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Abstract

In this thesis we investigate the geometric quantization of moduli spaces of vector
bundles over compact Riemann surfaces. In particular we will recall the geomet-
ric quantization of the moduli space of stable holomorphic vector bundles carried
out by Hitchin, and study the generalisation of this problem for the moduli space
of stable holomorphic Higgs bundles. The geometric quantization of Higgs mod-
uli spaces presents new difficulties, since these moduli spaces are non-compact.
However, they come with natural C* actions, and this has implications for the
geometric quantization: the quantum spaces for the Higgs moduli spaces split into
finite-dimensional weight spaces for the C* action, which can be identified with
spaces of sections of certain bundles over the compact stable bundle moduli space.

In the first part of this thesis, we review necessary background in differential
geometry. Chapter [l|reviews the standard theory of connections on smooth vector
bundles. Chapter [2] serves as an introduction to symplectic geometry, symplectic
quotients, and their relationship to geometric invariant theory. Chapter [3| reviews
the fundamental ideas in complex differential geometry, and in particular in Kahler
geometry, as well as the basic theory of holomorphic vector bundles required later.

In the second part of this thesis, we introduce the moduli spaces of stable
bundles and Higgs bundles, formally defining them as infinite-dimensional Kahler
quotients. In Chapter {4| the stable bundle space is considered, and we review its
important properties and interpretations. Chapter |5 concerns the Higgs bundle
moduli space and the ways it generalises and compares to the stable bundle moduli
space.

In the third and final part of this thesis, we recall the process of geometric
quantization via Kahler polarisations, and apply it to the moduli space of Higgs
bundles. In Chapter [6] we define geometric quantization, and state a theorem of
Andersen on the existence of Hitchin connections for compact symplectic mani-
folds. In Chapter 7| we geometrically quantize the Higgs line bundle moduli space,
and investigate the difficulties of generalising the techniques used to the higher
rank spaces. In particular we construct a projectively flat Hitchin connection on
the bundle of quantum spaces over Teichmiiller space. As far as the author is
aware, this is an original result.
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Chapter 1

Connections on Vector Bundles

In this chapter we will recall the definition of a connection on a smooth vector
bundle, its curvature, and some of its basic properties. Connections on vector
bundles are the fundamental objects of study in gauge theory, and more broadly
in many parts of differential geometry and geometric analysis. Connections, their
curvatures, and their parallel transports will appear many times in this thesis. In
Chapter [3| we will see the relation between connections and holomorphic struc-
tures on vector bundles. In Chapters [4] and [5] we will use these identifications to
investigate moduli spaces of bundles over compact Riemann surfaces from a gauge-
theoretic point of view, in the manner of Atiyah and Bott in [AB83], Donaldson
in [Don83|, and Hitchin in [Hit87]. In Chapters [6] and [7] we will be interested in
constructing connections on certain vector bundles over Teichmiiller space, where
their parallel transport will provide a way of geometrically quantizing symplectic
manifolds independently of a choice of Kahler polarisation.

The material of this chapter is standard, and more details can be found in
any good reference about differential geometry or gauge theory. For a treatment
of this material with a view towards complex geometry, as in this thesis, the
book [WGPS80] of Wells on complex differential geometry and the book [Kob87]
of Kobayashi on complex and holomorphic vector bundles are recommended. For
a more gauge theory-oriented treatment the text [DK90] of Donaldson and Kron-
heimer is more suitable. Indeed this book also includes discussion of many of the
subtleties of moduli problems when viewed from a gauge-theoretic perspective.

1.1 Connections
Let m : E — M be a smooth (real or complex) vector bundle over a smooth

manifold M. In our case we will always take E to be complex, unless otherwise
stated. A section of E is a smooth map s : M — E such that s(x) € 7~ !(z)
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for every x € M. The set 7 !(z) is called the fibre of F over z and is denoted
E,. Denote the vector space of smooth sections of E by I'(M, E'). We will denote
sections of /\k T*M®E by QF(M, E), and in particular we will interchangeably use
Q°(M, E) for T(M, E). Since Q*(M, E) = QF(M)®T' (M, E), sections of QF(M, E)
are referred to as E-valued k-forms.

Given a section of a vector bundle, it is a natural question to ask how to differ-
entiate this section. There is in general no canonical choice of how to differentiate
sections of a vector bundle. Such a choice is called a connection.

Definition 1.1.1. A connection on a vector bundle E — M is a C-linear map
V:T(M,E)— QY(M,E)

satisfying
V(fs)=df @ s+ fVs

forall f € C*°(M) and s € I'(M, F).

A connection does not define a section of the bundle Hom(E, T*M ® E'), but we
see that if V; and V are connections on a bundle E, then (Vo—V1)(fs) = f(Va—
V1)(s). A map on sections that is C°°(M)-linear defines a unique bundle map £ —
T*M®E, which may then be identified with a unique section of Hom(E, T*M Q E).
Thus the difference of two connections is a section of Hom(FE,T*M ® E).

On a trivial vector bundle £ = M x C" there is a canonical choice of connection.
Let {e;} denote the standard basis of C", and also the corresponding standard
frame of M x C". Then every section s looks like s = s’e; for some smooth
functions s € C*°(M). One may define the trivial connection V =: d by writing
ds = (ds') @ e;.

Proposition 1.1.2. Every vector bundle E — M admits a connection.

Proof. Let {U,} be a trivialising open cover for E and let {p,} be a partition of
unity subordinate to this cover. Then on each E|; = U, x C" one has the trivial
connection d,. Define V by

V .= Z Paley-

Then it is straightforward to check V satisfies the Leibniz rule because each d,,
does. 0

Thus the space 7 (F) of connections is non-empty, and since the difference of
two connections is an element of I'(M, Hom(E, T*M ® E)) = Q' (M, End(FE)), we
have that </ (F) is an affine space modelled on Q*(M, End(FE)).

Suppose we are on a trivialising open set U for a vector bundle E of rank
k. Then since E|, = U x CF is trivial, we have the trivial connection d defined
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above. Given any other connection V on F, it restricts to a connection on E|,
and by the previous discussion the difference V — d lies in Q' (U, End(E|,)). But
E|, 2 U xC*, so that End(E|,;) = U x Mat(k, C). Thus if we denote A := V —d,
then in terms of the local frame on U, A is a matrix of one-forms, called the
connection form of V on U.

If we interpret a local section s € I'(U, E|;;) as a column vector with entries
s’ € C®(U) as determined by writing s = s’e; for the local frame {e;}, then
Vs = ds + As. Here ds is the exterior derivative applied term-wise, and As is
matrix multiplication, and we often write V = d + A. Notice in particular that
applying V to the local frame, we have Ve; = A{ ® ej, where the one-form A{ is
the (7, 7)th component of the matrix A.

If U, and Uy are a pair of trivialising open sets for F, then on U, := U, N Up
one can compare the local connection forms A, and Ag. If g, is the transition
function on U,g, then we have the compatibility condition

Aﬂ = gﬁaAag[;; + dgﬁagg_;- (Eq 11)

On the other hand, a system of matrix-valued one-forms {4, } satisfying (Eq.
for a trivialisation {U,} of a vector bundle E will define a connection V, given
locally by V =d + A,.

We end with the definition of the covariant derivative — a directional derivative
of sections. Given a connection V and a vector field X € I'(M,TM), we may
contract Vs with X for any s € I'(M, E) to obtain another section.

Definition 1.1.3. The covariant derivative of s in the direction of X is the con-
traction

Vxs e F(M,E)
of Vs with X.

On a coordinate chart (U, (z',...,2")) of the manifold M, define operators V;
on sections of E by
Vis:=V _a_s.

oz’
Note that the connection V on U may be recovered by the operators V; by the
expression

Vs =dz' @ V;s.

1.2 Curvature

Given a connection V : Q°(M, E) — QY(M, E), one may define an exterior covari-
ant derivative dy : QF(M, E) — Q1(M, E) by

dy(w® s) = dw® s+ (—1)kw A Vs
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on simple tensors, where w € QF(M) and s € I'(M, F), and extending by linearity.
Unlike for the exterior derivative, d% # 0 in general, and the obstruction is called
the curvature.

Definition 1.2.1. The curvature of a connection ¥V on a vector bundle E is the
map
dy oV :Q%M,E) — Q*(M, E).

It is straightforward to check that dy o V(fs) = fdy o V(s), and so the cur-
vature is actually an element of Q*(M,End(F)), which is denoted Fy. In a local
trivialisation where V = d 4+ A, we have

dy o V(e;) = dv(Al ®e;) = dAl @ e; — Al N AL @ e = (dA] + AL AN AF) @ e;.

Therefore if A A B denotes matrix multiplication with wedging of coefficients, the
local form representing Fy is given by dA+AAA. A sanity check verifies that these
local forms satisfy the conjugation condition to piece together on overlaps, with
no extra terms dependent on transition functions, as was the case in (Eq. .

Since the curvature is a 2-form with values in End(FE), we may contract it with
two vector fields X and Y. This provides the invariant formula

Fo(X,Y)=VxVy = VyVx — Vixy

for the curvature in terms of the covariant derivative. Notice that if X and Y are
coordinate vector fields then the Lie bracket vanishes, and the expression reduces
to the commutator

Fv(@i, 8]) = VZV] — VJVZ

In the study of connections, one is often concerned with picking a “best” con-
nection in some sense. Viewing curvature as the obstruction to d2, = 0, the best
connection would be one where the curvature vanishes.

Definition 1.2.2. A connection is called flat if Fy = 0.

We will see in our discussion of characteristic classes that there are topologi-
cal obstructions to the existence of flat connections. A substitute for flatness in
cases where it is not possible would be for the curvature to be as small as possi-
ble. Precisely what is meant by this will be expanded upon in Chapter [4] when
we investigate Yang-Mills theory in the context of stable bundles on a compact
Riemann surface.

In addition to flatness, there is the condition of projective flatness. The bun-
dle End(F) always has a canonical non-vanishing section 1 corresponding to the
identity endomorphism on E. Given any two-form w € Q*(M), we see that
w®1le Q*(M,End(E)).
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Definition 1.2.3. A connection is called projectively flat if Fy = w® 1 for some
two-form w on M.

Note that upon passing to End(F) & E* ® E, a projectively flat connection
V on F induces, in the sense of the following section, a genuinely flat connection
on End(E). The terminology “projectively flat” comes from the fact that the
induced connection on the associated principal PGL(n, C)-bundle over M is also
flat, and indeed the flatness of this induced connection is often taken as the defini-
tion of projective flatness. The two notions are equivalent whenever the principal
PGL(n, C)-bundle arises from a vector bundle.

1.3 Induced Connections

Given connections Vi, Vs, on a pair of vector bundles F, F', there are canonical
connections defined on the bundles £ @ F, E® F, E*, Hom(E,F) =2 E*® F,
det £ = /\TkE E, and on any other associated bundles. Indeed for any functorial
construction on vector spaces, and hence vector bundles, one may define an induced
connection. One also has relations between the curvature of connections on £ and
F and the curvature of connections on their associated bundles.

For example, if s = 1+ is a section of EGF, then V(s) := V1(s1)+Va(s2) €
QYM,E @ F). The curvature of this connection is given by Fy(s) = Fy,(s1) +
FVQ (82) .

If s = s; ® s9 is a simple section of E ® F, then one defines V(s) := V;(s1) ®
So + 81 ® Va(ss), where on the right we interpret the tensor product correctly, by
moving the one-form part of V,(sy) to the front under the canonical isomorphism
EFERT"M®F=2T"M® E® F. This is the unique combination of V; and V5, on
the tensor product that satisfies the Leibniz rule. The induced curvature is given
by FV:FV1®1+1®FV2~

If € is a section of E*, then we specify the dual connection Vi of V; by the
expression

d<€a 8) = <VT(€)a S) + <€> V1(s)>
where (-,-) is the natural pairing between sections of E* and E. The induced
curvature is given by Fy: = —Fy,, where the End(E£*)-valued 2-form on the

right is interpreted under the canonical isomorphism End(£) = End(E*) given by
E*® E~X E® E*.

1.4 Parallel Transport

Given a connection V on a vector bundle £ — M, one obtains a way of identi-
fying fibres of the vector bundle over different points. This motivates the name
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connection.

Given two points p and ¢ on M, and a path v between them, there is a linear
isomorphism P, : E, — E, defined by V. In general the isomorphism depends on
the choice of path ~, for otherwise one could trivialise the bundle £ — M. This
isomorphism is called the parallel transport from E, to E,. We will now recall the
existence of parallel transport maps.

Given a section s of F and a vector field X € I'(M,TM), we can contract Vs
by X to obtain another section of F.

Note that the covariant derivative is C*°(M )-linear in the X variable. We say
that a section s is covariantly constant, or horizontal, if Vxs = 0 for all vector
fields X. Of course, this occurs if and only if Vs = 0 as a section of Q'(M, E).

Parallel transport of an element § € E, along a path v in M is given by finding
a covariantly constant section s along v with s(p) = £&. Then P,(§) = s(¢). In
order to find such a covariantly constant section, we need to introduce the covariant
derivative along a curve.

Definition 1.4.1. Let v : (a,b) — M be a curve, and suppose s € I'(U, E) is a
section of E defined on some open neighbourhood U of . Let X be a vector field
defined on a (possibly distinct) neighbourhood of v in M such that X.,qy = 4(t) for
every t € (a,b). Define an operator

D
dt

on such sections s € I'(U, E) by

Ds

22 (1) = Vxs(1(1)

for all't € (a,b). This is called the covariant derivative along the curve 7, and
returns a section of E defined along the curve v in M.

Note that the operator above does not depend on the choice of extension X of
4(t) to a neighbourhood of 7. Furthermore, such an extension always exists, and
may be defined by using partitions of unity in local charts on M. Additionally,
the covariant derivative of a section s along a curve v depends only on the values
of s along the curve. This means that one can consider sections defined only along
the curve ~ for the purpose of taking covariant derivatives along . We say that s
is horizontal along v if % = 0.

If we wish to find a horizontal section along ~ with initial value £ € E,, then

we need to solve the differential equation

Ds

% = 07 S(p) = 6
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Suppose now that the image of v in M lies entirely within a fixed trivialising set
U of the vector bundle E, with local frame {e;} and local connection form A.
Suppose that s = s’e; in the local frame. Then we have

Ds

= = Vs = (ds'(3) + 57 A5(9)) @ e,

so the parallel transport equation becomes the system of differential equations
ds'(y) + ' A5(7),  s(7(0)) = ¢

If one supposes that the set U is also a coordinate chart for M, then this becomes
a genuine system of ordinary differential equations, for which the Picard-Lindelof
theorem guarantees existence and uniqueness of solutions. In particular there is a
unique value s(y(1)) = s(q) for each choice of vy and £ € E,.

The existence and uniqueness of solutions now solves the problem of restricting
to a single trivialising chart U. If v passes through multiple charts then splitting
the path up into pieces each lying in a chart, with end points lying in intersections,
means that the successive parallel transports all agree, giving a well-defined and
unique end point.

Definition 1.4.2. The parallel transport of £ € £, along v by the connection V
is Py (&) == s(v(1)) = s(q) € E,. The map P, is called the parallel transport map
from E, to E, along vy defined by V.

We will now recall a number of important facts about parallel transport for a
vector bundle £ — M with connection V. Firstly, the parallel transport maps
P, are isomorphisms for each v, with inverse given by P,-, parallel transport
along the same path in the opposite direction. Secondly, parallel transport may
be concatenated along a pair of curves y; and 7, with 71(1) = 42(0). To do so,
one simply parallel transports along v;, and then along 7. Note that this same
process makes parallel transport well-defined along any piecewise smooth curve
v in M. Thirdly, it is possible to completely recover the connection V from its
parallel transport maps P,. Indeed we have the following formula, which can be
proved by expanding in a local frame and using properties of integral curves.

Proposition 1.4.3. Let V be a connection on E, s € I'(M,E) a section and

X € I'(M,TM) a vector field. Let p € M and suppose v : (—e,e) — M is an
integral curve for X near p. Then

Vis(p) = (Pt
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If one parallel transports around a loop 7 based at a point p, one obtains a
linear isomorphism FE, — FE,. This is called the holonomy of V along v at p,
denoted HolY (p,y) € GL(n,C). The set Hol" (p) of linear maps given by choosing
varying loops based at p is just called the holonomy of V at p, and is a subgroup of
GL(n,C). For a path-connected manifold M, the subgroups Hol" (p) and Hol" (q)
are conjugate in GL(n,C) for any p,q € M, and so one often simply talks of the
holonomy of V as the subgroup of GL(n,C) defined by taking HolY (p) for any
p e M.

There is a rich theory of holonomy for the Levi-Civita connection on Rie-
mannian manifolds, but we will primarily be concerned with the relation between
holonomy and flatness for general vector bundles. Let Holy (p) denote the sub-
group of HolY (p) consisting of those loops at p that are null-homotopic. Note that
if M is simply-connected then Holy (p) = Hol¥(p). Here we have the following
theorem.

Theorem 1.4.4. If the connection V is flat, then HoloV (p) is trivial for all p € M.
Furthermore, if v1,7v. are any two homotopic loops based at p, then Holv(p, T) =

HOIV (p7 72) .

Notice that there is a well-defined homomorphism 71 (M, p) — Hol" (p)/ Holy (p)
for each p. When Holy (p) = 0 as is the case for flat connections by the above the-
orem, this is simply a homomorphism m (M,p) — HolV(p) € GL(n,C). Thus
the above theorem can be interpreted as saying that flat connections give rise to
representations of m (M) into the structure group of the vector bundle E.

In the case where V is only projectively flat, we still have the following result.

Theorem 1.4.5. If the connection ¥V is projectively flat, then Holy (p) is central
in GL(n,C). In particular, if 1 and - are homotopic loops based at p, then
HolY (p, v1) is a constant multiple of Hol" (p,~2), where the constant depends on

7 and Y.

In this case the group Hol" (p)/ Holy (p) sits as a subgroup of PGL(n,C) =
GL(n,C)/C* - 1. Thus by the same arguments above, we see that projectively flat
connections give rise to representations of w (M) into the projectivisation of the
structure group of the vector bundle E.

In fact, it is possible to go back and construct a (projectively) flat connection
from a (projective) representation of the fundamental group. In the flat case, one
simply considers the flat vector bundle with fibre C" associated to the universal
cover, the natural principal 71 (M )-bundle over M. In the projective case, one must
ensure that the flat principal PGL(n, C)-bundle obtained from the representation
may be lifted to a projectively flat principal GL(n, C)-bundle.

In Chapters [4] and [5| we will investigate flat and projectively flat connections
on vector bundles over compact Riemann surfaces. By the above identification
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between (projectively) flat connections and (projective) representations, we will
obtain a wonderful interpretation of the theorems of Narasimhan and Seshadri,
and Hitchin and Simpson about representations of the fundamental group and
stable holomorphic vector bundles in terms of an infinite-dimensional Kempf-Ness
theorem.

1.5 Characteristic Classes

In this section we will define the characteristic classes of a vector bundle in terms
of the curvature of certain connections. First note that for a matrix F' and an
invertible matrix g, we have that det(F) = det(gFg~!'). If F' is a local represen-
tative for the curvature of connection on a vector bundle, then on the overlap of
trivialisations, I transforms as gFg~! for a transition function g. Thus one can
can define globally det(Fy) for a connection V.

Definition 1.5.1 (Chern Classes). Let E — M be a smooth complex vector bundle
over a manifold M. Let V be any connection on E. The kth Chern class c(E) of
E is defined to be the cohomology class of the coefficient of t* in the expansion

det (I+ Fv) ch

That is, c,(E) = [éx(F)] € H*(M,C).

Of course, there are a number of details to be checked in this definition. Firstly
one needs to show that the forms ¢ (F) are actually closed, so as to define coho-
mology classes. Additionally, one needs to show that these cohomology classes do
not depend on the choice of connection. See [Kob87| for an account of these de-
tails, as well as more discussion on the definitions and properties of Chern classes.
We will now state some of these properties.

Proposition 1.5.2 (Axioms of Chern Classes). The Chern classes as defined above
satisfy the axioms of Chern classes:

1. Emistence: For each k € Zsq there is a class cx(E) € H*(M,C), and
co(E) =1. Write ¢(E) := Y2y cx(E) for the total Chern class of E.

2. Naturality: Let E — M be a complex vector bundle and f : N — M a
smooth map. Then cy(f*E) = f*cx(E) for all k.

3. Whitney Sum: Let Ly, ..., L, be complex line bundles and L& - --® L,, their
Whitney sum. Then

(Li® - Ly) =c(Lq) - c(Ly).
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4. Normalization: If L is the tautological line bundle over CP', then —cy(L) is
the positive generator of H*(CP',Z) = Z. That is, c;(L)[CP'] = —1.

Proposition 1.5.3 (Integrality). The Chern classes c,(F) are all integral. That
is, if iy 1 H**(M;Z) — H?*(M;C) is the homomorphism induced by the inclusion
i: 7 — C, then ci(E) € i,(H*(M;Z)) C H*(M;C) for all k.

Proposition 1.5.4 (Formula for First Chern Class). Let E — M be a smooth
complex vector bundle over a manifold M, with connection V. Then

o(B) = [tr (%Fvﬂ |

The formula for the first Chern class above is of course a simple consequence
of Definition and simple linear algebra.

Note that the above propositions show that there are topological obstructions
to the existence of flat connections on a vector bundle. In particular if a connection
V on a vector bundle E — M is flat, then Fy = 0 and so ¢;(E) = 0 € H*(M;Z)
by the above formula for the first Chern class. Since there are many examples of
vector bundles with the topological invariant ¢;(E) # 0, flat connections may not
always exist.

Proposition 1.5.5 (Universality of Chern Classes). Any characteristic class a(E)
of smooth complex vector bundles over smooth manifolds is a polynomial in the
Chern classes.

By characteristic class here we mean a cohomology class a(F) that may be
defined for any complex vector bundle which satisfies a naturality condition anal-
ogous to that which is satisfied by the Chern classes. In particular a(F) is a
characteristic class if whenever f : N — M is smooth and f*E — N denotes the
pullback of E — M by f, we have f*a(FE) = a(f*FE).

In addition to the Chern classes, there are a number of other characteristic
classes of smooth vector bundles that we will be interested in. By the universality
statement above, these classes are expressible in terms of the Chern classes.

Definition 1.5.6 (Chern Character). Let E — M be a smooth complex vector

bundle over a manifold M, and V any connection on E. Then we define the
Chern character Ch(E) by

Ch(E) — [tr (exp (%va |

The 2kth degree component of Ch(E) is called the kth Chern character of E,
denoted Chy(E). In particular,

1 AN

k times
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Definition 1.5.7 (Todd Class). Let M be a smooth manifold and denote by cx(M)
the Chern classes of TM . By the splitting principle, we may factory p-, ci(M)t* =
[I1(1 + &t) for some 2-forms & representing the Chern classes of line bundles L;
with TM and €, L; having the same characteristic classes. Define the Todd class
denoted Td(M) by

_ &
o =] 1 —exp(=§;)
In particular we have
Td(M) =1+ %C1(M) + %(Cl(M)2 +eo(M)) + - .
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Chapter 2

Symplectic Geometry

In this chapter we will review the basic constructions in symplectic geometry that
will be relevant in later chapters. Symplectic manifolds will be a fundamental
object of study in this thesis, for a number of reasons. In Chapter [3| we will
investigate complex differential geometry in the context of Kahler manifolds, which
are all symplectic. Some properties of Kahler manifolds, such as the existence of
Kéhler reduction, can be inferred from their underlying symplectic structure. In
Chapters {4f and 5| we will use the theory of symplectic reduction to describe the
moduli spaces of stable and Higgs bundles over compact Riemann surfaces. These
moduli spaces are therefore naturally symplectic manifolds, and in Chapters [0]
and [7| the symplectic structure will play a star role in the context of geometric
quantization.

The topics discussed in this chapter may be found in any reference on symplec-
tic geometry. In particular the notes |[CdS06] of Cannas da Silva are a standard
reference for this material, as well as the lecture notes [Hecl3] of Heckman. In
addition, this chapter will include a discussion on the relations between symplectic
geometry and Mumford’s Geometric Invariant Theory. Detailed references for this
material include the notes [Hos12] of Hoskins and [Tho05] of Thomas.

2.1 Symplectic Vector Spaces

In order to define and discuss symplectic manifolds, it is necessary to develop the
slightly non-standard theory of symplectic linear algebra. We will quickly recall
the definitions and basic properties of symplectic vector spaces in this section.

Definition 2.1.1 (Symplectic Vector Space). Let V' be a finite-dimensional real
vector space. A symplectic form w on V is an element of /\2 V* that is non-
degenerate as a bilinear map w : VXV — R. The pair (V,w) is called a symplectic
vector space.

15
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Example 2.1.2. Let {e1,... e, f1,..., fo} be a basis for R?". Suppose the dual
basis is given by {e!,... € &1 ... £"}. Define a form w : R*" x R*™ — R by

n

w ::Zei/\ﬁi.

i=1
The form w is clearly antisymmetric and bilinear. With respect to the standard

basis w has the matrix
- 0o 1,
w = 1, 00)

This matrix is clearly invertible, so w is non-degenerate. The pair (R*", w) is called
the standard symplectic vector space, and w is called the standard symplectic form
on R?",

Consider R?" as C" and let h : C* x C* — C be the standard Hermitian form
on C". Then as a bilinear form A splits into real and imaginary parts h = g — iw.
The symmetric bilinear form ¢ is the standard inner product on R?" and the anti-
symmetric bilinear form w is the standard symplectic form on R?".

Lemma 2.1.3. Let (V,w) be a symplectic vector space. Then there is a basis
{e1,.. . en, f1,. .., fu} of V such that w(e;, f;) = 0ij, w(ei,e;) =0, and w(fi, f;) =

0. Such a basis is called a canonical basis for w.
Corollary 2.1.4. Let (V,w) be a symplectic vector space. Then dimV' is even.

Note that the block matrix for w with respect to a canonical basis is

(0 1,
w—_lno.

Definition 2.1.5. Let f : V — W be a linear isomorphism of two symplectic vector
spaces V' and W. Then f is a symplectomorphism if wy (u,v) = ww (f(u), f(v))
for all u,v € V. That is, f*fww = wy.

Thus Lemma says that if (V,w) is a 2n-dimensional symplectic vector
space, then V is symplectomorphic to R?" with its standard symplectic form.

Definition 2.1.6. Let (V,w) be a symplectic vector space, and suppose U C V is
a subspace. Define U+ to be the subspace

Ut ={veV]|wu,v)=0 for allu € V}.

Then U~ is called the symplectic complement of U.
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Lemma 2.1.7. Let U C V be a subspace of a symplectic vector space (V,w). Then

1. dimU +dim U+ = dim V.
2. (UYHY =U.
3. IfU CW, then W+ C U™,
Definition 2.1.8. Let U CV be a subspace. Then U 1is
1. symplectic if U N U+ = {0},
2. isotropic if U C U+,
3. coisotropic if U D U+, or
4. Lagrangian if U = U+.

A subspace U is symplectic if and only if w|,; is a symplectic form on U. Note
that we also have V = U @ U+ in this case.

A subspace U is isotropic if and only if w|, is the zero form. Note that since
w(v,v) =0 for any v € V', one-dimensional subspaces of V' are isotropic.

A subspace U is coisotropic if and only if U / U+ is a symplectic space with
respect to the induced form defined by w(u + U+, v + U™t) == wl; (u,v).

A subspace is Lagrangian if and only if it is isotropic and coisotropic.

Lemma 2.1.9. Suppose U C V is Lagrangian. Then dimU = %dim V.

Proposition 2.1.10. An antisymmetric bilinear form w on an even-dimensional
vector space V' is non-degenerate if and only if W™ € /\2n V* 4is non-zero.

Proof. ( = ) Suppose w is non-degenerate. Let {e;, f;} be a canonical basis
for the symplectic vector space (V,w), and let {€’,£'} be the dual basis. Then
W =nlet AELA - A€ AT, which is non-zero.

( <= ) Suppose w is degenerate. Then there is some v # 0 such that
w(v,w) = 0 for all w € V. Complete v to a basis {v,ws,...,ws,} of V. Then
W"(v,wa, ..., we,) = 0. But if {¢'} is the dual basis to {v,w;} then w" =
ket A - Ae? for some k. Since v Aws A - -+ Aws, is the dual basis to el A--- A e2?
inside /\2" V*, one must have £k = 0, so w"™ = 0. O

The form dvol := w”/n! is called the symplectic volume form on (V,w). The
normalisation factor is to make the area of the unit parallelepiped in a canonical
basis for w equal to 1.
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2.2 Symplectic Manifolds

Definition 2.2.1 (Symplectic Manifold). Let M be a smooth manifold, and w €
Q*(M). Then w is symplectic if w is closed, and wl|, : T,M x T,M — R is
symplectic. That is, w is non-degenerate on each tangent space. The pair (M,w)
15 called a symplectic manifold, and w is the symplectic form.

Note in particular that symplectic manifolds must be even-dimensional, since
the dimension of the tangent space at each point is equal to the dimension of the
manifold.

Example 2.2.2. Let (z!,..., 2" y',...,y") be the standard coordinates on R?".
Then the form

w = i dz’ A dy'
i=1

gives R?" the structure of a symplectic manifold. This is the standard symplectic
form on R?". Notice that w = —df where

0= Zn: yidat,
i=1

Example 2.2.3. Let (z!,...,2") be the standard coordinates on C". Then the
form

i i —i
w::§zz:1:dz N dz

gives C" a symplectic structure. This is the standard symplectic form on C". Note
that the normalisation factor means that in real coordinates where dz* = da® +idy’
and dz' = dz® — idy® we have that w is the standard real symplectic form on R?",

Let (M,w) be a symplectic manifold of dimension 2n. Since w is everywhere
non-degenerate, it defines a volume form dvol := W" / n!. In particular, M is
orientable. As was mentioned earlier, M must also be even dimensional.

Suppose further that M is compact. Then the closed form w defines a non-
zero cohomology class in H?(M,R). The volume form dvol also defines a non-zero
cohomology class in H?"(M,R). Since dvol = w"/n!, we must have w* # 0 for
every k. In particular H?*(M,R) must be non-trivial for all k = 1,..., n.

This gives us a collection of simple obstructions to the existence of a symplectic
structure on a smooth manifold. A manifold that fails to satisfy those properties
mentioned above cannot admit any symplectic structure.

Example 2.2.4. The Lie group U(2) = S x S! is compact, even-dimensional,
and orientable. However, by the Kiinneth formula, the second degree cohomology
of U(2) is zero. Thus U(2) does not admit any symplectic structures.
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Similarly to the linear case, we can define a notion of equivalence of symplectic
manifolds.

Definition 2.2.5 (Symplectomorphism). Let (M,w) and (N,n) be symplectic
manifolds. Let f : M — N be a diffeomorphism. Then f is a symplectomor-

phism if f*n = w.

Equivalently, f is a symplectomorphism if df ]Tp 18 a symplectomorphism of
symplectic vector spaces, for each p € M.

A submanifold N € M of a symplectic manifold has each of the properties
symplectic, isotropic, coisotropic, and Lagrangian if and only if its tangent spaces
T,N C T,M have these properties, for all p € N. In particular note that a La-
grangian manifold L C M has dimension half that of M, a symplectic submanifold
N C M has even dimension, and a Lagrangian submanifold is both isotropic and
coisotropic.

2.3 Phase Space

In the previous section, we saw that the standard symplectic form w on R?" may be
written as —d# for a one-form 6. In this section we will expand on this observation,
to show that every cotangent bundle is a symplectic manifold.

Let M be a smooth manifold, and (U, (z',...,2")) be a coordinate chart. Let
¢ T*M|,; — U x R" be the trivialisation, and ¢ : U — R" be the chart. Then
one can define coordinates v := (¢, 1) o ¢.

Given a point p € T*M|, with ¢(w(p)) = (z',...,2"), one has ¥(p) =
(x', ... 2" y1,. .., y,) for some yy,...,y, € R. Indeed if {dz'} is the local frame
for the cotangent bundle over U, then p = >, y;da’ € T;‘(p)M .

Definition 2.3.1 (Canonical Coordinates). The coordinates (z', ..., 2™ y1, ..., Yn)
defined above on T*M|,; are called the canonical coordinates on T*M.

Let M be a smooth manifold. Let N := T*M. Define a one-form 6 on T*M
as follows. Let m : N — M be the standard projection, and consider dr : TN —
TM. Let n € N. Then if m(n) = ¢, we may interpret n as a linear functional
n: TyM — R on the tangent space at ¢q. Define 6|, :=no d7T|TqN. That is, given
a covector n € Ty M and a tangent vector v in T,(T*M), project v to a tangent
vector dm(v) in T, M, and then evaluate dr(v) on the covector n, to obtain a real
number.

Definition 2.3.2 (Tautological One-Form). The differential form 0 on N = T*M
is called the tautological one-form of M.
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The tautological one-form may also be described as the unique one-form on
T*M with the following property.

Proposition 2.3.3. The tautological one-form on a manifold M satisfies £0 = &
for every & € QY(M).

Proof. Let & € QY(M) be a one-form. Then we may interpret & as a section
§: M — T*M. Then £*0 = £. To see this, let p € M and v € T,M. Then

§0], (v) = bg, (d€(v))
= Elp odm o d&(v)
=&l od(mog)(v)
= £, ().

]

If one considers R?" as T*R", with the standard global coordinates on R™, then
the one-form 6 described in Example 2.2.2] is precisely the tautological one-form
on R™.

Definition 2.3.4 (Canonical Symplectic Form). Let w := —df. Then w is called
the canonical symplectic form.

The form w is clearly symplectic, because in canonical coordinates
n
w = Z dx' A dy;.
i=1

We remark that the zero section of the cotangent bundle N = T*M is an embedded
Lagrangian submanifold with respect to this symplectic form.

Any smooth manifold produces a symplectic manifold. The cotangent bundle
N = T*M equipped with its canonical symplectic form is often called a phase
space. This terminology arises from physics, where M is usually the configuration
space of a classical system, whose points describe positions of all the particles in
the system. Then the cotangent vectors on this configuration space are the mo-
mentums of the particles. A point in the cotangent space thus completely describes
the state of the system, and so is called the phase space. The dynamics of the
classical system can be naturally interpreted in terms of the canonical symplectic
form.
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2.3.1 Darboux’s Theorem

A general Riemannian manifold has non-trivial local moduli, given by the Rieman-
nian curvature tensor. In striking contrast, in symplectic geometry all symplectic
manifolds of the same dimension are locally symplectomorphic. This is the cele-
brated theorem of Darboux about the existence of canonical local coordinates on
a symplectic manifold. In particular this theorem shows that every symplectic
manifold locally looks like (R*",wyy) where wyy is the standard symplectic form
on R?",

Theorem 2.3.5 (Darboux’s Theorem). Let (M,w) be a symplectic manifold of
dimension 2n, and let p € M. By the Poincaré lemma there is a neighbourhood
U of p and a one-form 0 such that w = —df. On this neighbourhood U there are
coordinates oordinates o : U — R*™ given by © = (q¢*,..., ¢, p1,...,pn) such that

in these coordinates,
0=> pidq
i=1

In particular we have
w=—df = dq' A dp;
i=1

so that w = P*Wgq.

This theorem may be proved using the elegant argument of Moser, now known
as the Moser trick, to construct a diffeomorphism ¢ : M — M that takes one
differential form a to ¢*a = 5. The idea of the Moser trick is to construct vector
fields X; on M depending on some ¢t € R such that the flow diffeomorphisms ¢,
of X; (given by evaluating the flows of each X; at time 1) have the property that
a = ¢;f;. Here f; is a carefully chosen family of differential forms such that

o = a and B, = (. The construction of the family of forms [, and the vector
fields X; turns out to involve solving a simple differential equation, and this trick
finds many applications.

Moser originally used this trick to prove that if «, 8 are two volume forms on
a compact manifold M, then there is a diffeomorphism ¢ taking a to g if and
only if their integrals over M agree. In addition to its applicability to Darboux’s
theorem, the Moser trick may also be used to prove the tubular neighbourhood
theorem of Weinstein.

Theorem 2.3.6 (Weinstein’s Lagrangian Neighbourhood Theorem). Let L C
(M,w) be a Lagrangian submanifold of a symplectic manifold (M,w). Then there
exists a neighbourhood U of L and a symplectomorphism U — U’ where U’ is a
neighbourhood of the zero section in T*L, with U’ inheriting the canonical sym-
plectic structure from T L.
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We noted earlier that the zero section of T*M is an embedded Lagrangian
submanifold of T*M, and the neighbourhood theorem of Weinstein shows that
this example is in some sense universal: all Lagrangian submanifolds look like the
zero sections of their cotangent bundles.

For more details about the Moser trick and the proof of Darboux’s and Wein-
stein’s theorems, see the notes [CdS06] of da Silva.

2.4 Hamiltonian Vector Fields and the Poisson
Bracket

Let (M, w) be a symplectic manifold and f € C*°(M) be a smooth function on M.
Then df € QY(M) is a one-form.

Let X € I'(M,TM). Let ix be the contraction operator ix : Q¥(M) —
QF1(M) defined by

’i)ﬂ?(XQ, <o 7Xk) e U(X,XQ, “ee ,Xk)

for n € Q¥(M) and Xs, ..., X}, € (M, TM), and ix|goan = 0.

Then we have ixw € QM) for our symplectic form w and for any X €
['(M,TM). Since w is non-degenerate, it defines an isomorphism I'(M,TM) —
QY(M) given by X — ixw. But then given f € C*(M), there exists a smooth
vector field Xy € I'(M,TM) such that ix,w = —df (why we require a negative
sign will become clear later).

Definition 2.4.1. Let (M,w) be a symplectic manifold and let f € C°(M). Then
the unique vector field Xy € I'(M,TM) such that

inw = —df
15 called the Hamiltonian vector field associated to f.

Note that not every vector field X € I'(M,TM) is Hamiltonian, because not
every one-form 7 is necessarily exact. If H*(M,R) = 0 however (for example if M
is simply connected), then every vector field which preserves w is the Hamiltonian
vector field of some function. Notice the condition that X preserves w implies
that d(ixw) = 0, and therefore H'(M,R) = 0 implies that ixw = —df for some
function f.

A natural question one might ask is whether the Hamiltonian vector fields are
closed under standard operations on vector fields. Clearly the Hamiltonian vector
fields form a vector subspace of I'(M,TM) by linearity of d. What about the
commutator [ X, X,| of two Hamiltonian vector fields?

First we recall a useful formula of Cartan.
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Theorem 2.4.2 (Cartan’s Magic Formula). Let X € I'(M,TM) and w € QF(M).
Then

ﬁxw = ixdw + d(zxw)
Lemma 2.4.3. Let f,g € C°(M) and let h := w(Xs, X,). Then [ X, X, = X.

Proof. Using Cartan’s magic formula, we have
Lx,(9) = ix,dg = ix, (—ix,w) = w(Xy, X).
Then
d(w(Xy, Xg)) = d(Lx,9)
- ‘CXf (dg)
== —CXf(ngw).
Now Ly (iva) = iyyja+ivLy(a), and by Cartan’s magic formula if a is closed
and iy is closed, then Lya = 0. Since ix,w = —df is exact, it is closed, so we

have
d<w(Xfa Xg)) = _Z.[vaXg}w

as desired. n

Therefore the Hamiltonian vector fields form a subalgebra of the space of vector
fields on M with respect to the Lie bracket of vector fields. By the non-degeneracy
of w, we can transport this Lie bracket backwards to the space C*(M) of smooth
functions on M.

Definition 2.4.4. Let f,g € C>°(M) and suppose X¢, X, € I'(M,TM) are their
corresponding Hamiltonian vector fields. Define the Poisson bracket of f and g to
be the smooth function

{f, 9} = w(Xy, X).
By Cartan’s magic formula we can write the Poisson bracket is several equiva-
lent ways:

Lx,(9) =ix,dg = ix,(~ix,w) = w(Xs, Xy) ={f g}

From the definition of the Poisson bracket, we have that {f, g} = —{g, f} for
f,g € C°(M), and from the expression

Xipgy = X5, Xy

we also observe that {f, g} satisfies the Jacobi identity, and therefore gives C*(M)
the structure of a Lie algebra.
In Darboux coordinates {¢', p;} we have

~~[(0f 09 Of 0g
et = 2; <8pz~ o 8qi8—m) '
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2.5 Moment Maps and Symplectic Reduction

Given a symplectic manifold (M, w), it is a natural question to ask when we can

quotient by the action of a Lie group G to obtain another symplectic manifold.
Suppose that G acts on (M,w) by symplectomorphisms, otherwise known as

the action being symplectic. Explicitly, the maps x +— ¢-x are symplectomorphisms

of (M,w) for all g € G.

Definition 2.5.1. The action of G on (M, w) is said to be Hamiltonian if for every
X € g, the Lie algebra of G, the induced vector field X on (M, w) is Hamiltonian.
That is, the one-form —igzw is exact and so there exists Hxy € C°°(M) such that
X = Xuy . This choice of Hx is unique up to a constant.

Note that the map X — X is a Lie algebra anti-homomorphism from g to
[(M, TM), with X defined by

, = %(exp(tX) “P)i=0-

When the action of G on (M,w) is Hamiltonian, one may define a map p :
M — g* as follows. Let X € g and Hx be its corresponding smooth function on
M. Denote by pux the smooth function z +— (u(z), X) for some yet undetermined
i M — g*. Then define uy := Hyx for each X € g. This assignment is linear,
and determines y. Notice that this map has the property that

igw = —dpx,

which follows immediately from the definition of Hamiltonian vector fields. A map
satisfying this property is known as a moment map.

Definition 2.5.2. A moment map for the Hamiltonian action of G on (M,w) is
a map p: M — g* satisfying

d<:u7 X> = _in

for every X € g, which is linear in the sense that X — px = (u, X) (the so-called
comoment map) is a linear map from g to C*(M).

There is some ambiguity in defining this moment map g, in so far as one may
add a constant to (u, X) for each linearly independent X € g. In addition to
the existence of a moment map p : M — g*, one often requires further that p is
equivariant with respect to the coadjoint action ad® on g*. This action is given by
(ad*(g)&, X) := (£,ad(g7 ') X), where we use g~! to ensure that this is a left action
of G on g*.
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The condition that p is G-equivariant is therefore that

(g - x), X) = (u(x),ad(g~")X)

for all X € g, and g € G. When G is connected we can check this equivariance on
the level of Lie algebras, and an equivalent condition is that {ux, puy} = —I[X,Y]
for all XY € g. Indeed this means that the map X + ux is a Lie algebra anti-
homomorphism from g to C*(M). If we had instead chosen that Hamiltonian
vector fields satisfy ix,w = df the corresponding equivariance condition would be
that X — px is a Lie algebra homomorphism, but at the cost of the map f — X
from smooth functions to Hamiltonian vector fields then becoming a Lie algebra
anti-homomorphism.

Theorem 2.5.3 (Marsden-Weinstein). Suppose G is a compact Lie group with
a Hamiltonian action on (M,w) having associated equivariant moment map .
Suppose that & € g* is a reqular value of this action, and that £ is central in the
sense that it is fized by the coadjoint action. Since u is G-equivariant, pu='(€)
is a G-invariant subset of M. Suppose the action of G on M is such that the
quotient space M = =" (€)/G is a manifold (for example if G acts freely). Then
if i : = Y(€) < M is the inclusion and w: M — M s the projection:

1. The form i*w is basic for the action of G on M, and therefore descends to
give a unique closed and non-degenerate form w on M such that i*w = Q.

2. With respect to @, (M,(IJ) therefore inherits the structure of a symplectic
manifold from (M,w), called the symplectic reduction of (M,w) by G at
€ € g*, with dimension dim M = dim M — 2dim G.

We remark that it suffices to chose & = 0 in the above construction, because
if £ is some central non-zero element of g* then ' := u — £ is also an equivariant
moment map for the action of G on (M,w). Later we will see that symplectic
reduction also transfers several other structures from M to M, including Kéhler
and hyper-Kahler structures.

The symplectic reduction technique can be used to construct many well-known
examples of symplectic manifolds. For example, the action of U(1) on C"*'\{0}
is Hamiltonian with respect to the standard symplectic form inherited from C"*!.
The Lie algebra of U(1) and its dual can be identified with R, and the correspond-
ing equivariant moment map is given by pu(z%,...,2") == 137" [[2/? — 1. The
symplectic reduction CP" := p~1(0)/ U(1) = §?"*!/S? then inherits a symplectic
form wrg known as the Fubini-Study form on CP". Later we will see that this is
in fact an example of a Kdhler reduction, and the form wrg is the standard Kéahler
form on projective space CPP".
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Other examples of symplectic manifolds constructed in this way include many
examples of moduli spaces, such as the moduli spaces of stable holomorphic or
stable Higgs bundles on a compact Riemann surface, as we will see later.

2.6 The Kempf-Ness Theorem

2.6.1 Geometric Invariant Theory

In this section we will quickly recall the ideas of Geometric Invariant Theory,
first expounded by Mumford in 1965 based on ideas from Hilbert’s classical in-
variant theory. Mumford’s original book was expanded by Fogarty and Kirwan
in [MEKO94]. The exposition of this section closely follows the notes [Hos12] of
Hoskins. We will state theorems without proofs, all of which can be found in these
notes.

Given an algebraic variety X and a linear algebraic group G, or more generally a
scheme X and a group scheme G, Geometric Invariant Theory gives the conditions
under which a quotient of X by G exists, and when it is also a scheme or variety
with the nice properties one might desire a quotient to have. In our case we will
simply take X to be a complex algebraic variety, although most definitions and
theorems hold more generally.

To clarify what is meant by nice properties above, we have the following char-
acterisation of quotients.

Definition 2.6.1 (Categorical Quotient). A categorical quotient of X by G is a G-
invariant morphism @ : X — Y such that given any other G-invariant morphism
f X — Z, there exists a unique f .Y — Z such that the following diagram
commautes:

X
[N
y {527

Definition 2.6.2 (Good Quotient). A good quotient of X by G is a variety Y
and a morphism ¢ : X —'Y such that

1. ¢ is constant on orbits of G in X,
2. ¢ 1s surjective,

3. whenever U C Y is open, the morphism Oy (U) — Ox (o Y (U)) is an iso-
morphism onto the G-invariant functions Ox (¢~ *(U))%,
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4. whenever W C X is a G-invariant closed subset of X, its image (W) is
closed in'Y,

5. whenever Wy and Wy are disjoint G-invariant closed subsets of X, (W)
and @(Ws) are disjoint, and

6. ¢ is affine, in the sense that the preimage of every affine open subset of Y
15 affine in X.

Definition 2.6.3 (Geometric Quotient). A good quotient ¢ : X — Y is said to
be a geometric quotient if the preimage of every point in'Y is a single orbit of G
in X. In this case Y is the genuine topological quotient of X by G (at least in the
analytic topology).

It is not difficult to show that a good quotient is also a categorical quotient,
and is therefore unique up to isomorphism. Furthermore, good quotients have the
following extra properties:

Proposition 2.6.4. Let o : X — Y be a good quotient. Then
1. G-21NG-x9 # 0 if and only if p(x1) = p(22) inY,

2. for each y € Y, there is a unique closed orbit contained in = (y). In
particular if every orbit of G in X is closed, then ¢ must be a geometric
quotient, and

5. if U CY is open then ¢| 1 0 1 (U) — U is also a good quotient (and
geometric whenever ¢ is).

The goal of Geometric Invariant Theory is to construct good quotients of al-
gebraic varieties by linear algebraic groups. To do so, observe that if a linear
algebraic group G acts on an algebraic variety X, then it also acts on A(X) the
coordinate ring of X, by g- f(z) := f(g~'-x). Therefore one may consider the ring
of invariants A(X)® consisting of those coordinate functions that are constant on
the orbits of G.

Definition 2.6.5 (Affine GIT Quotient). The affine GIT quotient of an affine
algebraic variety X by the action of a linear algebraic group G is the affine algebraic
variety

X//G := Spec A(X)¢
with the morphism ¢ : X — X//G induced by the inclusion A(X) — A(X).

In the case of projective algebraic varieties, A(X) is now the homogeneous
coordinate ring, which is graded so that A(X) = ©4>0A(X)4. Denote by A(X),
the ideal A(X); 1= @g=0A(X).
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Definition 2.6.6 (Projective GIT Quotient). The projective GIT quotient of a
projective algebraic variety X by the action of a linear algebraic group G is the
projective algebraic variety

X//G := Proj A(X)®
with the morphism again induced by the inclusion A(X)% — A(X).

We remark that in the case of projective algebraic varieties, the action of GG
on X is required to be linear in the sense that if X C CP" for some n, then the
action of G on X is the restriction of some linear action of G on CP" descending
from a linear action of G on C"*1. In particular this means that the ring A(X)%
of invariants is graded, so that Proj A(X)® makes sense. This also means that
the projective GIT quotient X//G depends on the particular embedding of X into
CP".

We also remark that the morphism ¢ : X — X//G is undefined on the null
cone Nyxye :={z € X | f(z) = 0forall f € A(X)F}. Here A(X)S denotes the
intersection of A(X), with A(X)“. The morphism ¢ is well-defined on X'\ Nyx)c,
and later we will see that this set has a more explicit description as the set of semi-
stable points of X.

Further, note that the constructions Spec and Proj (which we take to only
return the mazimal ideals, so as to obtain precisely the algebraic variety rather
than its associated scheme, which includes all prime ideals) will only return nice
algebraic varieties if the ring of invariants A(X)% is finitely-generated. In general
this need not be the case, but for a nice class of algebraic groups, the so-called
reductive groups, this holds by a theorem of Nagata.

Theorem 2.6.7 (Nagata). Let G be a reductive group acting on a complex alge-
braic variety X. Then A(X)Y is finitely-generated.

Examples of reductive groups include the complexification of compact con-
nected Lie groups, including GL(n,C) and SL(n,C). The fundamental result of
Geometric Invariant Theory is the following theorem of Mumford.

Theorem 2.6.8 (Mumford). The GIT quotient of an algebraic variety X by a
reductive group G is a good quotient. In the projective case, the GIT quotient is a
good quotient after restricting ¢ to the set X \ Nax)e where it is defined.

2.6.2 Stability

It is not always the case that the GIT quotient of the previous section is geometric.
In addition to the construction of GIT quotients, Mumford isolated certain stability
criterion on elements of the variety X that allow one to obtain a geometric quotient
after restricting to an open subset. First we will consider the case where X is affine.
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Definition 2.6.9 (Stability). Let X be an affine algebraic variety acted upon by
a reductive group G. We say a point x € X is stable if its orbit is closed in X,
and dimG - x = dim G, so that dim G, = 0 where G, is the stabiliser of x in G.
Denote by X* the set of stable points.

One can show that X? is an open subset of X, and therefore the good quotient
v : X — X//G restricts to X*. Denote by (X//G)® the image p(X?).

Theorem 2.6.10. The restricted quotient ¢* : X* — (X//G)® is a geometric
quotient for the action of G on X*, so (X//G)* = X*/G.

In the case of projective algebraic varieties, the picture is slightly more subtle.
If X ¢ CP" is projective, then one may consider its affine cone X C C", which
is the union of 7~1(X) with 0 under the projection C"**\{0} = CP". The action
of G on X lifts to the affine cone X .

Definition 2.6.11 (Stability and Semi-Stability). Suppose that X is a projective
algebraic variety acted upon by a reductive group G. Let x € X and suppose T 1is
any point in X lying over x. Then

e 1 is stable if and only if dim Gz = 0 and G - & is closed in X.
e z is semi-stable if and only if G - & does not contain 0 € C"*1,

Denote by X7 the set of stable points of X, and by X*° the set of semi-stable points.
Note that X° C X5,

We remark that the set X*° = X \ Nyx)o where Nyx)e is the null cone
discussed in the previous section, and this is in fact an alternate definition of the
set of semi-stable points. Then we have the following theorem.

Theorem 2.6.12. Let X be a projective algebraic variety and G a reductive group
acting linearly on X . Then the GIT quotient space X//G may be identified with the
good quotient p : X*° — X*/ /G into the projective variety X*°//G. Furthermore,
restricting ¢ to X® C X gives a geometric quotient ¢°* : X* — (X//G)* = X*°/G.
X?®/G is an open subset of X//G and is therefore quasi-projective.

In the projective case we can give a slightly more explicit description of the
GIT quotient X//G as a set.

Definition 2.6.13 (Polystability and S-Equivalence). A semistable point x € X
15 said to be polystable if its orbit is closed in X*°. Note that a polystable point
with zero-dimensional stabiliser is therefore stable. We say two semistable points
x1,T9 € X% are S-equivalent if G -1 NG -xy # (). Denote by XP* the set of
polystable points in X*°.
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Using polystability we obtain the following description of X//G.

Theorem 2.6.14. Let z1 and x4 be semistable points in X. Then ¢(x1) = ¢(x2)
if and only if x1 1s S-equivalent to xo. In particular, there is a bijection of sets

X//G = XPG.

The above theorem indicates that the GIT quotient X //G may be viewed as the
regular quotient X*°/G where we then identify two points if they are S-equivalent.

2.6.3 Symplectic Quotients and the Kempf-Ness Theorem

In this section we state the Kempf-Ness theorem as it is found in the notes [Hos12].
This theorem gives an explicit relation between symplectic reductions of complex
projective manifolds and Geometric Invariant Theory.

Recall that if G is a connected compact Lie group, then G¢ the complexi-
fication is reductive. Further, recall that complex projective space CP" has a
canonical symplectic form inherited from its description as a symplectic reduction,
the Fubini-Study form. In the statement of the Kempf-Ness theorem we will use
the fact that if X is a smooth complex submanifold of CP", such as if X is complex
projective, then the Fubini-Study form wpgg restricts to give a symplectic form on

X.

Theorem 2.6.15 (Kempf-Ness Theorem). Let G be a compact connected Lie group
with reductive complexification G¢. Suppose Ge acts linearly on a smooth complex
projective variety X C CP", and suppose further that the restricted action of G is
Hamiltonian for the symplectic manifold X . Suppose i : X — g* is the associated
equivariant moment map given by the restriction of the standard moment map
i : CP" — g*. Then:

1. G- pH(0) = XP°,

2. if v € X 1is polystable, then Gc - x meets u='(0) in a single G orbit,
8. a point v € X is semi-stable if and only if Gc -z N p~1(0) # 0, and
4. 0 s a reqular value of u if and only if X*° = X?*.

Using this theorem, we can relate the GIT quotient of X by G¢ to the sym-
plectic reduction of X by G.

Corollary 2.6.16. The inclusion p~1(0) < X*¢ induces a homeomorphism

p(0)/G = X/ /Ge.
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Proof. First note that the Kempf-Ness theorem implies that x~1(0) is in fact a
subset of X**. Theorem[2.6.14]implies that X//G¢ as a set is X** with S-equivalent
points identified. Furthermore this set is isomorphic to X?*/G¢. By part 2 of
the Kempf-Ness theorem, every polystable orbit meets p~!(0) in a unique G-orbit.
This gives a bijection between X?*/Gc and p~1(0)/G. Note that ~1(0) is a closed
subspace of X, which is compact, and therefore ;~1(0)/G is also compact. But
then the inclusion p~!(0) < X* induces a continuous bijection from a compact
space to a Hausdorff space, which is therefore a homeomorphism. O

The continuous inverse X//Ge — p~'(0)/G may be found by following the
gradient flow of the norm squared of the moment map with respect to some G-
invariant norm on g*. Indeed one statement of the Kempf-Ness theorem is that
a point is stable if and only if this norm attains its minimum somewhere on the
orbit of the point.

We will investigate an infinite-dimensional version of the Kempf-Ness theorem
for the moduli space of stable holomorphic vector bundles over a compact Riemann
surface in Chapter [l There too the norm of the moment map will appear as the
Yang-Mills functional for connections on a smooth complex vector bundle. The
minima (or critical points) of this norm are the so-called Yang-Mills connections,
and the Narasimhan-Seshadri theorem states that such connections correspond to
stable holomorphic structures on the underlying smooth vector bundle.
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Chapter 3

Complex Differential Geometry

In this chapter we will recall many important details about the geometry of com-
plex manifolds and holomorphic vector bundles, with a particular focus on Kahler
manifolds. Of particular importance is the theory of almost-complex structures
on a smooth manifold, the integrability of which to a genuine complex structure is
described by the famous Newlander-Nirenberg theorem. Additionally we will be
concerned with the theory of holomorphic vector bundles on complex manifolds,
and the alternate description of holomorphic structures on vector bundles in terms
of Dolbeault operators. This is a separate application of the Newlander-Nirenberg
theorem, and we will present a linearized proof of the theorem in the case of holo-
morphic vector bundles over compact Riemann surfaces provided by Atiyah and
Bott in [ABS3].

In addition to these topics, we will recall the definition of Dolbeault cohomology
and its relation to the sheaf cohomology of the sheaves of holomorphic section of
holomorphic vector bundles, and state the major theorems for the cohomology
groups of holomorphic vector bundles over compact complex manifolds.

The results in this chapter are standard and can be found in the first chapter
of the excellent Principles of Algebraic Geometry [GHTS8] by Griffiths and Harris,
as well as in [WGP80] by Wells and [Kob87] by Kobayashi.

3.1 Almost Complex Structures

Suppose M is a complex manifold of complex dimension n, and let (U, ) be a
local holomorphic chart for M, with ¢ = (2%,...,2") : U — C". Then each
2t = x' + 1y for real coordinates (z',... 2" y',... ,4y"), and one has distinguished
complex-valued one-forms dz* = dx® + idy’ and dz' = da' — idy’ on U. Dual to

33
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these one-forms are the complex-valued vector fields

(9_1 a—ia anda—1 8—1—2'8
0zt 2 \ 9zt oy’ 0zi 2 \ oz oyt )’

and taken all together these vector fields form a frame for TU¢ := TU ® C. These
local vector fields also define a splitting of TU¢ into two subbundles defined by

THU := Span {i} and T%'U := Span { 8_ } .
07" 0z
This local direct-sum splitting of the tangent bundle is invariant under change
of holomorphic coordinates z*, and therefore defines a splitting TM¢ = T*°M @
T M. The bundle T1OM is called the holomorphic tangent bundle, a holomorphic
vector bundle whose holomorphic sections correspond to the holomorphic vector
fields on X, and T%'M is called the anti-holomorphic tangent bundle.

Remark 3.1.1. The holomorphic tangent bundle 7H°M is isomorphic as a real
vector bundle of rank 2n to the regular tangent bundle T'M of M considered as
a smooth manifold. The real isomorphism is given simply by the composition
TM — TMc¢ L0 7100, We also remark that there is a real isomorphism

TYOM — T%'M given by conjugation.

Similarly the one-forms dz* and dz* give a splitting T*M¢ = IToM & 15 M
into the holomorphic and anti-holomorphic cotangent bundles.
On the vector bundle T'M¢ there is a certain endomorphism I : T'M¢ — T Mc¢
defined by
0 .0 0] .0
0z 921 ¢ 9z 0zt
In terms of the real coordinates I is defined by
0 0 0 0

A - and — — ——
ox’ ~ ay* a oy’ ~ ox?

for each i. Notice that I? = —1 on T'M¢ and that the expression for I in the
real coordinates makes sense just on the real tangent bundle T'M. Moreover, by
construction the holomorphic tangent bundle is just the +i-eigenspace of I acting
on T'M¢ and the anti-holomorphic tangent bundle is the —i-eigenspace. Such an
endomorphism of T'M is called an almost-complex structure on M. As can be
seen in the above definition of I for a complex manifold M, this endomorphism
encodes the ability to multiply real tangent vectors by ¢ on the underlying real
smooth manifold. In particular I \p turns 7T,M into a complex vector space for
every p € M, giving T'M the structure of a smooth complex vector bundle over
the smooth manifold M.
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Definition 3.1.2 (Almost-Complex Structure). Let M be a 2n-dimensional smooth
manifold. Then an endomorphism I : TM — TM such that I? = —1 is called an
almost-complex structure on M.

The above discussion shows that if M has a complex structure, then it au-
tomatically inherits an almost-complex structure. The converse is not always
true. If an almost-complex structure I on a smooth manifold M is genuinely
the almost-complex structure of some complex structure on M, then we say the
almost-complex structure is integrable. The famous theorem of Newlander and
Nirenberg gives necessary and sufficient conditions for an almost-complex struc-
ture to be integrable.

Definition 3.1.3 (Nijenhuis Tensor). Let A : TM — TM be an endomorphism
of the tangent bundle of M, and X,Y € I'(M,TM) any two smooth vector fields.
Define a tensor Ny by

NA(X,Y) = —A%[X) Y]+ A([AX, Y] + [X, AY]) — [AX, AY].
Then N4 s called the Nijenhuis tensor of A.

Theorem 3.1.4 (Newlander-Nirenberg Theorem). An almost-complex structure I
on a smooth 2n-dimensional manifold M is integrable if and only if Ny = 0, and
the compatible complex structure is unique.

Using the Newlander-Nirenberg theorem, one may essentially define a complex
manifold as a smooth manifold with an integrable almost-complex structure, and
we will follow along these lines in Chapter [l when we discuss Kéahler polarisations
of symplectic manifolds.

The proof of the Newlander-Nirenberg theorem is difficult in general, but may
be simplified slightly by assuming that M has a real-analytic structure. Later in
this chapter we will give a proof of the Newlander-Nirenberg theorem for holomor-
phic structures on complex vector bundles over Riemann surfaces found by Atiyah
and Bott in [AB83], where the linear setting and low dimension of the base signif-
icantly simplify the proof. The full proof may be found in the textbook [Hor73]
by Hérmander on analysis in several complex variables.

Note finally that not all smooth 2n-manifolds admit an almost-complex struc-
ture. For example, the only spheres that admit almost-complex structures are
S? and S, where the structure on S? is integrable with S? = CP'. The almost-
complex structure on S® is inherited from its description as the unit imaginary
octonions, and it is known that this almost-complex structure is not integrable.
It is a major open problem whether or not S admits any other almost-complex
structures and whether or not they are integrable.
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3.2 Complex Differential Forms

In the previous section we saw that any complex manifold M comes with a canon-
ical splitting T"Mc = T M & 15 M of its complexified cotangent bundle. This
splitting has ramifications for the structure of the algebra of complex-valued dif-
ferential forms on M.

Let Q%(M) denote the complex-valued differential k-forms on M. Then the
direct-sum splitting of T*M¢ induces a splitting Q'(M) = QY0(M) & Q(M)
where QY0(M) and Q%!'(M) denote the smooth sections of the holomorphic and
anti-holomorphic cotangent bundles respectively. After taking exterior powers of
the complexified cotangent bundle, observe that we have further splittings

k p q
AT Mc= P (/\T;OM@/\T(;lM>
pt+q=k

for each k, and that these splittings induce splittings on sections given by

Q1) = @ @)

p+g=Fk

where now QP4(M) denotes the space of smooth sections of the direct sum of the
pth exterior power of 77y M and the gth exterior power of 7, M.

Notice that in local coordinates Tt (M and T, M have frames given by the dz’
and the dz’ respectively. Therefore forms of type (p, q) are differential forms that
in local coordinates consist of p forms of type dz' and ¢ forms of type dz’.

To see what happens to the exterior derivative d under this splitting, note that
for d : QF(M) — Q1 (M) we may consider the operators

Ty g 0d: QF (M) — QP9 (M)

where 7, 4 is the projection Q¥1(M) — QP¢(M) and p' +¢ = k + 1. If we
first restrict d to QP9(M) where p + ¢ = k, then we see that (p/,¢) = (p +
1L,q),(p,g+1),(p+2,g—1),0or (p—1,q+ 2). Indeed neither p nor ¢ will drop by
more than 1 degree in general, which can be seen by analysing the projection in
local coordinates. Furthermore, if the splitting of 7 M¢ comes from an integrable
almost-complex structure as is the case when M itself is complex, then neither p
or ¢ will drop a degree, so we see that (p',¢') = (p+ 1,q9) or (¢',¢) = (p,q+1).

In the case where k = 1 this gives a splitting of d : Q°(M) — Q' (M) into two
operators d = 0 + 0 where 0 increases the first bidegree and 0 the second. The
projections sending forms of type (p, ¢) to those of type (p+1,q) and (p,q+1) are
in fact the extensions of & and 0 to the full complex QF(M) = @ QPa(M).
In local coordinates we have

pta=k

5 _ Ofrg i _
I . 9Ing T J
O(fradz Ndz7) : adfidz ANdz" NdzZ
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and similarly for 0.

Remark 3.2.1. One possible alternate definition of integrability of almost-complex
structures is that the @ and O operators, which may be defined for any almost-
complex structure, actually do sum up 9+ 0 = d. Another definition is that forms
of type (p,q) do not have any components of type (p — 1,¢+2) or (p+2,q — 1)
after applying d to them. See [WGPS8(, Ch. 1] for more details.

Due to its ability to encode holomorphic information on the manifold M, the
operator 0 holds a privileged position, similarly to the famous Cauchy-Riemann
d

operator z- in complex analysis in one variable.
z

Definition 3.2.2 (Cauchy-Riemann Operator). The operator 0 : QP(M) —
QP9+ (M) s called the Cauchy-Riemann operator or Dolbeault operator on M,
and is defined purely in terms of the complex structure on M.

The Cauchy-Riemann operator has the property that a function f € QO(M) is
holomorphic if and only if 9f = 0, and that a form w in QP°(M) is holomorphic

if and only if Ow = 0. Moreover, the condition d?> = 0 means that 9% = 7 =0
and 90 + 00 = 0. Thus (QP*(M),d) forms a cochain complex for each p. We
will discuss the cohomology of this cochain complex later in this chapter, as well
considering the case where it is augmented by a holomorphic vector bundle.

We also have the analogy of the Poincaré lemma for this operator.

Lemma 3.2.3 (Dolbeault’s Lemma). Let P be a (possibly unbounded) open poly-
disc in C". If a € QP4(B) with da = 0 then there exists § € QP Y(B) with
08 = a.

3.3 Holomorphic Vector Bundles

Let E — M be a smooth complex vector bundle over a complex manifold M.
Then E — M is holomorphic if the total space F may be equipped with the
structure of a complex manifold such that the projection map = : £ — M is
holomorphic. We will refer to E together with its holomorphic structure by €. If
& is holomorphic then there is a trivialisation {U,, ¢q } of £/ with the o, @ E|;, —
U, x CF biholomorphisms, where k is the rank of E.

This is equivalent to the condition that E is a smooth complex vector bundle
and admits a local trivialisation {U,} such that the transition functions g.s :
Uss — GL(n,C) are holomorphic.

We have already seen one example of a holomorphic vector bundle over any
complex manifold, the holomorphic tangent bundle. Indeed suppose {U,, 1.} is
a holomorphic atlas for a complex manifold M. Then the transition functions
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o © @/zﬂ_l are biholomorphisms, and so the derivatives g, := D(¢), © ¢§1> define
holomorphic maps gos : Usg — GL(n,C). The associated vector bundle is the
holomorphic tangent bundle T'°M — M, hence the name holomorphic tangent
bundle.

Dual to the holomorphic tangent bundle 7'M is the holomorphic cotangent
bundle 77 M. Just as in the case of smooth vector bundles, all the tensor oper-
ations on holomorphic bundles are well-defined, and indeed this gives a wealth of
examples of holomorphic vector bundles attached to any complex manifold. For
example, if £ and F' are holomorphic vector bundles, so are £ ® F, E ® F, E*,
A'E, Q" E, S"E, Hom(E, F), and End(E). We point out the so-called canonical
bundle.

Definition 3.3.1 (Canonical Bundle). Let M be a complex manifold of complex
dimension n. The holomorphic line bundle K := \" Ty M is called the canonical
bundle of M. Its holomorphic sections are the holomorphic volume forms on M.

On a complex manifold of dimension 1, a Riemann surface, note that K =
17 oM is just the holomorphic cotangent bundle itself.

3.3.1 Dolbeault Operators

We saw earlier that a complex manifold M comes equipped with an operator 0
on differential forms, the Cauchy-Riemann or Dolbeault operator. This operator
has the special property that a function f is holomorphic if and only if df = 0.
It turns out that one can encode the holomorphic structure of holomorphic vector
bundles using a similar operator.

Let U be a trivialising open set for a smooth complex vector bundle E, and let
{e;} be the corresponding local frame. Then a local section s : U — E|,; can be
viewed as a vector s = s'e; where the s* are smooth functions s’ : U — C. In this
local frame, there is a natural differential operator 9 : I'(U, E|,;) — Q%Y(U, E|,)
acting on such local sections by d(s) := 0(s') ® e;. This differential operator
has the property that a local section s :€ I'(U, E|;;) is holomorphic if and only if
0s = 0.

As in the case of connections, these local @ operators do not necessarily glue
together to form a global differential operator on sections of the vector bundle F.
In the case of connections, this occurs precisely when there is a trivialisation of
E with constant transition functions. The 0 analogue of such constant transition
functions are holomorphic transition functions, so we see that if E is equipped with
a holomorphic structure, then there exists a global differential operator denoted
0 : Q°(M, E) — Q% (M, E) with the property that s € Q°(M, E) is holomorphic
if and only if 9p(s) = 0.
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It is natural to ask whether, given such a differential operator, one can go back
and obtain a holomorphic structure on E. Note that any such differential operator

must necessarily satisfy 52}3 = 0 and a 0-Leibniz rule. Thus we make a definition:

Definition 3.3.2 (Dolbeault Operator). A map g : Q°(M, E) — Q"Y(M, E) on
sections of a smooth complex vector bundle E over a complexr manifold M is called
a Dolbeault operator if it is C-linear, satisfies the Leibniz rule

Op(fs) = 0(f) @ s+ fOr(s)
and satisfies 52 = 0.
It turns out that these properties are also sufficient.

Theorem 3.3.3. A smooth complex vector bundle E — M 1is holomorphic if and
only if there is a Dolbeault operator O on E — M.

The standard proof of this fact uses the Newlander-Nirenberg theorem to show
a certain explicit almost complex structure on E is integrable. However, on a
Riemann surface Atiyah and Bott, in [AB83] p. 555, proved this result without
the Newlander-Nirenberg theorem. We present this proof here.

Proof of Theorem |3.3.5 when M is a compact Riemann surface. It suffices to take
a trivialising set U for £ and construct a local frame {f;} with dz(f;) = 0 for all .
Let {e;} be an arbitrary frame for U. Then in this frame we have dg(e;) = 6 @ ¢;
for some matrix 6 of (0, 1)-forms.

Let f=( fl] ) be a matrix of smooth functions on U. Then we have

du(fle;) = (O(f]) + f16)) @ e;.
Thus it would suffice to solve the matrix equation
fOpf+60=0

for the matrix of smooth functions f.
Assume first that the space M is S?, and the bundle E is trivial. Then let
T : L3 — L? be the non-linear operator defined by T'(f) := f~'0rf. We have

T(l+¢e)=(1+¢) 91 +¢)
=(1—¢e+0(*)0ge

Ope — e0ge + O(e?)Ope.

Letting ||e|| — 0 we see that the differential of 7" at f =1 is the elliptic operator
Op.
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Now this operator g is surjective on S2, because we can use the Cauchy
integral formula to recover a function from its derivatives here, and by Louville’s
theorem the kernel of O is just the constant matrices.

Thus the implicit function theorem for Banach spaces says that T'(f) = —6 has
a unique (in some neighbourhood of 1 € L2) solution f € L2 orthogonal to the
constant matrices, whenever @ is close enough to zero in L?. Since J is elliptic
we also have that f is smooth whenever 0 is.

To transfer this analysis from S? to a trivialising set on M, define a radially
symmetric cutoff function p : 2z + p/(|z]) on S? = C U {00}, where

1 x<6§/2
plx) = 1—2505—_‘S §/2<x<0
0 x>0

for some 6 > 0. Choose a trivialising open set for E that is biholomorphic to
some open ball containing the support of p. Clearly we have p € L? and one can
compute that ||p||; < 24/ regardless of the choice of 6.

Now if we define ¢ = pf then we can estimate over the region {z | |z| < d}

18112 = 1106112 + lldpb + pd6|
< sup |of?([61 + [|dpb]* + [ odo]
< 116112 + sup |6 |dpl ? + sup o1 d6
< 2[|0])2 + C'sup 0],

for some constant C' independent of §.

By a judicious choice of gauge transformation, we can choose a frame in which
6(0) = 0 and dA(0) = 0. In this frame, a particular choice of § can make these
norms arbitrarily close to zero, and hence one can create a ¢ close enough to zero
to guarantee the existence of an f € L2 satisfying f~'0pf + ¢ = 0. By restricting
to the ball where |z| < §/2, we have ¢ = 0 so elliptic regularity implies the solution
f is smooth, and therefore (after possibly shrinking the trivialising open set) we
obtain a local holomorphic frame for the vector bundle E. n

3.3.2 Chern Connections

Given a fixed Hermitian metric on a holomorphic vector bundle, we can obtain a
unique connection that is compatible with both the metric and the holomorphic
structure.

Theorem 3.3.4. Let (£,h) be a holomorphic Hermitian vector bundle with Dol-
beault operator Op. Then there is a unique connection V on & such that V is
compatible with h and V%' = 0p. This connection is called the Chern connection.
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Proof. Let U be a trivialising open set for £ and let {e;} be a holomorphic frame
on U. Then in this frame we obtain a Hermitian matrix H with Hij = h(e;, e;j).
Now if V is a connection satisfying the conditions above then since V%! = 0p,
Ve; = Al @ e; for some matrix of (1,0)-forms A’. In this frame we have

dH] = h(Ve;, e;) + h(es, Ve;).

Thus

dHI = AMH] + AFHF = A¥E) + A 1Y,

or in matrix notation dH = HA + A' H. Since A is of type (1,0) we see that
OH = HA, or in matrix notation A = H '0H. This determines the connection V
uniquely, so what remains is a proof of existence.

Let {U,} be a trivialisation of £ with holomorphic transition functions g,s.
Then we have H, = @TH 39a5 and hence

H,'0H, = (Gap ' H390s) ' 0(Gas HpGup)
= 9ugHy OHsgag + 925905

because 0¢np = dgops and 0,z = 0.
Thus the local forms H0H satisfy the compatibility condition for connection

forms, and one obtains a unique global connection satisfying the two conditions.
O

The Chern connection satisfies F%Q = 0 since 52 = 0, and by compatibility
with the Hermitian metric we also have Fé’o = 0, so the curvature of V is of type

(1,1).

3.3.3 Holomorphic Sub-Bundles

Given a holomorphic vector bundle 7 : £ — M, a smooth sub-bundle F' C £ is a
holomorphic sub-bundle if 7|, : F — M gives F' the structure of a holomorphic
vector bundle F. The inclusion map i : F — £ is therefore a holomorphic map,
and we have a short exact sequence of holomorphic vector bundles given by

0 s F—— & » E/F —— 0.

~

Smoothly this short exact sequence splits, so that £ = F@®FE/F as smooth complex
vector bundles. To see this, one may for example take a Hermitian metric on F,
and then E/F = F'* the orthogonal complement of F in E.

Holomorphically, the short exact sequence may not necessarily split. Indeed,
suppose that dg is the Dolbeault operator for the holomorphic structure on &.
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Then the Dolbeault operator Op for the holomorphic structure on F is simply
given by prpodp where prp is the projection onto F' under the smooth splitting
E = F @ F*. With respect to this smooth splitting therefore, 9z has the form

-3 1)
0 8E/F ’
where 8 : E/F — F ® Ty M is called the second fundamental form of F in E,

and Op /F is the Dolbeault operator for the holomorphic vector bundle F' Lx>g/F.
Indeed 8 € Q%(M,Hom(E/F, F)) and if 8 = 0 then the splitting £ =2 F ¢ E/F
is holomorphic. By Atiyah’s interpretation of extensions of bundles [Ati57a], the
short exact sequence splits if and only if 8 is d-cohomologous to zero.

We will further interpret this splitting in terms of the associated Chern con-
nections for £ and F. Indeed fix the Hermitian metric h on &, and let V¢ be
the Chern connection such that Vg’l = 0p. Then because F is a holomorphic
sub-bundle, Vz = pry oVe. This shows the Chern connection V¢ is of the form

_(Vr B
oo (5 vin)

Finally, this induces a splitting of the curvature Fy, as

Fo. = ( FVF —BAB deom(E/F‘,F)/B > '
‘ _deom(F,E‘/F)/B* FVg/f - 5* A ﬁ

3.3.4 Holomorphic Bundles on a Riemann Surface

Let us now restrict to the case where M is a compact Riemann surface. Here
we have that Q%2(M) = 0 since M has complex dimension one, so any operator
satisfying the 0-Leibniz rule is automatically a Dolbeault operator. In particular,
if F is a smooth complex vector bundle over M and V is a connection on E, then
V%! is a Dolbeault operator. If we fix a Hermitian metric h on E and require that
the connection V is compatible with this metric, then we see that V is actually
the Chern connection with respect to the holomorphic structure induced by V%!,
Hence:

Theorem 3.3.5. Let (E,h) be a fized smooth complex Hermitian vector bundle
on a Riemann surface M. Then there is a bijection between unitary connections
on (E,h) and holomorphic structures on (E,h), given by taking a connection V

to Vo1, or by taking a Dolbeault operator O to its Chern connection.

The set o7 (F, h) of all unitary connections on (F, h) is an affine space modelled
on QY(M,ad P) where P is the U(n)-principal bundle of unitary frames in (E, h),
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and ad P is the associated Lie algebra bundle. In a similar way, the set Dol(FE) of
Dolbeault operators (or holomorphic structures) on E is an affine space modelled
on Q%Y (M, End(E)).

The space o/ (E, h) has a natural action of the unitary gauge group ¢, whilst
the space of Dolbeault operators is naturally acted upon by the complexr gauge
group ¥c. Under the bijection 7 (F, h) = Dol(E) one can pull back this ¢ action
to o/ (E, h). Here we have a remarkable result.

Theorem 3.3.6. The 9 action on </ (E,h) extends the & action. In particular
the 9c orbits inside </ (E, h) break up into a disjoint union of & orbits.

Proof. The action of % on <7 (FE, h) can be computed to be
u-V=V—[(V*u)u ' - (V" u)u™1)*]

where here we are using the extension of V%! to End(E).
If u=! = u* then v € ¢, and in this case

u-V=V—(V"u)u "t 4+ u(Voiu)*

V — (V™ u)u™ + uVHoy*

=V — (VP ) u™t — uu*(VHou)u*
vV — (Vu)u™,

which is the expression for the action of ¢ on 7 (F, h). O

3.4 Dolbeault Cohomology

We have seen that if M is a complex manifold, then
(QP*(M),0)

is a cochain complex for each p € Z>y. The cohomology of this complex is an
important holomorphic invariant of the complex manifold M.

Definition 3.4.1 (Dolbeault Cohomology). The (p,q)th Dolbeault cohomology
group of M is defined to be

Hp* (M) = H((2"*(M),9)).

Notice that we could have used the cochain complex with differential 9, but
since conjugation gives a real isomorphism QP4(M) — Q4P(M) interchanging 0
and 0, we have an isomorphism H2*(M) = HZ"(M) for all p, g. Thus no informa-
tion is lost by concerning ourselves only with Dolbeault cohomology. Furthermore
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the Dolbeault cohomology groups are where many obstructions to holomorphic
constructions on the complex manifold M naturally live.

In addition to the regular Dolbeault cohomology of M, the fact that Dolbeault
operators on holomorphic vector bundles square to zero means we can augment
the the (p, ¢)-forms by sections of a holomorphic vector bundle £ to obtain a new
complex.

0 —— PO(M, E) —225 Qr M (M, E) —225 QP2(M,E) —— ---

Definition 3.4.2. The (p, q¢)th Dolbeault cohomology group of M with coefficients
in the holomorphic vector bundle &€ is defined to be

HEU(M) == HY(("*(M, E), dp)).

The above construction of Dolbeault cohomology and Dolbeault cohomology
with coefficients in a holomorphic vector bundle closely mirrors the de Rham co-
homology (and de Rham cohomology with coefficients in a flat vector bundle) of
smooth manifolds. Indeed for de Rham cohomology one has the well-known de
Rham isomorphism theorem, giving an alternate description of the de Rham coho-
mology groups in terms of the cohomology of the constant R sheaf on the smooth
manifold. In the complex case there is an analogous result.

Denote by £ the sheaf of holomorphic sections of the holomorphic vector bundle
&, and Q(&) the sheaf of holomorphic (p, 0)-form valued-sections of €. Consider
the sheaf cohomology groups H?(M,QF(E)) for each q.

Theorem 3.4.3 (Dolbeault’s Theorem). There is an isomorphism

HE9(M) = H(M, O (E))

for all (p,q).

The proof of Dolbeault’s theorem is standard sheaf theory, and follows from
the existence of a fine resolution of the sheaf QF(€) given by

0 — QP(E) —— PO(E) 22 ori(B) 22, ...

where QP9(E) denotes the sheaf of smooth (p, ¢)-forms with values in the under-
lying smooth vector bundle E. The cohomology of this resolution is Dolbeault
cohomology with coefficients in £, which is isomorphic to the sheaf cohomology of
the sheaf being resolved. See Griffiths and Harris [GHTS8] for more details.
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3.5 Kahler Manifolds

By the existence of partitions of unity, every smooth manifold M admits a Rieman-
nian metric g. In particular this is the case if M is a complex manifold. However,
a priori there is no relation between the complex structure and the Riemannian
structure of M. The condition that the metric ¢ is compatible with the complex
structure of M is called the Kahler condition, and a manifold satisfying the Kahler
condition is called a Kdhler manifold.

To isolate the Kéahler condition, let us identify the complex structure on M
with the corresponding integrable almost-complex structure  : TM — TM. We
say that the metric g is compatible with I if

g(IX, 1Y) = g(X,Y)

for all smooth vector fields X, Y € I'(M,TM). Since I? = —1, when the metric is
compatible with I we may define an anti-symmetric bilinear form w by

w(X,)Y) :=g(X,IY).
The Kahler condition is that w is closed.

Definition 3.5.1 (Ké&hler manifold). A complex manifold M with Riemannian
metric g ws Kahler if g is compatible with the associated integrable almost-complex
structure I, and the associated 2-form w s closed. Then w s called the Kahler
form of M and h = g + 1w s called the Kahler metric.

To show that the closedness of w is the natural condition that signifies the
compatibility of g and I, we have the following list of conditions equivalent to the
Kahler condition.

Proposition 3.5.2. Let M be a complex manifold with Riemannian metric g,
associated integrable almost-complex structure I, and Levi-Civita connection V.
Then the following are equivalent:

1. h =g+ 1w is a Kahler metric,
2. dw =0,
3. VI =0,

4. the Chern connection of the Hermitian metric h := g + iw on T Mc¢ agrees
with the Levi-Civita connection V,

5. in terms of local holomorphic coordinates, we have

095k _ 99
0zl 0z
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0. for each point p € M there is a smooth real function F in a neighbourhood
of p such that w = i100F, and F is called the Kahler potential, and

7. for each point p € M there are holomorphic coordinates centred at p such
that g(2) =1+ O(]z]*).

As a consequence of the above equivalences, one finds that Kéhler manifolds en-
joy many nice properties not necessarily shared by general complex manifolds. For
example, the intimate relationship between the Riemannian and complex struc-
tures of a Kéhler manifold imply relations between the d and 0 Laplacians. We
will see the consequences of this in the section on Hodge theory. For more details
about Kéahler geometry see [WGP80], [GHTS], or the excellent lecture notes [Bal06]
of Ballmann.

Although the nice properties of Kahler manifolds imply restrictions on which
complex manifolds can be Kéahler, there are still many examples of Kahler mani-
folds in practice. For example, we have the following.

Proposition 3.5.3. Any complex submanifold of a Kahler manifold is Kdhler.

Proof. 1f w is a Kahler form on M and i : N < M is a complex submanifold, then
1*w is Kahler with respect to the induced integrable almost-complex structure Iy

on N. This induced almost-complex structure is given by Iy := pryy ol where
prpy is orthogonal projection onto TN C T'M with respect to the Riemannian
metric g on M. 0

Immediately we conclude that any complex submanifold of C™ is Kéahler. Fur-
thermore, the Fubini-Study form wgrg on CP" obtained via symplectic reduction is
a Kéhler form. Indeed CP" has a K&hler metric (the Fubini-Study metric) given
in a standard local coordinate chart by

L (L [aP)oy — 2
LA (e P

The imaginary part of h is wrpg. Combining these two facts we have:

Proposition 3.5.4. Any complex projective manifold (equivalently, any non-singular
projective complex analytic variety) is Kdhler.

The converse of this result is not true. That is, it is not necessarily the case
that a compact Kahler manifold is projective. Precisely when this occurs is the
content of Kodaira’s embedding theorem: If the Kahler form is integral, known as
a Hodge form, then there is an embedding.

Theorem 3.5.5 (Kodaira’s Embedding Theorem). A compact complex manifold
can be embedded as a complexr submanifold of CP" if and only if it has a Hodge
form.
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3.6 Kahler Reduction

In this section we will expand slightly on the idea of symplectic reduction discussed
in Chapter [2| in the setting of complex manifolds. Suppose then that a symplec-
tic manifold (M,w) is actually Kéahler, with integrable almost-complex structure
I. Further, suppose a Lie group G has a Hamiltonian action on (M,w, ) with
corresponding equivariant moment map pu: M — g*.

The symplectic reduction of (M,w) by G is the space

M = ~40)/G.

Let V' C T, M be the subspace defined of those v € T, M that occur as tangent
vectors in a vector field X associated to some X € g under the G action. The
equivariance of p implies that p~1(0) is symplectically orthogonal to G orbits, and
this means that

T[I]M = VJ_/ 4
where V1 is the symplectic complement. But since w = g-I, V+ = (I-V)%s where
14 denotes the Riemannian orthogonal complement with respect to g. Thus

TqM = (I-V)*/V 2 (1-V)s Vs,

This implies that TMM is I-invariant when considered as a subspace of T, M in
this way, so the endomorphism I descends to M.

Now, if the action of G' on (M,w) is isometric, then I on the quotient M will
be compatible with the induced Riemannian metric g and the induced symplectic
form w. One also therefore obtains integrability of the induced almost-complex
structure, so we obtain:

Theorem 3.6.1. Let (M,w,I) be a Kdhler manifold with an isometric, Hamilto-
nian action by a Lie group G. Suppose p : M — g* is the corresponding equivariant
moment map. Then whenever the quotient M = p~(0)/G is a manifold, it in-
herits the structure of a Kdhler manifold from M. The manifold M is called the
Kéahler reduction of M by G.

Notice that the action of U(1) on C"™\{0} given by multiplication is an isom-
etry of C"™\{0}. Thus the Fubini-Study form constructed via the symplectic
reduction of C**1\{0} by U(1) is in fact a Kahler form on the quotient CP".

3.7 Hodge Theory

3.7.1 Hodge Theory in Riemannian Geometry

We will first review the Hodge theory of compact oriented Riemannian manifolds.
Let M be such a manifold of dimension n. Then M comes equipped with a Hodge
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star operator x : Q*(M) — Q*(M) which takes k-forms to (n — k)-forms. If
dvol is the Riemannian volume form on M then the Hodge star can be uniquely

characterised by requiring
a Axf = (a, f)dvol

for k-forms «, 3 € Q¥(M), where (-, -) is the fibrewise inner product on the bundle
of k-forms induced by the Riemannian metric on M.

Using this Hodge star (or otherwise), one can define an L*inner product on
the vector spaces QF(M) for each k, by defining

(o, B2 = /Moz/\*ﬁ = /M(oz,@dvol.

With respect to these inner products, one obtains a formal adjoint d* : Q¥(M) —
QF1(M) of the exterior derivative d : QF(M) — QF1(M), and this can be char-
acterised in terms of the Hodge star by

dF = (_1)n(k—1)+1 wd*.

The sign here can be determined by observing that x« = (—1)*"% and d* =
(—1)% %=1 dx.
Using the adjoint d*, we now define the d-Laplacian A : QF(M) — QF(M) by

A :=dd" +d*d.

The operator A is an elliptic operator on the complex Q*(M), and a form « €
QF(M) is called harmonic if A(a) = 0. A form is harmonic if and only if do =
d*a = 0, so if we define H¥(M) = ker(A : QF(M) — QF(M)) then there is a
well-defined map H*(M) — H*(M,R). The Hodge theorem can be stated as
follows:

Theorem 3.7.1 (Hodge Theorem). There is an isomorphism
HM(M) = HY(M,R)

induced by the inclusion of harmonic forms into QF(M). Furthermore, there is a
decomposition

QM (M) = HNM) @ d(Q" 1 (M) @ d*(Q¥ (M) = HF (M) & A(QF(M))
which is orthogonal with respect to the L?-inner product on Q*(M).

For a proof of the Hodge theorem using the general theory of elliptic complexes
see [WGPS()], and for a proof using analysis on tori see [GHTS].

This fundamental theorem has several important consequences for the de Rham
cohomology of compact smooth manifolds. Firstly, since the operator A is elliptic,
in particular it is Fredholm. Fredholm operators are characterised by the finite-
dimensionality of their kernels and cokernels, hence:
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Corollary 3.7.2. The de Rham cohomology of a compact oriented smooth manifold
s finite-dimensional.

Now note that since *xA = Ax, if a form « is harmonic, then so is xa. If we
introduce a bilinear pairing

(Lo, 18)) H/Maw

on H*(M,R) x H"*(M,R) (which is well-defined by Stokes’ theorem), then we
have:

Corollary 3.7.3 (Poincaré Duality). The bilinear pairing above is non-degenerate,
and therefore gives a linear isomorphism

H*(M,R) = H"*(M,R)".
In particular, dim H*(M,R) = dim H"*(M,R).

Proof. Let [a] be a class in H*(M,R), and suppose « is the unique harmonic
representative of this class. Then [xa] is a class in H" *(M,R), and

([oz],[*a}):/Moz/\*a:(oz,ahz20,

with equality if and only if [a] = 0. In particular if [a] is such that ([a],[5]) =0
for all [5] then [a] = 0. O

The above Hodge theory works identically when working with complex differ-
ential forms and complex de Rham cohomology H*(M, C).

3.7.2 Hodge Theory for Complex Manifolds

Let M be a compact complex manifold of complex dimension n. Then in par-
ticular M is oriented and smooth of dimension 2n, and may be equipped with a
Riemannian metric. We will now investigate Hodge theory in this setting.

Note that the Hodge star operator acts on the Dolbeault complex as x :
QPI(M) — Q"9 P(M). Since complex conjugation interchanges the bidegrees,
if one defines *a := *a then * : QP4(M) — Q" P""9(M) so one can obtain a
Hermitian L?-inner product on the vector spaces Q27¢(M) by defining

(o, B) 2 ::/Ma/\iﬁ.
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Furthermore, suppose one augments the forms of type (p,q) by tensoring with
sections of a holomorphic vector bundle £. If £ has a Hermitian metric h, then
this provides a conjugate-linear isomorphism £ = £*, denoted 7 say. Define * on
QPI(M,E) by *e¢(w® s) 1= +w @ 7(s). Contracting sections of £ and £* inside the
integral we can therefore obtain an L*-inner product on QP9(M, &) by the same
formula

(o, B) 12 ::/Ma/\¥gﬂ.

Using such L2-inner products, one may define adjoints 8, 9%, and 5}; for the
operators 0,0 on QP4(M) and for O on QP¢(M, E). In particular one may define
Laplacians

0:=00"+ 99, 0:=00 +00
on QP(M) and
Op == 0g0y + 0,05
on QP4(M,E).

Let Hy? and HZ? denote the [J and C-harmonic forms of type (p,q) respec-

tively. With this set up Hodge theory now says the following.

Theorem 3.7.4 (Hodge Theorem for Dolbeault Cohomology). There are isomor-
phisms
My HYOM), M HEOOM)

for each bidegree (p,q). Furthermore there are corresponding decompositions of the
forms of type (p,q) analogous to the Riemannian Hodge decomposition.

As a corollary we see that the Dolbeault cohomology of a compact complex
manifold is finite-dimensional. Furthermore, if we denote by H%’Z the space of

Op-harmonic sections in QP4(M, ) then we have:

Theorem 3.7.5 (Hodge Theorem for Dolbeault Cohomology with Coefficients).
There are isomorphisms
p,q ~ P,q
HEE = H5E<M )
for every bidegree (p,q). Furthermore there is a corresponding decomposition of
sections analogous to the Riemannian Hodge decomposition.

The analogue of Poincaré duality for Hodge theory on compact complex man-
ifolds is Serre duality. Notice that in the construction of the L2-inner product
we used the Hermitian inner product on £ in the pairing. This pairing gives a
conjugate-linear isomorphism & = £*, or in other words a complex-linear isomor-
phism &£ = £*.
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Theorem 3.7.6 (Serre Duality). Let M be a compact complex manifold, and € —
M be a holomorphic vector bundle. Then there is a complex linear isomorphism

HEZA(M,E) = Hg;f’"*q(M, ENY*.
Proof. Let a € HZ?. Then *pa € Hy P and
E E*
(o, *par) = (o, )2 > 0,

with equality if and only if @« = 0. Thus the complex bilinear pairing between
these two spaces is non-degenerate. O]

To obtain the statement of Serre duality in its more familiar form, we use
Dolbeault’s theorem:

HU(M,E) = H™(M,E* @ K)'

Here we have restricted to the case p = 0, identifying the Dolbeault cohomology
groups with their sheaf-theoretic counterparts, and observing that ©"(E*) consists
of the holomorphic sections of £* ® K where K is the canonical bundle of M.

3.7.3 Hodge Theory for Kahler Manifolds

In general, there is no explicit relationship between the Dolbeault cohomology
groups HZ“(M) and the de Rham cohomology groups H ®(M,C) on a complex
manifold M. Indeed the Dolbeault cohomology groups depend on the choice of
complex structure on M, and two diffeomorphic complex manifolds that are not bi-
holomorphic need not have the same Dolbeault cohomology groups, despite having
the same de Rham cohomology.

However, on a Kéahler manifold, the strong relationship between the Rieman-
nian structure of M and the complex structure has consequences for the Dolbeault
and de Rham groups.

Theorem 3.7.7. On a Kdhler manifold, the Laplacians O and O are real, and
furthermore
A =20 =20

For a proof of this fact, see [WGP80]. As a consequence, if a form « is A-
harmonic, so that o € H*, then « is also O-harmonic. Thus under the direct sum
gacomposition a= Zp gt O of v into bidegrees, we have each a9 is the unique
U-harmonic representative of a class in Hg’q(M ). We immediately obtain:
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Theorem 3.7.8 (Hodge Decomposition Theorem). Let M be a compact Kdihler
manifold. Then
H*(M,C) = @ HZ(M).

p+Hq=k

Since any Kahler manifold is symplectic, we already have some topological ob-
structions to the existence of Kahler metrics on compact complex manifolds. In
particular de Rham cohomology must not vanish in even degrees. The Hodge de-
composition gives further obstructions to the existence of Kahler metrics. Notably,
h?? = h?P on any complex manifold due to complex conjugation. Since the de
Rham cohomology decomposes as a direct sum, this implies that dim H'(M,C) =
0 + h%1is even. Indeed a Kahler manifold must have even Betti numbers in all
odd degrees.

In fact the Kéhler condition also implies further cohomological restrictions on
M, stemming from the fact that [wA—] is an isomorphism HZ“(M) — H§+1’q+1(]\/_/)
for all (p,q). This fact combined with the representation theory of sl(2,C) allows
one to prove the Lefschetz decomposition of the cohomology of a compact Kahler
manifold. For more details on the cohomological implications of the Kahler con-
dition see [WGP80] and [Bal06].

3.8 Major Theorems

In this section we will collect some important theorems about holomorphic vector
bundles over complex manifolds. In order to state several of these theorems, it will
be convenient to introduce the holomorphic Euler characteristic of a holomorphic
vector bundle.

Definition 3.8.1. The holomorphic Euler characteristic X(E) of a holomorphic
vector bundle & — M over a complex manifold M of dimension n is

X(&) = zn:(—l)idim H'(M, &),

i=0
provided the cohomology groups H (M, E) are all finite-dimensional.

We also use the definition that deg(€) = fzq c1(€) for holomorphic vector
bundles over a surface. A

Theorem 3.8.2 (Riemann-Roch). Let £L — 3, be a holomorphic line bundle over
a compact Riemann surface X4. Then

X(L) =deg(L) — g+ 1.
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Theorem 3.8.3 (Riemann-Roch for Vector Bundles). Let &€ — X, be a holomor-
phic vector bundle of rank n over a compact Riemann surface X,. Then

X(€) = deg(€) +n(l —g).

Theorem 3.8.4 (Kodaira Vanishing Theorem). Let £ — M be a holomorphic line
bundle over a compact complex manifold M. Then if L ® K* is positive, in the
sense that c1(L @ K*) is represented by a Kdhler form on M, then H'(M, L) = 0
fori>0.

Theorem 3.8.5 (Hirzebruch-Riemann-Roch). Let € — M be a holomorphic vec-
tor bundle over a compact complex manifold M. Then

X(E) = /M Ch(E)Td(M).

Note of course that the Hirzebruch-Riemann-Roch theorem implies the regular
Riemann-Roch theorem. In the case of a vector bundle over a compact Riemann
surface we have Ch(&) = tr (exp(c1(€))) = n + ¢1(€) and Td(E,) = 1 + 1 ¢1(Zy).
Then using the fact that fzq c1(€) = deg(€) and fzg c1(X,) = 2 — 2g we obtain

K@) = [ (5a(E) +alé)) = deg(e) +n(1— ),



o4

Chapter 3. Complex Differential Geometry



Part 11
Moduli Spaces of Bundles

25






Chapter 4

Stable Bundles over Riemann
Surfaces

In this chapter we will investigate the classification of vector bundles over a Rie-
mann surface. In the case of smooth complex vector bundles, the classification
is discrete, with such bundles being determined by their rank and degree, two
numbers taking values in the positive integers and integers respectively. When
holomorphic structures are added however, smoothly isomorphic vector bundles
become distinct. In place of a discrete classfication of holomorphic bundles, which
no longer exists, one must pass to a moduli space. That is, an algebraic variety or
manifold that classifies holomorphic bundles up to a suitable notion of equivalence.

The classification of holomorphic bundles on particular compact Riemann sur-
faces was first carried out by Grothendieck in [Gro57] for the case of CP', where
it was shown that holomorphic vector bundles are simply direct sums of line bun-
dles. The case of elliptic curves was then investigated by Atiyah in [Ati57b], and
in [Mum63] Mumford began the study of genus greater than one by showing that,
after restricting to a sub-class of stable bundles, the moduli space N™? of stable
holomorphic vector bundles (of fixed rank n and degree d) has the structure of a
quasi-projective algebraic variety. The properties of this space were famously illu-
minated by Narasimhan and Seshadri in [NS65], who showed that a holomorphic
bundle is stable precisely if it arises from a projective irreducible unitary repre-
sentation of the fundamental group of the surface. In [New67] Newstead used this
description to begin the investigation of the topology of the spaces N™¢, comput-
ing the Betti numbers of N*!. Later using number-theoretic techniques, Harder
and Narasimhan applied the then recently proved Weil conjectures to compute the
Betti numbers for arbitrary n and d in [HN75] by counting points over finite fields.

In the early 1980’s, the work of Donaldson, and of Atiyah and Bott gave the
study of these moduli spaces a new gauge-theoretic flavour. In [Don83] Don-
aldson framed the result of Narasimhan and Seshadri in a new light, identifying

57
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representations of the fundamental group with projectively flat connections on
the underlying smooth complex vector bundle. Using recently proven results of
Uhlenbeck, Donaldson showed that stable holomorphic vector bundles on a Rie-
mann surface corresponded to solutions of the Yang-Mills equations. Atiyah and
Bott expanded on this theme significantly in [AB83|, combining techniques of
Morse theory, differential and algebraic geometry, and gauge theory to study the
topology and geometry of AN™?. In particular the description of stable bundles
in terms of solutions to the Yang-Mills equations gives rise to a description of
N™4 as an infinite-dimensional Kahler reduction, and the theorem of Narasimhan
and Seshadri, as proved by Donaldson, may be interpreted as a kind of infinite-
dimensional Kempf-Ness theorem for this quotient.

We will start out by classifying holomorphic line bundles on a Riemann surface.
After showing that the smooth vector bundles on a Riemann surface are classified
by their rank and degree, both discrete, we will give an account of the construction
of the moduli space A™? for n > 1 in terms of Kihler reduction. An understanding
of N will serve as the base case for understanding the geometric quantization
of the moduli space of M™? of stable Higgs bundles over a surface.

4.1 Classification of Line Bundles on a Riemann
Surface

4.1.1 Smooth Case

Let L — ¥ be a smooth complex line bundle on a Riemann surface ¥, of genus g.
Let C*°(C) (resp. C*°(C*)) denote the sheaf of smooth C-valued (resp. C*-valued)
functions on 3,. Since GL(1,C) = C*, smooth complex line bundles are classified
up to isomorphism by their representative in H!(%, C°°(C*)).

Let Z denote the constant Z-valued sheaf on ;. Consider the short exact
sequence sheaf sequence

where exp : C*(C) — C>°(C*) sends f to exp(2mif).

This induces a long exact sequence in sheaf cohomology, which takes the form
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0 —— H0<2gvz) - HO(EQJOOO(C)) E— HO(EWCOO(C*))

L H'(%y,Z) — H'(%,,C®(C)) —— H'(%,,C>(C"))

L H2(S,,Z) — H2(S,,0%(C)) —— H2(,,C®(C*)) — 0.

Now C*(C) is a fine sheaf, so H (X, C*(C)) = 0 for all i > 0. Thus we obtain
the short exact sequence

0 —— HYX,,C®(C*) —— H*(%,,Z) — 0.
But H*(3,,Z) = Z, from which we conclude:

Theorem 4.1.1. Isomorphism classes of smooth complex line bundles over a Rie-
mann surface are in bijection with the integers.

Label the map H'(X,,C*(C)) — Z by deg. The image of a line bundle
L e H'(X,,C>(C*)) under deg is called the degree of the line bundle. Thus the
theorem above states that smooth complex line bundles on a surface are classified
by their degree.

Furthermore, the above isomorphism is one of groups. The group structure
on H'(X,,C>=(C*)) is by multiplication of transition functions on overlaps Usgs.
In the case of line bundles, this is the same as the tensor product of transition
functions, as per the construction of the tensor product bundle, from which we
conclude:

Corollary 4.1.2.

({Isomorphism classes of smooth complex line bundles on X}, ®) = (Z,+)
as groups.
Remark 4.1.3. The degree of a smooth complex line bundle here may be inter-
preted as the integral of ¢; (L) over the surface X,. Further it can be identified with
the number of zeros (counted with multiplicity) of a section of L which intersects

the zero-section transversally. For proofs of these facts see Chapters 1 and 2 of
[BT95].
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4.1.2 Holomorphic Case

Consider the exponential sequence

0 s L —s O 225 OF

e

This induces a long exact sequence

0 —— HY%,,Z2) —— H(%,,0) —— H°(%,,0%)

L) HY(%,,Z) —— HY(%,,0) —— H'Y(3,,0%)

[—> H*(%,,Z) —— H*(%,,0) —— H*(3,,0*) —— 0.

Since Y, has complex dimension one, the group H?*(X%,,O) = H%Q(Eg) = 0.
Since ¥, is compact, global holomorphic sections in O or O* are constant. Thus
H°(2,,0) = C and H°(X,,0*) = C*. But then taking a logarithm, the map
HO(2,,0) = H(X,, 0%) is surjective. Since the sequence is exact, we must have
H°(%,,0%) = H'(X,,Z) has full kernel. In particular, the image of this map is
zero, so we get a reduction of our sequence to

0 —— HY(3,,Z) — H'(%,,0) —— HY(X,,0*) —— H*(%,,Z) — 0.
By the first isomorphism theorem, the image of H'(X,,0) — H'(XZ,, 0%) is

isomorphic to the quotient H'(3, ©) /H' (3, Z), so we have a reduction to the short
exact sequence

0 —— HY(S,0)/H(S,Z) — HY(S,0%) —— H(X,Z) — 0.

Now HY(X,Z) 2 Z*, and H'(3,0) = CY, and we also know that H?*(%,Z) =
Z.. Thus we obtain the exact sequence

0 — C9/7% —— HY(Z,07) >y Z > 0,

Remark 4.1.4. Note that the map H'(X,,Z) — H'(X,,O) embeds Z?9 insides
CY as a lattice. Indeed if one considers the homomorphism of short exact sequences
from Z —- C — C* to Z — O — O then the corresponding triangle in the long
exact sequence is
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HY(S,,Z) — H(%,,C)
\ l
0)

which commutes, where the vertical projection is given by the projection
H'(Z,,C) = Hy'(Z,)

from the Hodge decomposition H'(%,,C) = ;O(Eg) @ Hg’l(Eg). Since the diag-

onal map is injective, and the horizontal map is Z* — Z9 @, C, it must be the
case that the diagonal map embeds Z¢ as a lattice in C? = H'(%,, O).

Let L € H'(X,, O0*) be aline bundle. Then the image under the map H'(%,, O*) —

Z is again called the degree deg(L) of L. To show that this is the same notion of
degree as before, consider the homomorphism of short exact sequences of sheaves
given by

-

0 Y/ » C°(C) =25 0=(C*) —— 0.

This induces a homomorphism of the corresponding long exact cohomology
sequences. The relevant part of this homomorphism of sequences is the following
commutative diagram:

s HY(S,0) ——— HY(8,,0%) ——— HY(S,,Z) — 0

! | |

> 0 » H'(Z,,0®(C*)) —— H*(%,,Z) — 0.

This last square shows that two holomorphic line bundles have the same smooth
degree if and only if they have the same holomorphic degree. Thus one simply
denotes the degree of a line bundle by deg(L), regardless of whether L is being
considered as smooth or holomorphic.

It follows from the above diagram that the group Jac(X) of all line bundles of
degree zero is isomorphic to the torus

Jac(¥,) = CY/7%.

It follows that the set Pic(X) of all holomorphic line bundles over ¥ up to
isomorphism is isomorphic as a group to Jac(X,) x Z, a countable disjoint union
of 2¢-tori. In particular if Picy(X) denotes the set of all holomorphic line bundles
of a fixed degree d, then Picy(X) = Jac(X,) = C9/Z2 for all d € Z.



62 Chapter 4. Stable Bundles over Riemann Surfaces

4.1.3 Flat Case

The group H'(X,,C*) classifies flat complex line bundles on a Riemann surface
>,. These are the smooth complex line bundles that admit a trivialisation with
constant transition functions. Equivalently, flat line bundles are those admitting
a flat connection.

There exists an isomorphism from the sheaf cohomology groups H'(%,, Q)
for some Abelian group G with the singular cohomology groups H'(XZ,, G). By
the universal coefficients theorem, H'(X,,G) = H'(X,,Z) ®z G. Thus we have
Hl(zgﬂg) = H1(297Z> ®z C" = (C*)Qg'

A flat complex line bundle gives rise to a representation of the fundamental
group. Namely, if one takes a flat connection on such a line bundle, then its holon-
omy depends only on the homotopy classes of loops, and defines a homomorphism
m(X,) — C*. Since C* is Abelian and (%) is generated by 2g loops,

Hom(m (2,), C*)/C* = (C*)* = H'(%,,C").

One may carry out the same discussion in the case of flat unitary line bundles.
Here one obtains a torus U(1)% classifying such line bundles, which may be iden-
tified with the corresponding space of representations of m(X,). Since the torus
U(1)% is of the same dimension as the Jacobian, it is natural to ask if there is an
identification between them.

Suppose L is some holomorphic line bundle of degree zero, with a fixed Her-
mitian metric h. Fix a smooth trivialisation of £. Then h is some positive real
function on 3, and therefore h = e/ for some f. The associated Chern connection
has curvature

Fy = 0(h'0h) = 90f.

If a € Q'(%,), then V + a will be unitary whenever a is purely imaginary. It will
be flat when B
00f = da.

By Hodge theory for a compact Riemann surface, a two-form 00h is d-exact,
and when h is real the form a such that da = 00h is purely imaginary. Thus
one may modify V to obtain a flat unitary connection V + a on L. Under the
identification of flat connections with representations of the fundamental group,
this gives isomorphisms

Jac(¥,) & Hom(m (%,), U(1)) = U(1)%.

This result is essentially the theorem of Narasimhan and Seshadri in the case
of holomorphic line bundles, and also serves as the base case in the inductive proof
of the theorem given by Donaldson. We will discuss the general statement of this
theorem in Section (4.4
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The corresponding result for the case of flat complex line bundles requires the
introduction of holomorphic Higgs bundles, objects we will see in Chapter

4.2 Classification of Smooth Vector Bundles

Before describing the stable bundle moduli space N™¢, we should justify the pro-
cess of discretizing the classification problem by the two integers n and d. In the
following section we will show that these two integers classify a vector bundle over
a Riemann surface smoothly. Since any two biholomorphic vector bundles are also
smoothly (and topologically) isomorphic, there is no loss in restricting to studying
biholomorphic bundles of a fixed topological type. This also serves the purpose of
reducing the full classification process into more manageable bites.

Definition 4.2.1. Let E — X, be a smooth (or holomorphic) complex vector
bundle of rank n on a Riemann surface ¥,. The degree of E, denoted deg(E), is
defined to be the degree of the smooth (or holomorphic) line bundle \" E.

Lemma 4.2.2. Let E — ¥, be a smooth complex vector bundle of rank n on a
Riemann surface ¥, of genus g. Then if s € I'(£,, E) is a non-vanishing section,
E=FE & (CxX,) where E' has rank n — 1.

Proof. Since s is non-zero, one can define a sub-bundle I := Span {s}. This sub-
bundle admits a global non-vanishing section (namely s) so I = C x ¥,. Take any
metric on F, and let F' := [*+. Then E' hasrankn—1 and E = E'®(Cx%,). O

Lemma 4.2.3. Let E — ¥, be a smooth complex vector bundle of rank n on a
Riemann surface Xg4. If n > 1 there exists a non-vanishing section.

Proof. Let s € I'(X,, E') be any section. Then s defines a smooth 2-dimensional
submanifold of the smooth (2n + 2)-dimensional manifold £. The zero section
defines another smooth 2-dimensional submanifold. Since n > 1, these two 2-
dimensional submanifolds meet inside a space of dimension at least 5. In particular
the section s may be smoothly homotopied to a peturbed section s’ that no longer
intersects the zero section. 0

Theorem 4.2.4. Smooth complex vector bundles on a Riemann surface ¥, are
classified up to isomorphism by their rank and degree.

Proof. Let E' — ¥, be a smooth complex vector bundle of rank n. If n = 1 then
E is classified by its degree.

Suppose n > 1. Then by Lemma E has a non-vanishing section s. By
Lemma then £ = E' & (C x X,) where E’ has rank n — 1. Repeating this
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process a total of n — 1 times we obtain F = L & (C"! x X,) for some smooth
complex line bundle L of some degree d := deg(L).

We claim the pair (n,d) classifies F' up to isomorphism. First we will show d
does not depend on the particular choice of deconstruction of E. In particular we
have d = deg(FE).

To see this, note that A" E =2 A"(L @ (C"! x 3,)). Furthermore, note that
the isomorphism A(V@W) = A(V)® A(W) of exterior algebras of vectors spaces
(or of exterior algebra bundles of vector bundles) is graded in the sense that

N(TeExs,)= @ (/\pL> ® (/\q(@"—1 X zg)) |

p+q=n

Since L is rank one, any higher exterior powers of L are the zero vector bundle, so
we must have

NE=Le/\ (C'x%,)~2Le(Cx3%,) ~L

But then deg(FE) = deg(L) = d.

Now suppose F' — ¥, is another vector bundle of rank n with deg(F') = deg(E).
Then we may similarly deconstruct F' as F = L' @ (C* ! x %) for some line
bundle L’ of degree deg(E). Then since they have the same degrees, we have an
isomorphism L = L’ of line bundles. Using the identity on the trivial part, we
then obtain an isomorphism E = F. Clearly we also have that if £ = F' then
deg(E) = deg(F') and the two bundles have the same rank, so we conclude F = F
if and only if they have the same rank and degree. O]

4.3 Stability of Vector Bundles

In this section we will define stability for holomorphic vector bundles over a com-
pact Riemann surface. This is initially distinct from the definitions given in Section
2.6.2] however we will comment on the relation between the two notions. More
details about the results of this section can be found in the original paper [NS65| of
Narasimhan and Seshadri, or a more modern treatment such as the lecture notes

[Sch13] of Schafthauser.

Definition 4.3.1 (Slope). Let E — X, be a vector bundle over a compact Riemann
surface X,. The slope of E is defined to be the rational number

_ deg(F)

HE) =B




4.3. Stability of Vector Bundles 65

Definition 4.3.2 (Stability). A holomorphic vector bundle £ — ¥, over a compact
Riemann surface ¥, is said to be stable (resp. semi-stable) if, for every proper
non-zero holomorphic subbundle F C &£, we have

p(F) < (&) (resp. <).

This is often referred to as slope-stability, but we will simply refer to slope-
(semi-)stable bundles as (semi-)stable. Note that every holomorphic line bundle
over Y, is automatically stable.

Lemma 4.3.3. Ifrk(€) and deg(E) are coprime, then semi-stability of £ implies
stability of £.

Proof. Suppose £ is semi-stable with rank and degree coprime. Let F be any
proper holomorphic sub-bundle of £, and suppose

deg(F) _ deg(&)

rk(F)  1k(&) "

Since the rank and degree of £ are coprime, the fraction on the right is in simplest
form. But 0 < rk(F) < rk(€) so the fraction on the left would represent the
rational number p(€) in strictly simpler form. This is a contradiction, so u(F) <

(&) O

Now we have a series of lemmas about the existence and slopes of certain
sub-bundles of stable bundles. Proofs of these lemmas are in the notes [Sch13].

Lemma 4.3.4. Ifu: & — F is a non-zero homomorphism of vector bundles over
Xy, then p(€/ ker(u)) < p(im(u)), and equality occurs if and only if £/ ker(u) =
im(u).

Lemma 4.3.5. Let £ and F be semi-stable with p(E) > u(F). Then any homo-

morphism u : € — F is zero.

Lemma 4.3.6. Letu : & — F be a non-zero homomorphism of semi-stable bundles
of the same slope. Then ker(u) and im(u) are semi-stable of slope u(€) = w(F),
and £/ ker(u) = im(u).

Using these lemmas, we can determine the automorphism groups of stable
holomorphic vector bundles.

Definition 4.3.7 (Simple Bundle). A holomorphic bundle & — ¥, is simple if
dim H°(2,, End(€)) = 1.

Lemma 4.3.8. A non-zero endomorphism v : € — & of a stable bundle is an
1somorphism.
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Proof. Suppose u is such an endomorphism. Then ker(u) # £ by assumption.
Since & is stable and therefore semi-stable, by Lemma either ker u is trivial
or has slope p(FE). But ker(u) C &, so it must be the case that ker(u) = 0. The
natural map & = &/ker(u) — im(u) is therefore an isomorphism. But im(u) is
a non-zero holomorphic sub-bundle of € of slope u(F), and is therefore equal to
£. O

Proposition 4.3.9. A stable bundle £ — X, is simple.

Proof. Let u: & — & be a non-zero endomorphism of £. Let € X, be any point
and let A € C* be any eigenvalue of u, : &, — &,. Defineu : &€ — £ by u := u—A1.
Then @ is not an isomorphism because it has non-trivial kernel at x € X/, and by
Lemma [4.3.8] it is therefore zero. But then u = A1 for some A\ € C*.

Thus H°(X,,End(€)) = C and Aut(€) = C*. O

Corollary 4.3.10. A stable bundle £ is indecomposable.

Proof. Suppose € was a direct sum & = & @© &. Then C* x C* C Aut(& @ &),
but £ has automorphisms C*. This is a contradiction, so £ is not a direct sum of
sub-bundles. O

Theorem 4.3.11 (Jordan-Hoélder Filtration). Any semi-stable holomorphic bundle
E = X, admits a filtration by holomorphic sub-bundles

0=&CéE C---CéE=E

called the Jordan-Hoélder filtration, such that each quotient &;/&;_1 is stable, and
w(&i/Ei—1) = (&) for alli. Moreover, any two Jordan-Hdélder filtrations {&;} and
{&!} are equivalent in the sense that

&€ = EJE_

for all 1, and therefore the associated graded objects
gr(c‘:) = @ 87;/82;1

and
er(&) = PE/E,
are isomorphic.

Definition 4.3.12 (Polystable). A holomorphic bundle € — X, is polystable if
it is a direct sum of stable bundles of the same slope.
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The Jordan-Holder filtration therefore canonically (up to isomorphism) asso-
ciates a polystable bundle to any semi-stable bundle - its associated graded bundle.

Definition 4.3.13 (S-Equivalence). Two semi-stable holomorphic bundles £, F —
Y, are S-equivalent if gr(£) = gr F.

Notice that the terminology of this section exactly mirrors that of Section[2.6.2]
Indeed in the space of all holomorphic vector bundles (which may be identified with
Dol(FE)), the stable, semi-stable, and polystable objects in the sense of Geometric
Invariant Theory may be identified with the conditions of stability, semi-stability,
and polystability for holomorphic vector bundles defined here. This was identified
first by Mumford in [Mum63]. See [Sai09] for more details on the relation of
slope-stability and stability in the sense of GIT.

Remark 4.3.14. There is a more general filtration available for any holomorphic
bundle & — X, the so-called Harder-Narasimhan filtration, first discovered by
Harder and Narasimhan in [HN75]. In this filtration the successive quotients are
semi-stable of strictly increasing slope, and two holomorphic bundles with the
same Harder-Narasimhan filtration (up to a suitable equivalence) are said to be
of the same Harder-Narasimhan type. These types give a filtration of the full
space Dol(F) of holomorphic bundles (of fixed rank and degree) for which the
largest open stratum is precisely the semi-stable bundles. The properties of this
filtration were investigated by Atiyah and Bott in [AB83]. In the next section we
will introduce the Yang-Mills functional, and the observation of Atiyah and Bott
was that the Harder-Narasimhan strata equivariantly deformation retract onto the
Morse strata of the Yang-Mills functional (which is an equivariantly perfect Morse
function on Dol(E) = &/ (E, h)), allowing one to determine the topology of the
moduli space of stable bundles using equivariant cohomology. The equivalence of
these stratifications was proved by Daskalopoulos in [Das92].

4.4 The Stable Bundle Moduli Space

Since a smooth vector bundle over a Riemann surface Y, is classified by its rank
and degree, one can break up the classification of holomorphic vector bundles
over X, by these discrete parameters. A convenient way to do this is to consider
a fixed smooth complex vector bundle £ — X, of rank rk(E) = n and degree
deg(E) = d, and consider the possible holomorphic structures on this bundle, for
example by considering all possible Dolbeault operators on E. This is without
loss of generality, since if £ and E’ are two smooth complex vector bundles of
equal rank and degree, and £ is a holomorphic structure on E, then pulling the
holomorphic trivialisation of £ through the smooth isomorphism £ = E’ induces
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a holomorphic trivialisation on E’ with & biholomorphic to &£, and every such
trivialisation may be obtained in this way.

We have seen that holomorphic structures on a smooth complex vector bundle
E — Y, over a compact Riemann surface are given by Dolbeault operators up to
complex gauge equivalence. In particular, the set of all holomorphic vector bun-
dles on ¥, up to isomorphism may be identified with the quotient Dol(E)/%c. In
fact, this quotient is also a topological space, but being a quotient of an infinite-
dimensional space by an infinite-dimensional topological group, it fails to have any
nice properties. For example, it is not even Hausdorff. The condition of stabil-
ity discussed above gives a way of removing the Dolbeault operators in Dol(E)
that prevent this quotient from having a nice topology. In particular, if Dol(F)*
and Dol(FE)** denote the subsets of Dol(F) corresponding to those Dolbeault op-
erators inducing stable and semi-stable holomorphic structures respectively, then
Dol(E)® /9 has the structure of a non-singular quasi-projective complex alge-
braic variety, and Dol(E)*//% is the (possibly singular) projective complex al-
gebraic variety in which Dol(E)®/%c sits as an open subset. When (n,d) = 1,
Dol(E)® = Dol(E)* and we have that the set of all stable holomorphic vector
bundles up to isomorphism is a compact projective Kahler manifold.

In the following we will assume that the rank and degree are coprime, so that
the moduli space is smooth, and every semi-stable bundle is stable. Furthermore,
we will discuss only the formal process of constructing the moduli space. In practice
one must complete the affine spaces into infinite-dimensional Banach manifolds,
for example by considering L?-connections, and consider L2-gauge transformations
acting upon them. Due to the work of Atiyah and Bott in [AB83], it is known
that every such gauge-equivalence class contains a smooth representative, and two
such smooth representatives can always been gauge transformed by smooth gauge
transformations. This allows us to safely ignore these technical analytic details for
the purpose of this formal discussion.

4.4.1 N™¢ as a Kihler Quotient

To describe this quotient in terms of a Kahler reduction, we will use the identifica-
tion Dol(E) = &/ (F, h) between Dolbeault operators on F and unitary connections
on E with respect to a fixed auxillary Hermitian metric h. The construction of the
moduli space will turn out to be independent of the choice of metric h, because
any two metrics are related by a complex gauge transformation.

Let P denote the principal U(n)-bundle associated to (E,h), and denote by
ad P the associated Lie algebra bundle with fibre u(n). Then as an affine space
A/ (E,h) is modelled on the vector space Q!(3,,ad P), and so at any particular
connection V, we have Ty </ (E, h) = Q'(3,,ad P). Using this fact, we can write
down an expression for a symplectic form on o7/ (E, h).
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The Lie algebra u(n) comes equipped with a positive-definite bilinear pairing
(X,Y) — —tr (XY), defining a map u(n) ® u(n) — C. Using this pairing and the
wedge product of forms, we can define an anti-symmetric pairing w on Q*(%,, ad P)
by

w(a, B) ::—/Egtr(a/\ﬁ),

where «a, 5 € Q'(2,,ad P), and by a A 8 we mean the ad P ® ad P-valued 2-form
given by wedging the form part. This integral requires a choice of orientation on
the Riemann surface X,, and we will require that this orientation is such that
vol(¥,) = 1, and comes from a fixed Riemannian metric on 3.

Proposition 4.4.1. The form w defined above is a symplectic form on <7 (E h).

Proof. Since it has no dependence on the choice of V € &/(E, h), this 2-form is
closed on &7 (E, h). To see that w is non-degenerate, consider the form x« defined
by taking the Hodge star of the form component of «, as defined by the Riemannian
metric and volume form on ¥,. Then

w(a, *a) = _[z tr (o A xar) .

g9

Since the trace pairing is non-degenerate, and o A xa = ||a||*dvol for « € Q' (%),
we have w(a, xa) = 0 if and only if o = 0. O

The use of x here is not by accident. The pairing defined by
glap)i=— [ trlansy
EQ

is a positive-definite inner product on &7 (E,h). Indeed g(o, ) = w(a,*f3), and
since x> = —1 on Q'(X,, ad P), the Hodge star operator on 3, actually defines an
integrable almost complex structure on <7 (E,h), I = %, and with respect to the
induced complex structure 7 (F, h) is Kéhler with Kéhler metric g.

The next step in the Kéhler reduction of </ (F, h) is to identify a Hamiltonian
group action and corresponding moment map. As the space of unitary connections
on (E,h), o/ (E,h) comes equipped naturally with the action of the unitary gauge
group 4. Now as a group ¢ = I'(X,,Ad P), where Ad P is the U(n)-bundle
associated to P by the conjugation action of U(n) on itself. In this sense we see
that the Lie algebra of ¢ is g := I'(3,,ad P) = Q°(3,,ad P). Formally we can
identify the dual g* of this Lie algebra with Q*(%,, ad P), justified by the natural
bilinear pairing between these two spaces.

Although g* is not the dual of g as a vector space, which would contain for
example distributional sections, formally it allows one to identify a moment map
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for the action of ¢. In particular, Atiyah and Bott in [AB83] recognised that
the curvature map F : &/ (E,h) — Q*(X,,ad P) is a candidate for such a formal
moment map.

Proposition 4.4.2 (Atiyah and Bott [AB83]). The curvature map F : o/ (E,h) —
O*(X,,ad P) sending V to Fy is a moment map, and the action of 4 on </ (E, h)
1s Hamiltonian.

With respect to this moment map, we may then define a quotient space given

by
N = F(=2mip(E) x 15)/9Y.

In the setting where rk(E) and deg(FE) are coprime, this quotient space N will
be a manifold, and the symplectic structure on 7 (E, h) will induce a symplectic
structure on N. Furthermore, the complex structure on o/ (FE,h) will induce a
Kahler structure on N. In this setting, the celebrated theorem of Narasimhan and
Seshadri may be interpreted as follows.

Theorem 4.4.3 (Narasimhan-Seshadri [NS65], Donaldson [Don83]). The sym-
plectic quotient N is diffeomorphic to the GIT quotient

N .= Dol(E)//%: = Dol(E)* /%,

the moduli space of stable holomorphic vector bundles over X, of rank n and degree
d.

Note that the second equality above does not necessarily hold when n and d
are not coprime.

Remark 4.4.4. As mentioned in Section [2.6.3] one may interpret a Kempf-Ness
theorem in terms of the corresponding norm-squared of the moment map. In this
setting where the moment map is curvature, the norm squared is

HFVH2 = / tr (*Fv/\Fv).

g

This expression is denoted by YM(V), and the map V — YM(V) is the famous
Yang-Mills functional of physical origins. The associated Euler-Lagrange equation
for the critical points of the Yang-Mills functional is

dyFy =0
which may be equivalently written as

dy(xFg) =0
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by the expression dy, = =+ x dy*. Solutions to these equations, the Yang-Mills
equations, are called Yang-Mills connections, and xFy must be given by a constant
central element of the Lie algebra u(n) which is therefore diagonal. If we require the
connection to be irreducible, then these diagonal entries must be equal (otherwise
one could decompose the bundle into eigenspaces invariant under the connection),
and since [, tr (Fy) = —2mic;(E), each of these eigenvalues must be —2miu(E).
But this is precisely the central element that defined the symplectic quotient N.
Therefore the Narasimhan-Seshadri theorem states that (irreducible) Yang-Mills
connections correspond to stable holomorphic vector bundles.

More details on the intimate relationship between stability and the Yang-Mills
equations can be found in Atiyah and Bott’s [AB83)].

4.4.2 Unitary Representations of the Fundamental Group

In order to complete the picture of the Narasimhan-Seshadri theorem as originally
exposited, one should identify the space N of flat connections with its associated
representation variety. Denote by 71 (2,) the universal central extension of m(3,)
given by

1 y L y T (Ey) —— m(X,) — L

Explicitly there is a presentation

T(Xy) = (a1, ... a5, b1,..., by c| [a;,c] = [b;,c] = e,H[ai,bi] =¢).

=1

Suppose (E,h) — X, is a fixed Hermitian vector bundle of rank n and degree
d. Then projectively flat unitary connections on E may be identified with repre-
sentations of 7#1(%,) into U(n) sending ¢ — exp(27iZ)1 € Z(U(n)). If two such
connections are gauge equivalent, then the associated representations are conju-
gate, and the Narasimhan-Seshadri theorem gives an isomorphism

Homy(71(%,), U(n))/ U(n) = N = N4

where the subscript indicates the condition on the image of ¢ in Z(U(n)), and U(n)
acts on representations by conjugation.

4.4.3 Stable Bundles with Fixed Determinant

It is possible to modify the construction above to obtain a slightly smaller but more
workable moduli space of bundles. Let (£, h) again be a Hermitian vector bundle
over X, of fixed rank n and degree d. Let £ — >, denote a fixed holomorphic line
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bundle over ¥, with degree d. Denote by 531(]5) ¢ the affine space of Dolbeault
operators on (F,h) with the property that the induced holomorphic structure
on det F is biholomorphic to £. Note that this is possible since deg(det E) =
deg(L) = d.
The complex gauge group ¥ acts on 5(?1(E) ¢ and one may define a moduli
space
N7 = Dol(B)./ /%

of stable holomorphic vector bundles of rank n and degree d with fixed determinant
line bundle £. If one chose a different line bundle £’ of degree d, then tensoring
E by L* ® L induces a biholomorphism of moduli spaces, and so we drop the
dependence of N4 on L.

Remark 4.4.5. In fact, tensoring with a fixed holomorphic line bundle £ induces
an isomorphism between the moduli spaces N™¢ and N™#7de8(£) for any n and
d, and similarly for the moduli spaces with fixed determinants. Thus the moduli
space depends only on the pair (n,d mod n).

The moduli space of stable bundles with fixed determinant may be explicitly
related to the full moduli space as follows. Denote by Jacy(X,) the Jacobian
treated as the moduli space of line bundles of degree d over ¥,. Then there is a
natural map

det : N — Jacy(3,)

given by taking the determinant bundle. Furthermore there is an action of Jacy(X,) =
Jac(¥,) on N™? given by tensor product. Since the determinant of £ ® L is
det £ ® L" for a rank n bundle &, if one allows Jacy(3,) to act on Jacq(X,) by nth
power tensor product, the map det is equivariant.

In particular, if o, : Jaco(X,) — Jacy(2,) denotes this nth power map, then

N = (N4 x Jacy(S,))/ ker oy,

and since ker o, is finite, N™ is a finite covering of N™% x Jacq(X,).

Just as in the case of the stable bundle moduli space, there is a Narasimhan-
Seshadri theorem for this moduli space with fixed determinant structure. Note
that the centre of SU(n) is isomorphic to Z/nZ and consists of the nth roots of
unity. Then the condition that ¢ — exp(?wi%)l makes sense for representations
of 711(X,) — SU(n). Indeed the Narasimhan-Seshadri theorem states that there is
a homeomorphism

Homg(71(3,),SU(n))/ SU(n) = N™2.
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4.5 Properties of N and N

In this section we will collect a number of useful facts about the moduli spaces
N4 and N4, In particular we will discuss the existence of a certain line bundle
L on N™4 isolated by Quillen in [Qui85], which turns out to be prequantum for the
symplectic form w on AN™? obtained through viewing it as a Kéhler quotient. In
addition, we will discuss the existence of a certain holomorphic symmetric tensor

G on N9,

4.5.1 Dimension

It is a remarkable fact that the quotient space N™ is finite-dimensional. The di-
mension of N™¢ may be deduced from the Atiyah-Singer index theorem as follows.

The space Dol(E) of Dolbeault operators on FE is an affine space modelled
on Q%1(3,, End(E)), and the stability condition is open, so the tangent space to
Dol(E)* at any O is also Q%1(%,, End(E)). Now the tangent space to N™¢ at
[0F] is given by the quotient

T~ Nn,d — TEE DOI(‘E)S
(9] ker(dr : Ty, Dol(E)* — Tz, N™4)

where 7 : Dol(E)* — N™? is the quotient map. We can determine kerdr as
follows. Let a € Q%}(%,, End(E)) be a tangent vector and let dg(t) := dp + ta be
a curve through dp for small time t. Then a € ker dr precisely when this curve
arises from a one-parameter family of complex gauge transformations g; € 4,
such that

Op +ta = gthgt_l.
When ¢ # 0 this implies

o\ — 909 — 900rgy
t

noting that go = 1, and so

. 9989 — 900pgy "
o = lim
t—0 t

= 9:(9:989; " )10

But then a = dg(9;(g; )=o) = Or(a) for some a € .9 = gc = Q°(%,, End(E)).
Thus we have concluded « € ker dr precisely when a € im(dg : Q°(%,, End(E) —
Q%1(3,,End(F)))). Using the fact that any (0,1)-form on a Riemann surface is
0-closed, we conclude that the tangent space to N™% at a point [51;] is isomorphic
to Hgg(Eg, End(F)). Keeping this in mind, we can now prove:
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Proposition 4.5.1. The complex dimension of N™® is 1 +n%(g —1).

Proof. By the above discussion, we need to compute the dimension of
Hg’;(Egv End(E)) = Hl(zgv End(5>>7

where End (&) denotes the space of holomorphic sections of End(E) with respect
to the holomorphic structure induced by 9.

In this setting the Atiyah-Singer index theorem reduces to the Hirzebruch-
Riemann-Roch theorem, and we have

dim H°(S,, End(E)) — dim H'(S,, End(E)) = [ Ch(End(E)) Td(Z,).

g

We have Ch(End(£)) = Ch(E£*)Ch(E) = (n — c1(E))(n + ¢1(E£)) and Td(X,) =

14+ c¢1(X,)/2 s0
2
/ n 012(29) _n2(g—1).
EQ
In addition we saw in Section that stable bundles are simple. Since we have
taken dp € Dol(E)*, this implies dim H°(X,, End(E)) = 1 and we obtain the
dimension formula. O

Note that in the case of holomorphic line bundles, we obtain dim A4 = g,
which is as expected because N 2 Jac(,) is a complex torus of dimension g.

By the expression N4 2 (N4 x Jacy(5,))/ ker o, for the moduli space with
fixed determinant, and noting that ker g,, is finite, we obtain:

Proposition 4.5.2. The complex dimension of N™% is 1 +n2(g—1) — g = (n? —

(g —=1).

4.5.2 Quillen Determinant Bundle

The moduli space of stable bundles on a compact Riemann surface comes equipped
with a distinguished line bundle £ called the determinant line bundle of N™¢. The
properties of this line bundle were first investigated by Quillen in [Qui85] in the
context of determinants of Dolbeault operators. It has since appeared in the
context of Chern-Simons theory, for example in [Wit89], and plays an important
role in the geometric quantization of both the moduli space of stable and Higgs
bundles on a Riemann surface, being a prequantum line bundle for the Atiyah-Bott
symplectic form.

In Quillen’s investigation of the determinant bundle, a complex structure on
¥, is fixed, and one considers the space of Dolbeault operators Dol(E) for the
fixed smooth complex vector bundle over X,.
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Definition 4.5.3. Given a Dolbeault operator O on E — g, define the associated
zeta function as follows. Let Uz _ denote the Laplacian associated to Op, and A

the set of eigenvalues of EEE' Then

RO IR

A€A

for Re(s) > 1. Analytically continue this to a meromorphic function of s with
non-zero deriwative at s = 0.

Let f(0g) == exp(—%E (0)) be a function on Dol(E). If A denotes taking the
top exterior power of a finite-dimensional vector space, then Quillen proved the
following theorem:

Theorem 4.5.4 (Quillen [Qui85]). There is a holomorphic line bundle L over
Dol(E) with fibre given by Lz = Aker 0p)* ® A(cokerdg) at g € Dol(E).
Furthermore, this holomorphic line bundle comes with a Hermitian metric induced
by those on ker 0 and coker Og, after multiplying by the function f, and with
respect to these structures, the Chern connection has curvature equal to —2miw
where w is the Atiyah-Bott symplectic form defined on Dol(E).

Note that this fibre is well-defined because every dp € Dol(E) is elliptic and
hence Fredholm. The introduction of the zeta function on Dol(E) is to counteract
the jumping of the Hermitian inner product on L3  induced by the jumping of the
dimensions of ker 9 and coker 0.

The holomorphic line bundle, Hermitian metric, and associated connection are
all ¢c-invariant. Since a stable bundle is simple, the stabiliser of the ¥ action on
any fibre L5 is C*. This acts by scalar multiplication on ker Op and coker O and
hence with weight —ind(dg) = —d — n(1 — g). This weight is the same for any
fibre, so after modifying the ¥ action on L by a character of C* the holomorphic
Hermitian line bundle descends to the quotient A9, where we also denote it by
L.

Although this construction depends on a choice of complex structure on X,
and hence N™? the moduli space may be constructed as a symplectic manifold
without choosing a complex structure, via the symplectic reduction described in
Section [£.4.1] In [RSW89] it was shown, at least in the case of SU(2) bundles,
that a line bundle L with Hermitian metric and connection may be constructed
without choosing a complex structure on X,. This line bundle was constructed
using techniques from Chern-Simons theory for a 3-manifold M with OM = X,.

It was also shown that after choosing a complex structure on ¥, and hence
N™¢ the induced holomorphic structure on L made it biholomorphic to the
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Quillen determinant bundle. This construction is key, since it justifies the ap-
proach to the geometric quantization of N™% where the spaces of holomorphic
sections HO(N™? L) for various choices of complex structure on %, are viewed as
subspaces of the infinite-dimensional vector space I'(N™¢, L) of smooth sections.

Furthermore, the constructions of Quillen and others of the determinant bundle
readily extend to the case of the stable bundle moduli space with fixed determinant
N4 with its associated Atiyah-Bott symplectic form.

4.5.3 Topology

In this section we note some useful results about the topology of the stable bundle
moduli space. These properties will show that N satisfies the topological condi-
tions required for the existence of a Hitchin connection in the sense of Andersen.

Theorem 4.5.5 (Atiyah and Bott [ABR3]). The moduli space N™ is simply-
connected.

Theorem 4.5.6 (Ramanan [Ram73], Atiyah and Bott [ABS83]). The cohomology
H*(N™4,Z) is isomorphic to Z, and is generated by $ci(N™7).

As a result of this second theorem, one may also show that PiC(N nd) =~ 7,
Indeed the Quillen determinant line bundle for the moduli space of stable bundles
with fixed determinant may be identified with the positive generator of Pic(N™9).



Chapter 5

Higgs Bundles over Riemann
Surfaces

In this chapter we will investigate a generalisation of the moduli space of stable
bundles, the moduli space of Higgs bundles over a compact Riemann surface,
denoted M™?. This object was first introduced by Hitchin in [Hit87], and has
its origins, similarly to the moduli space of stable bundles, in the Yang-Mills
equations.

Hitchin’s foundational paper explored the case of rank 2 Higgs bundles of odd
degree with a fixed holomorphic structure on the determinant completely. In par-
ticular it was shown that the moduli space of such objects is a smooth manifold of
dimension 12¢g — 12, and remarkably the space additionally has the structure of not
just a Kahler manifold, but a hyper-Kdhler manifold, and may be obtained via a
hyper-Kahler reduction, analogously to the case of the stable bundle moduli space.
Using Morse-theoretic techniques similar to Atiyah and Bott for the stable bundle
setting, Hitchin computed the Betti numbers of the moduli space, and following
a similar argument to the one Donaldson used in [Don83], proved a Higgs bundle
version of the Narasimhan and Seshadri theorem, identifying stable Higgs bundles
with projective irreducible reductive compler representations of the fundamental
group of the surface. In a series of papers starting with [Sim88§], Simpson then ex-
panded upon the treatment of Hitchin to describe the Higgs moduli space not just
for arbitrary rank and degree, but also for Higgs bundles over higher-dimensional
complex manifolds.

In addition to the rich differential-geometric analysis of the moduli space of
Higgs bundles given by Hitchin and others, it was shown by Nitsure in [Nit91]
that this space has an algebraic description as a GIT quotient, and in particular
that M™? is a non-singular (when (n,d) = 1) quasi-projective variety.

We will start by defining the notion of a Higgs bundle, and stability of these
objects, before classying the Higgs line bundles (all of which are of course stable)

7
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on a compact Riemann surface. We will then describe the construction of the
moduli space M™¢ for higher rank through the use of a Kihler quotient, and
discuss how this space may also be constructed as a hyper-Kahler quotient. We
will conclude by discussing some interesting properties of the Higgs moduli space.

5.1 Higgs Bundles

Definition 5.1.1. A Higgs Bundle on a compact Riemann surface ¥, is a pair
(€, @) where £ is a holomorphic vector bundle over ¥, and ® : € - £ ® K is an
End(€)-valued holomorphic 1-form on 3,. That is, ® € H°(Z,, End(£) ® K).

Note that we can consider an equivalent formulation of the concept by passing
to Dolbeault operators. Fix a smooth complex vector bundle E of some rank
and degree. Then we may define a Higgs pair to be a pair (0g, ®) where Jg is a
Dolbeault operator on E, and ® € I'(X,, End(F) ® K) satisfies 0p(®) = 0, where
here we have extended 0 to this tensor product using the complex structure on
g

With respect to this formulation, we can phrase the equivalence of Higgs
pairs as follows: A pair (Og, ®) is equivalent to (535,@’ ) if there exists some
complex gauge transformation g € % such that g(dg, ®)g~' = (EIE,@’), where
9(0p, ®)g " = (godpogt,goPog).

Just as in the case of holomorphic bundles, there is a notation of slope-stability
for Higgs bundles.

Definition 5.1.2. A Higgs bundle (£, ®) is stable (resp. semi-stable) if, for all
proper non-zero holomorphic sub-bundles F such that ®(F) C F ® K, one has

p(F) <u&) (resp. <).
Polystability is also defined similarly:

Definition 5.1.3. A Higgs bundle is polystable if it decomposes as a direct sum
of Higgs bundles of the same slope. The Higgs field is therefore in block-diagonal
form.

Every stable bundle gives rise to a stable Higgs bundle when paired with a Higgs
field. However, there are more stable Higgs bundles than stable vector bundles, as
the following example shows.

Example 5.1.4. Suppose ¢ > 1, and fix a square root K/? of the canonical
bundle K — %, and let £ := K2 @ K~1/2. Then pu(&) = 0.

Endomorphisms of £ split up into parts, and Hom(K /2, K=1/2) = K~ Since
the Higgs field lives in endomorphisms tensored by K, the Hom(K'/? K~'/?) @ K
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component of the Higgs fields has a canonical section 1 of K~! ® K. Define
therefore a Higgs field
0 0
o (00)

This is clearly holomorphic, and so (€, ®) is a Higgs pair.

The only ®-invariant sub-bundle is K~1/2, which has negative degree when
g > 1,80 (£,®) is a stable Higgs bundle. However, £ is clearly not stable as
a holomorphic vector bundle, since it contains the sub-bundle K2, which is of
positive slope.

Just as in the case of stable bundles, stability for Higgs bundles has conse-
quences for the existence of homomorphisms. As a sample, we have the following
proposition.

Proposition 5.1.5. Suppose f : (£, D) — (€, P) is an endomorphism of a stable
Higgs bundle such that ®f = f®. Then f =0 or f is an isomorphism.

Proof. Suppose ker(f) is non-trivial. Then it is ®-invariant, so p(ker(f)) < u(€).
Suppose that im(f) # €. Then im(f) is also ®-invariant, so p(im(f)) < p(€). But
we also have a short exact sequence

0— ker(f) =& — E/ker(f) — 0

which implies one of ker(f) or £/ ker(f) has slope greater than €. But u(€/ ker(f)) <
p(im(f)) < p(€), so this is a contradiction. Thus f = 0 or f is an isomorphism. [

5.2 Classification of Higgs Line Bundles on a Rie-
mann Surface

Let (£, ®) be a Higgs line bundle on a compact Riemann surface. Since End(L£) =
O, the Higgs field ® is simply a holomorphic 1-form on ¥,. Furthermore, since
the complex gauge group 4 = Maps(X,, C*) is Abelian, the conjugation action
on ® is trivial. In particular we have that M'? = N4 x HO(X, K), where
K is the canonical bundle of ¥, At a point (0] € N™? the tangent space
is given by H'(X,,End(L)) = HY(X,,0). Serre-Duality says that this tangent
space is canonically dual to H°(%,, K) for every [0;], and furthermore since N
is a torus, its cotangent bundle is trivial and may also be identified T*N ¢ =
N x HOY(S, K).

Thus we conclude that the moduli space of Higgs line bundles on a surface is
given by M4 = T* N4 = T*Jac(3,) for all d.
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5.3 The Stable Higgs Bundle Moduli Space

In this section we will describe the Higgs bundle moduli space in a way mirroring
the definition of the stable bundle moduli space. As in the case of the stable
bundle space, the Higgs bundle moduli space is smooth when the rank and degree
of the underlying bundle are coprime, and we will always take this assumption to
be satisfied. Further, we note that one should consider L? connections, L? Higgs
fields, and L% gauge transformations in order to make the analytical details of
the construction of the Higgs moduli space rigorous. For the same reasons as in
the previous chapter, we will ignore these technical details in place of a formal
discussion on the definition of M™¢.

5.3.1 M™% as a Kihler Quotient

The construction of the moduli space of Higgs bundles is analogous to the case
of the stable bundle moduli space. We will use the description of a Higgs bundle
(€,®) as a Higgs pair (g, ®) where 0 is a Dolbeault operator on a fixed smooth
complex line bundle E — %, and ® : £ — E ® K is such that dg(®) = 0. If we
consider the infinite-dimensional affine space

Dol(E) x Q'°(3,, End(E))
then the Higgs pairs are the points of the subset
B = {(0g, ®) | Op(®) =0} C Dol(E) x Q"(X,, End(E)).

It turns out that A is in fact an infinite-dimensional orbifold, and the action of
%c on Dol(E) x Q(X,, End(F)) defined by conjugation restricts to 4. If we fix
a Hermitian metric A on the bundle E, then the identification </ (E, h) = Dol(E)
allows us to view a Higgs pair as a pair (V, ®) such that V1® = 0, where V is a
unitary connection on (E, h). Therefore 4 sits inside o7 (E, h) x Q10(3,, End(F))
also.

Now the vector space Q'0(3,, End(E)) comes equipped with an anti-symmetric
non-degenerate bilinear form 7 defined by

n(a, B) = —i/ tr(a A 5Y).
Eg
Combined with the form w on @7 (E,h) discovered by Atiyah and Bott, one
obtains a symplectic structure on the product & (E,h) x Q4(3,, End(E)), and
it turns out that the subset & is an infinite-dimensional symplectic orbifold with
respect to the induced symplectic structure.



5.3. The Stable Higgs Bundle Moduli Space 81

In addition to the symplectic structure on o7 (E, h) we also encountered an inte-
grable almost-complex structure given by the Hodge star operator . Fortunately,
the vector space Q1°(3,, End(E)) is already a complex vector space, and therefore
has an almost-complex structure induced by multiplication by i. Combining these
almost-complex structures we obtain an integrable almost-complex structure on
the product, which descends to make 4 an infinite-dimensional Kéhler manifold,
at least where it is non-singular.

The next step is to identify a moment map for the action of ¢4 on 4. This was
done by Hitchin.

Proposition 5.3.1 (Hitchin [Hit87]). The map ¢ — [®, ®*| is a moment map for
the action of 4 on Q'0(3,, End(E)).

As we have already observed, V — Fy is a moment map for the action of ¢
on & (E,h), and combining these two maps gives a moment map p : </ (E, h) X
QM(3,, End(E)) — g* =2 Q*(3,, End(E)) defined by

,u(V, @) = Fv + [(I), (1)*]

Since B is ¥-invariant, this moment map p descends to give a moment map
on B, say ji, and using this moment map on the infinite-dimensional symplectic
orbifold B we can define the symplectic reduction

M = p N (=2mip(E)x1)/9.

Theorem 5.3.2 (Hitchin [Hit87], Simpson [Sim88|). The space M is a finite-
dimensional Kahler manifold when n and d are coprime.

Just as the Narasimhan-Seshadri theorem could be intepreted as a kind of
infinite-dimensional Kempf-Ness theorem for the moduli space of stable bundles
on a Riemann surface, the generalisation of this theorem to the case of Higgs
bundles may be viewed as Kempf-Ness theorem for the Higgs moduli space. This
theorem was first proved by Hitchin for the case of rank 2 Higgs bundles of degree
1 with fixed determinant bundle, and was subsequently expanded to the general
case by Simpson, who also generalised the result to higher dimensions, building on
the work of Donaldson, Uhlenbeck, and Yau, in the proof of the Hitchin-Kobayashi
correspondence

This correspondence between stable Higgs bundles and irreducible solutions to
the so-called self-duality equations is often called the non-Abelian Hodge theorem
(for Riemann surfaces).

Theorem 5.3.3 (Non-Abelian Hodge Theorem; Hitchin [Hit87], Simpson [Sim8§]).
The space M 1is diffeomorphic to the quotient

M= B |G
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Remark 5.3.4. Similarly to the case of the stable bundle moduli space, there
is an interpretation of the symplectic quotient defining the Higgs moduli space
in terms of a functional and its associated Euler-Lagrange equations. Here the
norm-squared of the moment map ||Fy + [®, ®*]||? is denoted YMH(V), the so-
called Yang-Mills-Higgs functional, and the associated Euler-Lagrange equations
are given by

dy * (Fg + [®,9*]) =0, [®,*(Fy + [®, ®*])] = 0.

The critical points of the Yang-Mills-Higgs functional that satisfy the holomor-
phicity condition d%lCD = 0 are precisely the stable Higgs bundles, and we have
another interpretation of the non-Abelian Hodge theorem: Irreducible solutions
(V, ®) of the Hitchin self-duality equations
{*(Fv +[@,9]) = —2min(E)
Ol _
dg ® =0
correspond to stable Higgs bundles.
For more details on the Hitchin equations and their implications for the ex-
istence of Higgs bundles, we refer to Hitchin’s original paper [Hit87]. For an

accessible proof of the non-Abelian Hodge theorem in this setting, see the notes
[Wen16] by Wentworth.

5.3.2 Complex Representations of the Fundamental Group

One may again reinterpret this theorem by identifying M with a corresponding
space of complex representations of the fundamental group. In this case

M™ = M =~ Hom? (7,(3,), GL(n, C))/ GL(n, C),

where the superscript + indicates that one restricts to reductive representations.
The second diffeomorphism is in fact a biholomorphism of complex manifolds.

In the case of the Narasimhan-Seshadri theorem, the identification of the sym-
plectic quotient N with the stable bundle moduli space N™¢ induces a complex
structure on N. In fact this is precisely the Kahler structure N obtains from the
complex structure x. However in the case of Higgs bundles, the Kéahler structure J
on M induced by its identification with the representation space is not isomorphic
to that of M™?. If we denote the complex structure on M™¢ as a Kiahler quotient
by I, then it turns out that I.J = —JI on M™? Thus if one defines a third
almost-complex structure K := IJ, then K is integrable and IJK = —1, so that
with respect to the triple (I, J, K), M™< inherits the structure of a hyper-Kdihler
manifold.
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Remark 5.3.5. One may describe the Higgs moduli space via a hyper-Kahler
reduction process analogous to the symplectic reduction and Kahler reduction
processes that have been discussed previously. In this case the moment map is
valued in g* ® R® and combines both the holomorphic and differential-geometric
descriptions of Higgs bundles. For more details on this construction in general see
Hitchin’s [Hit92], and for the specific case of the Higgs moduli space refer to the
appendix by Garcia-Prada of [WGPS(].

5.3.3 Higgs Bundles with Fixed Determinant

One may define for Higgs bundles an analogue of the moduli space N4 of stable
holomorphic vector bundles with fixed determinant, denoted M™<. In this case the
Higgs fields will take values in the trace-free endomorphisms of the corresponding
vector bundle, and all other constructions then carry through analogously.

In the statement of the non-Abelian Hodge theorem for this restricted case,
one simply replaces GL(n,C) with SL(n,C), just as in the case of stable bundles
where U(n) was replaced by SU(n). Explicity, there is a diffeomorphism

M 2 Hom (7(S,), SL(n, C))/ SL(n, C),

Just as in the case of the full moduli space, M4 inherits two different complex
structures which anti-commute via its two descriptions as a GIT quotient and as
a space of complex representations. It is again a hyper-Kéahler manifold, and the
natural projection

M™ = Jacy(%,)

allows one to easily relate the full Higgs moduli space to the space with fixed
determinant.

5.4 Properties of M™?

5.4.1 Dimension

Define an operator D := 0 + ®. Then there is a deformation complex C(0g, ®)
that describes the tangent structure to the moduli space, given by

C(@,®) : 0— S, End(E)) 2 Q(5,, End(E)) & Q%(S,, End(E))
25 QbY(S,, End(E)) — 0

This complex is obtained by differentiating the condition 0p® = 0 and the
“r-action.
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The tangent space to M™ at a point [0p, ®| corresponding to a stable Higgs
bundle is isomorphic to H'(C (9, ®)), which has dimension 2n?(g—1)+2. Observe
that the real dimension is a multiple of 4, which agrees with the result that M™¢
admits a hyper-Kahler structure, and that dim M™¢ = 2dim AN™?. This was
already seen in the case of Higgs line bundles, where we observed that M'¢ =
TN,

Notice that H°(C(Jg,®)) consists of those endomorphisms of (Og, ®) that
commute with ® and are holomorphic. These are precisely the endomorphisms
of the Higgs bundle respecting the Higgs field. We therefore define simplicity for
Higgs bundles in terms of this cohomology group:

Definition 5.4.1. A Higgs bundle (€, ®) is simple if dim H°(C(dg, ®)) = 1.

Using similar arguments as in the case of stable bundles, Proposition [5.1.5]
therefore says that all stable Higgs bundles are simple.

5.4.2 C* Action

The moduli space of stable Higgs bundles on a Riemann surface comes equipped
with an action of the group C*, which is not present in the case of stable bundles
with a compact structure group. The presence of the C* action has its origins
in the Higgs field ® of a Higgs bundle (£, ®). Given such a pair, (&€,t®P) defines
another Higgs bundle, for any ¢t € C*, and this amounts to an action of C* on 4.

Since C*1 lies in the centre of GL(n,C), this action commutes with the action
of 4 and 9% on A. In particular it descends to the quotient M™?.

5.4.3 Relation to T*N™¢

Recall that the tangent space to N™¢ at a point [0g] is given by the Dolbeault
cohomology Hg’El(Zg, End(FE)). Serre-duality gives isomorphisms

Hy' (S, End(E)) = Hy (3, End(E))" = H°(S,, End(€) @ K)*
where K is the canonical bundle of the Riemann surface ¥4, and £ is the holomor-
phic structure on E with dg. In particular, the cotangent space to N™? at [0g]
consists of Higgs fields compatible with the holomorphic structure [0g].
Given a point (€, ®) in this cotangent space, notice that the pair is a stable
Higgs bundle because £ is already stable. Therefore one obtains an inclusion

TN s M

In the case of Higgs line bundles, as we have already seen, there is no stability
condition, so the inclusion is actually an isomorphism.
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In general the inclusion is not surjective however. Example is a stable
Higgs bundle whose underlying holomorphic vector bundle is not itself stable.

Fortunately, the Higgs bundles not arising via this inclusion are rare, in the
sense that the inclusion is open and dense. In general it is known that, at least
when ¢ > 1 and excluding the case of M?2, the complement of T*N™¢ in M™?
has codimension greater than one. This was shown by Hitchin in [Hit87] for the
case of M?? for d odd, and in general in [Hit90).

All of these results apply readily to the case of moduli spaces with fixed deter-
minant structure also.

5.4.4 Determinant Bundle

In this section we will recall a generalisation of the Quillen determinant line bundle
discussed in Section to the moduli space of Higgs bundles. This will serve
as the prequantum line bundle for the quantization of the Higgs moduli space we
will investigate in Chapter [7]

In its description as a hyper-Kahler manifold, M™¢ comes equipped with three
integrable almost-complex structures. Recall that [ is the complex structure on
Mm@ obtained as a Kihler quotient, whilst J comes from its more representation-
theoretic description, and K is the combination K = I.J. The Kahler form for
M with respect to I was identified by Hitchin in [Hit87] to be w;(X,Y) :=
g(X,IY) where g is the natural Kihler metric on M™% obtained by combining
Hermitian L2-inner products on Dol(E) and Q'(X,, End(E)) previously men-
tioned. Restricted to N™? C M™9 this becomes the Kihler structure on A™¢
encountered in Chapter

A prequantum line bundle for the Kahler structure I has its origins in com-
plex Chern-Simons gauge theory. An explicit Chern-Simons cocycle for this holo-
morphic line bundle is written down, for example, in [AG14] by Andersen and
Gammelgaard. Alternatively, the prequantum line bundle may be described via a
Quillen determinant construction, for example as was done by Dey in [Dey17].

In particular, one considers the holomorphic line bundle Ly over the product
Dol(E) x Q'°(3,, End(F)) with fibres given by the determinant lines of the asso-
ciated Dolbeault operators over each point. This holomorphic line bundle can be
shown to descend to % and M™¢ using similar arguments to the case of N™9. It
then manifests that Ly | yma = 7L where £ is the original Quillen determinant
bundle. In fact since the complement of T*AN™% in M™% has codimension greater
than or equal to two in general, one may think of Ly as an extension of 7*L across
this complement. After a modification to the Hermitian metric defined by Quillen,
this line bundle can be shown to be prequantum for the symplectic form wy, for
example as performed by Dey in [Dey17].
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The natural C* action on the Higgs moduli space lifts to the line bundle Ly,
and passes then to the space H(M™4 L) of global holomorphic sections. This
C* action will be made explicit in the case of M4 2 T*Jac(X,) in Chapter .
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Quantization of Moduli Spaces
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Chapter 6

Geometric Quantization

In this chapter we will collect some results about the geometric quantization of
symplectic manifolds via Kahler polarisations, with a view towards quantizing
moduli spaces of bundles on Riemann surfaces. Geometric quantization in this
sense was first carried out independently by Kostant in [Kos70] and Souriau in
[Sou69].

The problem of quantizing moduli spaces of bundles is of both mathematical
and physical interest. The moduli space of stable holomorphic vector bundles
on a compact Riemann surface appears as the phase space of classical Chern-
Simons theory with compact gauge group in 2+1 dimensions. The quantization
of this topological quantum field theory therefore constitutes quantizing the mod-
uli space, which is naturally a symplectic manifold as we have seen in Chapter
Using geometric quantization, this problem was first investigated by Witten in
[Wit89], and again with Axelrod and Della Pietra in [ADPWO91]. As we will see,
the geometric quantization of this moduli space depends on a choice of complex
structure on the compact Riemann surface, and the independence of the quan-
tization on this choice manifests as a projectively flat connection on the bundle
of quantum spaces over the parameter space. Axelrod, Della Pietra, and Witten
isolated this connection and proved it was projectively flat.

Approaching the problem from a differential-geometric point of view, Hitchin
in [Hit90] constructed the same connection, now known as the Hitchin connec-
tion, and also proved it was projectively flat. Further, Hitchin determined an
explicit expression for the associated parallel transport operator used to canoni-
cally identify the quantum spaces for various choices of complex structures. This
differential-geometric perspective has since been expanded by Andersen and others
(for example in [And06]) as a way of geometrically quantizing general symplectic
manifolds.

We will begin by recalling the problem of canonically quantizing a classical
system, noting that this process fails due to the existence of a number of no-go
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theorems. After defining geometric quantization via Kéhler polarisations, we will
phrase the dependence of the quantization on a choice of Kahler polarisation in
terms of families. Following the formalism of Hitchin in [Hit90] and Andersen
in [And06], we will then define Hitchin connections for arbitrary prequantizable
symplectic manifolds, before finishing by recalling Andersen’s construction of a
Hitchin connection in the case of compact prequantizable symplectic manifolds
(satisfying certain topological conditions) in [And06]. When specialised to N,
this construction turns out to provide the same connection as discovered by Hitchin
and Axelrod, Della Pietra, and Witten.

6.1 Quantization

In Dirac’s original work on quantum mechanics (see [Dir30]), he described a process
of “canonically” quantizing a classical system. Formally this process involved
replacing Poisson brackets by commutators (depending on a parameter h) such
that when taking the limit 2 — 0 one recovers the original classical system. In
mathematical terminology, one must look for a map @) sending a function f on the
classical phase space to its quantum operator () acting on a Hilbert space, such
that

ihQqrgy = [Qr, Qgl- (Eq. 6.1)

Unfortunately, under reasonable (and physically motivated) conditions on the
quantization map (), such an assignment is impossible. In particular, consider
the simplest phase space R* = {(z,p) | z,p € R}. If we require Q; = 1, that Q
sends the classical position and momentum operators (z and p) to their quantum
counterparts (¢ — z1) and ¥ — —ihd,1), and that @ is “linear” over polynomials,
then Groenewold proved the following no-go theorem:

Theorem 6.1.1 (Groenewold [Gro46]). It is not possible to find a map Q satisfying
the above conditions as well as the commutator relation of Dirac for all polynomials

f andg.

By “linear” over polynomials, precisely one means that () should satisfy the
Weyl quantization laws, which are completely determined by the expression

(az +bp)" = (aQ(x) + bQ(p))".

This is the unique linearity condition on polynomials of degree less than or equal
to two that leads to a consistent quantization. A consequence of these laws is, for
example, that Q(zp) = 3(Q()Q(p) + Q(p)Q(x)).

We can see the failure of the existence of such a map @) in Groenewold’s theorem
by passing to polynomials of degree less than or equal to three. There is a classical
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equality
1 1
gt vt = o{a’p et

By applying the operator @) to either side, and using the commutator relation
(Eq. and the fact that [Q(z), Q(p)] = ihl we obtain on the left

QU PQWY — 2hQ)Q() — 1

and on the right

QY Qp) ~ 24hQ)Q) — 111,

This is clearly inconsistent unless & = 0.

Remark 6.1.2. In Groenewold’s work the convention that [Qf, Q4] = —ihQ{s
is used. This is opposite to Dirac’s, and thus the negative of the above expressions
are obtained. The expressions found are (in Dirac’s convention)
1 2 2 2 2y, Lio
5 Q@) Q)" + Qp)"Q2)7) + 3771
on the left and | 5
S (@QPQUY + QWP Q) + i1
These can be checked to be equivalent using (Eq. [6.1).

We may formulate the conditions one would like ) to satisfy as axioms in the
following way:

1. Q¢ = xv¢ and QY = —ihd, Y,

2. f+— @y is linear,
3. thQqsqgr = [Qf, Qyl,
4. ngf = g(Qf)

One can show as in [AEQ5] that any three of these axioms are inconsistent, at
least without some modifications. In the next section we will discuss geometric
quantization, one possible remedy for these inconsistencies. Geometric quantiza-
tion amounts to restricting the space of observables f to exclude counterexamples
such as the one above.
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6.2 Geometric Quantization

In this section we will introduce geometric quantization for symplectic manifolds
in terms of Kéahler quantization.

To that end, let (M,w) be a symplectic manifold. Recall that w induces a Lie
bracket, the Poisson bracket, on the vector space C°(M) of smooth functions on
M, defined by {f, ¢} = w(Xy, X,) where X denotes the Hamiltonian vector field
associated to f. The functions f € C*°(M) are to be interpreted as the classical
observables for the classical system described by M.

By a quantization of (M,w) we will mean a Hilbert space H and a map

Q:9— Op(H)

where g € C*°(M) is a Lie subalgebra of C*°(M) under the Poisson bracket,
and Op(H) denotes the self-adjoint operators defined on a dense subset of H. In
addition, ) must satisfy the following axioms:

1. The assignment f +— @y is linear.

2. If 1) denotes the constant function with value 1 on M, then ¢;,, = 1.

3. [Qy, Qy] = ihQyyg).-

4. Given two symplectic manifolds (M,w) and (M’,w’) and a symplectomor-
phism F': (M,w) — (M',w') then Qop and Q' should be conjugate by a
unitary operator from H to H' (or on dense subsets of these).

5. One recovers the Schrodinger representation for R?" with the standard sym-
plectic structure.

In practice it is not possible to achieve all of these axioms while still requiring
that @ is defined on all of C*(M). However Kostant in [Kos70] and Souriau in
[Sou69] developed a technique for achieving these axioms, provided we are allowed
to restrict the domain of the map () to some subalgebra of C>*(M). We now
describe that method. In fact, we will not be so concerned with the properties of
the map @) from now on, but instead with the construction of the space H, which
we will refer to as the geometric quantization of (M, w), and will only mention the
definition of () in passing.

Definition 6.2.1 (Prequantum Line Bundle). Let (M,w) be a symplectic manifold.
A prequantum line bundle on (M, w) is a Hermitian line bundle (L, h) with unitary
connection V such that Fy = —2miw. If (M,w) admits such a prequantum line
bundle, we say M s prequantizable.
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Notice that ¢;(L) := [;=Fy], and so this definition implies that [w] = ¢;(L)
is an integral symplectic form. This is a topological condition on the symplectic
manifold (M,w) that may not always be satisfied, as the lattice H*(M;Z)
H2.(M) may not hit any classes containing non-degenerate representatives.

The prequantum line bundle (L, h, V) provides a Hilbert space H by taking
the L?-completion of the space I'(M, L) of smooth sections. Given a function
f € C®(M) we can define an operator ) on I'(M, L) by

Q= [f—1ihVy,

which extends to H. As previously stated, with respect to this map () and space
‘H, the axioms are not satisfied. Kostant and Souriau’s idea was to restrict to a nice
subalgebra of C*°(M) where @) does satisfy these axioms, by taking a polarisation
of (M,w). We will focus on so-called Kéhler polarisations. In the following we will
define a Kahler polarisation in language suitable for generalisation to other types
of polarisations, before providing an alternative characterisation of the condition
that will be more useful for our goals.

Definition 6.2.2 (Kéhler Polarisation). Let (M,w) be a symplectic manifold. A
Kahler polarisation of (M,w) is a subbundle P C T Mc of the complexified tangent
bundle T'Mc such that

1. P s Lagrangian,

2. P is involutive, [P,P| C P,

3. PNP =0, and

4. the bilinear form on P defined by g(X,Y) := w(X,iY) is positive-definite.

Note that the first and third conditions imply that TM¢ = P @& P. Therefore,
given such a Kéhler polarisation P, one can define an almost-complex structure
I on M by defining I(v) = v for v € P and I(v) = —iv for v € P. Now
involutivity of P implies, by the Newlander-Nirenberg theorem, that the almost-
complex structure I is integrable, and hence induces a complex structure on (M, w).
The last condition implies that (M,w,I) is a Kéhler manifold, with Riemannian
metric g(X,Y) = w(X,IY) and Kéhler form w. With respect to this complex
structure, P = T"°M and P = T M.

Conversely, given a Kéahler manifold M, choosing P = T'°M delivers a Kihler
polarisation, and the constructed almost-complex structure agrees with the exist-
ing almost-complex structure from the complex structure on M. Thus we could
have defined a Kéahler polarisation as a choice of integrable almost-complex struc-
ture / on M such that the triple (M, w, I') is Kéhler, and this is the characterisation
we will use henceforth.
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Now given a prequantizable symplectic manifold (M, w) and a Ké&hler polari-
sation I of (M, w), observe that I acts on (0, 1)-forms by —i. Take a prequantum
line bundle (L, h, V) on (M,w) and define operators

vl = %(1 —i)V, V%= %(1 +4I)V.
Then V = V10 4+ V%! "and since I acts on (0, 1)-forms by —i, V%!(s) € Q% (M, L)
for all s € T(M, L). Furthermore, (V)2 = F2? = 0 since Fy = —2miw which
is a multiple of the Kahler form w and hence of type (1,1). Thus V®! is a Dol-
beault operator on the smooth complex line bundle L, and induces a holomorphic
structure L;.

Definition 6.2.3 (Geometric Quantization). The geometric quantization H; of
the prequantizable symplectic manifold (M,w) with respect to the prequantum line
bundle (L, h,V) and Kdhler polarisation I is the vector space Hy := H°(M,L;) of
global holomorphic sections of L1 over M.

Further, the geometric quantization at level k s the geometric quantization
obtained after replacing L by L* and w by kw. Denote this by HY.

For completeness, the subalgebra of observables g that one must restrict to is
given by
g:={feC®M)|[X,Xf] €P foral X € P}.

The shortcoming of geometric quantization is that this algebra g is often very
small, or zero. For more discussion see [Blall] and [Wo097].

6.3 Families of Kahler Polarisations

The geometric quantization defined in the previous section depended on a choice
of Kéhler polarisation I for the symplectic manifold (M,w). Our goal is now to
address this dependence. To do this we will consider families of polarisations.

A smooth family of Kéahler polarisations will be a manifold 7 and a map
I:T —I['(M,End(T'M)) sending each o € T to a Kéhler polarisation I, : TM —
T'M , which is smooth in the sense that it defines a smooth section of the following
pullback bundle,

pry End(TM) —— End(T'M)

| iy

TxM—22 o\
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Equivalently, I is smooth if the corresponding map 7 x T'M — T'M is smooth.
We have already seen in Chapter [4] one example of a family of Kahler polari-
sations for the moduli space N™¢ of stable holomorphic vector bundles. Here
T is the Teichmiiller space of a compact Riemann surface ¥,, and the map
I: T — TN End(TN™?)) sends a conformal class of metrics on ¥, to its
corresponding Hodge star operator x, which we saw gives an integrable almost-
complex structure on N9, Indeed essentially the same map describes a family
of Kahler polarisations for the Higgs moduli space M™¢, as we saw in Chapter .
Later we will consider the case where T is the Siegel upper-half space parametrising
the distinct complex structures on a complex Abelian variety:.

Given a smooth family of Kahler polarisations of a prequantized compact sym-
plectic manifold (M, w), we obtain a set H* :=| | _-HE with a natural projection
7w 1 H¥ — T. The fibres of this projection are the vector spaces HY := ”Hka,
which are finite-dimensional when M is compact. If these fibres were all of the
same dimension, the disjoint union H* would be a candidate for a smooth vector
bundle over 7. Fortunately, an argument presented by Hitchin in [Hit90] shows
that provided we choose k to be large enough, then these fibres do in fact all have
the same dimension.

Theorem 6.3.1. Let (L, h,V) be a prequantum line bundle over a compact sym-
plectic manifold (M,w) with Kdihler polarisation I. Then the dimension dim H% of
the level k geometric quantization of (M,w) is independent of I for k sufficiently
large.

Proof. The Hirzebruch-Riemann-Roch theorem states that
X(Lr) = / Ch(L) Td(M),
M

where the right-hand side depends only on the underlying topological line bundle
L, but the left-hand side is the holomorphic Euler characteristic

X(Lp) = zn:(—ni dim H*(M, L;).

=0

Suppose we replace L by its tensor power L* for some k € Zsq. Then with
the induced Hermitian metric and connection, LF is prequantum for kw on M.
The Kodaira vanishing theorem asserts that H'(M, L) = 0 for i > 0 whenever
LY ® K* is a positive line bundle, that is, when ¢;(L¥ @ K*) is represented by a
Kéhler form on M. But ¢;(£¥ @ K*) = ke (L) — ¢1(K) = k[w] — ¢1(K). Since
M is compact, we may take k sufficiently large such that this class this will still
be represented by a Kahler form, since w is Kéhler. Thus for k sufficiently large,
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X(LY) = dim H°(M, £¥) and by the Hirzebruch-Riemann-Roch theorem, at least
in the compact case, dim H°(M, £}) = dim H¥ does not depend on the choice of
Kahler polarisation I on M. O

One can now apply the deformation theory of Kodaira to show that the vector
spaces H¥ do form a vector bundle. In particular, associated to the family of
Kahler polarisations there is a smooth family of elliptic operators V%! on the
smooth family of smooth vector bundles L* — M, over the family of complex
manifolds M, — 7T. In this setting elliptic regularity implies that the spaces
HO(M, LF) = ker(V2' : T(M, LF) — QY(M, L¥)) form a smooth vector bundle
over T.

6.4 Hitchin Connections

So far we have defined the geometric quantization of (M,w), and showed that, at
least when M is compact, we can find a vector bundle H* over T, a parameter
space of Kihler polarisations, whose fibres are the quantum Hilbert spaces H*
from our geometric quantization.

As the next step in addressing the dependence of H* on o € T, Axelrod, Della
Pietra, and Witten in [ADPWO9I] and Hitchin in [Hit90] had the idea of finding
a projectively flat connection on the bundle H*. The parallel transport of the
connection would identify the spaces H¥ for various o € T, and this identification
would be canonical in the sense that the induced maps on P(H®(M, LF)) for various
o would be independent of the paths chosen, at least when 7 is simply-connected.

6.4.1 Definition

In [And06] Andersen gave a definition of a Hitchin connection for a general sym-
plectic manifold, that we present here. For each o € T, we obtain a vector space
HE of holomorphic sections of £X. Each such vector space sits as a subspace of
the infinite-dimensional vector space I'(M, L¥), and therefore we obtain a subset
HF C T'(M, L*) x T of the trivial bundle T'(M, L¥) x T, with fibre over each 0 € T
given by HE.

As we observed earlier, this subset is actually a smooth subbundle of the trivial
bundle I'(M, L¥) x T, and therefore we may specify connections on H* by defining
a connection on the trivial bundle that preserves the fibres.

Definition 6.4.1 (Hitchin Connection). A Hitchin connection on the bundle HF is
a connection V = d~+u on the infinite-dimensional trivial bundle U(M, L*) x T —
T such that
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1. 'V preserves the fibres HE,
2. u takes values in differential operators on sections of L*, and

3. the induced connection on the bundle H* is projectively flat.

To say that V preserves the fibres H* means that if s is some local section of
HF inside I'(M, L*) x T and V is a vector field on T, then

(Vys), € HE

for all o where s is defined. In terms of the Dolbeault operator V%! this can be

rephrased as
VS’I(VVS)U =0.

The following lemma gives a useful characterisation of this condition which will be
used later. Given a family of Kéhler polarisations I : 7 — ['(M,End(T'M)) we
may differentiate this family in the direction of a vector field V on 7. Following
the notation of [And06], write this derivative as V[I]. Then we have the following.

Lemma 6.4.2. A Hitchin connection V preserves the fibres HY if and only if for
any local section s of H* defined on a neighbourhood of o € T, and any vector

field V- on T, we have

VY5, = V9 (e (Vo) (50))

Proof. Note that the differential equation
Vo (Vys), =0
may be rewritten as
Vo' (ds)s (Va) + Vg'ue(Vo)(ss) = 0.

On the other hand since s is a local section of HF, it satisfies the differential
equation
Vols, =0

for all o. This may be rewritten as
7

S (1 +il,) Vs, =0,

We can differentiate this along the vector field V', to obtain

5V Vs0 + V2! (o (Ve (s0) = 0.
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Subtracting the two expressions and using the fact that Vs, = V1.0s, + Vols, =
V510%s,, we obtain

%V[]]va)sa = ngl(ua(vo)(sa))‘
O

Here we use the notation V[I] for the derivative of the family I in the direction
of the vector field V on T.

6.4.2 The Symmetric Tensor GG

In order to write down a Hitchin connection, we will also need to know about
certain symmetric tensors G, € I'(M,S?T}0M). Using these symmetric tensors
we will write down the expression for a Hitchin connection for compact symplectic
manifolds satisfying certain assumptions. Full details of this result can be found
in [And06].

At a point o € T we have that V[I|, : TM — TM is again an endomorphism
of TM. Differentiating the identity I> = —1 in the direction of V', we obtain the
relation

V1, + I,V[I], =0

for all o € T.

This relation implies that after extending I and V'[I] to T'Mc, the endomor-
phism V'[/], interchanges the type of a vector field X € I'(M,T'M). In particular,
if I,X = iX so that X is of type (1,0), then I,V [I],X = —iV[I],X and similarly
for when I, X = —iX. Thus with respect to the splitting

TMc =T, &T)!

we have
V[I], € (M, Hom(T*°, T%") & Hom(T%*, T10)).

g 70 o 1’70

Write the two components of this direct sum decomposition as
VI, =V[L+ V[,

where V(1] - T;° — T)' and V[I], : T)' — T,°. Now V[I], is a section of
End(TMc) = T*Mc ® T'Mc, so there exists some bivector field G(V') depending
on V that we may contract with w in such a way that

G(V)-w=V[I].

The non-degeneracy of the symplectic form w means that this tensor G(V) is
unique. Additionally, associated to the family I and the symplectic form w we
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have a family of Kahler metrics ¢ = w - I obtained by contraction of w with I
in the second input. For each 0 € T, g, = w - I, is symmetric, and since w
is independent of o, if we differentiate in the direction of V' we again obtain a
symmetric tensor

Vigl=w-V[I]=w-G(V) - w.

The antisymmetry of w and the symmetry of V[g] implies that G (V) is a symmetric
bivector field. Furthermore since w is of type (1,1) with respect to I, and V[I],
interchanges type, Vg, contains terms only of type (2,0) and (0, 2):

Vigl, € D(M, S2°TH" g 27017,

But then V[g] = w- G(V) - w implies that G(V) must also only contain terms of
type (2,0) and (0, 2), so we actually have

G(V) e T(M, S?°T @ S*1791).

Write G(V) = G(V) + G(V) where G(V) is of type (2,0) and G(V) is of type
(0,2). Then G(V) is the symmetric tensor that we are interested in.

6.4.3 A Hitchin Connection for Compact Symplectic Man-
ifolds

In this section we will state Andersen’s construction of a Hitchin connection for
compact symplectic manifolds. In the special case of N™? the connection will
agree with those constructed by Hitchin in [Hit90] and Axelrod, Della Pietra, and
Witten in [ADPWOI].

In order to state the result of Andersen it is necessary to make two more
assumptions on the family of Kahler polarisations I. Firstly, we must assume that
the family I of Kahler polarisations is holomorphic in the following sense.

Definition 6.4.3. A family I of Kahler polarisations is holomorphic if the param-
eter space T is a complex manifold with complex structure J, and for all vector
fields V- =V"+V" on T we have

V[ = VI and V"[I] = V]I].

We remark that this holomorphicity condition implies that G(V') = G(V).
Further, we remark that a family of Kéahler polarisations is holomorphic if and
only if the corresponding almost-complex structure on 7 x M given by I(V @ X) =
JV @ IX where J is the integrable almost-complex structure on 7, and V ¢ X is
a vector field on T x M, is integrable. This motivates the terminology.

The second assumption we must make is that the family I is rigid.
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Definition 6.4.4. A family of Kdihler polarisations is rigid if, for each 0 operator
0, on M induced by I,, we have

9,(G(V))s =0
for all vector fields V' on T and for all o € T.

Remark 6.4.5. For arigid holomorphic family of Kahler polarisations, V" [I|V1Ys =
0, and so we only need to consider holomorphic vector fields on 7 for the purposes
of defining the Hitchin connection and checking it preserves fibres.

In addition to these assumptions, we will also need to define a certain dif-
ferential operator depending on G(V'). Denote by Ag the operator given by the
composition

1,0 "
Ag T(M, LF) Y5 D(M, T @ LF) 525 0(M, T ® LF)
t

1,0 1,0 * r
SRV DM, T @ T @ LF) 5 T(M, LF).

Now we can define the connection form u. On a compact Kéahler manifold
(M,w) we can define a certain smooth real-valued function F, the Ricci potential,
given by

Ric = Ric" + 2i00F

where Ric is the Ricci form given by contracting the Ricci tensor with I, and Ricf
is its harmonic part. For each A, k € Z such that 2k # —\, let u(V') be given by

u(V) = m (A — Veanar — AV'[F]) + V'[F] (BEq. 6.2)

Theorem 6.4.6 (Andersen [And06]). Let (M,w) be a prequantized compact sym-
plectic manifold with the property that c;(M) = Aw| for some A € Z. Suppose
HY(M,R) =0, and that I : T — T'(M,End(TM)) is a rigid holomorphic family of
Kabhler polarisations of (M,w), and let k € Z be such that 2k + X # 0. Then u de-
fined above satisfies the conditions of Lemmal6.4.2 and preserves the holomorphic
subspaces of T'(M, L¥).

As was discussed in Section [4.5.3], the topological assumptions above are satis-
fied for the moduli space N4 of stable holomorphic bundles over a surface with
fixed determinant. In this setting the connection of Andersen is precisely the
connection constructed by Hitchin, and agrees with the connection constructed
by Axelrod, Della Pietra, and Witten, and is therefore projectively flat by their
arguments. This gives:
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Theorem 6.4.7 (Andersen [And06]). The connection defined by (Eq. on the
moduli space N™? of stable holomorphic bundles over a surface with fized deter-
minant s a Hitchin connection in the sense of Definition |6.4. 1.

A purely differential-geometric argument for the projective flatness of the con-
nection over any symplectic manifold is given by Andersen in [AG14].
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Chapter 7

Quantization of the Higgs Bundle
Moduli Space

In this chapter we will investigate the geometric quantization of the moduli space
of Higgs bundles over a Riemann surface. In particular we will construct a pro-
jectively flat Hitchin connection for the case of Higgs line bundles, as well as
investigate the existence of such a connection that preserves the weight spaces of
the C* action for higher rank.

We will proceed by first investigating the geometric quantization of the stable
bundle moduli space carried out by Hitchin in [Hit90]. Hitchin utilised cohomolog-
ical techniques to isolate the connection, and then used properties of the Hitchin
system in order to prove projective flatness of this connection. The techniques for
the quantization of the stable bundle moduli space turn out to not be applicable
in the case of the Higgs moduli space, as was noted by Hitchin himself in [Hit91].

In order to get around this issue, we will take the explicit expression for the
second-order differential operator u defining the Hitchin connection and modify
this for the case of the Higgs bundle moduli space. The rank 1 case falls under the
problem of geometrically quantizing the cotangent bundle of an Abelian variety,
the case of the Abelian variety itself being covered by Hitchin, as well as more
explicitly by Blaavand in [Blall].

The problem of geometrically quantizing the Higgs moduli space has also been
approached by Witten in [Wit91] from the perspective of physics, utilising the
interpretation of the Higgs moduli space as the configuration space for complex
3-dimensional Chern-Simons theory. Here a real polarisation is used in order to
construct a Hilbert space of polarised sections, and Witten found a projectively flat
connection for the bundle of spaces of polarised sections over Teichmiiller space.
The same approach was used by Andersen in [AG14], where a family of projectively
flat connections depending on a parameter ¢ € C was constructed using purely
differential-geometric techniques. It is not clear how the C* action on the spaces
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of polarised sections interacts with the projectively flat connections constructed
in this way. In particular, it is not known whether or not the projectively flat
connections preserve the weight spaces of the C* action.

In the case of Kahler polarisations, one considers the infinite-dimensional vector
space of holomorphic sections of a determinant bundle over the Higgs moduli space.
Although not a Hilbert space, this vector space is the right space to consider in the
quantization of M™?. In particular it may be interpreted as a space of generalised
theta functions, for which the dimension of the graded pieces is of interest in
conformal field theory. For example, an equivariant Verlinde formula was proven to
compute the dimensions of these graded pieces independently by Andersen, Gukov,
and Pei in [AGP16] and Halpern-Leistner in [HLI6]. The explicit relationship
between the space of holomorphic sections and the corresponding L? sections on
N™4 should mirror the situation for comparing different types of polarisations of
R2" but has not been explicitly determined.

7.1 Hitchin’s Techniques

In [Hit90] Hitchin used cohomological techniques to construct the Hitchin con-
nection for the moduli space of stable bundles over a compact Riemann surface.
In this section we will briefly review these techniques, and then investigate their
applicability in the case of the Higgs bundles moduli space.

7.1.1 Dolbeault Hypercohomology

In this section we will define Dolbeault hypercohomology in the form applicable
to the construction of the Hitchin connection for the stable bundle moduli spaces.
First, introduce vector bundles 2°(L£) whose holomorphic sections are the holo-
morphic linear differential operators on sections of £ of order i. These may be
identified as the vector bundles 2°(£) := Hom(J(L), L) where J*(L£) denotes
the vector bundle of i-jets of holomorphic sections of L.

Next define spaces AP := Q% (M, 21 (LF)) & QOP~1(M, LF) of cocycles and a
differential map d, : A? — AP*! for each holomorphic section s € H°(M, L) given
by

dy(D,u) := (0D, 0u + (—=1)P"*Ds).

Lemma 7.1.1. The differential ds squares to 0.
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Proof. We have the equality

dy(ds(D,u)) = ds(0D, 0u + (—1)P"*Ds)
= (0,0(0u + (=1)P"'Ds) + (=1)?0Ds)
(,< 1)P(=0(Ds) 4 (0D)s))

7

where in the last step we have used that ds = 0 since s is holomorphic. O
By the lemma, we obtain a cochain complex, and may take its cohomology.

Definition 7.1.2. The pth cohomology of the complex (A®,ds) is called the pth
Dolbeault hypercohomology of 2'(L£*) with respect to s, and is denoted

HP (M, 2 (LF)).

7.1.2 Existence of a Connection

The Dolbeault hypercohomology defined in the previous section was used by
Hitchin in [Hit90] and (for the case of Abelian varieties) by Welters in [Wel83]
to capture the existence of a Hitchin connection on compact symplectic manifolds.

To see how this complex captures the existence of a Hitchin conection, observe
that if one takes the element iV [I]V*0 € QO (M, 21(LF)) then some u(V)(s)
satisfying d,(iV[I]V*°, u(V)(s)) = 0 provides a solution to the differential equation
given by Lemma [6.4.2] In particular if one can choose u(V)(s) in a smoothly
varying way as V and s vary such that w is linear in s, the £*-valued form u would
define a Hitchin connection on the bundle of vector spaces H* over the compact
symplectic manifold M. We then have the following theorem.

Theorem 7.1.3 (Hitchin [Hit90]). Suppose that [w] : H'(M, T} — H'Y(M,O)
is an isomorphism for each o € T, and that for each s € H°(M,L*) and V
a vector field on T, there exists a smoothly varying cohomology class A(V,s) €
HY(M, 21 (L*)) depending linearly on s such that —ip(A(V,s)) = [V]. Then A
defines a Hitchin connection on the bundle of spaces H* over T .

Here p(A(V,s)) is the symbol map induced by the short exact sequence
0 —— 271(LF) —— 2'(LF) L ST —— 0,
where S*T" denotes the ith symmetric power of the holomorphic tangent bundle

T and p : 2°(LF) — S'THO is the symbol map on differential operators. Ap-
plying this map p gives a homomorphism p : H} (M, 2*(M, L*)) — H*(M,T) and
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p(VIIIVO u) = [V], the Kodaira-Spencer deformation class corresponding to the
infinitesimal deformation V' of the complex structure on M.

The proof of the theorem proceeds by considering the short exact sequence
above for ¢ = 1, which becomes

0 » O y P LF) —— T —— 0.

By Atiyah’s work in [Ati57a] on extensions of bundles, this extension of T by O
defines a class in H'(M, T*°"), which is a multiple of the first Chern class k[w] of
L. In the corresponding long exact sequence we have

0 —— HOY(M,0) —— HO(M, 2" (L)) —— HO(M,T"0)
2

L HY(M,0) — HY (M, 2"(LF)) —L— H' (M, T0)

(—> H*(M,0) ——— -+

The assumption that [w] was an isomorphism implies that the symbol map
p : HY M, 2*(LF)) — HY(M,T"?) is injective. Injectivity of the symbol map
implies the existence of a pair (D, u) which is ds-closed. Namely, given an A(V] s)
as in the statement of the theorem, represented by some pair (D, w) € A', we have
—ip(D) is cohomologous to [V] in Q%*(M, TH?). By injectivity of the map p, this
implies that there exists P € Q0(M, 2'(L*)) such that D —iV[I[|V'® = 9P. Then
u(V)(s) := Ps + w gives a solution to the differential equation in Lemma [6.4.2]

Additionally, the assumption that [w] is an isomorphism also implies that
HY(M,0) = H°(M,2'(LF)). But then if we take two solutions u; and u, with
(iV[I]V*° u;) cohomologous to (iV[I|VH0 uy) in HL(M, 21 (LF)), one has

(07 Uy — U2) = dQ

for some @ in A = Q°(M, 2*(L")). Since the first term is zero, this simply means
0Q = 0 so that Q is a global holomorphic function on M. When M is compact
as assumed, ) € C is a constant, so that the class A(V,s) defines a connection on
HE up to a constant multiple of s, and therefore descends to give a well-defined
connection on P(H*).

In the case of the Higgs bundle moduli space, M™? is not compact, instead
containing T*N™? as an open dense subset. Thus in this setting, even after £*
is replaced by L% the class A(V,s) would be unable to capture u(V)(s) up to a
constant, but instead only up to some non-zero holomorphic function on M™¢.
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Additionally, it is not immediate that the assumptions that [w] is an isomorphism
and that the classes A(V, s) exist are even satisfied in the case of the Higgs moduli
space.

This indicates that the cohomological techniques of Hitchin used in [Hit90]
to construct a Hitchin connection are not applicable for the case of the Higgs
moduli space. This was noted by Hitchin in [Hit91] where he reviewed the paper
[ADPWO1] of Axelrod, Della Pietra and Witten.

7.2 Explicit Connection

In the previous section we saw that the cohomological techniques of Hitchin are
not applicable when working with moduli spaces of Higgs bundles over a compact
Riemann surface. However, in [Hit90] an explicit expression for the connection
form was obtained. In fact this expression is precisely that given by the differential
operator (Eq. , as was noted previously.

Expressed in local coordinates, the connection form is defined by

u(V)(s) = m(vi(G Vi(s)) —2G %Vj(s) + ik fas)

where fg is such that

gfg = ZiGijwjk% + (VzG”)wj,;
Such a function exists due to the vanishing of H'(N™%, O).

In the following sections, we will see that, at least in the case of n = 1, one may
modify this connection form u to obtain a connection preserving the holomorphic
subspaces on the corresponding trivial bundle I'(M™<, L% ) x T — T for the Higgs
bundle moduli space. Indeed when n = 1 the stable bundle moduli space N4
over the compact Riemann surface 3, is the Jacobian Jac(X,). This is a complex
torus, with a naturally flat metric. Thus the Ricci potential F' vanishes, as does
the constant A.

This provides a simple expression for the Hitchin connection in this case, simply

u(V)(s) = —

Indeed this connection form actually defines a Hitchin connection for any complex
Abelian variety when the parameter space T is taken to be the Siegel upper-half
plane, and the curvature may be explicitly computed as in [Blall]. We will take
on this point of view in the following section.
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7.3 For the Cotangent Bundle of Abelian Vari-
eties

The Higgs line bundle moduli space is M'? 2 T*Jac(%,), which is the cotangent
bundle to the complex Abelian variety Jac(3,). Upon this moduli space is a C*
action, and we will be concerned with finding a connection which preserves this C*
action. The existence of such a connection would indicate that the C* action on
the Higgs moduli space is a quantizable feature, and is, in the sense of geometric
quantization, independent of the Kéahler polarisation.

We will now phrase the problem in terms of the geometric quantization of the
cotangent bundle to a complex Abelian variety. Let M = R?9/Z29 be the standard
2g-torus. Then a choice of complex structure on M is given by a choice of period
matriz ). This is a g X 2g matrix Q = (A, B) sending the basis Z?9 to AZI + BZI.
The corresponding complex structure is defined by Mg = C9/(AZY+ BZ9). When
the Abelian variety is principally polarised, we may always choose this matrix
to be of the form Q = (1,Z7) for some g x g matrix Z € T where T := {Z €
Mat(n,C) | Z = Z7,Im(Z) > 0} is the Siegel upper-half space. Then we define a
complex structure on M by taking coordinates z' = ' 4+ Ziy/ and z* = &' + Ziy,
giving a diffeomorphism

M=CI)(Z°+ Z79).

Definition 7.3.1 (Complex Abelian Variety). A principally polarised complex
Abelian variety of dimension g is a complex torus

CI/(Z9 + Z75)
for some Z € T.

Remark 7.3.2. It can be shown that every complex Abelian variety is a connected
compact complex Lie group, and in fact that such Lie groups are precisely the
complex tori. The condition that a complex torus comes from a quotient by a
lattice Z9 + Z79 for some Z € T implies that the torus is a projective algebraic
variety.

Remark 7.3.3. Although we are only restricting to the case of principally po-
larised Abelian varieties here, this causes no trouble since every Jacobian of a com-
pact Riemann surface is principally polarised, and indeed every complex Abelian
variety admits a finite covering by a principally polarised Abelian variety.

We also have a diffeomorphism M xR? = CY/(Z9+Z79)x CY given by the same
map on coordinates in the second factor, and since we have natural isomorphisms
T*M = M xR and T*(C9/(Z9+ Z79)) = C9/(Z9 +QZ9) x C9, we get a complex
structure on 7M.
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Let w be the standard symplectic form on M descending from the standard
symplectic form on R?9. Let L — M be a prequantum line bundle for this sym-
plectic form. Such a prequantum line bundle may be described explicitly.

Let Z € T, and {\q,..., Aoy} an integral basis of Z9 + Z7Z9 such that in the

dual coordinates x = (z!, ..., 2%9) we have

g
w = Z dzt A dx'™9.
i=1

Then multipliers for the line bundle L — M on the universal cover CY are given
by

ex(2) =1, en,,(2) = exp(—2mikz; — mikZy)
for i =1,..., 9. More details on this construction can be found in |[GHT78, Ch. 2
§6].

Given a choice of ) € T, we obtain a Kéahler polarisation of M with respect
to w, and space of holomorphic sections H5 := H°(M, L£%) at some level k is the
space of theta functions. In the case where ¢ = 1 and k = 1, this space is one-
dimensional and is generated by a section of £ given by the Jacobi theta function
on the universal cover:

)
19(2’ 7_) = § efrzn T+27rznz’

n=—0oo

where T e H="T.

Fix Z € T to obtain an isomorphism ¢z : T*M — M x C9. Then we have
an action of C* on T*M given by pulling back multiplication in the second factor
through this isomorphism.

Consider now the line bundle Ly = #*L — T*M where 7 : T*M — M is
the projection. We will assume for now that Ly is also prequantum for some
symplectic form on T*M, and that a choice of Z € T is a Kéahler polarisation of
T* M with respect to this symplectic form. Then again we can consider the spaces
HE of holomorphic sections of L%. For any given 2, the C* action on T*M lifts
to L¥ . and then to H%. Thus we obtain a decomposition

Hiz =D, _,H)"

where (H%)™ are the weight spaces of the C* action, with A-s = A™s for s € (H%)™.
Note these spaces are empty for m < 0. We will remark on the exact nature of
this direct sum momentarily.

Lemma 7.3.4. For each Z € T and m € Z, we have (H%)™ = H(M, LF ®
SmTOM).
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Proof. Let P(T*M) denote the projectivisation of the vector bundle 7% M, given
by P(T*M) = (T*M\{0})/C*, and let p : P(T*M) — M be the corresponding
projection. Then

(7"
(p(T" ),p*ﬁ’“ ® O(m))
*(M,p.(p"L" © O(m)))
O(M, £F @ S™TA M).

]

Now HO(T*M, L) = HO(M x C9, priLF) = H(M, L*)®@c O(CY), and through
this tensor product the C* action on H(T*M, L% ) is given by A - s ® f(2) = s ®
f(\z). Thus the weight spaces are given by H°(M, £F) @c O(C9)™, where O(C9)™
consists of those holomorphic functions on C¢ with the property that f(\z) =
A" f(z) for all z € C. Such functions are necessarily homogenous polynomials in
the coordinates on CY, as can be seen by expanding in a Taylor polynomial around
0 € CY9. This representation of weight m sections will be useful later.

Remark 7.3.5. By considering the representation of elements of (H%)™ as ho-
mogenous polynomials tensored by theta functions, we see that the direct sum
decomposition

iz =D _ H)"

is in the following sense: a collection (s™), with s™ € (H5)™, defines an element in
7-[’}{ , precisely if the corresponding homogenous polynomials sum to a convergent
power series with infinite radius of convergence on C9.

In order to geometrically quantize T*M, we will construct separately Hitchin
connections for the holomorphic vector bundles £F @ S™THOM for each m € Zsy,
and show that these combine to give a projectively flat Hitchin connection for L%,
over T*M . By construction this connection will necessarily preserve the C* action
on the spaces H%.

Now we may modify the Hitchin connection to apply to this case. Take the
trivial connection on TM = M xR?9 and, for each Q € T, pull back this connection
via the smooth bundle isomorphism ¢q : T*OM — TM. Then we have a smooth
vector bundle LF ® S™T M with connection V, such that taking an almost-complex
structure I associated to some €2 € T, we obtain the holomorphic structure £¥ ®
S™TYOM when defining VO = £(1 +I)V.

Consider now the infinite- dlmensional trivial bundle T(T*M, L%) x T — T.
Then the spaces H}; , sit inside the fibres of this trivial bundle as infinite-dimensional
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subspaces, and furthermore the weight spaces (%)™ sit inside as finite-dimensional
subspaces.

Elliptic regularity implies that the finite-dimensional collection of subspaces
(HE)™ sit inside as a subbundle for each m, and indeed once we have constructed a
connection for the infinite-dimensional bundle HY%, it too will sit inside I'(T™* M, L% )x
T as an infinite-dimensional subbundle.

To that end, fix an m € Zsg, and define a one-form @ € QY(7,D'(M, L* ®
S™TM)) as follows. At Q € T, let V be a tangent vector to 7 and s ® A €
(M, L* @ S®TM), and define, using local coordinates on M,

1 -~ o
Theorem 7.3.6. The one-form @ defines a connection V™ on the bundle (H% )™
of weight m weight-spaces of HY, over T.

Proof. First note that the connection V on LF @ S™TM has curvature Fy =
—27miw ® 1, since the connection on S™T'M is trivial, and hence flat. Also recall
that the holomorphic vector fields on an Abelian variety are covariantly constant,
and since G is a holomorphic symmetric (2,0)-tensor, V;G% = 0. Additionally
since w is Kahler on M, it is covariantly constant, and @iwj,; = 0.

Now take a section s ® A € HO(M, LF @ S™TYOM) C T'(M, Lk @ S™TM), i.e.

such that Vi (s ® A) = 0. Computing locally, we have

VLV )(s @ A) = &Tik@k@i((;w@j(s © 4)) ® dz*
_ é ViVH(GI;(s © A)) — 2rikwp GV (s ® A)] @ d2*
= 87%1{: :ﬁiGij@E@j(S ® A) + 2mikwz GV, (s ® A)] © dz*
- 87%{: 61GU(6361‘6(5 ® A) — 2mikwy,s ® A)
+2mikw GOV (s @ A)] 2 d5*
- 287;_215 [Gij@z’(wjl%s ® A) + wzGIV (s @ A)] ® dz*

= %Gijwj,ﬁi(s ® A) ® dz".

On the other hand, we have V[I] = Gw;; 2% @ dz¥, and so

%V[IWLO(S ® A) = %Gijwﬂm@ ® A) ® dz*.
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But then .
%vuwm(s ® A) = VOV (s ® A)

and by Lemma @ € QY(T,D*(M, L*)) defines a connection on the subbundle
HE of D(M,L¥) x T — T.
[l

7.4 Connection on H%

In this section we will investigate whether the connections V™ sum up to give a
genuine connection on the infinite-dimensional bundle H%, over 7. Fibrewise, we
know that 7-[’}”{ 4 is a direct sum

—_

/H]IC{,Z - @mez>0 (HI;{,Z)m

To understand how the connections sum to give a connection on this infinite-
dimensional bundle, we need to examine the direct sum given.

Elements of #}; , are elements of H(T*M, L; ;) = H(M, L%)®cO(CY). The
space HY(M, L) is finite-dimensional, with dimension k9, and has a basis of theta
functions defined on the universal cover CY of M by

1
I (2, Z) = Z exp(mik(n + «a) - Z(n + a) + 2mik(n + o) - 2); a0 € EZQ/Zg.

nez9

Thus under this isomorphism an element s € H}; , may be written

s= Y, IO

ELTLI 19

for some collection of entire holomorphic functions f, € O(CY). To take the weight
m part s of s means simply to expand the f, about 0 in a power series and then
take the degree m homogenous terms f™ (and view these as sections of S™T0M)

to obtain
st= Y 0w

ELL9 )79

Conversely, given sections s™ € (H}; ;)™ for each m € Zx, these will define a
section in the direct sum ”H’f{ , precisely when the corresponding f* sum to give a
power series around 0 € CY with infinite radius of convergence, which is precisely
an entire holomorphic function on C9.
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Instead of the connection V on H%,, we will go directly to its corresponding
parallel transport operator, and show that this is well-defined as a map between
fibres of H%,. On each finite-dimensional weight m subbundle we have a projec-
tively flat connection V™, which defines a parallel transport operator P™. Since
each V" is projectively flat, the linear isomorphism P : (H}, )" (’H]}M(l))m
is independent of the choice of path v up to a constant. Critically, this is the same
constant independent of m.

Now take a section sy € H}; , and let v be a path from Q to some . Then
define a parallel transport operator P, : ”H’}{ 5 = H'f{ 2 by

S Py

mEZzo

where s is the weight m part of sy. By construction of the connections V™, each
section P"(sg') is again of weight m, so it suffices to check that the function parts
of these sections sum up to give holomorphic functions on CY.

Let s := Zae%zg/zg;u‘:m fﬂ&’“) ® 2’ for some constants f; € C. The parallel

transport P is the solution to the differential equation

S A @); $0) =
Now since V := V® 1 + 1 ® ¢4d and the coefficients of the basis sections z”
(actually %) are constant, we see that

AN 8 ) = TG o008 2) @
<81
< (D) @ =

where u is the one-form in the original Hitchin connection for the compact space
M. In the context of the parallel transport equation, this means that if (), is the
parallel transport for the regular Hitchin connection, then

Prsg) = ), Q) e

aE%ZQ/Zg;Lﬂ:m

Vi(GPV(f(0)08N) © = @ dz*

From this expression we see immediately that P, is well-defined as a map
Hipo — H%}Q/, because if we write Qw(ﬁg{%) = Qgﬁg% for some constants Q7 € C,

then .
Z Z 19;3% ®Qnf1z]

meZxq aE%ZQ/Zg;Lﬂ:m
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and so the power series on the right is simply a linear combination of conver-
gent power series, and hence itself everywhere convergent, defining a holomorphic
function on CY.

Furthermore, if we vary the path to some 7 also from 2 to €, as linear maps
(), and @, agree up to a constant depending on 7 and 7, and therefore P, and
P, agree up to this same constant. In particular, since this constant is the same
as for (), the parallel transport of a projectively flat connection, we can conclude
using the fact that 7 is simply-connected that:

Theorem 7.4.1. The connection on H% described by the parallel transport P is
projectively flat, and therefore gives a well-defined diffeomorphism between IP’(H'}{?Z)
and IP’(’H’;{’Z,) for any Z,Z' € T. In particular, the connection is a Hitchin con-
nection in the sense of Definition |6.4. 1.

7.4.1 Curvature of the Connection

A more direct approach to showing the connection is projectively flat is taken
by Blaavand in [Blall], where the curvature of the Hitchin connection for M an
Abelian variety is computed directly, and is manifestly a constant multiple of the
identity. For each m, essentially the same computations carry through to show
that the connections V'™ are projectively flat. In this section we will recall this
computation for the case of the cotangent bundle.

Recall that the principally polarised Abelian variety My is defined by some
Z € T, the Siegel upper-half space, such that My = C9/(Z? + ZZ9). We have
Z = X +1iY for some real matrices X and Y, and in the dz basis the symplectic
form on My may be written

w= §wijdz’ A dZ’

where W = (w;;) is easily computed to be Y 1.
Recall that there is a global frame % for the holomorphic tangent bundle of

T. Since G(V) - w = V'[I], in order to Cozmpute the Hitchin connection explicitly,

one must determine the tensors G( 6;) for the complex coordinates Z7 on 7. To

k3

do this, one must take the derivative of the map I(Z) with respect to Z/, and
compare with the contraction with w.

Lemma 7.4.2. When Z = X + 1Y for real matrices X and Y we have

1(2) = (_i/:lX - ;ff_yl_lx)> .
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Proof. Recall that dz* = dz* + Z;dyj and dz' = da' + Zij dy’. Using the relations

0 ; 5} 0 a0
(9,21) 05, dz(@zﬂ) dz(é?zﬂ) 0, dz'(=—)=2¢"

0z’ ) =9;
and the corresponding relations for the coordinates x and y, it is easily computed
that

dzi(

o i 0 0 0 1 0 0

= VIX —il)—+ =Y '~ — yox i) Loy Ly Y

0z 2< ! )8x+22 oy’ 0z 22( e )8x+ oy’
Using that [(Z);% = i-:% and I(Z)% = —iz% one can substitute in the real
coordinate expressions above and solve for I(Z) to obtain the result. ]

Since I(Z) i aZJ, if one converts

the coefficients back into functions of Z/ the Z7-derivative may be taken. To
convert the coefficients back, one can use the familiar formulas X = 1(Z + 2)
and Y = (Z — Z). We now make a simplification also made in [Blall], and
assume that the matrix Z is mormal, which since Z is symmetric is simply the
condition that [Z, Z] = 0. This has the consequence that XY, Z, Z, and Ag will
all commute.

Lemma 7.4.3. We have expressions

VAN, 01(Z) L0
(2 = Sy =y A=
07 (5;)=0, 07 (55) = 195

for the derivatives of 1(Z), where Al is the matriz with a 1 in the (i,7) and (j,1)
positions and zeroes elsewhere.

Proof. Recall that

OAL _ _qa D4 g pmipige
dal dal ’

)

for a symmetric invertible matrix A = (a’). Thus we can use Y = +(Z = Z) to
obtain

N Lyapy
07! 2 '
A short computation using the facts that ggj = %Af and % = Q%Ai shows that
onzy 1., AV A
= _Y Ay ! = - Eq. 7.2
ozl 2 1 _z (Eq. 7.2)
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But then using the expressions for % and % from Lemma , we see

oI(Z) , 0 1 4 501(Z), 0 1., .,0I(Z), 0
8Z2.j <8z)_2y 4 (‘QZl.j (8x)+2iy 82@? ((?y)

which clearly vanishes by comparison with (Eq. . A similar calculation shows
the result for %. O

Corollary 7.4.4. Written in index notation,

o1(Z) {—w,ﬂ-% ® d2F — Wiy ®@dZF, P4

aZz] —Wg; aazi ® de) L= j7

and
o d - 212 @2 +2iL @, i)
0z} 2i% ® 2=, i=j.

: . : _ )
Proof. This follows immediately from (w;;) = W =Y ! and G( 8823 )w = ;(Zf) O
Remark 7.4.5. The family of Kahler polarisations described by choices of Z €
T is rigid in the sense of Definition [6.4.4] since G(%) = 0 and by the above

%) is holomorphic.

computation we clearly see G(

In order to now compute the curvature of the connection, we note that the
invariant expression of the operator Ag given in Section [6.4.3] is given in local
coordinates by the expression (Eq. , when the connection used to define Ag is
the tensor product connection on L* ® S™T'M. But then we have

o) ) 2iV,Vs, i =

Y
2

2iV,V; +2iV;Vi, i # ]

and the Hitchin connection is explicitly

0z}
ani = 81 ~ ~
0z) 8Zf + FVZ-V“ =17,
0
mo_
i s
oz] 0z]

Equipped with an explicit expression for the connection, we can now determine
its curvature. As can be seen, this agrees with the expressions found by Blaavand
in [Blall] for the unmodified situation on an Abelian variety.
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Proposition 7.4.6. The connection V™ is projectively flat, and the coefficients
of the curvature Fgm are given by

[y

1(wriwiy + wywy;) @ Lemry, @ # J k #1

m(i i) _ TWriWgj ® Lgmpa, i # 5, k=1
v 02, 07] TWriwy @ Lgmray, i=g,k#I
§(wei)? @ Lgmpa, i=7j,k=1,

at least when Z is normal.

Proof. Following [Blall], we note that in order to compute Fgm= it suffices to
determine the commutator
0 =~
——l,Vi .
A

This is because the curvature is a (1, 1)-form and is determined by

0
S VAL
o¥AN a;] ’

0 0
ANEYA

)=

Fyn( 5
and substituting in the expression for V"5 this reduces to computing
8z7
o . - .
a—Zli, ViV, +V,V;
in the case where ¢ # 7, and similarly for ¢ = j. But these commutators are given
by
0 = = 0 = | = ~ 0 =
—,V.Vi| = |=—=,Vi|V;+ V| =—=,V;
o7 %)= o ¥ 9+ o
and similarly for ¢ = j.
To determine this commutator, observe that in local coordinates we have a
potential

g
o= —Ti Z r'dy’ — y'da
i=1
for the form —2miw = —2mi 39_ dz' A dy’. But then the connection V on LF ®
S™T'M is given in local coordinates by
@ = d+ ko & 1SmTM;

because
F@ = d(kOé ® ]-S""TM> = —27TZICCL) ® ]-SmTM
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and also because this is the local expression for the tensor product connection V
in terms of the original connection V on L*.
Converting to complex coordinates we have

9
T oo w )
a=g g w;i2'dz — 2 d’
ij=1
and so

~ 0 b & iy ~ 0
VZ- = azi — 7 jzlw,-jzj X 1SmT1,OMZ, Vg = afz

b & ,
+ 7 jzlwijzj X ].SmTl,OMZ.

In tensor notation this is

0 _
= ——‘—k’ﬂ'i(Z—Z)_lZ@]_SmTLOMZ.

0 _ -
= ——kﬂi(Z—Z)_l»g@lSmTl,OMZ, V% 82

V% 0z

By changing to z, y-coordinates, and differentiating we obtain

which in index notation is

i@ _ %wkiﬁl’"‘ %wli@]} k#£1
0z, " %wkiﬁg k=1

By the local expression for V we also see that
[@1}7 @z] = —kmwy; @ Lgmpron,,

and since sections of H*¥ — T consist of holomorphic sections of £% ® S™T M,
on each fibre, any terms with a Vj on the right vanish. Furthermore, the bundle
HF* is in fact holomorphic, and so we may assume that any terms with a% on the
right vanish. This second assumption is not strictly necessary and we Wokuld still
obtain a 2-form for the curvature if it was ignored, but in the setting of Abelian
varieties it simplifies the situation.

Combining all the above assumptions we can then compute the curvature. Let

us perform for example the case where ¢« = j and k = [ as a sample. We have

o 0 i 0
0

Fym (== ) = — V,V;
V(az,g’azg) drk |0ZL ]
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The other coefficients may be similarly computed. O

Notice that at no point were we forced to use the fact that our connection had
been coupled to the trivial bundle S™T M. As such the coefficients of the curvature
of V™ are independent of the weight m, and thus the direct sum connection V is
also projectively flat in the correct sense.

We also remark that this computation assumed that Z was normal. This
contributed to the simplicity for the expression for G and subsequently the Hitchin
connection and its curvature. Although one would still obtain a constant multiple
of the identity endomorphism in the case where Z was not normal, the calculations
are more complicated.

7.5 Higher Rank

Consider now the C* action on the space H°(M™¢ £%) which is the geometric
quantization of the Higgs moduli space for higher rank n > 1. Firstly, when g > 1
and excluding the case of M?*?, Hitchin showed in [Hit90] that T*N™¢ C M™% and
the codimension of the complement is greater than 1. Since L% = m* Lk,
we have

T*N'n,d

HO(Mn’d7 El;{) oY HO(T*Nn’d,TF*Ek>
=~ HOY(T*N™N\{0}, 7* LF).

The action of C* is compatible with these isomorphism, and by the exact same
argument as in Lemma we have that, for all m € Z,

HO(Mn’d, El]c{)m ~ HO(Nn,d’ Ek ® SmTl’ONTL’d).

In particular, we may attempt the same program of trying to find a projectively
flat connection % on the bundles of mth weight spaces over T, where 7 now is
Teichmiiller space for the underlying Riemann surface 3.

In the case of Abelian varieties corresponding to N'?, the vector bundles
SMTHONA were trivial, so we could deform the connection on £¥ by tensoring
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with the trivial connection. For n > 1 these vector bundles are not trivial, and
the best we can do is consider the Levi-Civita connection V9 on N™.

Denote by V the connection on L¥ @ S™TN ™ given by tensoring V on £* and
the connection induced on SMTN™¢ by V9 on TN™?. For each choice of 0 € T,
we obtain the corresponding holomorphic structure making this smooth bundle
isomorphic to £F @ SMTHON™,

Now define a general second-order differential operator on sections of L* ®
S™TN™ in local coordinates by

a(V) = aij@i@j + bz@@ +c

for some smooth endomorphisms @, b, and ¢, depending on the choice of V, a
tangent vector to 7 at some o € 7. By Lemma this second order differential
operator will preserve the subspaces of holomorphic sections precisely when

VoL a(V)] = = V[I|VEL (Eq. 7.3)
as operators on holomorphic sections s € (Hl}{a)m

In order to find a choice of a¥, b* and ¢, one should compute both sides of
this expression and compare terms of different orders. On the left-hand side of

(Eq. we have

Immediately we see that the a” must be holomorphic, since the right-hand side of
(Eq. contains no second order terms. Computing the first order terms on the
left-hand side we have

aijﬁfc@i@j + @E(bl)ﬁz = a¥ (ﬁzv,; —2mikwi,; ®14+1® chz)@j + @E(bz)ﬁz
= a"(V; —2mikwy; ® 1+ 1 ® Fy;)
— (2mikwy; ® 1+ 1@ Fy,)V; + V(b)) V.

Here Fj,; denotes the curvature endomorphism on S™7T given by X +— F(0;, 0;) X
where F' is the curvature induced by the Levi-Civita connection, and F is the
corresponding curvature endomorphism on S™T & T™.

On the right-hand side of (Eq. we have the first order term $GYw;V;
where G is the familiar holomorphic symmetric tensor discussed previously.

There is no obvious choice of a holomorphic endomorphisms a® that will can-
cel out the endomorphisms that occur in the expression on the left-hand side of
(Eq. . Indeed the only such holomorphic tensors known are combinations of the
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holomorphic symmetric tensor G%, and the identity endomorphism. A straight-
forward computation shows that no combination of these tensors can counteract
the smoothly varying endomorphism F.

In the case of Hitchin’s connection for N™¢, the computation above reduces to
a trace over the curvature endomorphism F on T*. In this case one can use the
fact that the Ricci form is in the same cohomology class as Aw to write down the
functions a¥ and b’ in terms of the Ricci potential. No such trace occurs when L*
is replaced by the vector bundle L* @ S™TN™9,

The situation cannot be improved by passing to higher order operators u, and
it is likely that it is not possible to specify such a holomorphic endomorphism at
all. This suggests that for n > 1 one is obstructed from constructing a Hitchin
connection on M™? that respects the natural C* actions for varying choices of
complex structures in 7T .
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