here is the reason for a negative choice of the constant in (3.16): a positive choice of constant $+\lambda^{2}$ would have made $\sin (\lambda L)$ into $\sinh (\lambda L)$. This has only one root at $\lambda=0$ which corresponds to the trivial solution.
The time part in (3.16) can now be easily solved

$$
\begin{equation*}
T_{n}=C_{n} \sin \left(\omega_{n} t\right)+D_{n} \cos \left(\omega_{n} t\right) \tag{3.21}
\end{equation*}
$$

where the infinite set of frequencies ${ }^{8} \omega_{n}$ are defined by $\omega_{n}=\frac{n \pi c}{L}$. This means that there is an infinite set of solutions $u_{n}=X_{n} T_{n}$ which can be summed to form the general solution. In so doing the products of arbitrary constants $B_{n} C_{n}$ etc are re-labelled

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left[c_{n} \sin \left(\omega_{n} t\right)+d_{n} \cos \left(\omega_{n} t\right)\right] \tag{3.22}
\end{equation*}
$$

Now apply the initial conditions from (3.8)

$$
\begin{equation*}
u(x, 0)=h(x) ; \quad \quad \frac{\partial}{\partial t} u(x, 0)=v(x) . \tag{3.23}
\end{equation*}
$$

The first says that

$$
\begin{equation*}
h(x)=\sum_{n=1}^{\infty} d_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{3.24}
\end{equation*}
$$

This is the half-range Fourier series of $h(x)$ on $[0, L]$ which was discussed regarding "periodic extension"; this means that the series can be inverted to find d_{n}

$$
\begin{equation*}
d_{n}=\frac{2}{L} \int_{0}^{L} h(x) \sin \left(\frac{n \pi x}{L}\right) d x \tag{3.25}
\end{equation*}
$$

Applying the second initial condition gives

$$
\begin{equation*}
v(x)=\sum_{n=1}^{\infty} \tilde{c}_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{3.26}
\end{equation*}
$$

where $\tilde{c}_{n}=c_{n} n \pi c / L$. We have

$$
\begin{equation*}
\tilde{c}_{n}=\frac{2}{L} \int_{0}^{L} v(x) \sin \left(\frac{n \pi x}{L}\right) d x \tag{3.27}
\end{equation*}
$$

[^5]Question: Is this consistent with d'Alembert's solution? For simplicity, take $v=0$ so the string is released from rest. The solution in (3.22) is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} d_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right) . \tag{3.28}
\end{equation*}
$$

Now use a standard trig formula to write this as

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} \frac{1}{2} d_{n}\left\{\sin \left(\frac{n \pi x+c t)}{L}\right)+\sin \left(\frac{n \pi(x-c t)}{L}\right)\right\} \tag{3.29}
\end{equation*}
$$

which is in the D'Alembert form.
Example Take the string from rest $(v=0)$ and $h(x)$ as a "tent function" of height d at the mid-point $x=\frac{1}{2} L$.

$$
h(x)=\left\{\begin{array}{cc}
\frac{2 d}{L} x & 0 \leq x \leq \frac{1}{2} L \\
2 d\left(1-\frac{x}{L}\right) & \frac{1}{2} L \leq x \leq L
\end{array}\right.
$$

The Fourier series for this - with no working - contains only odd sine-terms

$$
\begin{equation*}
u(x, t)=\frac{8 d}{\pi^{2}} \sum_{r=0}^{\infty} \frac{(-1)^{r}}{(2 r+1)^{2}} \sin \left(\frac{(2 r+1) \pi x}{L}\right) \cos \left(\frac{(2 r+1) \pi c t}{L}\right) \tag{3.30}
\end{equation*}
$$

Note that the coefficients of the higher harmonics die off as n^{-2}.

4 Laplace's equation - an elliptic PDE

The simplest elliptic PDE is Laplace's equation in cartesian co-ordinates where $R=T=1$ and $S=0$

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \quad S^{2}-R T=-1<0 \tag{4.1}
\end{equation*}
$$

In two-dimensions, the method of separation of variables is useful but needs to be considered in the context of the BCs. Solutions in terms of polar co-ordinates will be our concern of the subsection $\S 4.2$ concerning flow around a cylinder. First we look at a simpler problem.

4.1 An infinite strip

Physically Laplace's equation often occurs in situations where the diffusive flow of heat or some other scalar in a two-dimensional piece of material is governed by the diffusion or heat equation $u_{t}=\alpha \nabla^{2} u$ where ∇^{2} is the Laplacian $\nabla^{2}=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}$. When the system has reached a steady state - so $u_{t}=0-$ we are left with the problem of solving Laplace's equation (4.1). The strip below is an example of how to solve this with a set of given boundary conditions (BCs).

Figure: The region is a strip bounded between $x=0$ (y-axis) and $x=\pi$ on which $u=0$ while $u=f(x)$ on $y=0$.
The infinite strip, as in the figure above, has $u=0$ on the sides and $u=f(x)$, a given function, on the bottom edge. To remain physical it is also necessary to insist that $u \rightarrow 0$ as $y \rightarrow \infty$. Inside the strip u satisfies Laplace's equation (4.1) which we attempt to solve by the method of separation of variables

$$
\begin{equation*}
u(x, y)=X(x) Y(y) \tag{4.2}
\end{equation*}
$$

and thus (4.1) becomes $X^{\prime \prime} Y+X Y^{\prime \prime}=0$. Therefore

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda^{2} \tag{4.3}
\end{equation*}
$$

the choice of \pm on the far RHS is dependent on the BCs. Clearly we have the two ODEs

$$
\begin{equation*}
X^{\prime \prime}+\lambda^{2} X=0 \quad Y^{\prime \prime}-\lambda^{2} Y=0 \tag{4.4}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
X=A \cos \lambda x+B \sin \lambda x, \quad Y=C e^{\lambda y}+D e^{-\lambda y} \tag{4.5}
\end{equation*}
$$

The BC at $x=0$ insists that $A=0$ and at $x=\pi$ that $\sin \lambda \pi=0$. Thus $\lambda_{n}=n$ where n is an integer. For $n>0$ we must also choose $C=0$ to be sure that there is no exponential growth as $y \rightarrow \infty$. We are left with a summed infinite set of solutions

$$
\begin{equation*}
u(x, y)=\sum_{n=1}^{\infty} b_{n} e^{-n y} \sin n x \tag{4.6}
\end{equation*}
$$

To find the b_{n} requires the use of the last $\mathrm{BC} u=f(x)$ on $y=0$

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x \tag{4.7}
\end{equation*}
$$

This is the Fourier sine-series expansion of $f(x)$ on $[0, \pi]$ which inverts to

$$
\begin{equation*}
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \tag{4.8}
\end{equation*}
$$

For example, if $f(x)=1$ - that is, a uniform value - then

$$
b_{n}=\left\{\begin{array}{cc}
0 & n \text { even } \tag{4.9}\\
\frac{4}{n \pi} & n \text { odd }
\end{array}\right.
$$

With $n=2 r+1$, our solution is

$$
\begin{equation*}
u(x, y)=\frac{4}{\pi} \sum_{r=1}^{\infty} e^{-(2 r+1) y}\left(\frac{\sin (2 r+1) x}{2 r+1}\right) . \tag{4.10}
\end{equation*}
$$

Note that this solution correctly decays exponentially as $y \rightarrow \infty$ and is zero at $x=0$ and $x=\pi$.

4.2 Fluid flow around a cylinder

4.2.1 Laplace's equation in polar co-ordinates

Consider Laplace's equation in polar co-ordinates (see handout on The Chain Rule)

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0 . \tag{4.11}
\end{equation*}
$$

Looking for separable solutions of the form $\Phi(r, \theta)=R(r) H(\theta)$ we find

$$
\begin{equation*}
\frac{r^{2}}{R}\left(R^{\prime \prime}+\frac{1}{r} R^{\prime}\right)=-\frac{H^{\prime \prime}}{H}=\lambda^{2} \tag{4.12}
\end{equation*}
$$

Choosing the separation constant negative anticipates solutions for $H(\theta)$ that need to be periodic. Solving $H^{\prime \prime}+\lambda^{2} H=0$ gives

$$
\begin{equation*}
H(\theta)=A \cos \lambda \theta+B \sin \lambda \theta \tag{4.13}
\end{equation*}
$$

When $\lambda \neq 0$ solving $R^{\prime \prime}+\frac{1}{r} R^{\prime}-\frac{\lambda^{2}}{r^{2}} R=0$ gives

$$
\begin{equation*}
R(r)=a r^{\lambda}+b r^{-\lambda} . \tag{4.14}
\end{equation*}
$$

If we require $\Phi(r, \theta)$ to be continuous ${ }^{9}$ in θ; that is, $\Phi(r, \theta)=\Phi(r, \theta+2 n \pi)$, then $\lambda=n$ (an integer). The general 2π-periodic solution of (4.11) is

$$
\begin{equation*}
\Phi(r, \theta)=\sum_{n=1}^{\infty}\left(a_{n} r^{n}+b_{n} r^{-n}\right)\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right) . \tag{4.15}
\end{equation*}
$$

[^6]
4.2.2 Calculating the flow around the cylinder

Consider an incompressible irrotational 2D fluid with velocity vector \boldsymbol{u} flowing past a cylinder of radius a, as in the figure: the centre of the cylinder can be considered to be at $r=0$. At $r= \pm \infty$ the flow is laminar : that is, $\boldsymbol{u}=(0, U)$ where U is a constant.

$$
U \rightarrow
$$

(i) The divergence-free condition $\operatorname{div} \boldsymbol{u}=0$ means that a stream function $\psi(x, y)$ exists

$$
\boldsymbol{u}=\left(\psi_{y},-\psi_{x}\right)=\hat{\boldsymbol{i}} \psi_{y}-\hat{\boldsymbol{j}} \psi_{x}
$$

Irrotational flow (curl $\boldsymbol{u}=0$) means that

$$
\left|\begin{array}{ccc}
\hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
\psi_{y} & -\psi_{x} & 0
\end{array}\right|=0
$$

Thus we have Laplace's equation for the stream function

$$
\begin{equation*}
\psi_{x x}+\psi_{y y}=0 \quad \Rightarrow \quad \frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}=0 \tag{4.16}
\end{equation*}
$$

(ii) The alternative way, using the potential, starts from curl $\boldsymbol{u}=0$. This means that a potential function ϕ exists such that $\boldsymbol{u}=\nabla \phi=\hat{\boldsymbol{i}} \phi_{x}+\hat{\boldsymbol{j}} \phi_{y}$. From $\operatorname{div} \boldsymbol{u}=0$, we have Laplace's equation $\nabla^{2} \phi=\phi_{x x}+\phi_{y y}=0$ which is also (4.11) in polar co-ordinates.

Thus we want to solve (4.16) under the circumstance where the fluid, of constant horizontal speed U at infinity, flows past a solid cylinder of radius a centred at the origin. The fact that no fluid can cross the surface of the cylinder translates into the boundary condition

$$
\begin{equation*}
\left.\frac{\partial \psi}{\partial \theta}\right|_{r=a}=0 \tag{4.17}
\end{equation*}
$$

Since the flow at $r= \pm \infty$ is horizontal we have $\boldsymbol{u}=U \hat{\boldsymbol{i}}+0 \hat{\boldsymbol{j}}$ there, which means that

$$
\begin{equation*}
\psi=U y=U r \sin \theta \quad \text { at } \quad r=\infty . \tag{4.18}
\end{equation*}
$$

We want to solve Laplace's equation (4.16) in the infinite domain around the cylinder of radius a with prescribed BCs (4.17) and (4.18). Separating the $n=1$ term from the rest of the
infinite sum in (4.15) we have

$$
\begin{align*}
\psi(r, \theta) & =\left(a_{1} r+b_{1} r^{-1}\right)\left(A_{1} \cos \theta+B_{1} \sin \theta\right) \\
& +\sum_{n=2}^{\infty}\left(a_{n} r^{n}+b_{n} r^{-n}\right)\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right) \tag{4.19}
\end{align*}
$$

Applying the $B C$ in (4.18) we find that

$$
\begin{equation*}
a_{1} B_{1}=U \quad A_{1}=0 \tag{4.20}
\end{equation*}
$$

and all coefficients $A_{n}=B_{n}=0$ for $n \geq 2$. This leaves us with

$$
\begin{equation*}
\psi=U\left(r+\frac{b_{1}}{a_{1}} \frac{1}{r}\right) \sin \theta \tag{4.21}
\end{equation*}
$$

Finally applying the $\mathrm{BC}(4.17)$ at $r=a$ we find $b_{1} / a_{1}=-a^{2}$ giving the stream function as

$$
\begin{equation*}
\psi=U\left(r-\frac{a^{2}}{r}\right) \sin \theta \tag{4.22}
\end{equation*}
$$

5 The diffusion equation - a parabolic PDE

Consider a very thin metal bar on the x-axis on $[0, L]$, as in the figure below, with temperature $u=0$ at both ends. For standard materials, the equation that normally governs heat flow is the diffusion equation ${ }^{10}$

$$
\begin{equation*}
u_{t}=\kappa u_{x x} \tag{5.1}
\end{equation*}
$$

where κ is a material constant (thermal conductivity) which has the dimensions (length) ${ }^{2} /$ time. In this section we solve two problems: on a finite one-dimensional domain $[0, L]$ and similarity solutions on an infinite domain.

5.1 Separation of variables on a finite domain

The BCS are $u=0$ on both $x=0$ and $x=L$ with 11 an initial distribution of temperature $u(x, 0)=f(x)$. Separation of variables

$$
\begin{equation*}
u(x, t)=X(x) T(t) \tag{5.2}
\end{equation*}
$$

[^7]gives
\[

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}=\frac{1}{\kappa} \frac{T^{\prime}}{T}=-\lambda^{2} \tag{5.3}
\end{equation*}
$$

\]

for which we write

$$
\begin{equation*}
X^{\prime \prime}+\lambda^{2} X=0 \quad \text { with } \quad X(0)=X(L)=0 \tag{5.4}
\end{equation*}
$$

This we have solved before: (5.4) gives $X=A \cos \lambda x+B \sin \lambda x$ in which $A=0$ because $X(0)=0$, whereas

$$
\begin{equation*}
\sin \lambda L=0 \quad \Rightarrow \quad \lambda_{n}=\frac{n \pi}{L} \quad \text { with } \quad X_{n}(x)=B_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{5.5}
\end{equation*}
$$

The time part $T^{\prime}=-\lambda^{2} \kappa T$ solves to become

$$
\begin{equation*}
T_{n}(t)=T_{n, 0} \exp \left(-\frac{n^{2} \pi^{2} \kappa t}{L^{2}}\right) \tag{5.6}
\end{equation*}
$$

Thus the general solution is a linear sum of all the solutions for each n

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} b_{n} \exp \left(-\frac{n^{2} \pi^{2} \kappa t}{L^{2}}\right) \sin \left(\frac{n \pi x}{L}\right) \tag{5.7}
\end{equation*}
$$

where the constants $B_{n} T_{n, 0}=b_{n}$. Applying the ICs gives

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{5.8}
\end{equation*}
$$

and, as before, this Fourier half-range series can be inverted to give the b_{n}

$$
\begin{equation*}
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \tag{5.9}
\end{equation*}
$$

5.2 Similarity solutions on an infinite domain

The diffusion equation in one-dimension is $u_{t}=\kappa u_{x x}$ has been solved above on a domain of finite length. What if $L=\infty$? Clearly, the method of separation of variables no longer works and we need a different approach. The key lies in κ, the diffusion coefficient, which has dimension $L^{2} T^{-1}$. If we are looking for solutions on an infinite domain $-\infty \leq x \leq \infty$ where there is no natural length scale, then we can use the dimensionless variable

$$
\begin{equation*}
\eta=\frac{x}{\sqrt{\kappa t}} \tag{5.10}
\end{equation*}
$$

and look for solutions in the form

$$
\begin{equation*}
u(x, t)=t^{p} g(\eta) \tag{5.11}
\end{equation*}
$$

where the number p and the function $g(\eta)$ are to be determined. Substituting (5.11) into $u_{t}=\kappa u_{x x}$ we find that

$$
\begin{equation*}
t^{p-1}\left(p g-\frac{\eta}{2} g^{\prime}-g^{\prime \prime}\right)=0 \tag{5.12}
\end{equation*}
$$

and so

$$
\begin{equation*}
g^{\prime \prime}+\frac{\eta}{2} g^{\prime}=p g \tag{5.13}
\end{equation*}
$$

This is difficult to solve for arbitrary values of p but for special values we can do something.

1. Take $p=0$ and (5.13) is easily solved to give

$$
\begin{equation*}
g^{\prime}(\eta)=A e^{-\eta^{2} / 4} \tag{5.14}
\end{equation*}
$$

where A is a constant. Integrating again we have

$$
\begin{equation*}
g(\eta)=A \int_{-\infty}^{\eta} e^{-\eta^{\prime 2} / 4} d \eta^{\prime} \tag{5.15}
\end{equation*}
$$

This gives a full solution for $u(x, t)$

$$
\begin{equation*}
u(x, t)=A \int_{-\infty}^{\frac{x}{\sqrt{\kappa t}}} e^{-\eta^{\prime 2} / 4} d \eta^{\prime}=2 A \sqrt{\pi} \operatorname{erf}\left(\frac{x}{2 \sqrt{\kappa t}}\right) \tag{5.16}
\end{equation*}
$$

where the error function $\operatorname{erf}(\xi)$ is defined as $\operatorname{erf}(\xi)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\xi} e^{-y^{2}} d y$. This has the property that erf $(\infty)=1$.
2. Now define $G=g e^{\eta^{2} / 4}$ and we observe that 5.13) can be transformed into

$$
\begin{equation*}
G^{\prime \prime}-\frac{\eta}{2} G^{\prime}=(p+1 / 2) G . \tag{5.17}
\end{equation*}
$$

This has the trivial solution $G=b=$ const provided $p=-1 / 2$. Hence

$$
\begin{equation*}
g(\eta)=b e^{-\eta^{2} / 4} \tag{5.18}
\end{equation*}
$$

This gives a full solution for $u(x, t)$ in the form

$$
\begin{equation*}
u(x, t)=b t^{-1 / 2} e^{-\frac{x^{2}}{4 \kappa t}} \tag{5.19}
\end{equation*}
$$

[^0]: ${ }^{2}$ The subscript notation $u_{x}=\partial u / \partial x$ and $u_{x y}=\partial^{2} u / \partial x \partial y$ etc is used throughout.
 ${ }^{3}$ This PDE is also said to be quasi-linear if P and Q are dependent on u.

[^1]: ${ }^{4}$ They are also sometimes referred to as Riemann invariants,

[^2]: ${ }^{5}$ The variable t is simply the argument of the function $f(t)$: the fact that it is called t has no meaning we could designate it by any symbol we wish.

[^3]: ${ }^{6}$ Note the negative sign on the central term $-2 S d x d y$ in contrast to the positive sign in the PDE (2.1).

[^4]: ${ }^{7}$ The choice of a negative constant is explained lower down.

[^5]: ${ }^{8} \omega_{1}$ is the fundamental frequency; ω_{2} is the 1 st harmonic etc. Note that all harmonics are summed in the solution. It is the balance of these that gives a musical instrument its quality.

[^6]: ${ }^{9}$ The case with $\lambda=0$ where $H(\theta)=\tilde{A} \theta+\tilde{B}$ and $R(r)=\tilde{a} \ln r+\tilde{b}$ is not 2π-periodic in θ.

[^7]: ${ }^{10}$ In 2 dimensions the equivalent is $u_{t}=\kappa \nabla^{2} u$ where ∇^{2} is the Laplacian $\nabla^{2}=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}$.
 ${ }^{11}$ If the end conditions are different, say $u=0$ at $x=0$ and $u=u_{0}$ at $x=L$, then the following trick is useful: define $u(x, t)=u_{0} x / L+v(x, t)$ with $v=0$ on $x=0$ and $x=L$ with v satisfying $v_{t}=\kappa v_{x x}$, then the problem reduces to the one solved above with $u=0$ at both ends.

