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The main line of my work lies in the algebraic topology of Lie group actions; in lay terms, I study
aspects of smooth symmetry. I began using a tool called Borel cohomology to situations of classical interest
to geometers, such as the isotropy actions on (generalized) homogeneous spaces, the biquotients of two-sided
actions, and cohomogeneity-one actions. An at times more precise but also more demanding approach to
studying these actions involves equivariant K-theory (Section 2). A fair deal of my work has centered on a
family of important algebraic simplicity conditions on the Borel cohomology and equivariant K-theory of
an action, called equivariant formality (Section 3). Trying to answer one such question, involving circular
symmetry, led me to accidentally reprove a little-known classical result on the rational cohomology of
homogeneous spaces and then (this time intentionally) write a textbook on the subject currently under
revision for Springer (Section 1).

Equivariant topology in general depends heavily on fixed point sets of group actions, and one can
ask what kind of “local models” of potential actions near fixed point sets actually arise. Such questions
led me into the realm of equivariant cobordism, which in a way attempts to understand not symmetries of
individual spaces, but the totality of all spaces admitting certain kinds of symmetries. My collaborators
and I have been particularly successful with a class of well-behaved actions called GKM actions, which
have been of perennial interest to differential and symplectic geometers. My existing work and plans in
this area are described in Section 4.

I proved in the case of isotropy actions the notion of equivariant formality above is linked with a more
general notion of formality connecting rational homotopy theory with Galois cohomology, two other fields I
am pursuing projects in; see Section 6. To recover the same results with coefficient rings other than Q, a
less rigid notion of formality is called for, leading to the study of A8-algebras and other up-to-homotopy
algebra structures. My projects in this field are summarized in Section 5.

I have also done work in low-dimensional topology and dynamics [AkC12, C10].

1. Rational cohomology of homogeneous spaces
A homogeneous space is the orbit of a single point under a Lie group action. The geometry of such a space
is highly symmetric, being identical at every point, and homogeneous spaces have long been studied by
differential geometers. The most famous algebraic result about homogeneous spaces may be H. Cartan’s
result that if G and a subgroup K are compact, connected Lie groups, then the real cohomology ring of
the homogeneous space G{K is given by

H˚pG{K;Rq – Tor˚H˚pBG;Rq
`

R, H˚pBK;Rq
˘

.

In order to characterize equivariant formality of isotropic circle actions (see Section 3.3) in my thesis, I
derived a consequence of Cartan’s theorem which states that unless a circle subgroup S1 of a connected
Lie group G is nullhomotopic in G, the rational cohomology ring of G{S1 is isomorphic to that of a product
S2 ˆ

ś

S2n``1 of spheres [C19b, Appendix A].

1.1. My book
My later discovery that this result is not actually original, having been announced without proof by
Leray and Koszul in the late 1940s, solidified what had been growing into a general discontent with the
secondary literature in this area. Convinced that this material needed to be better publicized, I resolved
to write a text on the rational non-equivariant cohomology of homogeneous spaces [C20], which I have
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since submitted for publication. I am now preparing a revision with more background material on Lie
groups at the request of Springer’s editors.

The manuscript uses a touch of rational homotopy theory to streamline the approach to the “Cartan”
cochain model for H˚pG{K;Qq which Borel developed in his thesis, and is meant in part to be a gentle
introduction to spectral sequences suitable for a second year graduate student. The necessary algebra is
developed along the way and the resulting exposition is substantially faster than previously published
approaches. Several aspects of my approach do not seem to appear elsewhere.

2. Borel equivariant cohomology and equivariant K-theory
It is a well-known disappointment that the orbit space M{G of the action of a Lie group G on a topologial
space M does not distinguish between orbit types; for example, when one passes to the quotient S2{S1 «

r´1, 1s of a standard globe S2 under the action of the circle S1 by rotation, both poles ˚ and latitudes
S1 become simply points. One wants to have one’s cake and eat it too by taking the quotient in a way
that somehow retains the distinction between orbit types, and does this via Borel equivariant cohomology,
a central tool since its inception around 1960 [BorelSem]. One forms the homotopy quotient or Borel
construction

MG :“ EGˆML

peg, mq „ pe, gmq,

where EG is the total space of the universal principal G-bundle, a contractible space with free G-action.
Homotopically speaking, EG ˆ M is no different than M, but the diagonal action on EG ˆ M is free, so
orbit types now remain distinct and we may regard MG as a homotopically-correct replacement for M{G.
The Borel cohomology H˚GpMq of the action is the singular cohomology H˚pMGq of this new construction.
For example, the homotopy quotient pS2qS1 of the rotation action on the 2-sphere can be visualized as in
the following cartoon.

Here forgetting the EG coordinate induces a projection to the naive quotient, whose fiber over any point
of the open interval p´1, 1q is the (contractible) infinite-dimensional sphere ES1 “ S8, and whose fibers
over ˘1 are infinite complex projective spaces BS1 “ CP8 “ S8{S1. Thus MG is homotopy equivalent
to the wedge sum CP8 _CP8. Its cohomology Zrx, ys{pxyq encodes much of the structure of the action;
for example, the two fixed points show up in the fact that the ring is free of rank two over the coefficient
ring H˚S1p˚q – Zrx` ys. In general, the orbit types can be read off of the ideal structure of H˚GpXq [Hsiang,
Ch. IV], so Borel cohomology makes orbit structure legible in ring theory.

Another approach to analyzing an action studies bundles over the space. Given a G-space M, one can
consider the notion of a G-equivariant vector bundle V Ñ M whose total space admits a G-action such that
the projection preserves the group action. These can be directly summed and tensored just as ordinary
vector bundles can, and formally inverting the direct sum yields the equivariant K-theory ring K˚GpMq.
As in the nonequivariant case, equivariant K-theory is inherently less computable than Borel cohomology
but often better-behaved algebraically.

In the rest of this section we describe some of my computations.
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2.1. . . . of real Grassmannians
The real Grassmannians GkpRnq of oriented k-planes in n-dimensional Euclidean space are important
parametrizing objects, well-studied as manifolds in their own right. Accordingly, their rational singular
cohomology rings have long been known [Ler49, Tak62][Cartan51, p. 71][Bor53, p. 192]. Chen He [He16,
Thms. 5.2.2, 6.3.1, Cor. 5.2.1] applied his extension of GKM-theory to odd-dimensional and nonorientable
manifolds to compute the rational Borel cohomology rings of the isotropy actions on these spaces, defined
as the left multiplication action of K (here SOpkq ˆ SOpn´ kq) on the right quotient homogeneous space
G{K « SOpnq{

`

SOpkq ˆ SOpn´ kq
˘

. I showed [C19a] that one can compute these rings much more simply
using existing models and a structure result, Theorem 3.1 below.

2.2. . . . of cohomogeneity-one actions
The next simplest actions after homogeneous ones are the cohomogeneity-one actions, those with one-
dimensional orbit space, which are the subject of a vast geometric literature and classified in low dimen-
sions [GGZ18]. Topologically, they all are mapping tori of G-equivariant self-homeomorphisms of homoge-
nous spaces or double mapping cylinders of certain pairs of G-equivariant maps G{K´ Ð G{H Ñ G{K`,
but they furnish many interesting examples of positively-curved manifolds with large isometry groups.

(a) M{G an interval (b) M{G a circle

Figure 2.1: Schematic of the orbit projection M ÝÑ M{G of a cohomogeneity-one action

It is natural to explore the algebraic invariants of this class, and Oliver Goertsches, Chen He, Liviu
Mare, and I computed their rational Borel cohomology [CGHM19, Theorem 1.2]. I independently com-
puted the equivariant K-theory of a cohomogeneity-one action a few months later [C18a]; the result looks
similar but the proof requires substantially different techniques from Lie and representation theory. As
in the cohomological case, though, the proof uses an additional structure on the Mayer–Vietoris sequence
induced by the standard cover of r´1, 1s, which turns out to obtain in great generality.

Theorem 2.2 ([C18a, Proposition A.11]). For any Z-graded multiplicative G-equivariant cohomology theory E˚,
the connecting map in the Mayer–Vietoris sequence of a triad pX; U, Vq of G–CW complexes with X “ U Y V
preserves a natural E˚X-module structure.

This fact does not seem to appear in the literature and is needed to obtain the ring structure. Similarly
[C18a, Lemma A.3], I prove a result computing E˚ of a mapping torus with suitable coefficients, relying
on an equivariant Atiyah–Hirzebruch spectral sequence; this works even when there is no transfer map
because the E2 page is Bredon cohomology [Matu73, §4], where there is always such a map.
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3. Formality and equivariant formality
There is a natural map from a G-space M to its homotopy quotient MG, given by Mˆ te0u ãÑ Mˆ EG
pM ˆ EGq{„ for any point e0 P EG, which is the fiber inclusion of an M-bundle MG ÝÑ G {EG “ BG.
This fiber inclusion induces a pullback map H˚GpMq ÝÑ H˚pMq which in the algebraic best-case scenario
is surjective. For example, in the example of S1 rotating S2 above, the map

Zrx, ysL pxyq – H˚S1pS2q ÝÑ H˚pS2q – ZrtsL pt2q

is given by x ÞÑ t and y ÞÑ ´t. In this instance, the action of G on M is called equivariantly formal, and
a preimage rc P H˚GpMq of c P H˚pMq is called an equivariant extension of c. While Borel already made
use of this condition in his seminar, it was given its present name by Goresky, Kottwitz, and MacPher-
son [GKM98] in the paper that began what is now called GKM theory. This theory allows the equivariant
cohomology H˚TpMq of a GKM manifold, a certain kind of well-behaved manifold with equivariantly for-
mal action and finitely many fixed points, to be computed in terms of the combinatorics of the orbits of
0- and 1-dimensional orbits using a lemma of Chang and Skjelbred. This is the simplifying condition fig-
uring in Theorem 4.1. Equivariant formality guarantees all classes in H˚pXq admit equivariant extensions
in H˚TpXq, to which the Atiyah–Bott–Berline–Vergne localization theorem applies, yielding the restrictions
on isotropy data mentioned in Section 4.

3.1. Equivariant cohomology and K-theory of isotropy actions
Equivariant formality simplifies the computation of equivariant cohomology. I showed the following
around the time of my thesis, generalizing classical results that come to the same conclusion when
rk G “ rk H.

Theorem 3.1 ([C20, Theorem 10.1.1][C18b, Theorem C]). Let G be a compact, connected Lie group, and H
a closed, connected subgroup such that the action of H on G{H is equivariantly formal.1 Then there is a ring
isomorphism

H˚HpG{H;Qq – H˚pBH;Qq b
H˚pBG;Qq

H˚pBH;Qq b
Q

im
`

H˚pG{H;Qq Ñ H˚pG;Qq
˘

,

where the H˚pBG;Qq-algebra structure on H˚pBH;Qq is induced from the inclusion H ãÝÝÑ G.

Example 3.2. The group of orientation-preserving isometries stabilizing the three-plane R3 ˆ t0u3 in R6 is
SOp3q ˆ SOp3q. The associated SOp3q2-equivariant cohomology of the Grassmannian of oriented 3-planes
in R6 is

Qrp1, p11, π1, π11s

pp1 ` p11 ´ π1 ´ π11, p1 p11 ´ π1π11q
bΛrηs, |p1| “ |p11| “ |π1| “ |π

1
1| “ 4, |η| “ 5.

This result implies the classical computation of H˚pG{H;Qq in these cases. Our proof relies on a Sul-
livan model for biquotients due to Vitali Kapovitch [Kap04, Prop. 1]2 which also applies to homotopy
biquotients [C19a]. The model can be viewed as a compression of the Serre spectral sequence of the fi-
bration G Ñ GHˆH Ñ BH ˆ BH. Although there is no cochain-level model of equivariant K-theory, I
conjectured and was eventually able to prove a related result under more stringent hypotheses [C18b,
Theorem K], which still apply up to taking a finite cover, in all cases where equivariant formality of an
isotropy action is known, except those I determined in the case H is a circle. As with the cohomological
case, this result generalizes the classical computations of K˚pG{Hq in these cases [Min75]. The K-theoretic
and cohomological results are connected by a map of spectral spectral sequences from the Künneth spec-
tral sequence in equivariant K-theory [Hodgkin] to that in Borel cohomology, constructed by showing

1 We will discuss when this hypothesis is satisfied in Section 3.3.
2 and independently, much later, the present author
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one “geometric resolution” will work for both theories and applying the equivariant Chern character,
which [CF18, Thm. 5.3] identifies H˚GpX;Qq with the completion of K˚GpX;Qq with respect to IG (discussed
in Section 3.2). In our case of interest, X “ Y “ G{H, and the target sequence collapses, essentially because
its E2 term is the cohomology of the Kapovitch model, which then forces the collapse of the K-theoretic
sequence.

The strong commutative-algebraic hypotheses come from an unexpected source, the fact that one still
does not know in general when a surjection from one finitely generated polynomial ring over Z to another
has kernel generated by a regular sequence. Particularly, in algebro-geometric terms, we still do not know
the answer to the longstanding Abhyankar–Sathaye conjecture addressing when a regular embedding of the
affine plane Ak in An of affine planes can be taken by an algebraic automorphism of An to the standard
embedding as Ak ˆ t0un´k.

3.2. Weak K-theoretic equivariant formality
As it turns out [Fok19][CF18, Thm. 5.6], equivariant formality is equivalent rationally to surjectivity of
the forgetful map f : K˚GpXq ÝÑ K˚pXq induced by discarding the G-structure on an equivariant bun-
dle [MatsM86]. An equivariant bundle over a point is just a representation, so K˚Gp˚q is the representation
ring RG. The trivial G-map X Ñ ˚ induces a map RG Ñ K˚GpXq, and the composition with f sends a repre-
sentation to its dimension, annihilating the virtual representations IG of dimension 0. Thus f annihilates
the ideal pIG ¨ 1q of K˚GX and factors as

K˚GX K˚GX b
RG

Z f̄
ÝÑ K˚X.

Harada–Landweber [HaL07, Prop. 4.2] observe that f is surjective if and only if f̄ is, and say that the action
is weakly equivariantly formal if f̄ is an isomorphism. By definition, weak equivariant formality implies
equivariant formality in our sense, and Fok also showed that rationally, weak equivariant formality is
equivalent to equivariant formality [Fok19][CF18, Thm. 5.6]. I was able to improve this to an integral result.

Theorem 3.3 ([C18b, Theorem W]). If a compact, connected Lie group G such that π1G is free abelian acts
on a compact Hausdorff space X in such a way that K˚GX is finitely generated over RG and the forgetful map
f : K˚GX ÝÑ K˚X is surjective, then the action is weakly equivariantly formal.

The proof involves the map from the Atiyah–Hirzebruch spectral sequence of BG to the Atiyah–
Hirzebruch–Leray–Serre spectral sequence of X Ñ XG Ñ BG, which induces a tensor decomposition
of the E2 page of the former which which can be shown to persist to E8.

3.3. When is an isotropy action equivariantly formal?
We’ve now computed the Borel cohomology and K-theory of an equivariantly formal isotropy action, so
it seems only fair to say when an isotropy action is equivariantly formal.

Question 3.4. Let G be a compact Lie group and K a closed subgroup. When is the isotropy action of K
on G{K equivariantly formal?

At the beginning of 2014, only three classes of examples were known: generalized flag manifolds,
those for which H˚pG;Qq ÝÑ H˚pK;Qq is surjective, and generalized symmetric spaces [GN16]. In col-
laboration with Fok, the author was able to extend this to a complete characterization [CF18, Thm. 1.4,
Prop. 3.13] which particularly shows that if the action is equivariantly formal, then G{K is formal in
the sense of rational homotopy theory. The tools involved include Kapovitch’s model, a result of Shiga–
Takahashi [Shi96, Thm. A, Prop. 4.1][ShTa95, Thm. 2.2], and classical invariant theory in the form of the
Chevalley–Shepherd–Todd theorem [Kane94, p. 82].
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This work follows on a string of reductions established in my dissertation [C19b], essentially reduc-
ing the situation to the case where G is simply-connected and K is a torus. I applied these reductions to
exhaustively analyze the case when K is a circle, SOp3q, or SUp2q, providing an explicit algorithm. Par-
ticularly, the action is always equivariantly formal if K is SOp3q or SUp2q. It is natural to ask if a similar
classification is possible for tori S of codimension one in a maximal torus of G. The result of joint work
with Chen He is the following:

Theorem 3.5. Let pG, Sq be an pair of compact, connected Lie groups such that G is semisimple and S is a torus of
codimension one in a maximal torus T of G. If SK is the circle orthogonal to S at 1 P T under the Killing form and
H is the subgroup generated by S and the commutator subgroup of the centralizer ZGpSKq, then pG, Sq is isotropy-
formal if either (a) G{H is a rational cohomology sphere or (b) G{H is a rational cohomology Sn ˆ Sm, with n even
and m odd, and the number of components of the normalizer NGpSq is greater than that of NHpSq.

Characterizing when this occurs leads to a classification result expected to be complete by the begin-
ning of December 2019.

4. Equivariant complex cobordism and fixed points
One can study smooth symmetry in terms of individual manifolds or the totality of manifolds. Equiv-
ariant complex cobordism is one such approach; one attempts to understand when two stably complex
G-manifolds, meaning roughly manifolds locally modeled by Cn or Cn ˆR and equipped with the action
of a Lie group G , together bound another stably complex G-manifold, and views them as equivalent in
this case. This equivalence relation makes of all stably complex G-manifolds a ring ΩG

˚ which has been
studied since the 1960s but is to this day only completely understood when G is an abelian p-group.

A related question attempts to characterize an action of a torus T on a stably complex manifold in terms
of the normal T-equivariant bundle to the fixed-point set, (in the event of an isolated fixed point, this is just
a T-representation). These isotropy data in fact determine the manifold up to equivariant cobordism and
are not arbitrary, but highly interdependent by the integral localization theorem of Atiyah–Bott–Berline–
Vergne (ABBV) [BeV82, AtB84], which expresses this dependency as a web of identities in the fraction field
of the cohomology ring H˚BT of the classifying space. These constraints are so restrictive that one might
well wonder if any family of putative normal/representation data so constrained must necessarily arise
from a T-action.

Realization question (Viktor L. Ginzburg, Yael Karshon, and Susan Tolman, late 1990s). Can any abstract
isotropy data satisfying all the ABBV relations be realized as the isotropy data of some torus action on a compact,
oriented, equivariantly stably complex manifold?

Elisheva Adina Gamse, Karshon, and I settled the question in the affirmative for an important class of
well-behaved examples, the GKM manifolds already mentioned at the beginning of Section 3.

Theorem 4.1 ([CGK18]). Let T be a torus. Given GKM abstract isotropy data pXp, σpqpPP satisfying the ABBV
relations, there exists a compact, oriented, stably complex GKM T-manifold M with this isotropy data.

In independent work analyzing the realization question in the so-called semifree case when S1 is a
circle whose orbits are all either free or fixed points, I found the following [C19c].

Theorem 4.2. Any semifree abstract isotropy data pVp, σpqpPP satisfying the ABBV identities is the isotropy data
of a compact, oriented, stably complex, semifree S1-manifold M2n with isolated fixed points.

Unexpectedly, this enables one to more constructively recover a 2004 result of Dev Sinha characterizing
a case of semifree bordism.
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Theorem 4.3 (Sinha [Sin05]). Every compact, oriented, stably complex, semifree S1-manifold with isolated fixed
points is bordant to a disjoint union of direct powers of S2 with the standard rotation action of S1. That is, the
bordism ring of such manifolds is isomorphic to the polynomial ring ZrS2s on one generator.

In the general case, even the precise statement of the realization question requires some work to nail
down. In this generality, a positive answer to the realization question is less likely to lead to a concrete
generators-and-relators–level presentation of the cobordism ring, but already seems to be within reach in
some special cases.

5. In progress: A8-algebraic methods
Many of the theorems I have proven regarding (equivariant) cohomology of homogeneous spaces depend
in an essential way on using rational or real coefficients, which is necessary because there are no functorial
commutative differential graded algebras computing cohomology with Z or Fp coefficients. Thus the com-
paratively simple techniques proving Cartan’s ring isomorphism H˚pG{K;Rq – Tor˚H˚pBG;Rq

`

R, H˚pBK;Rq
˘

,
the rational analogue of which is discussed in the monograph mentioned in Section 1.1, do not go through
when we try to replace R with an arbitrary principal ideal domain k.

Recent work of Matthias Franz [Fra19] has finally removed this dependence by analyzing the singular
cochain algebra in terms of certain up-to-coherent-homotopy generalization of commutativity. Briefly, one
already knows H˚pG{K; kq – Tor˚C˚pBG;kq

`

k, C˚pBK; kq
˘

, where the Tor can be computed via a functorial
bar construction. This bar construction can be shown to carry the structure of a homotopy Gerstenhaber
algebra, a differential graded algebra equipped with two infinite families of operations µn, Fj,` making it an
A8-algebra with some extra structure. A map C˚pBK; kq ÝÑ H˚pBK; kq preserving sufficiently much struc-
ture will induce a quasi-isomorphism of homotopy Gerstenhaber algebras between the bar constructions.
Franz shows that the multiplication in a homotopy Gerstenhaber algebra satisfies a condition called strong
homotopy commutativity that enables one to show a certain known map can be modified to induce a ring
isomorphism in cohomology, whereas proofs from the 1970s could only obtain a k-module isomorphism.

5.1. Isotropy actions and biquotients
Once one has done this for homogeneous spaces G{K, of course, one is tempted to see how far one can take
it. My structure theorem 3.1 came essentially from the fact that if the action is equivariantly formal, then
H˚HpG{H;Qq can be computed as TorH˚pBG;Qq

`

H˚pBH;Qq, H˚pBH;Qq
˘

, the cohomology of a two-sided bar
construction. It is expected that arguments similar to those of Franz’s papers will enable one to compute
H˚KpG{H; kq for K, H ď G under analogous hypotheses, assuming only that one can define a multiplication
making the two-sided bar construction a differential graded algebra. Perhaps surprisingly, this obvious
purely algebraic question has not been addressed in the literature, and it is in fact not obvious how to
generalize from the product on the one-sided bar construction, so it is a current project.

As a special case, when it is done, we will be able to compute the cohomology of biquotients K {G{H,
the special case of H˚KpG{H; kq where the two-sided action of K ˆ H on G is free, in far more generality
than was possible previously.

5.2. Generalized homogeneous spaces
The algebraic hypotheses permitting the k-module isomorphisms H˚pG{K; kq – Tor˚H˚pBG;kq

`

k, H˚pBK; kq
˘

understood from the 1970s turn out to apply much more generally. J. Peter May and Frank Neumann
noted that the same hypotheses apply to what are called finite loop spaces so long as they admit a suitable
analogue of a maximal torus [MayN02]. Using the new homotopy-Gerstenhaben-algebraic methods, a
further extension of these results to show a ring isomorphism in these cases is expected to be routine.



8

6. Selected other work in progress
A number of other projects do not directly involve the objects discussed so far, but are generally clustered
around the theme of formality.

6.1. Galois cohomology and the Bloch–Kato conjecture
The Bloch–Kato conjecture states that for a field k containing a primitive pth root of unity, a certain homo-
morphism from the quotient KM

˚ pkq{ppq of the Milnor K-theory of k to the cohomology H˚
`

Galpksep{kq;Fp
˘

of the absolute Galois group of k is an isomorphism. The conjecture’s eventual proof due to Voevodsky
relied on techniques from A1-homotopy theory not available at the time of its formulation and on a higher
level of abstraction than one expects from the statement. A more constructive proof might enable one to
extract more of the structure of Gk “ Galpksep{kq itself from the proof than is visible from the isomorphism
alone.

1. For example, the isomorphism shows the cohomology groups are generated by elements of H1, but
is not explicit how to identify elements of Hn as polynomials in the elements of H1.

2. A complete understanding of this might enable us to recover a presentation for the maximal pro-p
quotient Gkppq of Gk, which has been known since work of J. Labute in the 1960s to be a so-called
Demushkin group in the case k is a local field, but is not well-understood even in the global case.

3. A presentation could be used to resolve a question of Positselski: the cohomology of Gkppq is known
to be a quadratic algebra, but it is not known to be a Koszul algebra.

4. The Mináč–Tân conjecture that all n-fold Massey products of elements of H1`Gkppq;Fp
˘

vanish for n ě
3 is known in several important cases, in particular for number fields due to recent work of Harpaz–
Wittenberg, but open in general. It holds at least whenever the cochain algebra C˚

`

Gkppq;Fp
˘

is
formal. This is known not to always be the case due to counterexamples of Positselski, but all ex-
isting counterexamples arise in cases when primitive ppnqth-roots do not exist in k for all n, causing
certain cohomology operations to be nonzero, so there remains the possibility that if this additional
hypothesis were assumed, the cochain algebra would be formal and the Mináč–Tân conjecture would
also hold in these cases.

Formality properties, Koszulity properties and n-Massey vanishing properties of Galois cohomology
are tightly connected, but not all connections and precise implications are clear. Part of the proposed
project is to clearly delineate these connections. Joint work in progress with Ján Mináč, Federico Pasini,
and Xin Fu is expected to use techniques analogous to those effective in the computation of cohomology of
homogeneous spaces to provide a more nuts-and-bolts proof of the Bloch–Kato isomorphism and resolve
several of the problems above. For context as to the developments in Galois cohomology leading to this
proposal, we refer the reader to Harpaz–Wittenberg and Mináč–Tân [HaW19, MT17].

6.2. The toral rank conjecture for nilmanifolds
A nilmanifold N is3 a manifold which can be represented as an iterated principal torus bundle over a
torus: i.e., N can be written as the total space of a principal torus bundle T Ñ N Ñ B where B is again a
nilmanifold. One can thus ask if it satisfies the following conjecture.

Conjecture 6.1. Let N be a space of finite topological dimension admitting an action of a torus T with
finite stabilizers. Then dimQ H˚pN;Qq ě dimQ H˚pT;Qq.

Sullivan models are a common method of attack for this conjecture, which has been settled in certain
special cases but remains open in general. The differentials in the Serre spectral sequence of N Ñ B Ñ

3 among other things



9

BT converging to H˚pB;Qq “ H˚TpN;Qq are determined by certain higher cohomology operations on
H˚pN;Qq [GKM98, §13], and Steven Amelotte and I are in the process of using these operations to establish
bounds on the dimension of H˚pN;Qq and hence verify the conjecture in this case.

6.3. The Halperin conjecture for biquotients
Recall that equivariant formality is the surjectivity of the fiber restriction i˚ of the bundle M i

Ñ MG Ñ BG.
One can ask the same question about other fiber bundles, and one of the principal developers and historical
protagonists of rational homotopy theory, Stephen Halperin, made the following conjecture.

Conjecture 6.2. Let F be a simply-connected CW complex such that dimQpπ˚FbQq is finite and the Euler
characteristic of F is positive. Then for any fiber bundle F Ñ E Ñ B, the fiber restriction H˚pE;Qq ÝÑ
H˚pF;Qq is surjective.

The conjecture was verified by Shiga and Tezuka [ShTe87] in the case M is a complete flag manifold, a
homogeneous space which can be written as G{H where G and H are connected compact Lie groups and
H contains a maximal torus of G. Their proof involved a careful analysis that, among other things, invoked
Cartan’s theorem about G{H described in Section 1. I believe that the case of a biquotient K {G{H with
rk K` rk H “ rk G will yield to a similar analysis using the Kapovitch model discussed in Section 3.1.

6.4. Representations up to homotopy as K-theory classes
Given an action of a Lie group G on a space X, the Atiyah–Segal completion theorem [AtS69], which
identifies the map K˚GpXq ÝÑ K˚pXGqwith the completion of K˚GpXqwith respect to the augmentation ideal
IG of RG discussed in Section 3.2, can be formulated as a statement about the transformation groupoid
G ˙ X. By viewing the action maps on total space V and base X as topological groupoids, then taking
geometric realizations of topological nerves to get a vector bundle VG “ BpG˙Vq Ñ BpG˙ Xq “ XG, one
obtains a natural map

ReppG˙ Xq ÝÑ K˚
`

BpG˙ Xq
˘

that can be identified with the Atiyah–Segal map. Phrased this way, the construction generalizes to an
arbitrary topological groupoid G Ñ M, yielding an analogous correspondence4

ReppG q ÝÑ K˚pBG q,

pV Ñ Mq ÞÝÑ
“

BpG sˆπ Vq
‰

.

One can ask if the same can be done with representations up to homotopy, generalizations necessary
in the Lie groupoid world to, inter alia, recapture the notion of an adjoint representation [AbC13]. These
are conjecturally equivalent to vector bundles E Ñ M equipped with a map pg, eq ÞÝÑ λge : G sˆπ E ÝÑ E
such that each λg is linear and the differences λg ˝ λh ´ λgh, etc., are ruled by a set of coherent homo-
topies. The geometric realization of the topological nerve no longer applies because the last face map
dn : p~g, gn, eq ÞÝÑ p~g, λgn eq only satisfies the simplicial identities up to coherent homotopy, but there is
an analogous one-sided bar construction Bp˚, X, Yq for an A8-action X ˆ Y ÝÑ Y [HoeLS16, Def. 2.8].
Applied to a representation up to homotopy, this bar construction yields a vector bundle Bp˚, G , Eq ÝÑ
Bp˚, G , Mq » BG . The resulting map

Rep8pG q ÝÑ K˚pBG q

has yet to be studied.

4 Cantarero [Can12] considers a related question, obtaining a completion theorem for finite G -CW complexes and domain,
instead, a G -equivariant K-theory K˚G p´q comprising classes of bundles over a G -space X which arise as summands of pullbacks,
under X ÝÑ M of bundles, over M.
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6.5. The Weyl integral formula via ABBV
Let G be a compact, connected Lie group, T its maximal torus, W the Weyl group, and Φ Ĺ HompT, S1q

the set of global roots of G. If f : G ÝÑ R is a continuous, conjugation-invariant function on G and dg and
dt are Haar measures on G and T respectively, the Weyl integral formula states that

ż

G
f pgq dg “

1
|W|

ż

T
f ptq

ź

αPΦ

`

1´ αptq´1˘ dt.

On the other hand, an application of Atiyah–Bott–Berline–Vergne localization to the conjugation action of
T on G yields a superficially similar equation

ż

G
f pgq dg “

ż

T

rĆf vols|T
ś

αPΦ` c1pSαq
,

where Sα is the line bundle ETˆC L

pet, zq „
`

e, αptqz
˘

over BT and the equivariant form rĆf vols in

ΩpGqTru1, . . . , urk Gs represents a closed T-equivariant extension of the top form r f vols in H˚pGq.
One might expect the former to follow from the latter. The Weyl and Kirillov character formulas are

known to be essentially equivalent in the case G is compact, the former being implied by the Weyl integral
formula and the latter by the Atiyah–Bott/Berline–Vergne equivariant localization formula, so a proof may
lie in analyzing this equivalence.
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