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Abstract

In this report we investigate the correspondence between SU(2) magnetic
monopoles and solutions to the Nahm equations on R3. Further, we invest-
igate a variation of this result for singular Dirac monopoles. To this end, the
report starts with a review of the necessary spin geometry and hyper-Kähler
geometry required, as well as the definition of magnetic monopoles and the
Nahm equations. The final chapter consists of a presentation of Nakajima’s
proof of the monopole correspondence, and an investigation of how these
techniques can be applied to the case of singular Dirac monopoles.
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Introduction

It is a well-known observation in classical electromagnetism that all magnetic fields
appear to be generated by magnetic dipoles. This is in contrast with electric
fields, which may be generated by particles of a single parity. In the landmark
paper [Dir31] in 1931, Paul Dirac proposed a resolution to the mystery of why
electric charge is quantized by proposing the existence of magnetic monopoles.
Through Dirac’s work, it would be possible to prove that electric charge must
be quantized provided the existence of even a single magnetic monopole in the
universe. Despite this and other strong theoretical evidence for the existence of
such elementary particles, none have yet been observed.

Mathematically, magnetic monopoles may be modelled as solutions of the Bogo-
molny equations on R3,

FA = ?dAΦ.

Similarly to the theory of instantons on R4 modelling other elementary particles,
solutions to the Bogomolny equations are gauge-theoretic data on R3, and are
hence of considerable mathematical and geometric interest independent of their
physical origins.

In particular, moduli spaces of solutions to equations such as the Bogomolny
equations are known to, in many cases, provide powerful invariants of the un-
derlying spaces, and give new tools for solving many problems in geometry and
topology. This is exemplified by the famous Donaldson theory and Seiberg-Witten
theory in four-manifold topology.

As such, there is much interest in finding new ways of constructing solutions to
these gauge-theoretic equations. The first major breakthrough in this area came
with the novel ADHM construction developed by Atiyah, Drinfeld, Hitchin, and
Manin in [ADHM78], in order to find solutions of the anti-self-dual Yang-Mills
equations on R4 using essentially algebraic data. In [Nah83] Nahm developed, in
analogy with the ADHM construction, a method for constructing solutions to the
Bogomolny equations from gauge-theoretic data over an interval. In [Hit83] Hitchin
showed that this technique can in fact be used to find all magnetic monopoles,
and considerable work was done by many others around this time to extend these
results to other situations, in particular with varying choices of gauge group.
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The work of Nahm and Hitchin involved passing through intermediate algebraic-
geometric data, spectral curves in twistor spaces. In [Nak93] Nakajima gave a
purely differential-geometric proof of the correspondence of Hitchin, phrased in
language that is readily generalisable to the theory of Nahm transforms.

In this report, we will review the correspondence between magnetic monopoles
and solutions of the Nahm equations through the eyes of Nakajima’s differential
geometric techniques, and investigate a variation of this result for singular mag-
netic monopoles of the simplest type – so called Dirac monopoles.

In Chapter 1 we recall the necessary preliminaries for these constructions, in-
cluding elementary spin geometry and the basics of hyper-Kähler geometry.

In Chapter 2 we describe in more detail the definition of a magnetic mono-
pole and the construction of the hyper-Kähler moduli space of solutions to the
Bogomolny equations.

In Chapter 3 the Nahm equations and their relation to the anti-self-duality
equations on R4 are described.

Finally, in Chapter 4 we present (part of) the proof of the correspondence of
magnetic monopoles with the Nahm equations as shown by Nakajima, as well as
an investigation of the correspondence for singular Dirac monopoles. This involves
the theory of b-geometry and scattering calculus, and a mild amalgamation of these
concepts applicable in this case.

The authors wish to thank Professor Michael Singer for providing guidance
in learning the material presented in this report, and for contributing most of the
ideas in determining the correspondence between singular magnetic monopoles and
appropriate Nahm data.
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Chapter 1

Preliminaries

In this chapter we will give some preliminary results which will be necessary for
the development of the project.

1.1 Spin Geometry

Here we will lay out the essential definitions and some useful results about Spin
geometry and Dirac operators. Many of these concepts can be studied in greater
generality, but we will often restrict ourselves to the case we are interested in.
We will go over many of the results without proofs, specially at the beginning.
A more detailed and rigorous exposition can be found Lawson and Michelsohn’s
Spin Geometry [LM89], whose notation we follow closely, and in Friedrich’s Dirac
Operators in Riemannian Geometry [Fri00].

1.1.1 Clifford algebras and the Spin group

Definition 1.1.1. Let (V, q) be a vector space with a quadratic form. Its Clifford
algebra is defined as

Cl(V, q) := T (V )/Iq(V ),

where

T (V ) =
∞⊕
k=0

V ⊗k

is the tensor algebra of V and Iq(V ) is the ideal of T (V ) generated by elements
of the form v ⊗ v + q(v) for v ∈ V .

The product of two elements ϕ, ψ ∈ Cl(V, q) will be denoted by ϕ ·ψ, or simply
by ϕψ.
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In other words, the Clifford algebra of a vector space is the algebra generated
by V under the relations v2 = −q(v)1 for v ∈ V . Equivalently, if q(v, w) =
1
2
(q(v+w)−q(v)−q(w)) is the polarisation of the quadratic form (if the underlying

field has characteristic different from 2), then we have the relations

v · w + w · v = −2q(v, w).

It can be shown that Cl(V, q) is isomorphic to
∧•V as a vector space (it will be

isomorphic as an algebra precisely when q ≡ 0). In particular, V will be naturally
embedded as a vector space.

From now on, for simplicity, we will take our vector space to be finite dimen-
sional and real, and we will take the quadratic form to be positive definite. This
means that (V, q) will be isomorphic to Rn with the standard metric, for some n.
Whenever we take (V, q) to be explicitly Rn with the standard metric, we will write
Cl(n) for the Clifford algebra. It will be useful to consider as well the complexi-
fication of the Clifford algebra, which will be denoted by Cl(V, q) := Cl(V, q)⊗C.

Firstly, let us consider

Cl×(V, q) = {ϕ ∈ Cl(V, q) : ∃ϕ−1 such that ϕϕ−1 = ϕ−1ϕ = 1},

which has a group structure. This group is, in fact, a Lie group of dimension 2n,
and its Lie algebra can be identified with Cl(V, q), with the Lie bracket being the
commutator [x, y] = xy− yx. Furthermore, analogously to matrix Lie groups, the
adjoint representation on the Lie algebra is given by conjugation.

We can now define the Spin group as a subgroup of Cl×(V, q).

Definition 1.1.2. Given (V, q), we define the Spin group as

Spin(V, q) := {v1v2 · · · v2k ∈ Cl(V, q) : vi ∈ V and q(vi) = 1}.

That is, it is the subgroup of Cl×(V, q) formed by products of an even amount of
unit vectors. It forms a group, since multiplying two elements clearly gives another
element of the group, and the element v2k · · · v2v1 is the inverse of v1v2 · · · v2k.
Again, if (V, q) is taken to be explicitly Rn with the standard metric, then we
denote the Spin group by Spin(n).

The Spin group acts on Cl(V, q) through the adjoint representation, and can
be shown that this action actually preserves V ⊂ Cl(V, q). This gives a group
homomorphism ξ : Spin(V, q) → SO(V, q). It turns out that this is actually a
covering.

Theorem 1.1.3. Given (V, q), the map ξ : Spin(V, q)→ SO(V, q) is a 2-to-1 cov-
ering. Furthermore, if the dimension of V is greater than 1, then this covering is
not trivial, and if it is greater than 2, this is the universal cover. In particular, the
Lie algebras of both groups are isomorphic (and from now on will be identified).
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Note that, if we have a representation of SO(V, q), we can pull it back to a
representation of Spin(V, q). However, if we have a representation of Cl(V, q), then
we can restrict it to a representation of Spin(V, q) which will not factor through
SO(V, q).

There are, in particular, some preferred representations.
Let us first see what the Clifford algebras look like. It turns out that both

Cl(n) and Cl(n) can be easily identified with matrix algebras over R, C or H. We
are particularly interested in the complexified Clifford algebras.

Proposition 1.1.4. The complexified Clifford algebras can be written as

Cl(n) = C(2k) if n = 2k,

Cl(n) = C(2k)⊕ C(2k) if n = 2k + 1,

where C(2k) is the algebra of 2k × 2k matrices over the complex numbers.

In view of this result, we can see that there are some obvious representations:
for n = 2k, the representation on C2k , and for n = 2k+1 the two representations on
C2k given by acting with each of the two components. It turns out that these are,
in fact, the only irreducible (real or complex) representations up to isomorphism.
Since Clifford algebra representations split as sums of irreducible representations,
these are going to be the most important representations.

Now, if we restrict our representation to Spin(n) ⊂ Cl(n), we obtain repres-
entations of the Spin group. In the even case, the representation splits into two
inequivalent irreducible representations, and in the odd case, the resulting rep-
resentation is irreducible and independent of the choice of representations of the
Clifford algebra. We denote these representations by ∆C

2k = ∆C+
2k ⊕∆C−

2k and ∆C
2k+1.

We can establish some further properties of these representations. In particular,
we would be interested in knowing how vectors in the original n-dimensional vector
space act in these representations.

In the case n = 2k, the space of the representation is C2k . As mentioned before,
it can be split as C2k = C2k−1 ⊕ C2k−1

. We can then find a basis of R2k such that

the first 2k − 1 vectors act as

(
0 σi
σi 0

)
, where the σi are the actions of a basis

of Rk−1 on the space C2k−1
given by the irreducible Clifford action of the case

2k − 1, and where the last vector acts like

(
0 −1
1 0

)
. In particular, the action of

the elements of R2k interchanges the spaces of the representations ∆C+
2k and ∆C−

2k .

In the case n = 2k+1, the space of the representation is C2k , like in the case of
dimension 2k. Then, we can choose a basis of R2k+1 such that the first 2k vectors
act as a basis of R2k act in the corresponding representation, and where the last

vector acts as

(
i 0
0 −i

)
, following the splitting of the previous case.
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1.1.2 Spin and Spinor Bundles

In a similar way to how we developed a theory of Clifford algebras and Spin groups
over a vector space with a metric, we can try to develop it for a Riemannian vector
bundle E over a manifold M (for example, the tangent bundle of a Riemannian
manifold).

If we have such a vector bundle we have can construct its Clifford bundle
analogously of how we did before.

Definition 1.1.5. Given a vector bundle E with a metric g over a manifold M ,
we define the Clifford bundle of E as

Cl(E) = T (E)/Ig(E),

where T (E) is the tensor bundle of E and Ig(E) is the bundle of ideals which
generated at each fibre by elements of the form v ⊗ v + g(v).

Note that this bundle is isomorphic, as a vector bundle, to
∧•(E).

We can describe this bundle in an alternative way using the theory of associ-
ated bundles. Suppose that E is orientable, and let P be its associated principal
SO(n)-bundle. Then, since any orthogonal automorphism of Rn extends to an
automorphism of Cl(n), we can form the associated bundle through the action of
SO(n) on Cl(n). This will be precisely Cl(E).

Now we want to construct the analogous to the Spin group, which should be
a principal Spin(n)-bundle. Note, however, that simply restricting the Clifford
bundle to its Spin group will not always give a principal Spin(n) structure, since
the Clifford bundle is not itself a principal bundle.

The proper notion of the Spin bundle of E will be, rather, a lifting of the SO(n)
structure.

Definition 1.1.6. Let E be an orientable Riemannian vector bundle, and let P
be its associated principal SO(n)-bundle. We say Q is a spin structure of E if it
is a principal Spin(n)-bundle and has a 2-to-1 covering of P which is equivariant
through the covering of SO(n) by Spin(n).

Such a structure does not always exist, and when it does, it is not necessarily
unique. We have the following characterisation.

Theorem 1.1.7. An orientable Riemannian vector bundle E has a Spin structure
if and only if its second Stiefel-Whitney class is zero. Furthermore, in this case,
the possible Spin structures are in one to one correspondence with elements of
H1(M ;Z2).
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Hence, for example, there exists a unique spin structure on the 2-sphere or on
R3 with any finite amount of points removed (these spaces will come up in later
chapters).

These spin structures can be used to construct bundles.

Definition 1.1.8. Let ρ : Cl(n) → End(W ) be a representation of a Clifford
algebra on a vector spaceW . If we have a Spin(n) structureQ→M , the associated
real spinor bundle is defined as S(E) = Q ×ρ W over M , where ρ is taken to be
the restriction to Spin(n) ⊂ Cl(n).

If ρ : Cl(n) → End(W ) is a complex representation of the complex Clifford
algebra, then the associated bundle is a complex spinor bundle.

For example, one may construct a complex spinor bundle using an irreducible
representation of the Clifford algebra, as described above. This means that the
spinor bundle will be associated through the representation ∆C

n . If n is even, since
this representation splits, it will give a splitting of the vector bundle into the direct
sum of two bundles, sometimes called the positive and negative spinor bundles.

One of the main features of these spinor bundles is that the representation of
the Clifford algebra on the vector space gives a fibre-wise representation of the
Clifford bundle on the spinor bundle. This fact is easy to see by defining the
Clifford bundle as an associated bundle of the Spin bundle (through the adjoint
action).

Proposition 1.1.9. In the conditions above, there exists an action of each fibre
of the Clifford bundle Cl(E) on each fibre of the spinor bundle S(E). This also
holds for complex spinor bundles.

In particular, each element of the original bundle E gives an automorphism of
the corresponding fibre of S(E), which we call Clifford multiplication.

Furthermore, if our original bundle E had a connection (compatible with the
metric), we can use it to construct a connection on the spinor bundle.

In order to do this, consider the connection 1-form ω ∈ Ω(P ; so(n)). Since Q
covers P , we can pull back the 1-form to get a 1-form of the principal Spin(n)-
bundle Q, with values in spin(n) ∼= so(n), which will satisfy the appropriate condi-
tions to define a connection on Q. Since S(E) is an associated bundle to Q, we get
a connection on S(E). In our case, we will assume that the elements of Spin(n)
(and indeed any unit vector of Cl(n)) act by isometries on W (this can always be
achieved by an appropriate choice of metric on W ).

We also assume that ρ is faithful, we can embed Q in the principal SO(m)-
bundle of of the spinor bundle, using the homomorphism Spin(n)→ SO(m) (choos-
ing a basis for W ).

Note that this provides another way to construct the spin connection: this gives
a map spin(n)→ so(m), which allows us to extend the 1-form to a so(W )-valued
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1-form on the principal SO(m)-bundle of S(E), which will, once again, satisfy the
appropriate conditions to be a connection 1-form.

This connection (which will be compatible with the metric of S(E)) can be
expressed locally in terms of the connection 1-form of the original connection. In
order to do that, first pick a local orthonormal frame e1, . . . , en of E. This gives a
local section of P , which lifts (in two different ways) to a section of Q. Through
the embedding of Q in the principal SO(m)-bundle of S(E), we obtain a section
of the latter, which provides an orthonormal frame σ1, . . . , σm of S(E) (note that
this frame will depend on the choice of lifting only by a sign).

Now, let ω = ω j
i be the local connection 1-form (so that ∇Eei = ω j

i ej). With
respect to the local frame σ1, . . . , σm, the connection 1-form will be

ωS =
1

4

n∑
i,j=1

ω j
i eiej, (Eq. 1.1)

where eiej represents Clifford multiplication by the corresponding vectors.

1.1.3 Dirac Operators

One of the main motivations for spin geometry and spinor bundles is that we can
define on them a certain kind of operators which have very interesting properties.

Definition 1.1.10. Let S be a bundle over a Riemannian manifold M with a
(fibrewise) action of the Clifford bundle Cl(TM). Suppose that S has a metric
such that the action by unit tangent vectors is an isometry, and suppose that it
has a connection ∇S compatible with the metric. The Dirac operator on S is the
operator D : Γ(S)→ Γ(S) defined locally by

D(s) =
n∑
i=1

ei · ∇S
ei
s,

where e1, . . . , en is a local orthonormal frame of vector fields and s ∈ Γ(S).

An important case is that in which the bundle is the spinor bundle constructed
from a spin structure of the tangent bundle through the irreducible action described
above, and the connection on it is the connection induced by the Levi-Civita
connection on the tangent bundle. From now on, we will use /S to refer to this
bundle (or /SM if the manifold M needs to be specified) and we will use /D to refer
to its Dirac operator. Therefore, /S is a complex vector bundle of (complex) rank
2n, where n is the (real) dimension of the manifold. Furthermore, if n is even,
we will be able to write it in terms of the positive and negative spinor bundles
/S = /S

+⊕ /S−. In this case, /D can be split into two operators, /D
+

: Γ(/S
+

)→ Γ(/S
−

)
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and /D
−

: Γ(/S
−

) → Γ(/S
+

), since the connection is compatible with the splitting
and Clifford multiplication interchanges the two subbundles. Note that we will
often refer to these bundles as the spinor bundles, although the are not necessarily
unique (see Theorem 1.1.7).

Another case we will want to consider is the following: suppose that we have a
bundle E →M over our manifold, with a metric and a compatible connection A.
Then, we can consider the bundle /S ⊗E, which will have the product connection.
We will refer to the resulting Dirac operator as the coupled Dirac operator and we
will denote it by /DA.

We will now go through some properties of these Dirac operators which will
be useful in following chapters. Some of the more general results can be consulted
in the mentioned references, and we will only show the computations for the less
common ones.

Firstly, note that it follows from the definition and from the properties of
connections that, using the notation of Definition 1.1.10, if f is a smooth function,
we have the product rule

D(fs) = grad(f) · s+ fD(s). (Eq. 1.2)

The Dirac operator is very closely related to the Laplacian. This relationship
is specified in the following theorem.

Theorem 1.1.11 (Weitzenböck formula). In the above conditions,

D2 = (∇S)∗∇S +R,

where (∇S)∗∇S is the connection Laplacian,

R =
1

2

n∑
i,j=1

ei · ej ·RS(ei, ej),

and RS is the curvature of the connection ∇S.

Another important property is that these Dirac operators will be formally self-
adjoint with respect to the L2 metric (using the metric on the bundle and the
Riemannian structure).

In future chapters we will be interested in the following case.

Proposition 1.1.12. Let (N, h) be a 2n-dimensional Riemannian manifold and
/SN → N its spinor bundle. Consider the manifold M = N × R with the metric
g = e2ϕ(t)h + dt2, where t is the coordinate on the R factor and ϕ : R → R is a
smooth function. Then,

/DMs = e−ϕ /DNs+
∂

∂t
·
(
∂s

∂t
+ nϕ′s

)
, (Eq. 1.3)
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for s ∈ Γ(/SM), where /SM is identified with the pullback of /SN through the projec-
tion in order to apply /DN , and where ∂

∂t
· indicates Clifford multiplication by the

vector field in the direction of the coordinate t.

Proof. The identification between the pullback of /SN and /SM can be seen through
the construction of the spinor bundles, since we can construct the spin bundle of
M by taking the pullback of a spin bundle on N and taking the associated bundle
using the action of Spin(2n) on Spin(2n+ 1) given by left multiplication (since it
is a subgroup). This will give a spin bundle on M , and the corresponding spinor
bundle will be isomorphic (as a vector bundle) to the pullback of /SN , since the
irreducible representations of Cl(2n) and Cl(2n+ 1) are on the same vector space.
Furthermore, vectors orthogonal to ∂

∂t
will act in the same way.

Now, let f1, . . . , f2n be local orthonormal vector fields on N . Then, the Levi-
Civita connection with respect to h will be give by local 1-forms θ ji , with 1 ≤
i, j ≤ 2n, such that ∇Nfi = θ ji fj. We denote θ j

ki = θ ji (fk).
The vector fields f1, . . . , f2n can also be though at vector fields on M in the

direction of N , and by setting ei = e−ϕfi, for 1 ≤ i ≤ 2n and letting e0 be the
vector field in the direction of t, we get a local basis of orthonormal vectors on M .
Then, the Levi-Civita connection with respect to g will have the form∇Mei = ω j

i ej
for some local 1-forms ω j

i , with 0 ≤ i, j ≤ 2n. Analogously to before, we write
ω j
ki = ω j

i (ek).
Some elementary and not too enlightening computations will tell us that

ω j
ki =


e−ϕθ j

ki if i, j, k 6= 0
ϕ′δkj if i = 0 and j, k 6= 0
−ϕ′δki if j = 0 and i, k 6= 0
0 otherwise.

Note, in particular, that ω j
0i = ω 0

k0 = 0.
We note, also, that Clifford multiplication in by fi in /SN is the same as Clifford

multiplication by ei in /SM (under the identification).
If σ1, . . . , σm is the local orthonormal basis of /SM (and /SN) corresponding to

e1, . . . , e2n (and f1, . . . , f2n), we can compute the Dirac operator using (Eq. 1.1).
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We have

/DM(σ`) =
2n∑
k=0

ek · ∇/SM
ek
σ`

=
2n∑
k=0

ek · ωS(ek)σ`

=
1

4

2n∑
k=0

ek ·

(
2n∑
i,j=0

ω j
ki ei · ej · σ`

)

=
1

4

2n∑
k=1

ek ·

(
2n∑
i,j=1

ω j
ki ei · ej · σ`

)

+
1

4

2n∑
k=1

ek ·

(
2n∑
j=1

ω j
k0 e0 · ej · σ`

)
+

1

4

2n∑
k=1

ek ·

(
2n∑
i=1

ω 0
ki ei · e0 · σ`

)

=
1

4
e−ϕ

2n∑
k=1

fk ·

(
2n∑
i,j=1

θ j
ki fi · fj · σ`

)

+
1

4
ϕ′

(
2n∑
k=1

ek · e0 · ek · σ` −
2n∑
k=1

ek · ek · e0 · σ`

)
=e−ϕ /DN(σ`) + nϕ′σ`,

which is exactly (Eq. 1.3) for elements in the basis. Therefore, it only remains to
check that the operator /DM defined in (Eq. 1.3) satisfies the appropriate product
rule (Eq. 1.2). For that, let s ∈ Γ(/SM) and f ∈ C∞(R). Then,

/DM(fs) =e−ϕ /DN(fs) +
∂

∂t
·
(
∂fs

∂t
+ nϕ′fs

)
=e−ϕ grad(N,h)(f) · s+ e−ϕf /DN(s) +

∂f

∂t
e0 · s+ fe0 · s+ nϕ′fs

=

(
e−ϕ grad(N,h)(f) +

∂f

∂t
e0

)
· s+ f( /DN(s) + nϕ′s)

= gradg(f) · s+ f /DM(s),

as we wanted (note that, when using the product rule for /DN , we would get Clifford
multiplication of the gradient of f with respect to h (which is tangent to the N
component and might depend on t), but through the identification with /SM , this
is the same as Clifford multiplication by part of the gradient with respect to g
which is tangent to the N component multiplied by e−ϕ).
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We can write this in a slightly nicer way by considering the relationship between
the Clifford algebra representations for 2n and 2n+ 1.

Corollary 1.1.13. In the conditions above, we have

/DM =

(
i
(
∂
∂t

+ nϕ′
)

e−ϕ /D
−
N

e−ϕ /D
+
N −i

(
∂
∂t

+ nϕ′
)) .

Proof. This follows from Proposition 1.1.12 and the discussion above about the
irreducible representations of Clifford algebras.

We conclude this section by recalling the special case of the spin Dirac operator
on a spin Kähler manifold. See [Fri00, §3.4] for more details. It was observed by
Hitchin in [Hit74] that a Kähler manifold is spin if and only if the canonical bundle
admits a square root (and in fact there is a one-to-one correspondence between spin
structures and holomorphic square roots). In this setting we have the following
theorem.

Theorem 1.1.14. Let M be a Kähler manifold of dimension dimCM = n ad-
mitting a holomorphic square root of KM , and let L → M any such holomorphic
square root. Then with respect to the corresponding spin structure, there is an
isomorphism

/S ∼= (
∧

0,0 ⊕
∧

0,1 ⊕ · · · ⊕
∧

0,n)⊗ L,

with the splitting /S = /S
+ ⊕ /S

−
corresponding to

/S
+ ∼=

∧
0,even ⊗ L, /S

− ∼=
∧

0,odd ⊗ L.

Furthermore the spin Dirac operator on /S is

/D =
√

2(∂ + ∂
∗
).

Notice that the factor of
√

2 agrees with the Kähler identity that ∂
2

= 2∆∂ =
∆d.

This result may be extended to the case of coupled Dirac operators. In particu-
lar, if E is a Hermitian holomorphic vector bundle over M with Chern connection
∇ and S := /S ⊗ E is a Dirac bundle with coupled spin connection ∇S, then
Theorem 1.1.14 becomes the following.

Theorem 1.1.15. If D is the coupled Dirac operator on S = /S⊗E defined by the
coupled spin connection ∇S coming from the Chern connection on E → M , then
with respect to the splitting

S ∼= (
∧

0,0 ⊕
∧

0,1 ⊕ · · · ⊕
∧

0,n)⊗ L⊗ E
∼= (
∧

0,0(E)⊕
∧

0,1(E)⊕ · · · ⊕
∧

0,n(E))⊗ L,
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we have the corresponding splitting S = S+ ⊕ S− with

S+ ∼=
∧

0,even(E)⊗ L, S− ∼=
∧

0,odd(E)⊗ L,

and
D =

√
2(∂EL + ∂

∗
EL)

where ∂EL = ∇0,1 is the Dolbeault operator on E ⊗ L.

1.2 Kähler and Hyper-Kähler Manifolds

Recall the definition of a Kähler manifold.

Definition 1.2.1. A Kähler manifold is a triple (M, g, I) where (M, g) is a Rieman-
nian manifold, and I is an integrable almost-complex structure on M such that I
is orthogonal with respect to g, and if one defines

ω(X, Y ) = g(IX, Y )

then the 2-form ω is closed.

The condition that dω = 0 above is called the Kähler condition. Kähler man-
ifolds are Riemannian complex manifolds such that the two structures are com-
patible in the right sense. Namely, there is a list of equivalent conditions to the
Kähler condition, which justify this statement.

Proposition 1.2.2. Let M be a complex manifold with Riemannian metric g,
associated integrable almost-complex structure I, and Levi-Civita connection ∇.
Then the following are equivalent:

1. h = g + iω is a Kähler metric,

2. dω = 0,

3. ∇I = 0,

4. the Chern connection of the Hermitian metric h := g + iω on TM agrees
with the Levi-Civita connection ∇,

5. in terms of local holomorphic coordinates, we have

∂gjk̄
∂z`

=
∂g`k̄
∂zj

,

6. for each point p ∈ M there is a smooth real function F in a neighbourhood
of p such that ω = i∂∂F , and F is called the Kähler potential, and

13



7. for each point p ∈ M there are holomorphic coordinates centred at p such
that g(z) = 1 +O(|z|2).

Kähler manifolds have many nice properties that general complex manifolds do
not have, such as a Hodge decomposition of their complex de Rham cohomology
into Dolbeault components. See [WGP80], [GH78], or [Bal06] for more details.

Notice that by the above proposition, for a Kähler manifold (M, g, I) we have

∇I = 0, ∇g = 0

where∇ is the Levi-Civita connection. Combining these two identities tells us that
the holonomy of the Levi-Civita connection on a Kähler manifold will preserve both
the complex and Riemannian structures. Indeed we have

Hol(g) ⊆ GL(n,C) ∩O(2n) = U(n)

where n is the complex dimension of M . The converse is also true.

Theorem 1.2.3. A manifold (M, g) is Kähler if and only if Hol(g) ⊆ U(n).

Kähler manifolds appear as one part of Berger’s classification of Riemannian
holonomy groups. The classification includes several other subgroups of GL(2n,R).
For example, if we have Hol(g) ⊆ SU(n) = U(n) ∩ SL(n,C) then M is Calabi-
Yau (in fact one usually requires compactness in the definition of Calabi-Yau
manifolds). If further we have

Hol(g) ⊆ Sp(m) = SU(n) ∩ Sp(n,C),

where n = 2m, then M is hyper-Kähler. The above expression for Sp(m) corres-
ponds to the Levi-Civita connection preserving a holomorphic symplectic form on
M , but using the equality

Sp(m) = SU(n) ∩ Sp(n,C) = O(2n) ∩GL(m,H)

we see that a hyper-Kähler structure implies that the Levi-Civita connection pre-
serves a representation of the quaternions on the tangent bundle of M .

This gives an alternative characterisation of hyper-Kähler manifolds, which we
take as the definition.

Definition 1.2.4 (Hyper-Kähler Manifold). A hyper-Kähler manifold is a quin-
tuple (M, g, I, J,K) where (M, g) is a Riemannian manifold, and I, J, and K are
three integrable almost-complex structures on M , each orthogonal for g, such that

I2 = J2 = K2 = IJK = −1.

14



Notice that the above definitions require that the dimension of M be a multiple
of four. The first example of a hyper-Kähler manifold is therefore H itself. Indeed
under the identification H = C2 = R4 we have the standard Riemannian metric

g = dx2
1 + dy2

1 + dx2
2 + dy2

2

with three compatible almost-complex structures coming from writing a vector as
x1 + iy1 + jx2 + ky2, and multiplying by i, j, and k respectively. From the hyper-
Kähler structure on H we can obtain a larger class of flat hyper-Kähler manifolds
simply by taking the tensor product with a fixed vector space.

In particular, let G be a Lie group admitting a bi-invariant metric on its Lie
algebra g, say B. Let M = g ⊗ H. Then M admits a hyper-Kähler structure by
combining the three Kähler forms on H with the bi-invariant metric on g. Such a
flat example of a hyper-Kähler manifold comes with an action of G by the adjoint
action in the first factor, and bi-invariance implies that this action preserves the
hyper-Kähler structure. We will see in the next section how this allows one to
construct many examples of interesting hyper-Kähler manifolds as quotients of
flat hyper-Kähler manifolds.

1.3 Hyper-Kähler Quotients

At the end of the previous section we saw examples of flat hyper-Kähler manifolds.
One way to obtain more interesting examples is by taking quotients. Given a sym-
plectic manifold (M,ω), there is a well-developed theory of symplectic reduction.
Namely, if a group G acts on (M,ω) preserving the symplectic form in such a way
that a moment map µ : M → g∗ exists, where µ is equivariant (using the co-adjoint
action on g∗) and satisfies

d〈µ,X〉 = −ιX#ω,

for every X ∈ g, then
Mred := µ−1(0)/G

inherits a symplectic structure, with a form ωred satisfying π∗ωred = ι∗ω for
ι : µ−1(0) ↪→ M and π : µ−1(0) → Mred. This is the Marsden-Weinstein quotient
of M by G.

When M has a compatible complex structure, that is, when M is Kähler, and
whenG acts holomorphically, the quotientMred will also inherit a Kähler structure.
There are many interesting examples of Kähler manifolds constructed in this way.
For example the action of S1 on Cn+1 admits a moment map µ(z) = 1

2
|z|2− 1

2
, and

the Kähler reduction µ−1(0)/S1 = S2n+1/S1 is CPn with the Fubini-Study Kähler
form.
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When M is hyper-Kähler, under suitable assumptions we can extend this the-
ory. Namely, suppose a group G acts on M preserving the hyper-Kähler structure,
in the sense that G acts holomorphically with respect to I, J , and K, and admits
a moment map with respect to each of the three Kähler forms ωI , ωJ , and ωK .
Then one can build a hyper-Kähler moment map µ : M → g∗ ⊗ R3 defined by

µ = (µI , µJ , µK).

Assuming 0 is a regular value and G acts freely on µ−1(0), there is a hyper-Kähler
reduction

M///G := µ−1(0)/G

of M by G, with hyper-Kähler structure inherited as in the case of regular sym-
plectic reduction. In particular we have an inclusion ι : µ−1(0) ↪→ M and a pro-
jection π : µ−1(0) → M///G, and again ι∗ωI = π∗ωI,red and similarly for J and
K.

Most interesting examples of hyper-Kähler manifolds are obtained by some
kind of hyper-Kähler reduction, often-times infinite-dimensional. We will see two
fundamental examples (and two of the first examples) of this infinite-dimensional
reduction in Chapters 2 and 3, but first we will study a more fundamental finite-
dimensional example.

Recall that M = g ⊗ H admits a flat hyper-Kähler structure when g is the
Lie algebra of a compact real Lie group, and so admits a bi-invariant metric. The
space M is acted upon by G through the adjoint action preserving the quaternionic
structure, and so this action admits a moment map as follows.

Let X ∈ g. Then the fundamental vector field X# is defined by

X#
∣∣
Y

:=
d

dt
(ad(exp(tX))Y )t=0

where Y = Y0 + iY1 + jY2 + kY3 ∈ g⊗H. This is just the derivative of ad, which
is well-known to be given by the Lie bracket itself. Namely

X#
∣∣
Y

= [X, Y0] + i[X, Y1] + j[X, Y2] + k[X, Y3].

If B denotes the bi-invariant metric on g, then the form ωI is given by

ωI(Z,W ) = 〈iZ,W 〉 = −B(Z1,W0) +B(Z0,W1)−B(Z3,W2) +B(Z2,W3)

and so if Z ∈ TY (g⊗H) ∼= g⊗H then

ιX#ωI |Y (Z) = −B([X, Y1], Z0) +B([X, Y0], Z1)−B([X, Y3], Z2) +B([X, Y2], Z3).
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Theorem 1.3.1. The action of G on g⊗H has a moment map µ = (µI , µJ , µK)
given by

µI(T0, T1, T2, T3) = [T0, T1] + [T2, T3],

µJ(T0, T1, T2, T3) = [T0, T2] + [T3, T1],

µK(T0, T1, T2, T3) = [T0, T3] + [T1, T2].

Proof. We will just check µI , the other cases being completely analogous. Observe
we have

µI(Y + sZ) = [Y0 + sZ0, Y1 + sZ1] + [Y2 + sZ2, Y3 + sZ3],

d

ds

∣∣∣∣
s=0

µI(Y + sZ) = [Y0, Z1] + [Z0, Y1] + [Z2, Y3] + [Y2, Z3].

Taking an inner product with X and using bi-invariance of B, we obtain precisely
ιX#ωI |Y (Z) as computed above, showing that

d〈µI , X〉 = ιX#ωI

for all X ∈ g, as desired.

Most examples of hyper-Kähler constructions known are some variation of these
moment map equations, such as coadjoint orbits, Higgs moduli spaces, monopole
moduli spaces, and Nahm’s equations. For an exposition of such examples, see the
article [Hit92] of Hitchin. We will point out the most immediate and important
example of this phenomenon now, and mention some others in passing later.

Remark 1.3.2. If we replace Ti by ∇i where ∇ is a connection arising from a
principal G-bundle over R4 then the resulting moment map equations are

F01 = F32,

F02 = F13,

F03 = F21,

which are just the anti-self dual Yang-Mills equations viewed as a single equation
µ = 0. See Section 3.1 for more discussion of this example.
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Chapter 2

Magnetic Monopoles

2.1 Yang-Mills-Higgs Equations

Let M be a 3-dimensional Riemannian manifold, G a semisimple compact Lie
group, P → M a principal G-bundle, and let A ⊂ Ω1(P ; g) denote the space of
connections on P .

Definition 2.1.1. The Yang-Mills-Higgs functional is

YMH : A× Γ(ad(P ))→ R, YMH(A,Φ) :=

∫
M

|FA|2 + |dAΦ|2,

where the inner product on g is given by minus the Killing form.

Proposition 2.1.2. The Euler-Lagrange equations for YMH read:

dA ? FA = −[Φ, dAΦ],

dA ? dAΦ = 0

When (A,Φ) solves the equations above, Φ is referred to as the Higgs field.

Remark 2.1.3. Note that, if M be compact, there cannot be non trivial solutions,
since, integrating by parts,∫

M

|dAΦ|2 =

∫
M

(dA ? dAΦ,Φ) = 0.

Thus the Higgs field is covariantly constant and the connection must simply satisfy
the usual Yang-Mills equations. Hence, one should consider M non compact.

Henceforth, we shall work with M = R3 and M = R3 \ P , where P is some
finite set of points.
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We shall focus on solutions subject to the further conditions:

YMH(A,Φ) <∞, |Φ(x)| → 1 as r := |x| → ∞ (Eq. 2.1)

The second of these is referred to as the Prasad-Sommerfield limit. It is shown in
[JT80] that these conditions imply

|FA| = O(r−2),

|dAΦ| = O(r−2),∣∣∣∣∂Φ

∂Ω

∣∣∣∣ = O(r−2), and

|Φ(x)| = 1 +
m

r
+O(r−2),

where m ∈ R is some constant.

2.2 SU(2) Monopoles

Firstly, we shall look at the simplest example of M = R3 and G = SU(2).
To start off, we make some remarks about the asymptotic behaviour of the

Higgs field. Given a solution (A,Φ) to the Yang-Mills-Higgs equations satisfying
the conditions above, fix some small ε > 0 and let R > 0 be large enough so
that, for any |x| ≥ R, |Φ(x)| has two distinct eigenvalues, say λ1, λ2 which satisfy
|i − λ1| < ε and |i + λ2| < ε. The values of λ1, λ2 may of course depend on x,
but the point is that one may speak of the eigenvalue near ±i. The reason this
is possible is because any element of su(2) with unit length squares to −1, so its
eigenvalues are ±i, and it is also tracefree, so that it have distinct eigenvalues.

Granted this, define a line bundle LΦ → SR, where the fibre over x consists of
the eigenspace of Φ(x) with eigenvalue near i. Note that, even though the bundle
P → R3 is trivial, the line bundle LΦ need not be trivial. Let k ∈ Z ∼= H2(SR)
denote the degree of LΦ. It can be shown that k is independent of R.

Definition 2.2.1. The integer k is called magnetic charge of the solution (A,Φ).

Remark 2.2.2. The charge k can be computed simply as the degree of the map
|Φ|−1Φ : SR → S2, where R > 0 is large and S2 ⊂ su(2) is the unit sphere.

For large R, let BR be the ball of radius R and consider:∫
BR

|FA|2 + |dAΦ|2 =

∫
BR

|FA − ?dAΦ|2 + 2(?dAΦ, FA)
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Where (·, ·) denotes the combination of the inner product on su(2) with the inner
product of forms. Now:

d(Φ, FA) = (dAΦ, FA)− (Φ, dAFA) = (dAΦ, FA) = ?(?dAΦ, FA)

Hence, by Stokes: ∫
BR

(?dAΦ, FA) =

∫
SR

(Φ, FA)

Meanwhile, one can use Chern-Weil theory to show that:

lim
R→∞

∫
SR

(Φ, FA) = 4πk

Hence, if we add the assumption that k ≥ 0:

YMH(A,Φ) =

∫
R3

|FA − ?dAΦ|2 + 8πk ≥ 8πk

Thus, the functional is minimized whenever FA = ?dAΦ.

Definition 2.2.3. Let M be a 3-manifold, P → M be a principal G-bundle, A
a connection on P and Φ ∈ Γ(adP ). The equation FA = ?dAΦ is called the
Bogomolny equation.

Definition 2.2.4. In the case M = R3 and G = SU(2), a solution of the Bogo-
molny equation subject to k ≥ 0, where k is the magnetic charge, and the Prasad-
Sommerfield boundary conditions above is referred to as an SU(2) magnetic mono-
pole of charge k.

Remark 2.2.5. The constant m in the asymptotic behaviour of Φ turns out to
only depend on the charge k. Indeed, m = −k

2
.

Example 2.2.6. It is possible to write down explicit solutions which have a rel-
atively simple form. For example, the pair (A,Φ) with

A =
∑
i,j,`

(
|x|

sinh |x|
− 1

)
εij`

x`
|x|

ei√
2
⊗ dxj

Φ =
∑
i

(|x| coth |x| − 1)
xi
|x|2

ei√
2

is a monopole of charge 1, where ei denote the Pauli matrices. Note it has an
SO(3) symmetry. This solution is called the Prasad-Sommerfield monopole; see
[TM79] for a derivation. It can be shown that this is the only monopole of charge
1 up to translation and gauge equivalence.
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Remark 2.2.7. It is worth noting that a solution (A,Φ) to the Bogomolny equa-
tion defines via:

Φdx0 + A1dx1 + A2dx2 + A3dx3

an ASD connection on the trivial SU(2)-bundle over R4; conversely, any ASD
connection on the trivial bundle which be constant on some direction defines a
monopole. This “dimensional reduction” is another way to think of monopoles and
it is how Taubes proves the necessary analytical results in [Tau83]. See Section 3.2
for more discussion of this phenomenon.

2.3 U(1) Monopoles

Consider, now, the case of G = U(1). Notice that, if M = R3, then, since U(1) is
abelian, the Yang-Mills-Higgs equations imply dA ? dAΦ = d ? dΦ = 0. Together
with the Prasad-Sommerfield limit, this means that Φ is a bounded harmonic
function, and hence it is constant. Therefore, solutions on R3 are uninteresting,
and consequently we turn our attention to M = R3 \ P , for P ⊂ R3 a finite set of
points. Notice that, in this case, the bundle P →M need not be trivial.

There is a notion of magnetic charge here as well, and the definition is analog-
ous: select some large ball BR ⊂ R3 so as to have P ⊂ BR. Consider the restriction
P |M\BR

, and define the magnetic charge k ∈ Z ∼= H2(R3 \BR) to be the degree of
this line bundle. The Bogomolny equation has the same relevance here as it does
in the SU(2) case, providing a minimum of the Yang-Mills-Higgs action; the proof
is similar. At this point it is worth noting that the concept of magnetic charge
can be generalised to the case of a general Lie group G at the expense of much
complexity. As, in this text, we concentrate only on SU(2) and U(1) monopoles,
it was decided to leave out the general definition.

Definition 2.3.1. Solutions to the Bogomolny equation satisfying the conditions
(Eq. 2.1) on M = R3 \ P are referred to as singular U(1) monopoles .

Remark 2.3.2. Since U(1) is abelian, Φ is simply i times a real valued function
on the base manifold; furthermore, the Bogomolny equation reduces to FA = ?dΦ.
Moreover, upstairs in the principal bundle P , one may write FA = dA, and hence
one has dA = ?dΦ.

Remark 2.3.3. Due to the Bianchi identity, d ? dΦ = 0; that is to say that Φ is
harmonic. Whence, it follows that Φ must have the form:

Φ(x) = i

(
1 +

∑
p∈P

kp
2|x− p|

)
(Eq. 2.2)

where kp ∈ R are constants. One can easily see, by use of Chern-Weil theory, that
the kp must be integers.
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2.3.1 Dirac Monopole

The primordial magnetic monopole is the one discovered, albeit not quite as we
shall describe, by Dirac. We now describe it in detail. To set the stage, fix an
integer k ∈ Z and consider the Higgs field:

Φ : R3 \ 0→ iR, Φ(x) = i

(
1− k

2|x|

)
we seek a principal U(1)-bundle P → R3 \0 equipped with connection A satisfying
the Bogomolny equation dA = ?dΦ.

A few basic remarks are in line before we determine what P and A are going
to be. Identify R3 \ 0 with S2 × (0,∞) and let π : R3 → S2 be the evident
projection; this is a deformation retraction; hence, the complex line bundles over
R3 are precisely π∗O(`), for ` ∈ Z. In what follows, I shall use the usual chart
with domain {[z : 1] ∈ CP1 = S2 | z ∈ C}; the same statements can be checked
analogously on {[1 : z] ∈ S2 | z ∈ C}. Consider, firstly, the tautological bundle
O(−1)→ S2; this is a holomorphic line bundle; moreover, it has a preferred metric
h coming from the embedding O(−1) ↪→ S2 × C2; explicitly:

h ∈ Γ(O(−1)⊗O(1)) = Γ(S2 × C), h([1 : z]) = 1 + |z|2

therefore, let C denote the associated Chern connection; the familiar formula for
line bundles gives:

C̃|[1:z] = (∂ log h)|[1:z] =
z̄dz

1 + |z|2

where C̃ denotes the connection matrix; thus, the curvature is:

FC = ∂̄∂ log h =
dz̄ ∧ dz

(1 + |z|2)2

Letting α ∈ Ω2(S2) denote the usual Euclidean area form, if one care to check,
FC = − i

2
α. Now, let P̂ → S2 be the principal U(1)-bundle to which O(−1) is

associated via the standard representation of U(1) on C; that is g · z = gz; this is
simply the Hopf fibration. One shows that O(`) is associated to P̂ as well for any
` ∈ Z; in this case, one uses the representation g · z = g−`z. The connection C
above can be thought of as a connection form on P̂ ; thus, it defines a connection
on O(`); call it C`; one easily checks that FC`

= −`FC . At last, one pulls back
everything to R3 \ 0 via π, thereby obtaining line bundles π∗O(`) equipped with
connections π∗C`.

Now, we return to the Dirac monopole. Define P → R3\0 to be principal U(1)-
bundle to which π∗O(k) is associated via the standard representation g · z = gz;
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and let A be the connection π∗Ck; we must verify the Bogomolny equation. One
directly verifies that

?dΦ =
ik

2|x|2
(?d|x|) =

ik

2|x|2
|x|2π∗α = −k i

2
π∗α = −kFC = FA

Definition 2.3.4. The pair (A,Φ) thus constructed is called the Dirac monopole
of charge k.

2.3.2 General Case

In the general case, that is over R3 \ P for P ⊂ R3 finite, the Higgs field is as in
(Eq. 2.2). Notice that, due to U(1) being abelian, the Bogmolny equations are
linear in the sense that, locally, it can be written as dÃ = ?dΦ where Ã denotes the
connection matrix. This allows one to construct the bundle P and the connection
A by using the Dirac monopole as follows. Let Sp be the homology class generated
by a sphere of small radius centered at p ∈ P ; hence, H2(R3\P ;Z) = 〈Sp | p ∈ P〉Z;
define the principal U(1)-bundle P to be the unique one such that the complex
line bundle associated via the standard representation g · z = gz has first Chern
class

∑
p∈P kpSp. Now, let (Ap,Φp) be the Dirac monopole centered at p ∈ P ; fix

some atlas of U of R3 \ P over which P and each of the principal bundles of the
Dirac monopoles tthat rivialise and set:

ÃU =
∑
p∈P

Ãp,U

where U ∈ U, ÃU denotes the connection matrix of A over U and Ãp,U denotes the
connection matrix of Ap over U . By construction, A is a connection and satisfies
the Bogomolny equation.

Definition 2.3.5. The integer kp is called the charge of the monopole at p.

Remark 2.3.6. One can show that the charge k of the monopole as defined above
satisfies k =

∑
p∈P kp.

2.4 Moduli Space of SU(2) Monopoles

We now make a small detour to demonstrate one way in which monopoles relate
to hyper-Kähler geometry; namely, the moduli space of SU(2) monopoles on R3.

First, the following remark is necessary. Let (A′,Φ′) denote the Dirac monopole
of charge k; from it, one can construct an SU(2) monopole over R3 \ 0 by using
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the trivial principal SU(2)-bundle P → R3 \ 0 and setting:

Φ =

(
Φ′ 0
0 Φ̄′

)
, Ã =

(
Ã′ 0
0

¯̃ ′
A

)
where the tilde denotes the connection matrix with respect to the obvious trivial-
isations. When there be no risk of confusion, we refer to (A,Φ) also as the Dirac
monopole. The point to be made here is that, any SU(2)-monopole over R3 be-
haves asymptotically like the Dirac monopole of equal charge. To be more precise:
an SU(2)-monopole over R3, perhaps after a gauge transformation, differs from
the Dirac monopole of equal charge, on the complement of a large ball, by some
(a, φ) ∈ Ω1(R3; su(2))×Ω0(R3; su(2)) such that |a| = |φ| = O(r−2); see [AH88, Ch.
4] for details.

To begin, let Nk denote the moduli space of SU(2) monopoles of charge k ≥ 0;
that is the quotient of the space of all SU(2) monopoles of charge k over R3 by
the action of the gauge group G. It is not obvious even that Nk is a manifold,
but this does turn out to be the case and its dimension is 4k − 1. Consider,
for example the case of charge 1; as remarked above, the Prasad-Sommerfield
monopole is the unique solution up to translation; thus, the moduli space N1 is
isomorphic to R3. Due to its dimension, already, Nk cannot be hyper-Kähler;
hence, if one desires a hyper-Kähler space, Nk must be enlarged. Moreover, the
analytical difficulties encountered favour the definition of this larger space. We
shall provide two definitions of this space, denoted Mk; the first is simpler, the
second is more elegant.

Firstly, note that, for any SU(2) monopole (A,Φ), one can fix the gauge so
that

lim
t→∞

Φ(0, 0, t) =
1√
2

(
i 0
0 −i

)
a Higgs field that satisfies this condition is said to be framed . Define Mk to be the
quotient of the space of SU(2) monopoles (A,Φ) with Φ framed by the action of
the gauge transformations g : R3 → SU(2) satisfying

lim
t→∞

g(0, 0, t) =

(
1 0
0 1

)
The topology on the spaces of monopoles and gauge transformations is that of local
uniform convergence in all derivatives. Taubes proves in [Tau83], by considering
the Hessian of the functional YMH, that Mk is a manifold of dimension 4k; and this
manifold, verily, turns out to be hyperKähler. Now, notice that subgroup U(1) ⊂
SU(2) of diagonal matrices acts on the space of framed Higgs fields (as constant
gauge transformations); this is because the framing is defined so as to make the
value of Φ tend to a diagonal matrix in the limit above; hence, one can check
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that U(1) acts on Mk; this action is free (notice that these gauge transformations
were not allowed when we took the quotient to obtain Mk). If one care to check,
quotienting Mk by this U(1) action recovers Nk; thus, Mk → Nk is a circle bundle.
The manifold Mk turns out to be familiar; Donaldson proved:

Theorem 2.4.1. There is a natural diffeomorphism between Mk and the space of
rational functions CP1 → CP1 of degree k.

Now we shall give the more sophisticated and more useful (at least in what
follows), definition of Mk. Start by defining Vk to be the vector space of pairs
(a, φ) ∈ Ω1(ad(P )) × Ω0(ad(P )) such that |a| = |φ| = O(|x|−2). Secondly, define
Ck to be the space of pairs (A,Φ) ∈ A × Ω0(ad(P )) where Φ has charge k and
(A,Φ) differs, in the complement of some large ball, from the Dirac monopole
(embedded into SU(2) as outlined above) of charge k by some element of Vk.
As remarked, any SU(2) monopole is gauge equivalent to some element of Ck.
Clearly, Ck is an affine space under the action of the vector space Vk. Notice that
the elements of Ck are not required to be monopoles; indeed, let M̃k ⊂ Ck be
the subset of elements which do satisfy the Bogomolny equation. Thirdly, define
G ′ ⊂ G ≡ Γ(Ad(P )) to be the subset of the full gauge group which has as its Lie
algebra the elements X ∈ Ω0(ad(P )) satisfying |X| = O(|x|−1). At last, define
Mk := M̃k/G ′. Notice that the subgroup U(1) ↪→ SU(2) of diagonal elements acts
on Ck via the constant gauge transformations; one does well to notice that the rest
of SU(2) does not act, in this way, on Ck; this action descends to the quotient Mk

essentially because, if g ∈ G ′ and u ∈ G be a constant gauge transformation, then
ugu−1 ∈ G ′; one can prove that quotienting Mk by this U(1) action recovers Nk;
thus, the circle bundle structure Mk → Nk is evident in this definition as well.

Now, we shall define the Riemannian metric on Mk; to do this, we must consider
the linearised Bogomolny equations. Let (A,Φ) be an SU(2) monopole; define
T(A,Φ)Mk ⊂ Vk to be the elements satisfying:

?dAa− dAφ+ [Φ, a] = 0

?dA ? a+ [Φ, φ] = 0
(Eq. 2.3)

The first of these equations is the linearised Bogomolny equation; the second rep-
resents the condition of (a, φ) being “orthogonal to the gauge directions”. As it
turns out, T(A,Φ)Mk is the tangent space to Mk at (A,Φ) and so dimT(A,Φ)Mk = 4k.
The Riemannian metric on Mk is given by the L2-inner product on each T(A,Φ)Mk;
[AH88] show that this metric is complete. Given an SU(2) monopole (A,Φ), note
that Φ itself is an infinitesimal gauge transformation (not square integrable though,
as it does not vanish at ∞); it gives rise to the element (dAΦ, 0) ∈ T(A,Φ)Mk; the
orthogonal complement, in T(A,Φ)Mk, to the span of (dAΦ, 0), is the tangent space
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to p(A,Φ) ∈ Nk where p : Mk → Nk denotes the quotient. If it be of interest,
[Tau83] covers the analytical details.

To define the almost complex structures on Mk, think of a (a, φ) ∈ Vk as a
section of ad(P )⊗H by writing:

φ+ a1I + a2J + a3K

This turns ad(P ) ⊗ H into an H-module bundle; moreover, if one care to check,
equations (Eq. 2.3) are invariant under this H-action; hence, T(A,Φ)Mk also inherits
this H-module structure and thus we obtain the almost complex structures.

The fact that Mk is hyperKähler with respect to these almost complex struc-
tures I, J,K can be seen by exposing the quotient that defines Mk as a hyperKähler
quotient. Verily, the Bogomolny equation suggests the moment map should be:

µ : Ck → Lie (G ′)⊗ R3, (A,Φ) 7→ FA − ?dAΦ

we shall now verify that this is indeed a moment map. Consider the first component
µ1. Equivariance is immediate. What remains is to check that, for any (A,Φ) ∈ Ck,
(a, φ) ∈ Vk, X ∈ Lie (G ′):

−ιX]ω1 ≡ −
〈
I · (a, φ),

d

dt

∣∣∣∣
t=0

exp(tX) · (A,Φ)

〉
=? d

dt

∣∣∣∣
t=0

〈µ1(A+ ta,Φ + tφ), X〉

(Eq. 2.4)
Where 〈·, ·〉 denote the combination of the inner product on H, the invariant inner
product on su(2), and the L2-inner product. Expand the terms on the left hand
side:

I · (a, φ) = φI − a1 + a2K − a3J

And:

d

dt

∣∣∣∣
t=0

exp(tX) · (A,Φ) =[X,Φ] + [X,A]− dX

=[X,Φ] + [X,A1]I + [X,A2]J + [X,A3]K

− (∂x1X)I − (∂x2X)J − (∂x3X)K

Hence:

ι]Xω1 =− 〈a1, [X,Φ]〉+ 〈φ, [X,A1]〉 − 〈a3, [X,A2]〉+ 〈a2, [X,A3]〉
− 〈φ, ∂x1X〉+ 〈a3, ∂x2X〉 − 〈a2, ∂x3X〉

Now, the derivative on the right hand side of (Eq. 2.4) becomes simply the linear-
ised Bogomolny equation; thus, the right hand side of (Eq. 2.4) becomes:

〈∂x2a3 − ∂x3a2 + [A2, a3]− [A3, a2]− ∂x1φ− [A1, ψ] + [Φ, a1], X〉
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A few applications of integration by parts to pass the derivatives to the side of
X and the fact that the inner product on su(2) satisfies 〈[A,B], C〉 = 〈A, [B,C]〉
immediately gives the desired equality. The same argument can be applied to µ2

and µ3.

Remark 2.4.2. One should note the similarity between the derivation of the
moment map above and Theorem 1.3.1.
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Chapter 3

Nahm’s Equations

3.1 Instantons

As seen in Chapter 2, one often obtains interesting gauge-theoretic objects by
considering functionals defined in terms of the curvature of a connection. The
case of magnetic monopoles corresponds to the Yang-Mills-Higgs functional. In
some sense this may be viewed as a special case of the Yang-Mills function in four
dimensions (cf. Remark 2.2.7).

Suppose initially that we have any orientable manifold M with a principal G-
bundle P over it, where G is some compact real Lie group admitting a bi-invariant
inner product. Then a connection A on P has a curvature form FA ∈ Ω2(M, adP ).
Fixing a Riemannian metric g on M , we obtain a norm |FA| ∈ C∞(M) and we
define the Yang-Mills functional by

YM(A) :=

∫
M

|FA|2 dvolg.

Definition 3.1.1. An instanton on P is a critical point of the Yang-Mills func-
tional

The Euler-Lagrange equations for the Yang-Mills functional are given by

d∗AFA = 0 (Eq. 3.1)

where dA is the induced exterior covariant derivative on Ω2(M, adP ), and so in-
stantons are by definition solutions to (Eq. 3.1).

Initially the Yang-Mills equations are a second order system of equations in the
connection A. However, if we consider just the case of dimM = 4, it is possible
to find solutions to (Eq. 3.1) by solving a related first-order system. In particular,
on a four-manifold M we know ? : Ω2(M)→ Ω2(M) and ?? = 1. Thus the Hodge
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star has eigenvalues ±1 and there is a splitting Ω2(M) = Ω2
+(M)⊕Ω2

−(M) of two-
forms into self-dual and anti-self-dual parts. Furthermore we have the expression
d∗A = ± ? dA? so the Yang-Mills equations are equivalent to

dA ? FA = 0.

It is well known that any connection on P satisfies the Bianchi identity

dAFA = 0,

so if we suppose FA ∈ Ω2
±(M) then A would automatically satisfy (Eq. 3.1).

Definition 3.1.2. The anti-self-duality (ASD) equations for a connection A on a
principal bundle P →M over a four-manifold M are

?FA = −FA.

We could just as well have considered the self -duality equations, but for our
purposes we will be interested in the anti-self-dual variant. As was mentioned in
Remark 1.3.2, if in local coordinates we write FA = Fijdx

i ∧ dxj, where

Fij =
∂Aj
∂xi
− ∂Ai
∂xj

+ [Ai, Aj],

then the ASD equations can be given by the triple of first-order relations

F01 = F32,

F02 = F13,

F03 = F21

(Eq. 3.2)

on the connection A.

3.2 Dimensional Reduction and Nahm’s Equa-

tions

The ASD equations are of profound importance in four-dimensional geometry and
topology, due primarily to the pioneering work of Donaldson since the early 1980s.
However, through the process of dimensional reduction these equations also have
important implications in lower dimensions.

Consider first a principal G-bundle P → R4 (which we may take to be trivial)
with global connection form given by A = A0dx

0 + A1dx
1 + A2dx

2 + A3dx
3 for

Ai ∈ Γ(R4, adP ). To dimensionally reduce, take a subgroup Λ of translations of
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R4 and require the data Ai to be invariant under Λ. Then the connection A will
correspond to a connection on the quotient R4/Λ, and one can consider structures
on this quotient satisfying the dimensionally reduced ASD equations.

For example, if we suppose Λ consists of translations in the x0 direction then
the connection A corresponds to a pair (Ã,Φ) where Ã = A1dx

1 +A2dx
2 +A3dx

3

is a connection form on a G-bundle over R3, and Φ = A0 is an endomorphism
Φ ∈ Γ(R3, adP ). Recall from Remark 2.2.7 that in this case it may be easily
checked that the Bogomolny equations discussed in Chapter 2 are precisely the
dimensionally reduced ASD equations for this data (Ã,Φ).

If we suppose Λ consists of translations in both the x0 and x1 directions then
again we obtain a Higgs field Φ with two components, which we hence view as
complex-valued. In this case it is more apt to consider the self-dual equations,
and these are in fact conformally invariant, and so make sense on a compact
Riemann surface Σg. In this setting the SD equations are Hitchin’s equations
first investigated by Nigel Hitchin, and the solutions give rise to Higgs bundles.
These equations have important applications in algebraic geometry and integrable
systems.

Finally suppose Λ consists of translations in coordinates x1, x2, and x3. Then
the connection A corresponds to data which we denote (T0, T1, T2, T3) where T0 =
A0 is the connection form on a G-bundle over R and the Ti, i = 1, 2, 3, are endo-
morphisms Ti = Ai ∈ Γ(R, adP ). In this case the ASD equations become Nahm’s
equations, which we now describe more explicitly.

Firstly we will consider the case of our Nahm data (T0, T1, T2, T3) being defined
over any interval I, rather than all of R. If this interval has coordinate t, then
identify t with the coordinate x0 on R4. Then this data corresponds to a connection
A = T0dx

0 + T1dx
1 + T2dx

2 + T3dx
3 with curvature

Fij =


0 i, j = 0,

[Ti, Tj] i, j > 0,
dTj
dx0

+ [T0, Tj] i = 0, j > 0,

−( dTi
dx0

+ [T0, Ti]) i > 0, j = 0.

In this case the ASD equations (Eq. 3.2) become (switching from x0 back to t),

dT1

dt
+ [T0, T1] + [T2, T3] = 0,

dT2

dt
+ [T0, T2] + [T3, T1] = 0,

dT3

dt
+ [T0, T3] + [T1, T2] = 0,

(Eq. 3.3)

the so-called Nahm equations.
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Remark 3.2.1. Recall that ∇ = d
dt

+ T0 is a connection on over the interval, and

as operators [∇, Ti] = dTi
dt

+ [T0, Ti] and one will often see the Nahm equations
stated in this slightly more invariant form (which does not depend on an explicit
trivilisation of the G-bundle over I).

Remark 3.2.2. The triple of equations (Eq. 3.3) can be reduced to a pair of equa-
tions as follows. If we let α := T0 + iT1 and β := T2 + iT3 then µ(T0, T1, T2, T3) = 0
is equivalent to the system

dβ

dt
+ [α, β] = 0,

d(α + α∗)

dt
+ [α, α∗] + [β, β∗] = 0,

where α∗ = T ∗0 − iT ∗1 = −T0 + iT1 because we are assuming G to be compact
semi-simple so g consists of matrices which are skew-adjoint.

As was pointed out in Remark 1.3.2, there is an obvious similarity between
ASD equations and the equations for hyper-Kähler reduction of a flat manifold
M = g⊗H. Indeed this can be made precise for the Nahm equations. If we let

C (I) := {(T0, T1, T2, T3) | Ti ∈ C∞(I, g)}

and identify (T0, T1, T2, T3) with T0 + iT1 + jT2 + kT3 then C (I) becomes a qua-
ternionic vector space (of infinite dimension). Indeed this space can be thought of
as

C (I) = C∞(I, g)⊗H

and the gauge group G = C∞(I,G) acts on the Nahm data (T0, T1, T2, T3) as

g · (T0, T1, T2, T3) := (gT0g
−1 − dg

dt
g−1, gT1g

−1, gT2g
−1, gT3g

−1),

where the action on the first factor comes from the fact that T0 is a connection
form. If the Nahm data is framed appropriately (for example if one fixes the values
of the Ti at the ends of the interval I and requires the gauge transformations g to
approach the identity at these same endpoints), then we have

Theorem 3.2.3. The Nahm equations (Eq. 3.3) are the components of a hyper-
Kähler moment map for the action of G on C (I).

The proof of this result is essentially exactly the same as Theorem 1.3.1, except
one must take care of certain intergration by parts that are allowed due to the
framing of the Nahm data described above.

As a consequence, the moduli space of solutions to Nahm’s equations has a
natural hyper-Kähler structure, and indeed variations on Nahm’s equations can
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be used to endow other spaces of interest with hyper-Kähler metrics. For example
one may view both coadjoint orbits in complex Lie groups as well as moduli spaces
of rational maps as hyper-Kähler manifolds through Nahm’s equations. For more
details see [Hit92].

Remark 3.2.4. If one describes the Nahm equations as a complex and real equa-
tion as in Remark 3.2.2 then the complex equation gives a holomorphic moment
map for the space C (I) viewed with the i complex structure, and the real equa-
tion gives a further symplectic moment map. This lines up with the observation
for finite-dimensional hyper-Kähler quotients that they may be viewed as a holo-
morphic symplectic quotient followed by a real symplectic quotient on a “semi-
stable locus.” For more details on this perspective see [Hit92].
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Chapter 4

Correspondence between
Monopoles and Nahm’s Equations

In 1983 Nahm gave in [Nah83] a construction of magnetic monopoles using a
novel adaption of the ADHM construction of instantons for four-manifolds. Nahm
demonstrated that magnetic monopoles could be obtained as solutions to a certain
system of ordinary differential equations, the Nahm equations, defined on a vector
bundle over an interval.

In the same year Hitchin proved in [Hit83] a correspondence between certain
solutions of Nahm’s equations for a rank k Hermitian bundle over an interval
and SU(2) magnetic monopoles on R3 of magnetic charge k satisfying certain
asymptotic properties.

Nakajima in [Nak93] has given a proof of the correspondence of Hitchin us-
ing purely differential-geometric techniques. Furthermore, Nakajima verified that
this correspondence induces a hyper-Kähler isometry of the corresponding moduli
spaces of solutions. In this chapter we will present the correspondence as proven by
Nakajima, including how to pass between Nahm data and monopoles, and discuss
variations on this result for singular Dirac monopoles.

4.1 SU(2) Monopoles and Nahm’s Equations

Recall that the dimensional reduction of the ASD equations from R4 to R3 give
the Bogomolny equations

FA = ?dAΦ

describing magnetic monopoles. This dimensional reduction was obtained by tak-
ing a group Λ of translations in the x0 direction in R4 and requiring the ASD
equations be invariant under Λ.
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Similarly, to obtain the Nahm equations one dimensionally reduces to R by
defining Λ′ to be translations in the x1, x2, and x3 directions.

Hence the correspondence discussed in the introduction to this chapter may be
viewed as a duality or correspondence between solutions of the (anti-)self duality
equations invariant in one coordinate or in three coordinates.

Originally this correspondence was proved by Hitchin by passing through a
third object, a spectral curve in twistor space TCP1. The curve corresponding to
the given Nahm data is defined by

det(λ1 + A(ζ, t)) = 0

where A(ζ) = A0 +ζA1 +ζ2A2, and A0 = T1 + iT2, A1 = −2iT3, A2 = T1− iT2, and
we choose a gauge where T0 = 0. In this set up the Nahm equations are equivalent
to the single equation

dA

dt
+ [A,B] = 0

for B(ζ) = 1
2
A1 + ζA2.

Donaldson in [Don84] built further upon this to prove that solutions to the
monopole equations (of charge k) may also be identified with moduli spaces of
rational maps of degree k from CP1 → CP1.

The correspondence between solutions to the (anti-)self duality equations which
are invariant in one or three directions generalises to solutions to the ASD equa-
tions invariant under other dual groups of translations. A Nahm transform allows
one to compare such solutions invariant under dual groups of transformations of
a four-manifold (the simplest examples are on R4, but in principle the construc-
tion works for a more general class of four-manifolds, as discussed in the survey
[Jar04]).

If Λ denotes the translation group on R4 which the connection is invariant
under, then the case Λ = R and Λ′ = R3 corresponds to monopoles and Nahms
equations, as mentioned above. The duality for Λ = 0 is closely related to the
ADHM construction (see [DK90]). For Λ = Z4 one obtains a correspondence
between instantons on dual four-dimensional tori. The case Λ = Z gives rise
to calorons, which correspond to Nahm-type equations on a circle, and the case
Λ = Z2 gives a correspondence between periodic instantons and tame solutions
of Hitchin’s equations on a 2-torus. Finally, the case Λ = R × Z gives rise to
periodic monopoles considered by Cherkis and Kapustin. The dual in this case
are solutions to Hitchin’s equations on a cylinder. Again, further discussion can
be found in [Jar04].

The correspondence result we will discuss in this chapter is the following.

Theorem 4.1.1 (Hitchin [Hit83], Nakajima [Nak93]). There is a correspondence
between
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1. SU(2) monopoles (A,Φ) on a rank 2 Hermitian vector bundle over R3 such
that as r := |x| → ∞ we have

(a)
|dAΦ| = O(r−2),

(b)
d|Φ|
dΩ

= O(r−2), and

(c)

Φ =

(
i(1− k

2r
) 0

0 −i(1− k
2r

)

)
+O(r−2),

and,

2. skew-Hermitian solutions (T0, T1, T2, T3) to the Nahm equations on a rank k
Hermitian vector bundle over the open interval I = (−1, 1) such that

(a) Each Ti has at most simple poles at t = ±1 but is otherwise analytic on
a neighourhood of I in C, and

(b) at each pole the residues of the triple (T1, T2, T3) define an irreducible
representation of su(2).

Remark 4.1.2. We require that the Ti define an irreducible representation (say
at t = 1) in the sense that if

Ti(t) =
ai
t− 1

+ bi(t)

where bi is analytic on a neighbourhood of 1 ∈ C then

x1e1 + x2e2 + x3e3 7→ −2(x1a1 + x2a2 + x3a3)

is a k-dimensional irreducible representation of su(2), where

e1 =

(
i 0
0 −i

)
, e2 =

(
0 −1
1 0

)
, e3 =

(
0 i
i 0

)
.

Note that, to prove this condition, we will only have to prove that this gives an
irreducible representation up to a multiplicative constant, since the specific con-
stant of −2 will be forced from the Nahm equations and the commutator relations
of the matrices.
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Remark 4.1.3. Condition (c) of the magnetic monopole is to be understood in
the following way. Regard R3 \ 0 as S2 × (0,∞) by letting S2 × {r} correspond
to the sphere of radius r centred at 0. Let U = {[z : 1] | z ∈ C} ⊂ CP1 = S2,
φ : U → C be the usual stereographic projection chart. We obtain a chart on
R3 \ 0 by setting V := U × (0,∞), ψ : V → C × R, ψ(x, r) = (φ(x), r). This
chart misses out a ray emanating from the origin corresponding to the pole [1 : 0]
of S2. The expression of Φ as a matrix in (c) is to be understood as being with
respect to this chart. We found this worth remarking for the following reason. If
Φ could be written as in (c) in a global gauge, then it would have charge zero as it
would define a null homotopic map from the sphere at infinity to the unit sphere
of su(2) and the magnetic charge is determined by the homotopy type of this map.
In order to write Φ as in (c), it is crucial to allow gauge transformations which
be singular along the aforementioned ray; the matrix in (c) may seem to extend
over this ray, but such is not the case due to Φ transforming under the adjoint
representation Φ 7→ gΦg−1, which causes the singularities along the ray to cancel
out.

4.1.1 Monopoles to Solutions of Nahm’s Equations

Given a monopole (A,Φ), we wish to construct a solution (T0, T1, T2, T3) of Nahm’s
equations satisfying the conditions of Theorem 4.1.1.

The strategy is as follows. Using analytical results of Callias, a monopole gives
rise to a vector bundle over the interval (−1, 1) defined as the cokernel of a Dirac
operator. This vector bundle lies inside a trivial vector bundle of infinite rank,
but with a natural inner product. The Nahm data is defined by multiplication
by coordinate functions, and orthogonal projection back onto the cokernel. It is
essentially formal calculation that these operators satisfy the Nahm equations.
The key step is showing that the residues of the Nahm data define an irreducible
representation of su(2). To do this, one finds an approximate trivialisation of
the vector bundle near ±1 using H0(CP1,O(k − 1)), noting that the latter space
admits an irreducible representation of su(2) of dimension k. Estimates show that
the approximation gives a trivialisation as one approaches the ends of the interval,
and therefore the residues still define an irreducible representation.

Let /DA denote the twisted Dirac operator on R3 obtained from the SU(2)
monopole (A,Φ), and define

/DA,t := /DA + (Φ− it) : Γ(R3, /S ⊗ E)→ Γ(R3, /S ⊗ E)

where /S is the spinor bundle on R3 and E is the vector bundle on which A and Φ
are defined. Since Φ is skew-Hermitian and /DA is self-adjoint, we note

/D
∗
A,t = /DA − (Φ− it),
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and hence, combining the Weitzenböck formula with the Bogomolny equations
satisfied by (A,Φ), we obtain the following.

Lemma 4.1.4.
/D
∗
A,t
/DA,t = 1S ⊗ (∇∗A∇A − (Φ− it)2). (Eq. 4.1)

Proof. Recall the Weitzenböck formula Theorem 1.1.11. In our case we obtain

/D
∗
A,t
/DA,t = /D

2
A + /DA ◦ (Φ− it)− (Φ− it) ◦ /DA − (Φ− it)2

= ∇∗A∇A +
∑
i<j

c(ei)c(ej)FA(ei, ej) + /DA(Φ− it)− (Φ− it)2

= ∇∗A∇A +
∑
i<j

c(ei)c(ej)FA(ei, ej) +
3∑

k=1

c(ek)(dA)ek(Φ)− (Φ− it)2

= ∇∗A∇A +
∑
i<j

c(ei)c(ej)FA(ei, ej) +
∑
i<j

−c(ei)c(ej)FA(ei, ej)− (Φ− it)2

= ∇∗A∇A − (Φ− it)2.

Here we have used ?FA = dA(Φ) and the simple computation that if ?ei = ej∧ek on
R3 then c(ei) = −c(ej)c(ek) as can easily be verified from the Pauli matrices.

In [Cal78] Callias proves that the index of /DA,t is −k whenever t ∈ (−1, 1),
where k is the charge the magnetic monopole. Furthermore, the formula above
implies /DA,t is a positive operator, and hence has no kernel. Thus, if we define

Vt := kerL2 /D
∗
A,t,

then dimVt = k for all t ∈ (−1, 1). This defines a vector bundle of rank k on
(−1, 1), which sits as a subbundle of the trivial, infinite rank bundle L2(R3, S ⊗ E)

with fibre L2(R3, S ⊗ E).
Define the Nahm data corresponding to (A,Φ) as follows. Let π denote the

orthogonal projection onto Vt. Then

∇tψ := π

(
∂ψ

∂t

)
, Tα(ψ) := π(ixαψ); α = 1, 2, 3.

The matrices T0, T1, T2, T3 are then defined by taking a trivialisation of Vt over
(−1, 1). In particular T0 is the connection matrix of ∇t. We remark that this
definition makes sense because ψ decays exponentially as r → ∞; this is due to
it being a solution to the PDE /DA,t /D

∗
A,tψ = 0 which is a Schrödinger-type PDE

with potential going to zero at infinity since |Φ| → 1; solutions to such equations
always decay exponentially; the reader is referred to [Agm82] for details. As a
consequence, ixαψ is still square integrable.
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Integration by parts shows that T0 is skew-Hermitian, and this property is also
immediate for the Tα. First we will verify that this data satisfies Nahm’s equations.
That is, that

∇tT1 + [T2, T3] = 0,

and similarly for the cyclic permutations of (123).
Recall from Remark 3.2.2 that the Nahm equations may be rephrased as a

complex and real equation. Namely, if we fix a trivialisation of V so that ∇ =
d
dt

+ T0, and write

α :=
1

2
(T0 + iT1), β :=

1

2
(T2 + iT3),

then the Nahm equations become equivalent to the pair

dβ

dt
+ 2[α, β] = 0

d(α + α∗)

dt
+ 2([α, α∗] + [β, β∗]) = 0

where here α∗ = −T0 + iT1 and similarly for β∗. For our purposes, we need only
solve the complex equation, since by relabelling T1, T2, and T3 this implies all three
of Nahm’s equations.

Theorem 4.1.5. The data (T0, T1, T2, T3) defined from a monopole (A,Φ) satisfies
the Nahm equations.

Proof. Given (A,Φ), define an R-invariant instanton on R4 (invariant in the x0

direction) by
B = Φdx0 + A1dx

1 + A2dx
2 + A3dx

3

where Ai is the ith component of A on R3. Then corresponding to B is a twisted
Dirac operator /DB on R4, and we can further twist this operator by the flat
connection −itdx0 to obtain /DB,t. Now the spinor bundle on R4 splits as a sum

/S = /S
+⊕ /S−, and the spinor bundle on R3 may be identified with either summand.

Recall that the Clifford multiplication on /S can be obtained from that on R3 by
taking

ẽ0 =

(
0 −1
1 0

)
, ẽα =

(
0 eα
eα 0

)
,

where the eα are the Pauli matrices defining the Clifford multiplication on R3.
Thus we may write

/DB,t =

(
0 /D

−
B,t

/D
+
B,t 0

)
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and notice that (in our sign convention),

/D
−
B,t = /D

∗
A,t −

∂

∂x0
, /D

+
B,t = /DA,t +

∂

∂x0
.

There is a natural identification

/S
+ ∼=

∧
0,0 ⊕

∧
0,2, /S

− ∼=
∧

0,1

on R4 ∼= C2, and with respect to this decomposition the Dirac operator becomes
the Dolbeault operator on R4 (see Theorem 1.1.15). Namely we have

/D
−
B,t =

√
2

(
∂
∗
B,t

∂B,t

)
: Ω0,1(E)→ Ω0,0(E)⊕ Ω0,2(E),

/D
+
B,t =

√
2(∂B,t, ∂

∗
B,t) : Ω0,0(E)⊕ Ω0,2(E)→ Ω0,1(E).

Note the
√

2 to agree with the Kähler identity ∆d = 2∆∂ on R4. Applying these
operators to sections which are independent of the x0 coordinate defines a corres-
ponding decomposition of /D

∗
A,t and /DA,t, whose components we denote, analog-

ously, by ∂A,t and ∂
∗
A,t.

If we write ∆A,t for the ∇∗A∇A − (Φ− it)2, it follows from (Eq. 4.1) that(
∂
∗
A,t

∂A,t

)
(∂A,t, ∂

∗
A,t) =

(
∂
∗
A,t∂A,t ∂

∗
A,t∂

∗
A,t

∂A,t∂A,t ∂A,t∂
∗
A,t

)
=

1

2

(
∆A,t 0

0 ∆A,t

)
. (Eq. 4.2)

Recall that since ∆A,t had no kernel, we have a Green’s operator G := ∆−1
A,t on L2.

Lemma 4.1.6. The orthogonal projection onto Vt is given by

π = 1− /DA,t(1S ⊗G) /D
∗
A,t.

Proof. From the expression /D
∗
A,t
/DA,t = 1S⊗∆A,t one can verify that π∗ = π, π2 =

π, and that π(ψ) ∈ Vt for any ψ ∈ L2(R3, S ⊗ E). Clearly π(ψ) = ψ when
/D
∗
A,tψ = 0, so π is the orthogonal projection onto Vt. �

Finally, note that on R4 = C2 we have the commutators

[∂B, x
0 + ix1] = [∂B, x

2 + ix3] = 0 (Eq. 4.3)

thinking of x0 + ix1 and x2 + ix3 as complex coordinates. If we assume our data
is invariant in the x0 direction and twist by itdx0, then we have the following
equalities on R3.
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Lemma 4.1.7. On R3, we have commutator relations

[∂A,t,−i
d

dt
+ ix1] = 0, (Eq. 4.4)

[∂A,t, x
2 + ix3] = 0, (Eq. 4.5)

where xj is understood to mean multiplication by the coordinate function xj. Note
that x0 invariance allows us to write ∂A,t on the left (i.e. the commutators vanish
on R3).

Proof. Write ζ1 = x0 + ix1, ζ2 = x2 + ix3. Recall:

dB,t = dB − itdx0 = dB −
it

2
(dζ1 + dζ̄1)

Hence:

∂̄B,t = ∂̄B −
it

2
dζ̄1

Now, ∂̄A,t is defined simply as ∂̄B,t restricted to acting on sections independent of
x0; therefore, what has to be proven is that, if s ∈ Ω0,k(E) is independent of x0,
then: [

∂̄B,t,−i
d

dt
+ ix1

]
s = 0,

[
∂̄B,t, x2 + ix3

]
s = 0

The second of these is a triviality. Consider the first:[
∂̄B −

it

2
dζ̄1,−i

d

dt
+ ix1

]
=

[
∂̄B,−i

d

dt

]
+
[
∂̄B, ix1

]
+

[
−it

2
dζ̄1,−i

d

dt

]
+

[
−it

2
dζ̄1,+ix1

]
The first term vanishes as differentiation by t commutes with ∂̄B; the last also
obviously vanishes. Now, ix1 = 1/2(ζ1 − ζ̄1); hence:

=

[
∂̄B,

1

2
(ζ1 − ζ̄1)

]
+

[
−it

2
dζ̄1,−i

d

dt

]
=

1

2
∂̄(ζ1 − ζ̄1) +

1

2
dζ̄1

=0

�

Lemma 4.1.7 allows us to treat −i d
dt

+ ix1 like a complex variable on R3. To
that end, define

z1 := −i d
dt

+ ix1, z2 := x2 + ix3
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on R3, so (Eq. 4.4) and (Eq. 4.5) become [∂A,t, z
1] = 0 and [∂A,t, z

2] = 0, respect-
ively. We will use this notation to simplify the rest of the proof.

To complete the proof we combine these previous identities as follows. Let
ψ ∈ Γ((−1, 1), V ) so that /D

∗
A,tψ = 0. Then by the definition of the operators Tα,

α, β, and Lemma 4.1.6, we have formulae

iz1ψ −
(
d

dt
+ 2α

)
ψ = (1− π)(iz1ψ) = /DA,t(1S ⊗G) /D

∗
A,t(iz

1ψ), (Eq. 4.6)

iz2ψ − 2βψ = (1− π)(iz1ψ) = /DA,t(1S ⊗G) /D
∗
A,t(iz

2ψ). (Eq. 4.7)

Now if we multiply iz1 by (Eq. 4.7) and subtract iz2 multiplied by (Eq. 4.6) we
obtain

iz2

(
d

dt
+ 2α

)
ψ − 2iz1βψ = 2∂A,t(iz

1G∂
∗
A,t(iz

2ψ)− iz2G∂
∗
A,t(iz

1ψ))

where on the right we have used the expression

/DA,t(1S ⊗G) /D
∗
A,t = 2(∂A,tG∂

∗
A,t + ∂

∗
A,tG∂A,t),

the commutators in Lemma 4.1.7 and the fact that /D
∗
A,tψ = 0.

Applying the operator π to the right-hand side and using the expressions from
(Eq. 4.2) we see that this vanishes. Applying π to the left-hand side and using
the definition of the Tα, α, and β, we arrive at

dβ

dt
+ 2[α, β] = 0

as desired.

What remains is to show that the residue of the Nahm data we have defined
gives irreducible representations of su(2) as one approaches t→ ±1. We will follow
[Nak93] and study just the case t→ −1, the t→ 1 case being essentially the same
argument. The asymptotic behaviour as t → −1 is dictated by the properties of
the monopole as r → ∞ in R3, so it is necessary to study the structure of our
Dirac operator /DA,t in this limit.

Recall that a monopole (A,Φ) comes with a magnetic charge k ∈ Z≥0. The
asymptotic assumptions on Φ and the Bogomolny equations FA = ?dAΦ imply
that “on the sphere at infinity,” the monopole (A,Φ) gives a decomposition of the
rank 2 hermitian bundle into a direct sum of line bundles with connections. These
two line bundles are the +i and −i eigenspaces of Φ at infinity, and the connection
matrix splits as

A =

(
A∗0 0
0 A0

)
.
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for a connection form A0 on a line bundle over S2. The magnetic charge is simply
the degree of this line bundle, which may be computed by Chern-Weil theory
applied to A0.

More precisely, asymptotically, A can be written as

A =

(
A∗0 0
0 A0

)
+O(r−2),

where A0 is a homogenous connection on a line bundle of degree k over S2, extended
radially to R3 \ {0}. Let (r, θ) denote a radial coordinate system on R3 \ {0}.
Recall that R3 \ {0} is isometric to S2 × (0,∞) with the metric g = dr2 + r2dθ2

where dθ2 is the standard metric on S2. Therefore we are in a similar setting to
Proposition 1.1.12: the spinor bundle on R3 can be identified with the pullback of
the spinor bundle of S2 through the projection. Furthermore, the spinor bundle
on S2 splits as a direct sum S = S+⊕S−, and hence so does the spinor bundle on
S2 × (0,∞) = R3 \ {0}. We can write the Dirac operator over the spinor bundle
using this splitting.

Lemma 4.1.8. If /D is the Dirac operator on R3 \ {0}, then

/Dψ =

(
i
(
∂
∂r

+ 1
r

)
1
r
/D
−

1
r
/D

+ −i
(
∂
∂r

+ 1
r

))ψ
where /D

±
denote the Dirac operators on S2.

Proof. This is obtained simply by applying Corollary 1.1.13, setting n = 1 and
eϕ = r.

We can twist the Dirac operators /D
±

by A0 or A∗0, and consequently in our
gauge we get

/D
∗
A,t =

(
B1 0
0 B2

)
+O(r−2) (Eq. 4.8)

where

B1 =

(
i
(
∂
∂r

+ t− 1 + k+2
2r

)
1
r
/D
−
A∗0

1
r
/D

+
A∗0

−i
(
∂
∂r
− t+ 1− k−2

2r

)) ,
B2 =

(
i
(
∂
∂r

+ t+ 1− k−2
2r

)
1
r
/D
−
A0

1
r
/D

+
A0

−i
(
∂
∂r
− t− 1 + k+2

2r

)) .
Recall that for the Kähler manifold CP1, we have isomorphisms

S+ =
∧

0,0 ⊗H∗ ∼= O(−1), S− =
∧

0,1 ⊗H∗ ∼= O(1),
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where H∗ = O(−1) is the square root of the canonical bundle K = O(−2) (see
Theorem 1.1.14). Furthermore we had a decomposition E ∼= O(−k) ⊕ O(k) (for
sufficiently big spheres). Combining these we obtain

S ⊗ E ∼= O(−k − 1)⊕O(−k + 1)⊕O(k − 1)⊕O(k + 1).

Now let R > 0 be fixed and big enough, and let χ be a smooth cut off function
which vanishes on [0, R] and is identically 1 on [R + 1,∞). Then, given some
f ∈ H0(CP1,O(k − 1)), we may specify a section of S ⊗ E by

ψ := (0, 0, χ(r)e−(t+1)rr
k−2
2 f(θ), 0), (Eq. 4.9)

where f depends only on the angular variable θ.
Since the Dirac operator on S2 ∼= CP1 is the Dolbeault operator, and fur-

thermore since A0 was the homogenous connection on O(k) → CP1, we have
/D

+
A0

= ∂O(k−1), so that this operator kills f . This implies that the first term in
(Eq. 4.8) applied to ψ disappears, so

| /D∗A,tψ| ≤ Ce−(t+1)r(r + 1)
k−2
2
−2, (Eq. 4.10)

for some constant C which does not depend on t. Thus ψ is approximately a
solution to /D

∗
A,tψ = 0. We will search for an actual solution by looking at a

variation of the kind
ψ − /DA,tϕ,

where ϕ is a solution to
/D
∗
A,t
/DA,tϕ = /D

∗
A,tψ.

This elliptic equation for ϕ has a unique solution, which is the minimum of the
functional

S(ϕ) = ‖∇Aϕ‖2
L2 + ‖(Φ− it)ϕ‖2

L2 − 2〈ϕ, /D∗A,tψ〉L2 .

See [JT80, Prop. IV.4.1] for more details. This functional has a unique minimum
which satisfies

S(ϕ) ≤ S(0) = 0

giving the inequality

‖ /DA,tϕ‖2
L2 = ‖∇Aϕ‖2

L2 + ‖(Φ− it)ϕ‖2
L2 ≤ 2〈ϕ, /D∗A,tψ〉L2 .

Note that we cannot conclude a similar equality here using integration by parts
since we don’t know the asymptotic behaviour ϕ.

For R� 0 and t near −1, the eigenvalue of Φ− it providing the bundle O(k)
approaches i(1 + t), so we have an estimate

(1 + t)|ϕ| ≤ 2|(Φ− it)ϕ|
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on the complement of a ball R3\B R
1+t

. Thus over this complement we obtain

(1 + t)2

∫
R3\B R

1+t

|ϕ|2dx ≤ 4‖(Φ− it)ϕ‖2
L2 .

In what follows, Ci are used to denote constants independent of t. Inside the ball
B R

1+t
, we have the estimate

(1 + t)2

∫
B R

1+t

|ϕ|2dx ≤ C1‖ϕ‖2
L6(BR/(t+1))

from Hölder’s inequality applied to f = |ϕ|2 and g = (t + 1)2 with p = 3. The
Gagliardo-Nirenberg-Sobolev inequality on BR/(t+1) gives

‖ϕ‖2
L6(BR/(t+1))

≤ C2‖d|ϕ|‖2
L2(BR/(t+1))

,

and Kato’s inequality gives

‖d|ϕ|‖2
L2(BR/(t+1))

≤ C3‖∇Aϕ‖2
L2(BR/(t+1))

≤ C3‖∇Aϕ‖2
L2(R3).

Putting these together, we obtain

‖ /DA,tϕ‖2
L2 ≤ 2〈ϕ, /D∗A,tψ〉L2

≤ 2‖ϕ‖L2‖ /D∗A,tψ‖L2

≤ C4

1 + t
‖ /DA,tϕ‖L2‖ /D∗A,tψ‖L2 ,

and in particular

‖ /DA,tϕ‖L2 ≤ C5

1 + t
‖ /D∗A,tψ‖L2 . (Eq. 4.11)

Meanwhile, we have:

‖ψ‖2
L2 ≥ C6

∫ ∞
R+1

e−2(t+1)rrk−2dr

=
C6

(2(t+ 1))k−2

∫ ∞
2(R+1)(t+1)

e−rrk−2dr

Whereas, from (Eq. 4.10), we have:

‖ /D∗A,tψ‖2
L2 ≤ C7

∫ ∞
R+1

e−2(t+1)rrk−6dr

=
C7

(2(t+ 1))k−6

∫ ∞
2(R+1)(t+1)

e−rrk−6dr
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Note that, as t→ −1:∫ ∞
2(R+1)(t+1)

e−rrk−`dr −→ Γ(k − `+ 1)

Therefore, it follows that:

‖ψ‖L2 ≥ C8

(t+ 1)(k−2)/2
, ‖ /D∗A,tψ‖2

L2 ≤
C9

(t+ 1)(k−6)/2
,

Whence one infers that:

‖ /D∗A,tψ‖L2 ≤ C10(1 + t)2‖ψ‖L2 .

Combining this with (Eq. 4.11), we obtain:

‖ /DA,tϕ‖L2 ≤ C11(t+ 1)‖ψ‖L2

Whereby, we see that the correction term /DA,tϕ is small relative to ψ when t is near
−1. In particular, if we choose an orthonormal basis of H0(CP1,O(k−1)), then the
correction terms are small enough that these vectors remain a basis when we pass
to V → (−1, 1), and, therefore, give a trivialisation near t = −1. Furthermore,
since, in the limit t → −1, the correction term gets arbitrarily small, we should
expect that the trivialisation of V act exactly like H0(CP1,O(k − 1)). This is
promising as the latter space gives an irreducible representation of su(2). To make
this last statement precise, we prove the following lemma.

Lemma 4.1.9. Define endomorphisms aα of H0(CP1,O(k − 1)) by

〈aαf1, f2〉L2 =

∫
CP1

〈ixαf1, f2〉

for α = 1, 2, 3 and f1, f2 ∈ H0(CP1,O(k − 1)). Then aα gives the residue of the
simple pole of Tα at t = −1, up to a multiplicative constant.

Proof. Recall that the operator Tα is defined by Tαψ = π(ixαψ) where π is the
orthogonal projection onto Vt. In the following we will ignore correction terms
/DA,tϕ, since in the limit as t→ −1 these terms become insignificant.

In order to find the residue, we would be interested in looking at the expression
(t + 1)π(ixαψ1) as t → −1. Now, suppose that ψ1 is constructed near t = −1
from some f1 ∈ H0(CP1,O(k − 1)) by the expression (Eq. 4.9). If we let ψ′1 be
constructed by the same expression from the function aαf1 ∈ H0(CP1,O(k − 1)),
then we want to check that these expressions tend to the same limit as t → −1.
In order to avoid looking at the projection map, we can simply look at their
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product with elements in Vt. In other words, if ψ2 is constructed from f2 ∈
H0(CP1,O(k − 1)), we want to prove that

lim
t→−1
〈ψ′1, ψ2〉L2 = K · lim

t→−1
〈(t+ 1)ixαψ1, ψ2〉L2 ,

for some constant K.
The first product will be

〈ψ′1, ψ2〉L2 =

∫
R3

χ(r)2e−2(1+t)rrk−2〈f ′1, f2〉S⊗Edvol

=

∫ ∞
0

χ(r)2e−2(1+t)rrk−2〈f ′1, f2〉L2r2dr

= 〈aαf1, f2〉L2

∫ ∞
0

χ(r)2e−2(1+t)rrkdr.

The second one will be

〈(t+ 1)ixαψ1, ψ2〉L2 =

∫
R3

χ(r)2e−2(1+t)rrk−2〈(t+ 1)ixαf1, f2〉S⊗Edvol

=

∫
R3

χ(r)2e−2(1+t)rrk−2r〈(t+ 1)i
xα
r
f1, f2〉S⊗Edvol

=

∫ ∞
0

χ(r)2e−2(1+t)rrk−1r〈(t+ 1)ixαf1, f2〉L2r2dr

= 〈ixαf1, f2〉L2

∫ ∞
0

χ(r)2(t+ 1)e−2(1+t)rrk+1dr.

We know that 〈ixαf1, f2〉L2 = 〈aαf1, f2〉L2 by the definition of aα, and a compu-
tation will show that the integrals of both expressions differ by a positive constant
in the limit (they both tend to infinity in the limit, but their quotient tends to a
constant, which is the same as saying that limits differ by a multiplicative constant
after normalising appropriately). In the limit, the cut off function will become ir-
relevant, since the integrals of rk−1 and rk diverge, so the exponential e−(t+1)r will
allow an arbitrarily big proportion of the integrals to be away far from 0, for t
close enough to −1. Then, result follows from the fact that∫ ∞

0

e−2(1+t)rrkdr =
k!

2k+1(t+ 1)k+1

and ∫ ∞
0

(t+ 1)e−2(1+t)rrk+1dr =
(k − 1)!

2k(t+ 1)k+1
,

which differ by the multiplicative constant k
2

(which, of course, doesn’t depend on
t).
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Furthermore, we have the following result.

Theorem 4.1.10. The map

x1e1 + x2e2 + x3e3 7→ x1a1 + x2a2 + x3a3

gives an irreducible representation of su(2) of dimension k (modulo a multiplicative
constant).

Proof. Recall the representation theory of su(2). There is a unique irreducible
(complex) representation Vk of C-dimension k + 1 for each k ∈ N. This repres-
entation is naturally identified with the space of order k homogeneous complex
polynomials in two variables. Consider the line bundle O(k)→ CP1. The fibre of
O(k) above a point p ∈ CP1 is the space of degree k maps p → C where we view
p ⊂ C2 as a line. If z1, z2 denote the coordinates of C2, then, the holomorphic
sections of O(k) are given by restricting the degree k homogeneous polynomials in
the variables z1, z2; hence, it is clear that H0

(
CP1;O(k)

)
is naturally isomorphic

to Vk and we have an action of su(2) on it. More generally, given any section
s ∈ Γ(O(k)) (not necessarily holomorphic), we view it as a map C2 → C satisfying
s(tz) = tks(z) for all z ∈ C2; in which case, the action of X ∈ su(2) is defined by:

(X · s)(z) = −s(Xz)

Thus, we L2
(
CP1;O(k)

)
also inherits an su(2) action. Naturally, we have the

holomorphic sections as a subrepresentation:

Vk ∼= H0
(
CP1;O(k)

)
↪→ L2

(
CP1;O(k)

)
Now, consider the coordinate functions x1, x2, x3 of R3. We have CP1 ↪→ R3;
therefore, xj can be thought of as a smooth function on CP1. There also is a
natural action of su(2) on spanC{x1, x2, x3} ⊂ Ω0(CP1) by identifying it with su(2)
itself via ∑

j

αjxj 7→
∑
j

αjej

and acting via the adjoint representation. This representation is V2. Define the
map

m : L2
(
CP1;O(k)

)
⊗ V2 → L2

(
CP1;O(k)

)
,

which simply multiplies by the coordinate functions; that is m(s, xj) = xjs. One
can check that m is su(2)-equivariant. Let

π : L2
(
CP1;O(k)

)
→ Vk
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be the L2 orthogonal projection onto the holomorphic sections; this is also su(2)-
equivariant. In summary, we have the su(2)-equivariant composite:

φ := Vk ⊗ V2 ↪→ L2
(
CP1;O(k)

)
⊗ V2

m−→L2
(
CP1;O(k)

) π−→Vk

Now, by decomposing into irreducibles, one finds that Vk⊗V2
∼= Vk+2⊕Vk⊕Vk−2;

thus, equivariance of φ implies that it must be a scalar multiple of the projection
pr2 : Vk+2 ⊕ Vk ⊕ Vk−2 → Vk onto the Vk summand; that is φ = αpr2 for some
α ∈ C. We claim that α 6= 0. To show this, it suffices to find an element outside
its kernel; consider the image of zk−1

1 z2 ⊗ x1 ∈ Vk ⊗ V2 under φ; note that:

〈x1z
k−1
1 z2, z

k−1
1 z2〉L2 =

i

2

∫
C

2zRe z

(1 + |z|2)1+k
dz ∧ dz̄ 6= 0

So the projection of x1z
k−1
1 z2 onto zk−1

1 z2 is nonzero; which implies that φ(zk−1
1 z2⊗

x1) 6= 0 as claimed. To finish off, notice that the projection Vk⊗V2 → Vk is familiar;
observe the map:

Vk ⊗ V2 = Vk ⊗ su(2)→ Vk, v ⊗X = X · v

Where X acts on Vk as it is an su(2) representation to begin with. This also is
equivariant and non zero; therefore, it is a multiple of the projection as well; there-
fore, φ is a (non-zero) scalar multiple of the unique k + 1 dimensional irreducible
representation.

Combining these results, we can conclude that, indeed, the residues of the
Nahm data give an irreducible representation.

4.1.2 Solutions of Nahm’s Equations to Monopoles

We now shall present the opposite direction: given Nahm data T0, T1, T2, T3 :
(−1, 1)→ su(k) satisfying the conditions in Theorem 4.1.1, we construct an SU(2)
monopole of charge k.

Consider the following two spaces: L2
(
(−1, 1);V ⊗C2

)
consisting of sections of

V ⊗C2 where C2 denotes the trivial bundle, and the Sobolev space H1
0

(
(−1, 1);V ⊗

C2
)

of sections of V ⊗ C2 which vanish at the endpoints ±1 of the interval and
whose derivatives are in L2. Fix some x ∈ R3 and define an operator:

Dx : H1
0

(
(−1, 1);V ⊗ C2

)
→ L2

(
(−1, 1);V ⊗ C2

)
,

Dx = 1C2 ⊗∇t +
3∑
i=1

(ei ⊗ Ti − ixiei ⊗ 1V )
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Using the complex notation as in Section 4.1.1, this can be written as:

Dx =

(
d
dt

+ 2α 2β∗

2β d
dt
− 2α∗

)
−
(
−x1 −ix2 − x3

ix2 − x3 x1

)
where the matrix notation reflects the C2 factor. Likewise, the format adjoint has
the form:

D∗x =

(
− d
dt

+ 2α∗ 2β∗

2β − d
dt
− 2α

)
−
(
−x1 −ix2 − x3

ix2 − x3 x1

)
Now, using Nahm’s equations, it immediately follows that:

D∗xDx = 1C2 ⊗

(
∇∗t∇t +

3∑
i=1

(Ti − ixi)∗(Ti − ixi)

)
(Eq. 4.12)

Whence it follows that Dx is a positive operator and Ker(Dx) = 0. We now proceed
to determine the index of Dx; to do this, we shall express it in terms of a simpler
operator.

Firstly, let a1, a2, a3 denote the residues of T1, T2, T3 respectively at t = −1;
these are assumed to define an irreducible representation of su(2) via:

λ1e1 + λ2e2 + λ3e3 7→ −2(λ1a1 + λ2a2 + λ3a3)

this is a representation of dimension k. Recall the representation theory of su(2);
the representations are classified by their complex dimension; verily, the repres-
entation of dimension k, is simply the representation on the space of homogen-
eous polynomials of degree k − 1 on two variables; denote this representation by
ρk−1 : su(2) → Vk−1. Hence, the representation defined by the residues of Ti is
Vk−1. Meanwhile, the residue of

∑3
i=1 ei ⊗ Ti at t = −1, i.e.

∑3
i=1 ei ⊗ ai, acts on

the tensor product of representations V1 ⊗ Vk−1. Reducing this as a direct sum of
irreducibles, gives V1⊗ Vk−1 = Vk ⊕ Vk−2. Now, using C(V ) to denote the Casimir
operator of a representation V , it follows that:

C(Vk−1 ⊗ V1) = C(Vk−1)⊗ 1 + 2
3∑
i=1

ρk−1(ei)⊗ ei + 1⊗ C(V1)

moreover, the Casimir operator of the representation Vk is given by scalar multi-
plication by −k(k + 2). So a :=

∑3
i=1 ei ⊗ ai may be expressed, on each of the

direct summands, in terms of these Casimir operators:

a|Vk⊕0 =
1

4
(−(k − 1)(k + 1)− 3 + k(k + 2)) =

1

2
(k − 1),

a|0⊕Vk−2
=

1

4
(−(k − 1)(k + 1)− 3 + (k − 2)k) = −1

2
(k + 1)
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Define a new operator:

D̃ : H1
0

(
(−1, 1);V ⊗ C2

)
→ L2

(
(−1, 1);V ⊗ C2

)
D̃ = 1C2 ⊗ d

dt
+

(
1

t− 1
+

1

t+ 1

)
a

The index of D̃ can easily be determined.

Proposition 4.1.11. The index of D̃ is −2.

Proof. On Vk ⊕ 0, solving D̃u = 0 amounts to solving the ODE:(
d

dt
+

1

2

(
1

t− 1
+

1

t+ 1

)
(k − 1)

)
u = 0

If one care to check, all solutions are of the form:

u0

(
(t+ 1)(t− 1)

)−(k−1)/2

where u0 ∈ Vk ⊗ 0 is a constant. None of these are in H1
0

(
(−1, 1);V ⊗C2

)
as they

do not vanish at the end points. On the other hand, on 0 ⊕ Vk−2, one solves the
ODE: (

d

dt
− 1

2

(
1

t− 1
+

1

t+ 1

)
(k + 1)

)
u = 0

finding that all solutions are of the form:

u0

(
(t+ 1)(t− 1)

)(k+1)/2

and these do lie inH1
0

(
(−1, 1);V ⊗C2

)
, leading to a space of solutions of dimension

dimC Vk−2 = k − 1; hence, dimC Ker(D̃) = k − 1. Meanwhile, the adjoint operator
is:

D̃
∗

: L2
(
(−1, 1);V ⊗ C2

)
→ H1

0

(
(−1, 1);V ⊗ C2

)
D̃
∗

= −1C2 ⊗ d

dt
+

(
1

t− 1
+

1

t+ 1

)
a

Applying the same reasoning as for D̃ now yields the same results but in reverse;
that is one gets a space of dimension k + 1 of solutions of the form:

u0

(
(t+ 1)(t− 1)

)+(k−1)/2

and a space of dimension k − 1 of solutions of the form:

u0

(
(t+ 1)(t− 1)

)−(k+1)/2

If one care to check, only the latter lie in L2
(
(−1, 1);V ⊗C2

)
. All in all, the index

is (k − 1)− (k + 1) = −2.
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Using this, we can now deduce the index of the original operator.

Proposition 4.1.12. The index of Dx is the same as the index of D̃.

Proof. By Schur’s lemma, there exists some g ∈ U(k) such that:

Res
t=−1

Ti = Res
t=1

gTig
−1

Furthermore, one can find some skew-adjoint X such that g = e2X ; hence, one can
write:

Dx = e−(t+1)XD̃e(t+1)X +K

where K is some section of the endomorphism bundle. Note that, due to the con-
ditions imposed on the Ti, K must be analytic on some neighbourhood of [−1, 1];
this is key, for it implies that it is C∞ and its all its derivatives are bounded on
[−1, 1]; whence it follows that it defines a compact operator H1

0

(
(−1, 1);V ⊗C2

)
→

L2
(
(−1, 1);V ⊗ C2

)
. Recall that the Fredholm index is not affected by adding a

compact operator; hence, the index of Dx coincides with that of e−(t+1)XD̃e(t+1)X .
Finally, notice that e±(t+1)X is invertible; so, verily, the index of Dx is the same as
that of D̃x.

One concludes that dimC Ker(D∗x) = 2 and proceeds in a reverse fashion to
Section 4.1.1. Define a vector bundle E → R3 of rank 2 whose fibre over x is
Ker(D∗x); this is a subbundle of the trivial bundle over R3 with fibre L2

(
(−1, 1);V ⊗

C2
)
; the L2 inner product on L2

(
(−1, 1);V ⊗C2

)
defines a hermitian structure on

E; a connexion and Higgs bundle are also inherited by setting:

dA := π ◦ d, Φ = π ◦ (u 7→ itu)

Where d denotes the distinguished product connexion on R3×L2
(
(−1, 1);V ⊗C2

)
and π : L2

(
(−1, 1);V ⊗ C2

)
→ Ker(D∗x) is the L2 orthogonal projection.

Proposition 4.1.13. The pair (A,Φ) satisfies the SU(2) Bogomolny equation.

Proof. Let ∆x : W 1,2
0 (I;V )→ W 1,2

0 (I;V )∗ be ∆x := ∇∗t∇t +
∑3

i=1(Ti − ixi)∗(Ti −
ixi). Hence, similarly to 4.1.6, one can show that:

π = 1− Dx(1C2 ⊗∆x
−1)D∗x

Now, write:

σx =

(
d
dt

+ 2α + x1

2β − ix2 + x3

)
, τx =

(
2β − ix2 + x3 − d

dt
− 2α− x1

)
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So as to be able to decompose:

Dx =
(
σx τ ∗x

)
, D∗x =

(
σ∗x
τx

)
Whence it follows that:

Dx(1C2 ⊗ Fx)D∗x = σxFxσ
∗
x + τ ∗xFxτx

Further, due to equation (Eq. 4.12), one has:

D∗xDx =

(
σ∗xσx σ∗xτx
τxσ

∗
x τxτ

∗
x

)
=

(
∆x 0
0 ∆x

)
(Eq. 4.13)

It turns out, as in Section 4.1.1, that it is easier to work over R4 in order to be able
to use a complex structure; hence, write B = Φdx0 +A1dx1 +A2dx2 +A3dx3; thus,
what must be shown is that the connexion B is ASD. For that end, let L → R4

denote the trivial vector bundle with fibre the Hilbert space L2
(
(−1, 1);V ⊗ C2

)
;

then, define a Dirac operator on this bundle:

/D
′±

: Γ(S± ⊗ L)→ Γ(S∓ ⊗ L)

/D
′±

= /D
± ± itẽ0

Where /D is the usual Dirac operator with respect to the product connexion on L
and t is to be understood as sending a section f ∈ L2

(
(−1, 1);V ⊗C2

)
to t 7→ tf(t).

In line with Section 4.1.1, write:

/D
′+

=
√

2
(
∂̄ ∂̄∗

)
, /D

′−
=
√

2

(
∂̄∗

∂̄

)
One can see easily that ∂̄B = π ◦ ∂̄. Now, the operators σx and τx define operators
σ and τ on the relevant vector bundles over R4 by letting x vary. Then, using
juxtaposition to denote composition, observe:

∂̄2
B =π∂̄π∂̄

=(1− σ∆−1σ∗ − τ ∗∆−1τ)∂̄(1− σ∆−1σ∗ − τ ∗∆−1τ)∂̄

=− ∂̄σ∆−1σ∗∂̄ − ∂̄τ ∗∆−1τ ∂̄

+ σ∆−1σ∗∂̄σ∆−1σ∗∂̄ + σ∆−1σ∗∂̄τ ∗∆−1τ ∂̄

+ τ ∗∆−1τ ∂̄σ∆−1σ∗∂̄ + τ ∗∆−1τ ∂̄τ ∗∆−1τ ∂̄

By a direct calculation, one can verify that [∂̄, σ] = 0 and [∂̄, τ ] = 0. Using these
facts, together with ∂̄2 = 0 and the relations deduced from equation (Eq. 4.13),
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one can simplify:

=− ∂̄σ∆−1σ∗∂̄ − ∂̄τ ∗∆−1τ ∂̄

+ σ∆−1σ∗σ∂̄∆−1σ∗∂̄ + σ∆−1σ∗∂̄τ ∗∆−1τ ∂̄

+ τ ∗∆−1τσ∂̄∆−1σ∗∂̄ + τ ∗∆−1∂̄ττ ∗∆−1τ ∂̄

=− ∂̄τ ∗∆−1τ ∂̄ + σ∆−1σ∗∂̄τ ∗∆−1τ ∂̄

=− (1− σ∗∆−1σ)∂̄τ ∗∆−1τ ∂̄

=(1− σ∗∆−1σ)∂̄(1− τ ∗∆−1τ)∂̄

Now, note that the expression 1 − τ ∗∆−1τ is, in fact, the orthogonal projection
onto the kernel of τ ; since [∂̄, τ ] = 0, ∂̄ also commutes with this projection and
one concludes:

∂̄2
B = 0

Which is to say that ∂B defines a holomorphic structure on E no matter the
complex structure chosen for R4. By varying the complex structure on R4, it
follows that B is ASD.

At this point, what remains to be done of the construction is to confirm that
the asymptotic behaviour of (A,Φ) is as it must be in order to be a monopole of
charge k; that is, we must verify that YMH(A,Φ) < ∞, |Φ(x)| → 1 and that the
eigenbundles of Φ away from some large ball have Chern classes ±k.

For that, we must define yet another operator. Fix x ∈ R3 and set:

D′x : H1
0

(
(−1, 1);V ⊗ C2

)
→ L2

(
(−1, 1);V ⊗ C2

)
D′x = e−(t+1)XD̃e(t+1)X + i

3∑
i=1

xiei ⊗ 1Ck

Note that Dx = D′x +K for some K smooth in a neighbourhood of [−1, 1]; whence
it follows that the index of D′x coincides with that of Dx (c.f. proposition Propos-
ition 4.1.12). Integrating by parts, one can show, for f ∈ H1

0

(
(−1, 1);V ⊗ C2

)
(recall that f vanishes at ±1), that:

〈D∗xDxf, f〉L2 =

∥∥∥∥ ddtf
∥∥∥∥2

L2

+

〈(
|x|2 +

∑
i

T ∗i Ti

)
f, f

〉
L2

≥ |x|2 ‖f‖2
L2

Therefore, for sufficiently large |x|, it follows that there is some constant c ∈ R
such that 〈D′x

∗
D′xf, f〉 ≥ c2|x|2 ‖f‖2

L2 . Which means that D′x
∗
D′x is also a positive

operator for large r = |x|. Together with the remark above about the index, this
leads to dimC Ker(D′x

∗) = 2.
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Use Px to denote the orthogonal projection onto the kernel of D′x
∗; then, let

Gx be the Green’s function of D′x; so D′xGx = 1− Px and GxD
′
x = 1. Notice that:

‖f − Pxf‖2 = ‖D′xGxf‖2
= 〈D′x

∗
D′xGxf,Gxf〉 ≥ c2r2 ‖Gxf‖2

So:
‖Gxf‖ cr ≤ ‖f − Pxf‖ ≤ ‖f‖

Which is to say that:

‖Gx‖ ≤ 1/cr, ‖G∗x‖ ≤ 1/cr (Eq. 4.14)

Consider a solution f to D∗xf = 0. Since G∗xD
′∗ = 1− Px, one has:

f − Pxf = G∗x(D
∗
x −K∗)f = −G∗xK∗f

Therefore, one can find some constant c′ ∈ R such that:

‖f − Pxf‖ ≤
c′

r
‖f‖ (Eq. 4.15)

Which means that we can approximate, up to order r−1, solutions to D∗f = 0 by
solutions to D′∗f = 0.

We now proceed to find a basis of solutions for D′∗f = 0. Fix a u ∈ R3 such
that |u| = 1. Then, u generates a circle subgroup of SU(2) by exponentiating∑3

i=1 uiei ∈ su(2); furthermore, this subgroup is a maximal toral subgroup and,
with respect to it, one can decompose any representation as a direct sum of weight
spaces. We are interested in the representation V1 ⊗ Vk−1 because of the form of
the operator D̃ which contains the term a =

∑3
i=1 ei⊗ai which acts via this repres-

entation. Recall that V1⊗ Vk−1
∼= Vk⊕ Vk−2 as su(2) representations; therefore, by

knowledge of the representation theory of su(2), one knows that the weight space
decomposition has weights:

−k,−(k − 2), . . . , (k − 2), k in Vk ⊕ 0

−(k − 2),−(k − 4), . . . , (k − 4), (k − 2) in 0⊕ Vk−2

Each weight, in both cases, has multiplicity 1; thus, one sees that the weight spaces
of weight ±k have dimension 1; all others have dimension 2. Now, the operator
D′u contains the term i

∑3
i=1 uiei ⊗ 1Vk−1

; the action of this term commutes with
the action of a; whence it follows that it preserves the weight space decomposition
above; furthermore, since the weight spaces of weight ±k are one dimensional, it
must act as a scalar on each of these two weight spaces. The scalars are, in fact,
respectively ±1; this can be seen by noting:(

i

3∑
i=1

uiei ⊗ 1Vk−1

)2

= 1V1⊗Vk−1
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Pick vectors v±(u) 6= 0 in the weight spaces of weight ±k respectively. For x ∈
R3 \ 0, write g±(x) := g(t)e−(t+1)Xv±(x/r); then:

D′x
∗
g±(x) = e(t+1)X

(
− d

dt
g +

k − 1

2

(
1

t− 1
+

1

t+ 1

)
± rg

)
v±(x/r)

If one care to check, the choice

g±(t) =
(
(t+ 1)(t− 1)

)(k−1)/2
e±rt

gives D′x
∗g±(x) = 0; moreover, note g±(x) ∈ H1

0

(
(−1, 1);V ⊗ C2

)
. Since g±(x)

are linearly independent and the dimension of the kernel of D′x
∗ is two, we have

obtained a basis for this kernel. By equation (Eq. 4.15), one can approximate, to
order r−1, elements of Ex = KerD∗x by elements of KerD′x

∗; thus, one can obtain
f±(x) ∈ H1

0

(
(−1, 1);V ⊗ C2

)
such that D∗xf±(x) = 0 and:

f±(x) =
g±(x)

‖g±(x)‖L2

+O(r−1)

Where the norm is the L2 norm with respect to t alone. For sufficiently large r,
this provides a basis for Ex for all x outside some large ball. What we desire,
however, is an actual trivialisation of E; this requires the choice of v±(u) to vary
smoothly in u ∈ S2. Regarding this, we have the following:

Proposition 4.1.14. A smooth assignment u 7→ v±(u) corresponds naturally to a
smooth section of the complex line bundle O(±k) over S2 = CP1.

Proof. Consider the circle bundle over S2 whose fibre over u is the circle gener-
ated by exponentiating

∑
i uiei; this bundle is the unitary frame bundle of O(1).

Associated to this circle bundle, construct the complex line bundle whose fibre
at u is the weight space with weight k in the weight space decomposition above;
then, clearly, the association is given by the degree k representation of U(1) on
C; therefore, this line bundle is O(k). By construction, a choice of v+(u) varying
smoothly in u is a section of this complex line bundle. By the same argument, one
sees that v−(u) is a section of O(−k).

As a consequence, there is not a smooth choice of v+ which not vanish at any
point of S2; thus, we must make two choices vj+, j = 1, 2; each vanishing at a single
point and the points not coinciding. It is, then, clear that span{gj+ | j = 1, 2} is
isomorphic to the line bundle of Chern class k over R3 \ 0; similarly, span{gj− | j =
1, 2} is the line bundle of Chern class −k over R3 \ 0. When we pass over to E, we
get a similar result, except that, now, we must work outside some large ball BR;
that is: span{f j+ | j = 1, 2} is isomorphic to the line bundle of Chern class k over
R3 \BR and likewise for the f j−.
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Now, we are in position to address the asymptotic behaviour of Φ. Recall that
Φ is defined as π ◦ (u 7→ itu); therefore, by the above, one has:

Φ =

 〈itg+,g+〉‖g+‖2
〈itg+,g−〉
‖g+‖‖g−‖

〈itg−,g+〉
‖g−‖‖g+‖

〈itg−,g−〉
‖g−‖2

+O(r−1)

Where all norms and inner products are those of L2
(
(−1, 1);V ⊗ C2

)
. The trivi-

alisation used for E is the one defined by the sections {f±}; Now:

〈itg±, g∓〉 =

∫ 1

−1

it
(
(t+ 1)(t− 1)

)k−1
dt = 0

Meanwhile, a straightforward computation yields:

〈itg±, g±〉
‖g±‖2 =

∫ 1

−1
it
(
(t+ 1)(t− 1)

)k−1
e±2rtdt∫ 1

−1

(
(t+ 1)(t− 1)

)k−1
e±2rtdt

−→ ±i as r →∞

As a result, in this trivialisation:

Φ→
(
i 0
0 −i

)
as r →∞

So |Φ| → 1 as r → ∞ as needed. Furthermore, due to proposition Proposi-
tion 4.1.14, the eigenbundles of Φ have Chern classes ±k; therefore, the charge of
(A,Φ) is k.

All that remains to be checked is the condition of finite energy, i.e. YMH(A,Φ) <
∞; then, as remarked in chapter Chapter 2, all other asymptotic conditions follow.
For this, we must prove that the curvature is square integrable.

Proposition 4.1.15. The curvature of A is given by the expression:

FA = πdxGG∗dx̄

Where πx is the projection onto the kernel of D∗x; Gx is the Green’s function of Dx;
that is:

DG = 1− π, GD = 1

And the notation dx, dx̄ signifies:

dx =
3∑
i=1

ei ⊗ dxi, dx̄ = −dx

A wedge product is implicit wherever this appears.

56



Proof. By definition, the curvature is FA = πdπd. The key facts in this proof are
the following:

[d,D] = dx, [d,D∗] = dx̄

These are trivially verified. Hence, consider:

πdxGG∗dx̄ = π[d,D]GG∗[d,D∗]

= π(dD− Dd)GG∗(dD∗ − D∗d)

The term with D∗ on the right vanishes as we are acting on elements of the kernel
of D∗; whereas the term with πD on the left vanishes because π is the orthogonal
projection onto the kernel of D∗ which is the orthogonal complement of the image
of D. What remains is:

= −πdDGG∗D∗d
= −πd(1− π)(1− π)d

= πdπd

= FA

To conclude, notice that the bound obtained for the Green’s function of D′ in
(Eq. 4.14) and the ability to approximate the kernel of D by the kernel of D′ as
shown in (Eq. 4.15) imply that we also have a bound on the norms of the Green’s
function of D:

‖G‖ ≤ 1/cr, ‖G∗‖ ≤ 1/cr

So:

‖FA‖ ≤ ‖π‖ ‖dx‖ ‖G‖ ‖G∗‖ ‖dx̄‖ = ‖G‖ ‖G∗‖ ≤ 1

c2r2

Where these norms are being thought of as the operator norms of bounded linear
maps. Since we work in R3 this places FA in L2 and

YMH(A,Φ) =

∫
R3

‖FA‖2 + ‖dAΦ‖2 <∞

In summary, we have proved:

Theorem 4.1.16. The pair (A,Φ) where A is the connexion on the hermitian
bundle E = KerD∗ defined as dA = π ◦ d and Φ is the endomorphism of E defined
as π ◦ (u 7→ itu) is an SU(2) monopole of charge k.

The construction presented in this section is the inverse of the construction of
Nahm data from a monopole presented in section Section 4.1.1. This is certainly
something that must be checked, but, due to time constraints, the proof was left
out of this project; we refer the reader to [Nak93] for details.
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4.2 Singular Monopoles and Nahm’s Equations

The Nahm transform between SU(2) monopoles and solutions of Nahm’s equations
is a specific case of a more general collection of correspondences between invariant
instantons on four-manifolds. One particular example of this type of correspond-
ence should be given by the case of singular monopoles on R3. In this section we
will investigate this correspondence.

The correspondence we will investigate is between Dirac monopoles on R3 as
described in Section 2.3 and solutions of Nahm’s equations given by the following
data:

1. A Hermitian bundle V of rank k over (0,∞) where k = k1 + · · · + kn is the
sum of charges of the Dirac monopoles, and

2. a unitary connection ∇t on V and three skew-Hermitian endomorphisms
T1, T2, T3 satisfying Nahm’s equations, such that

(a) The Tα are analytic for all s ∈ (0,∞),

(b) as s → 0 the residues of the Tα define an irreducible representation of
su(2), and

(c) as s→∞, the operators Tα approach a commuting triple given by

i diag((p1)α, . . . , (p1)α︸ ︷︷ ︸
k1times

, . . . , (pn)α, . . . , (pn)α︸ ︷︷ ︸
kntimes

)

where pi = ((pi)1, (pi)2, (pi)3) gives the coordinates of a singularity of
the corresponding monopole with charge ki.

In the case of SU(2) monopoles the bundle V → (−1, 1) upon which the Nahm
data correponding to the monopole lived was constructed as the kernel of a twisted
Dirac operator on R3. This same approach can be attempted in the case of Dirac
monopoles. However, the presence of the singularities requires that one applies
the techniques of b-geometry and scattering calculus, as detailed for example in
[Mel93].

In particular, let Φs denote the Higgs field of a Dirac monopole of mass s, given
explicitly by

Φs := i

(
s+

n∑
i=1

ki
2|x− pi|

)
,

where the pi denote the n singularities of Φ1 and the ki are the charges of these
singularities. We will often denote the distance function |x− pi| on R3 by ri.
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As in the case of SU(2) monopoles, we are interested in the operator

/DA,s := /DA + Φs

where A is the connection form corresponding to the Higgs field. Again we have
that the formal adjoint of /DA,s is

/D
∗
A,s = /DA − Φs

due to the skew-Hermiticity of Φs, and by the Weitzenböck formula we have

/D
∗
A,s

/DA,s = ∇∗A∇A − Φ2
s

which is a positive operator.

Remark 4.2.1. A special case of this is where we have a single singularity at the
origin. Here, we have a very manageable exact formula for the Dirac operator,
namely

D∗A,s =

(
i
(
∂
∂r
− s− k−2

2r

)
1
r
/D
−

1
r
/D

+ −i
(
∂
∂r

+ s+ k+2
2r

)) .
We can directly try to compute the kernel of this operator.

If we start by looking for functions of the form g(r)f(θ), where we view R3\{0}
as S2×R+ and g a function on R and f a section of the bundle O(k−1)⊕O(k+1)
over S2 = CP1, then we can easily check that we have a k-dimensional space of
solutions, given by (e−srr

k−2
2 f, 0), where f ∈ H0(CP,O(k − 1)).

Using some further argument involving decomposing the spaces of sections over
the sphere into eigenspaces of the Laplacian one would attempt to prove that these
are indeed all the solutions.

The general case, however, is more complicated. We can, however, write some
asymptotic behaviours (cf. (Eq. 4.8)) The behaviour of our operators near infinity
can be written as

/DA,s =

(
i
(
∂
∂r

+ s+ k+2
2r

)
1
r
/D
−

1
r
/D

+ −i
(
∂
∂r
− s− k−2

2r

))+O(r−2), (Eq. 4.16)

/D
∗
A,s =

(
i
(
∂
∂r
− s− k−2

2r

)
1
r
/D
−

1
r
/D

+ −i
(
∂
∂r

+ s+ k+2
2r

))+O(r−2), (Eq. 4.17)

and the behaviour near the singularity pi is given by

/DA,s =

i( ∂
∂ri

+ ki+2
2ri

)
1
ri
/D
−

1
ri
/D

+ −i
(

∂
∂ri
− ki−2

2ri

)+O(1) (Eq. 4.18)

/D
∗
A,s =

i( ∂
∂ri
− ki−2

2ri

)
1
ri
/D
−

1
ri
/D

+ −i
(

∂
∂ri

+ ki+2
2ri

)+O(1) (Eq. 4.19)
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(note that here the s is absorbed into the O(1), since it is a constant).
Now, in order to define the Nahm data, we want to know what the kernels of

these operators are. In order to do this, we will need to apply ideas from b- and
sc-geometry. In the following sections we will give a concise introduction to these
ideas and explain how the apply to our case.

The underlying idea to both is the following. Let M be a smooth manifold with
boundary. A smooth function x on M such that x|∂M = 0, x 6= 0 away from ∂M ,
and dx|∂M 6= 0 is called a boundary-defining function on M . In a neighbourhood
of a boundary point of M , one may use x to define a local coordinate system
(x, y1, . . . , yn) where (y1, . . . , yn) are local coordinates on the boundary ∂M .

Consider R3\P where P is the finite set of points where Φs has singularities.
One may perform the real blowup of this space at each point pi ∈ P and at ∞ to
obtain a compact manifold M = R3\P with boundary, such that

∂M = ∂∞M t
⊔
pi∈P

∂iM,

where ∂∞M ∼= S2 is a sphere at ∞, and ∂iM ∼= S2 is a sphere about each singu-
larity pi of Φs.

Furthermore, in our case, xi := ri
ri+1

is a boundary defining function for each

∂iM and x∞ := 1
r

(properly cut off for small r) is a boundary defining function
for ∂∞M . We denote x = Π ri

1+ri
, which is a boundary defining function for all the

boundaries at the singularities (not to confuse the notation with the one for the
coordinates on R3).

4.2.1 b-Geometry and the case s = 0

Given M a manifold with boundary, construct the b-vector fields by

Vectb(M) := {X ∈ Γ(M,TM) | X is tangent to ∂M}.

If M has a boundary-defining function x, then in local coordinates near the bound-
ary a b-vector field is a smooth linear combination of

x
∂

∂x
,
∂

∂y1
, . . . ,

∂

∂yn
.

Remark 4.2.2. If one makes a change of variables t := log x then ∂
∂t

= x ∂
∂x

and
the boundary ∂M = {x = 0} corresponds to the limit as t → −∞. Further,
the local coordinate system of (t, y1, . . . , yn) identifies a small neighbourhood of
∂M in M with the infinite cylinder ∂M × (−∞, a) for some a ∈ R. In this sense,
b-geometry is the study of differential operators on manifolds with boundary by
viewing the boundary as a cylindrical end (and considering vector fields which are
asymptotically translation invariant).
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These b-vector fields are first-order differential operators on M , and analog-
ously to the regular definition of differential operators, one may define the algebra
Diffdb(M) of b-differential operators of order d on M .

Using the differential operator x ∂
∂x

instead of ∂
∂x

near the boundary, one may
also analogously define the b-Sobolev spaces Hk

b of M . These Sobolev spaces rely
on the usual metric on the manifold. In a way, a function is in Hm

b if its first k
b-derivatives are in (usual) L2. Hence, if P is a b-differential operator of order d,
then

P : Hm
b → Hm−d

b

for all k.
Locally, a b-differential operator of order m has the form

P = p

(
x, y;x

∂

∂x
,
∂

∂y1
, . . . ,

∂

∂yn

)
= p0(x, y) +

d∑
i=1

pi(x, y, x
∂

∂x
,
∂

∂y1
, . . . ,

∂

∂yn
),

where p is some polynomial of degree d in the given arguments, and pi is homo-
genous of degree i.

Just as in the case of regular differential operators, one may define the b-symbol
from the highest order term of P by

σb(P )(x, y, ξ, η1, . . . , ηn) := pd(x, y, ξ, η1, . . . , ηn)

for formal variables ξ, ηj corresponding to x ∂
∂x

and the ∂
∂yj

. A b-differential operator

is b-elliptic when σb(P ) is invertible for (ξ, ηj) 6= 0.
Unlike in the case of regular differential operators on a smooth manifold M , it is

not true that a b-elliptic b-differential operator is Fredholm on b-Sobolev spaces. In
the setting of b-geometry there are obstructions to Fredholmness that are detected
by the normal operator of P . Define the normal operator N(P ) by

N(P ) :=
d∑
i=0

pi(0, y;x
∂

∂x
,
∂

∂yj
).

A complex number α is an indicial root of N(P ) if there exists a non-zero function
u on ∂M such that

N(P )(xαu(y)) = 0.

In this case one has the following theorem.

61



Theorem 4.2.3 (See [Mel93, §5.17], or [LMO85]). If P is a b-elliptic b-differential
operator and δ ∈ R is not the real part of any indicial root of N(P ), then

P : xδHm
b (M,E)→ xδHm−d

b (M,E)

is Fredholm. Here f ∈ xδHm
b if x−δf ∈ Hm

b . Denote the index of P at weight δ by
Ind(P, δ).

In addition to this result, there is a wall-crossing formula as the parameter δ
passes across the indicial roots of N(P ).

Theorem 4.2.4 (See [LMO85]). If δ1 < α < δ2 and α is the only indicial root of
N(P ) between δ1 and δ2 which are not indicial roots, then

Ind(P, δ2)− Ind(P, δ1) = dim{u | N(P )(xαu(y)) = 0}.

Finally one may define the b-adjoint of a b-differential operator P by integration
with respect to a b-volume form on M . If

P : xδHm
b (M,E)→ xδHm−d

b (M,E)

then
P ∗ : x−δHm

b (M,E)→ x−δHm−d
b (M,E)

and kerP ∗ = cokerP , and Ind(P ∗,−δ) = − Ind(P, δ). This allows us to compute
the index of an operator if we know its relationship to it’s dual. For example, if P
is b-self-adjoint, then we would have the following.

Theorem 4.2.5 (See [LMO85]). If P ∗ = P then

2 Ind(P, δ) = Ind(P, δ)− Ind(P,−δ) =
∑
−δ<α<δ

dim{u | N(P )(xαu(y)) = 0}

where α runs over all indicial roots between −δ and δ.

For more details on the various constructions in b-geometry, including of the
b-tangent bundle, b-metrics, b-integrals, and various other natural differential-
geometric and analytic constructions, we refer to the seminal [Mel93], particularly
Chapters 2, 4, and 5.

As it turns out, this setting will be adequate for studying our Dirac operators
in the particular case where the mass is s = 0. This is the approach considered by
Singer in the unpublished notes [Sin00], which we follow here.

Indeed, we see that the behaviours of xi /DA,0 and xi /D
∗
A,0 near the singularities

and x−1
∞ /DA,0 and x−1

∞ /D
∗
A,0 near infinity are precisely the behaviours of b-operators

(see (Eq. 4.16), (Eq. 4.17), (Eq. 4.18) and (Eq. 4.19)). Furthermore, one can
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easily see that they are b-elliptic. This means that they will be Fredholm operators

/DA,0, /D
∗
A,0 : xµxδ∞Hm

b (M, /S ⊗ E)→ xµ−1xδ+1
∞ Hm−1

b (M, /S ⊗ E). (Eq. 4.20)

In fact, we will think of µ as a kind of multi-index, in the sense that we have
x(µ1,...,µn) = Πxµii (and µ− 1 refers to reducing each component by 1).

Let us then look at the normal operators. Consider, for and integer κ > 0 and
a real number λ, the operator

Nλ
κ =

(
i
(
α + 1 + λκ

2

)
/D
−

/D
+ −i

(
α + 1− λκ

2

)) ,
acting on sections of O(κ− 1)⊕O(κ+ 1) of CP1.

N1
k and N−1

k are the normal operators for x−1
∞ /DA,0 and x−1

∞ /D
∗
A,0, respectively,

at the sphere at infinity, where k the sum of charges (and acting on sections of the
form xαu). Analogously, taking κ to be ki would give us the normal operators of
xi /DA,0 and xi /D

∗
A,0. Therefore, we are interested in computing the indicial roots of

these operators.
Recall that /D

+
and /D

−
are 2∂κ and 2∂

∗
κ, the Dolbeault operator on the holo-

morphic bundle O(κ−1) and its dual (on O(κ+1) =
∧

0,1⊗O(κ−1)) on S2 = CP1.
If α is an indicial root of this operator, then we will be have u+ and u−, (smooth)
sections of O(κ− 1) and O(κ+ 1), respectively, so that

i

(
α + 1 +

λκ

2

)
u+ + 2∂

∗
u− = 0, (Eq. 4.21)

−i
(
α + 1− λκ

2

)
u− + 2∂u+ = 0. (Eq. 4.22)

We want to compute the dimension of the space of solutions of this system. In
order to do so, we need to know the eigenvalues of the Laplacian 4∂

∗
κ∂κ on CP1.

Lemma 4.2.6. Let ∂κ denote the Dolbeault operator on O(κ) ⊗ /S
+ → CP1 for

κ > 0, and let ∇κ denote the Chern connection. The eigenvalues of the Dolbeault
Laplacian

4∂
∗
κ∂κ

are given by
{`(`+ κ) | ` ∈ Z≥0}.

Proof. This follows from the Weitzenböck formula for the twisted Dirac operator
on O(κ)⊗ /S+

. Recall that /S
+ ∼= O(−1). It is shown in [Kuw82, Thm. 5.1] that the
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eigenvalues of the Chern connection Laplacian on O(κ)→ CP1 with the standard
round metric are given by

{p(p+ 1)− κ2

4
| p =

|κ|
2
,
|κ|
2

+ 1, . . . }.

Recall from Theorem 1.1.15 that the twisted Dirac operator on O(κ)⊗ /S is given
by

/D =

(
0 2∂

∗
κ

∂κ 0

)
.

The Weitzenböck formula Theorem 1.1.11 then says that

4∂
∗
κ∂κ = ∇∗κ∇κ +R,

where
R =

∑
i<j

c(ei)c(ej)Fκ(ei, ej).

In this setting the bundle O(κ) ⊗ /S
−

with the Chern connection has curvature

form Fκ = − i(κ−1)
2

dvol, and in this orientation

c(e1) =

(
i 0
0 i

)
, c(e2) =

(
0 −1
1 0

)
.

Thus on the positive spinor bundle O(κ)⊗ /S
+

we have

R = −i · − i(κ− 1)

2
dvol(e1, e2) = −κ− 1

2
.

Putting this all together, and recalling that κ > 0, we see the eigenvalues of 4∂
∗
κ∂κ

are (
|κ− 1|

2
+ `

)(
|κ− 1|

2
+ `+ 1

)
− (κ− 1)2

4
− κ− 1

2
= `(`+ κ),

for ` ∈ Z≥0.

Remark 4.2.7. Notice that the first eigenvalue is always 0 for κ > 0, correspond-
ing to the fact that O(κ − 1) has non-zero holomorphic sections (i.e. sections in
the kernel of the Dolbeault Laplacian) for all such κ. If this computation was
repeated with κ ≤ 0 the first eigenvalue would be strictly positive, agreeing with
the fact that H0(CP1,O(κ− 1)) = 0 for κ ≤ 0.
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We now return to the solutions of our system of equations. By applying 2∂
∗

to
(Eq. 4.22) and substituting with (Eq. 4.21), we would get

4∂
∗
κ∂κu =

(
(α + 1)2 −

(
λκ

2

)2
)
u. (Eq. 4.23)

This means that, if the original system is to have any solution, we must have that

(α + 1)2 −
(
λκ
2

)2
must be equal to some eigenvalue `(`+ κ), for some ` ∈ Z≥0. In

other words, α = −
√(

λκ
2

)2
+ `(`+ κ)− 1 or α =

√(
λκ
2

)2
+ `(`+ κ)− 1.

If ` 6= 0, this corresponds to a non-zero eigenvalue, and a solution to (Eq. 4.23)
will always give rise to solutions of the original system. Therefore, for all these
values, α is an actual indicial root (the dimension of the space of solutions can be
computed to be κ+ 2`, but this will not be relevant to our case).

However, the case ` = 0 is slightly more complicated, since we will not always
be able to go back to a solution of the original system. Hence, let us look at
this case more closely. Firstly, we see that this corresponds to the indicial roots
α = λκ

2
− 1 and α = −λκ

2
− 1, so we can take both cases separately. Also, for now,

let λ 6= 0.
Hence, let us first look at α = λκ

2
− 1. In this case, the system becomes

2∂
∗
u− = iλκu+,

2∂u+ = 0.

By applying 2∂ to the first equation, we get that ∂∂
∗
u− = 0, which implies that

u− = 0, given that it’s a section of O(κ + 1) (with κ > 0). Hence, we must also
have u+ = 0, so there are no non-trivial solutions. Therefore, this is not an actual
indicial root.

If α = −λκ
2
− 1, then the system becomes

2∂
∗
u− = 0,

2∂u+ = −iλκu−.

This implies that u− = 0, so our solutions will precisely be given by holomorphic
sections of O(κ− 1), of which there is precisely a κ-dimensional space.

If λ = 0, then the two previous cases are the same, and are simply

2∂
∗
u− = 0,

2∂u+ = 0,

so again we have a κ-dimensional space of solutions.
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Summarising, we have that the indicial roots of Nλ
κ are given by

· · ·

−

√(
λκ

2

)2

+ 2(2 + κ)− 1

−

√(
λκ

2

)2

+ 1(1 + κ)− 1

−λκ
2
− 1√(

λκ

2

)2

+ 1(1 + κ)− 1√(
λκ

2

)2

+ 2(2 + κ)− 1

· · ·

and the space of solutions corresponding to −λκ
2
− 1 has dimension κ.

Now, in order to find the index of our operators, we would like to use something
like Theorem 4.2.5. The problem is that our operator /D

∗
A,0 is not self adjoint.

However, we do know that its adjoint is /DA,0, which is very closely related. In

particular, we can deform /D
∗
A,0 = /DA−Φ0 to /DA,0 = /DA+Φ0 through the operators

/DA + λΦ0, which have Nλ
κ as their normal operators (with the corresponding κ

near each boundary component).
Similarly to (Eq. 4.20), we define the operators

Dλ,(µ,δ) := /DA + λΦ0 : xµxδ∞Hm
b (M, /S ⊗ E)→ xµ−1xδ+1

∞ Hm−1
b (M, /S ⊗ E),

which will be Fredholm except when µ and δ fall on the inditial roots given above
for the corresponding λ. The dual of such an operator Dλ,(µ,δ) will be

D−λ,(−µ+1,−δ−1) := /DA−λΦ0 : x−µ+1x−δ−1
∞ Hm

b (M, /S⊗E)→ x−µx−δ∞Hm−1
b (M, /S⊗E)

(we have simply changed the sign of λ to give the dual and exchanged the weights
correspondingly). Hence,

Ind(Dλ,(µ,δ)) + Ind(D−λ,(−µ+1,−δ−1)) = 0. (Eq. 4.24)

The key now is to relate these two indices using the discussion above. The result
is the following.
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Proposition 4.2.8. Suppose that

µ =

(
k1 + 1

2
− ε, . . . , kn + 1

2
− ε
)
, δ =

k + 1

2
+ ε,

for some small enough ε > 0. Then,

Ind(D−1,(µ,δ))− Ind(D1,(−µ+1,−δ−1)) = 2k

(where k, k1, . . . , kn are the charges of (A,Φ)).

Proof. The proof of this proposition is best explained through the diagrams presen-
ted in Figures 4.1 and 4.2. Indeed, given the weights of our spaces, that will de-
termine which indicial roots fall into the domain near each boundary component.
In the figures, we represent with a thick grey line the interval of possible indicial
roots that fall into the domains. The indicial roots which actually exist (depend-
ing on λ) are represented by the curves and dots. The straight line in the middle
represents the indicial root −λκ

2
− 1, which we know to correspond to a space of

dimension κ.
Therefore, we see that in all the boundary components, as we deform our

operator we are going to leave out a κ-dimensional space corresponding to the
indicial roots. Therefore, the index will decrease by all of these contributions. The
total contributions are k + k1 + · · ·+ kn = k + k = 2k.

Corollary 4.2.9. The index of the Dirac operator

/D
∗
A,0 : xµxδ∞Hm

b (M, /S ⊗ E)→ xµ−1xδ+1
∞ Hm−1

b (M, /S ⊗ E)

is k, where µ and δ are like in Proposition 4.2.8.

Proof. This is a direct consequence of Proposition 4.2.8 and (Eq. 4.24).

4.2.2 sc-Geometry and the case s > 0

In addition to b-geometry, we will also be interested in the so-called scattering
calculus, or sc-geometry, also pioneered by Melrose. See [Mel08, Ch. 7] or [Mel95]
for more details on the constructions in this section, which we summarise.

The sc-geometry is constructed parallel to b-geometry as follows. Again let
M be a manifold with boundary and x a boundary-defining function. Define the
scattering sc-vector fields by Vectsc(M) := xVectb(M). That is, sc-vector fields
are smooth linear combinations of

x2 ∂

∂x
, x

∂

∂y1
, . . . , x

∂

∂yn

near ∂M .
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Remark 4.2.10. Let r := 1
x
. Then −x2 ∂

∂x
= ∂

∂r
and x ∂

∂yi
= 1

r
∂
∂yi

. This is the local
model for a Euclidean coordinate system, as opposed to the b-geometry in which
the boundary is viewed as a cylindrical end. In this sense sc-calculus is the method
of analysis on manifolds with boundary by viewing the boundary as a Euclidean
limit.

Just as in the b-geometry case, the sc-vector fields allow one to define sc-
differential operators Diffdsc(M) of order d. Notice that although Vectsc(M) =
xVectb(M), it is not the case that Diffdsc(M) = xDiffdb(M). Indeed x2 ∂

∂x
+ 1 =

x
(
x ∂
∂x

+ 1
x

)
∈ Diff1

sc(M) but is clearly not in xDiff1
b(M).

Again one may define the sc-Sobolev spaces Hm
sc and the sc-symbol σsc(P ) of

an sc-differential operator by the same expressions as in the b-geometry case. The
notion of sc-ellipticity is defined in the same way.

Again define the normal operator N(P ) of a scattering operator P by

N(P ) :=
d∑
i=0

pi(0, y, ξ, η1, . . . , ηn).

We say P is fully elliptic if σsc(P ) is invertible for (ξ, ηj) 6= 0 for all (x, y) and N(P )
is invertible for all (ξ, ηj). In this setting there is a divergence with b-geometry,
and we have the following theorem.

Theorem 4.2.11 (See [Mel95, §6.5]). If P is a fully elliptic sc-differential operator
of order d, then

P : xδHm
sc → xδHm−d

sc

is Fredholm for all m, δ and the index of P is independent of the choice of m, δ.
Furthermore

kerP ⊂
⋂
δ,m

xδHm
sc.

Now, if we look back at the asymptotic behaviour of our Dirac operators near
infinity ((Eq. 4.16) and (Eq. 4.17)), we see that, if s > 0, they behave precisely
like fully elliptic sc-operators at the boundary component ∂∞M (to see this more
concretely, we need to consider the symbol of the Dolbeault Laplacian and check
that the normal operator is always invertible).

Hence, whereas before we were only able to consider the case s = 0, now we
can study the case s > 0, which is, in fact, the one that interests us, since it is
here that we will want to define the Nahm data.

Out operator, however, is not a b-operator or an sc-operator, since it behaves
differently at different components of the boundary. However, we can consider a
mix of these two kinds of geometry in order to study this case.
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We start by noting that all the concepts of b- and sc-geometry (vector fields,
ellipticity, Sobolev spaces, etc.) only differ from the usual ones in the behaviour
near the boundary. That is, in the interior all the notions coincide. Therefore, we
can consider consider something which we could call bsc-geometry, which would
be the exact analogous, but imposing b-behaviour near some components of the
boundary, and sc behaviour on other components. In the setting of the previous
section, we would like to consider bsc-geometry in the sense that we impose b-
behaviour near ∂iM for all i but sc-behaviour near ∂∞M . In this sense, our Dirac
operator is a fully elliptic bsc-operator between Sobolev spaces with the appropriate
weights, and therefore we would expect it to be Fredholm.

Now, we could try to compute the index using a similar technique to the one we
used before. The problem, however, arises when we deform the operators, since at
an intermediate point they will cease to be fully elliptic (in the scattering sense).
The contribution from the singularities would be the same as before, but we would
need a wall-crossing formula for the situation where an sc-operator ceases to be
fully elliptic. If this gave us another contribution of k, then we would have our
result.

Another way to tackle this would be by considering the following principle: we
have deduced from the previous section that, if we have no mass, then the index is
not affected by whether there are several singularities or whether all the charge is at
a single point. On the other hand, the addition of mass affects only the behaviour
towards infinity (since, recall, the behaviour near the singularities was dictated by
xiD

∗
A,s, where multiplying by xi made the mass become irrelevant). Therefore, if

we had the case of a monopole with mass, but with all charge concentrated at a
point, changing this to the general situation where we have multiple singularities
should not have an impact on the index. This is precisely the case discussed in
Remark 4.2.1.

4.2.3 Limit of Nahm Data

In order to determine the behaviour of the Nahm data near the limits, we would
need to have a model, similar to the case of SU(2) monopoles (cf. (Eq. 4.9)).
In analogy with the previous case, we would expect that the limit as s → 0 be
dictated by the behaviour near of the solutions for large r, and we would expect a
similar formula. In the limit s → ∞, however, the limit would be determined by
the behaviour of the solutions near the singularities, where we would also expect
solutions of the same form. In what follows we will study what these limits would
be given these possible models. Note, in particular, that these model solutions are
consistent with the weights defined in the previous sections for the domains of the
Dirac operator.
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As s→∞:

Let

ψi,j := (χ(ri)e
−risr

ki−2

2
i fi,j, 0),

where fi,j ∈ H0(CP1,O(ki − 1)) for j = 1, . . . , ki, give orthonormal bases. This
would be the local model for a solution of /D

∗
A,sψ = 0 near a singularity pi. Here

χ is a cut off function which is identically 1 near zero and 0 away from zero.
In principle, the solution of /D

∗
A,sψ = 0 near the singularities should be a small

deformation of a sum

ψ :=
n∑
i=1

ai,jψi,j.

Note that, if the cut off function is chose appropriately, then this would give, in
fact, an (approximate) orthonormal decomposition.

Now, we would want to look at 〈ixαψi,j, ψi′,j′〉. For i 6= i′ this is zero, so we
suppose that i = i′. We have

〈ixαψi,j, ψi,j′〉 =

∫
R3

χ(ri)
2e−2risrki−2

i ixα〈fi,j, fi,j′〉,

where we integrate using the appropriate measure. Now, we observe that, as s
becomes arbitrarily big, the exponential factor will cause an arbitrarily big pro-
portion of the integral to be concentrated around the point pi. Therefore, for
sufficiently big s, this would be arbitrarily close to∫

R3

χ(ri)
2e−2risrki−2

i i(pi)α〈fi,j, fi,j′〉 = i(pi)α〈ψi,j, ψi,j′〉.

Therefore, one concludes that, in the limit, π(ixαψi,j) behaves like i(pi)αψi,j.
Performing this operation simultaneously for all the model solutions demon-

strates that the Nahm data Tα will, when represented in the basis described above,
have the form

Tα = i diag((p1)α, . . . , (p1)α︸ ︷︷ ︸
k1times

, . . . , (pn)α, . . . , (pn)α︸ ︷︷ ︸
kntimes

).

As s→ 0:

The limit when s approaches 0 would be expected to be analogous to the behaviour
of the SU(2) monopoles as t → ±1, with the same computations providing the
irreducible representation.
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Figure 4.1: Operators near ∂iM
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Figure 4.2: Operators near ∂∞M
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