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1.2.4 Čech Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.5 Examples of Vector Bundles . . . . . . . . . . . . . . . . . . . . . . 16
1.2.6 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.7 Sub-Bundles and Quotient Bundles . . . . . . . . . . . . . . . . . . 20
1.2.8 Kernels and Cokernels . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Principal Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Principal G-Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 Frame Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.3 Associated Fibre Bundles . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Gauge Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.1 Bundle of Gauge Transformations . . . . . . . . . . . . . . . . . . 26
1.4.2 Gauge Transformations and the Frame Bundle . . . . . . . . . . . 27

2 Connections and Curvature 29
2.1 Linear Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Why Do We Need Connections? . . . . . . . . . . . . . . . . . . . 29
2.1.2 The Invariant Definition of a Connection . . . . . . . . . . . . . . 31
2.1.3 The Local Description of a Connection . . . . . . . . . . . . . . . . 33
2.1.4 Gauge Transformations . . . . . . . . . . . . . . . . . . . . . . . . 36

1



2.1.5 Directional Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.6 Parallel Transport and Holonomy . . . . . . . . . . . . . . . . . . . 40
2.1.7 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.8 Operations on End(E)-valued Differential Forms . . . . . . . . . . 46
2.1.9 Local Curvature Form . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.10 Induced Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1.11 More Properties of Curvature . . . . . . . . . . . . . . . . . . . . . 55
2.1.12 Curvature and Directional Derivatives . . . . . . . . . . . . . . . . 56
2.1.13 Curvature and Holonomy . . . . . . . . . . . . . . . . . . . . . . . 56

2.2 Ehresmann Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2.2 Linear Connections as Ehresmann Connections . . . . . . . . . . . 57
2.2.3 Horizontal Lifts and Holonomy . . . . . . . . . . . . . . . . . . . . 57

2.3 Principal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.2 Connection Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Relations between Principal Connections and Linear Connections . . . . . 58
2.4.1 Induced Connections on the Frame Bundle . . . . . . . . . . . . . 58
2.4.2 Induced Connections on Associated Vector Bundles . . . . . . . . . 58

2.5 Flat Connections and Representations . . . . . . . . . . . . . . . . . . . . 58
2.5.1 Flat Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.2 Representations of the Fundamental Group . . . . . . . . . . . . . 58
2.5.3 Projectively Flat Connections . . . . . . . . . . . . . . . . . . . . . 58
2.5.4 Projective Representations of the Fundamental Group . . . . . . . 58

3 Sheaves 59
3.1 Sheaves of R-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 The Étale Space of a Sheaf . . . . . . . . . . . . . . . . . . . . . . 59
3.1.2 Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.3 Complete Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Locally Free Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.3 The Tangent Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Cech Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.1 Fine Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Cech Cohomology Groups . . . . . . . . . . . . . . . . . . . . . . . 59

4 Complex Geometry 60
4.1 Complex Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Complex Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Almost Complex Structure . . . . . . . . . . . . . . . . . . . . . . 60
4.1.3 Dolbeault Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . 60

2



4.1.4 Riemann-Roch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Symplectic Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Symplectic Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Symplectic Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Phase Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.4 Darboux’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.5 Coadjoint Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.6 Hamiltonian Vector Fields and the Poisson Bracket . . . . . . . . . 68
4.2.7 Moment Maps and Symplectic Reduction . . . . . . . . . . . . . . 70

4.3 Kähler Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Hyper-Kähler Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Holomorphic Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.1 Dolbeault Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.2 Line Bundles on Riemann Surfaces . . . . . . . . . . . . . . . . . . 70
4.5.3 Stable Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Moduli Spaces 73
5.1 The Yang-Mills equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 The Hodge star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.2 Derivation of the Yang-Mills equations . . . . . . . . . . . . . . . . 75

5.2 Line Bundles on a Riemann Surface . . . . . . . . . . . . . . . . . . . . . 76
5.2.1 Smooth Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Holomorphic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Flat Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.4 Classification of Smooth Vector Bundles . . . . . . . . . . . . . . . 79

5.3 Stable Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Higgs Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Higgs Line Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 One-Dimensional Representations of the Fundamental Group . . . . . . . 82

5.5.1 Complex Representations . . . . . . . . . . . . . . . . . . . . . . . 82

6 Geometric Quantization 83
6.1 Prequantization and Kähler Polarizations . . . . . . . . . . . . . . . . . . 83
6.2 Hitchin’s Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Geometric Quantization for the Moduli Space of Higgs Bundles . . . . . . 85

A Appendix 86
A.1 Einstein Summation Notation . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.1.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.2 A Note on Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 87

References 90

3



Part I

Stale Memes

1



Chapter 1

Bundles

1.1 Fibre Bundles

1.1.1 Definitions

Definition 1.1.1 (Fibre Bundle). Let M,F be smooth manifolds. A fibre bundle over
M with fibre F is a smooth manifold E and a smooth surjection π : E →M such that:

1. For every x ∈M , The fibre π−1(x) of x, denoted Ex, is diffeomorphic to F .

2. There exists an open cover {Uα} of M and diffeomorphisms ϕα : π−1(Uα)→ Uα×F
such that for every α the following diagram commutes,

π−1(Uα) Uα × F

Uα

ϕα

π pr1

where pr1 is projection onto the first factor. The bundle π−1(Uα) with its fibre
bundle structure induced from that of E is written E|Uα.

To be perfectly precise, one should denote a fibre bundle by a vector (E,M, π, F ).
Since the letters used to denote fibre bundles are largely fixed, they will often be denoted
by π : E →M , E →M , or simply E.

A collection {(Uα, ϕα)} satisfying the second condition of Definition 1.1.1 is called a
fibre bundle atlas for E. A single pair (Uα, ϕα) is called a local trivialisation for E over
the set Uα ⊆M .

One should think of a local trivialisation of a fibre bundle E as some kind of local
chart for the fibre bundle considered as a smooth manifold. Indeed if one composes the
local trivialisations ϕα with the charts on the Uα coming from M , and charts on F ,
a genuine atlas for the manifold E is obtained. Because the maps ϕα are required to
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be diffeomorphisms from the beginning, this smooth structure is of course the assumed
smooth structure on E.

Definition 1.1.2 (Trivial Fibre Bundle). A fibre bundle π : E → M is trivial if there
exists a fibre bundle atlas consisting of a single local trivialisation.

Using the terminology of Definition 1.1.2, a fibre bundle is locally trivial. That is,
there exists an open cover {Uα} such that the fibre bundles E|Uα are trivial.

Definition 1.1.3 (Section). Let π : E → M be a fibre bundle over M with fibre F . A
section of E is a smooth map s : M → E such that s(x) ∈ Ex for every x ∈ M . That
is, π ◦ s = 1. The set of all sections of a fibre bundle E is denoted Γ(E).

Example 1.1.4 (The Trivial Fibre Bundle with Fibre F ). Let M,F be smooth mani-
folds. Then E := M ×F with π = pr1 is a fibre bundle over M with fibre F . This is the
trivial fibre bundle over M with fibre F . One refers to this as the trivial bundle when
the base manifold M and the fibre F are understood.

1.1.2 Bundle Maps

Definition 1.1.5 (Fibre Bundle Homomorphism). Let π : E → X and π′ : S → Y
be fibre bundles over manifolds X and Y . A smooth map f : E → S is a fibre bundle
homomorphism if there exists a smooth map f̃ : X → Y such that the following diagram
commutes.

E S

X Y

f

π π′

f̃

Note the map f̃ above is actually determined by f . Given a point x ∈ X, let
p ∈ π−1(x) be any point in the preimage. Then by commutativity of the diagram we
know π′ ◦ f(p) = f̃ ◦ π(p). But π(p) = x, so we just have π′ ◦ f(p) = f̃(x). Note
the right side of this equality does not depend on p, so we get a well-defined function
f̃ = π′ ◦ f ◦ π−1. The function f is said to cover f̃ .

Do not however get the impression that the requirement of the existence of f̃ is
superfluous. One requires the commutativity of the above diagram for some f̃ to ensure
that the map f : E → S is fibre-preserving, which is the real property that makes a
smooth map f : E → S a fibre bundle homomorphism.

In most cases, the the base space of the fibre bundles E and S is the same. If the
map f̃ is the identity 1 : M →M then we get the following specialisation.

Definition 1.1.6 (Fibre Bundle Homomorphism over M). Let π : E →M and π′ : S →
M be two fibre bundles over a manifold M . Then a fibre bundle homomorphism over
M is a fibre bundle homomorphism covering the identity 1 : M → M . In particular, it
is a map f : E → S such that the following diagram commutes.
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E S

M

f

π π′

Whenever one defines a morphism between two objects, there should be an associated
notion of isomorphism. In this case we have the following.

Definition 1.1.7 (Fibre Bundle Isomorphism). Let π : E → M and π′ : S → M be
two fibre bundles over a manifold M . Then a fibre bundle isomorphism is a fibre bundle
homomorphism f : E → S that is also a diffeomorphism.

From the perspective of Definition 1.1.7, a trivial fibre bundle is one that is fibre
bundle isomorphic to the trivial bundle. In particular, every fibre bundle is locally
isomorphic to the trivial bundle.

1.1.3 Transition Functions

Let π : E →M be a fixed fibre bundle. Suppose we have a fibre bundle atlas {(Uα, ϕα)}
for E. On an overlap Uαβ := Uα ∩Uβ there are two ways of trivialising the fibre bundle
E|Uαβ . One could either apply ϕα or ϕβ. This gives rise to the following commutative
diagram.

Uαβ × F E|Uαβ Uαβ × F

Uαβ

pr1

ϕα

π

ϕβ

pr1

Since ϕα and ϕβ are diffeomorphisms, we can consider the map ϕβ ◦ϕ−1
α : Uαβ×F →

Uαβ × F . By commutativity of the above diagram, points in {x} × F get mapped to
points in {x} × F . That is, given any point (x, f) ∈ Uαβ × F , we have

ϕβ ◦ ϕ−1
α (x, f) = (x, gβα(x)(f))

for some element of F , possibly depending on x, that we are calling gβα(x)(f).
Since ϕβ ◦ ϕ−1

α is a diffeomorphism, the map sending f 7→ gβα(x)(f) is a diffeomor-
phism from F to itself. Call this map gβα(x). Then we are saying that gβα(x) ∈ Diff(F )
for every x ∈ Uαβ. Again since ϕβ ◦ ϕ−1

α is a diffeomorphism, these maps gβα(x) vary
smoothly with x, so we obtain a smooth map gβα : Uαβ → Diff(F ) that assigns to each
x ∈ Uαβ a diffeomorphism of F . This map gβα describes how the trivialisations (Uα, ϕα)
and (Uβ, ϕβ) differ on this intersection.
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Definition 1.1.8. Let E be a fibre bundle with fibre F and suppose {(Uα, ϕα)} is a fibre
bundle atlas for E. The collection of smooth maps {gαβ} constructed above, where α, β
vary over the Uαβ such that Uαβ 6= ∅, are called the transition functions of E with respect
to the open cover {Uα}.

Remark 1.1.9. The standard notation for the transition function going from considering
E with respect to the local trivialisation (Uα, ϕα) to with respect to (Uβ, ϕβ) is gβα. This
is the opposite of what one might expect. The reason for this will be illuminated soon
in the case of principal G-bundles, and in the case of vector bundles. Writing α on the
right allows one to keep track of which local sections to apply gβα to in a sensible way.

The transition functions for a fibre bundle describe the way the local trivialisations
are glued together to produce the global structure of the bundle. Although the bundle
is locally trivial, if the gluing on intersections of local trivialisations is non-trivial then
the bundle may not be globally trivial. We will make this idea of transition functions
specifying gluing in the statement of Theorem 1.1.12.

Definition 1.1.10 (The Cocycle Condition). Let M,F be manifolds.. Suppose U :=
{Uα} is an open cover for M . A collection of maps {gαβ} with gαβ : Uαβ → Diff(F ) will
be said to satisfy the cocycle condition if for every non-empty triple overlap Uαβγ the
maps gαβ, gβγ, and gαγ satisfy

gαβ(x) ◦ gβγ(x) = gαγ(x)

for every x ∈ Uαβγ. The collection of maps {gαβ} will be called a cocycle with values in
Diff(F ) with respect to the open cover U .

In particular, the transition functions for a fibre bundle E form a cocycle. In this
case we will refer equivalently refer to the transitions as a cocycle for E with respect to
U with values in Diff(F ).

Lemma 1.1.11. Suppose E is a fibre bundle and {gαβ} is a cocycle for E with respect
to an open cover U . Then for every x ∈ Uαβ 6= ∅,

1. gαα(x) = 1(x)

2. gαβ(x) = (gβα(x))−1

Proof. (1) follows from setting β, γ = α in the cocycle condition, and (2) follows from
(1).

Given a fibre bundle E over a manifold M , a fibre bundle atlas gives a cocycle {gαβ}
that describes how one should pass between overlapping local trivialisations. The key
result in the basic theory of fibre bundles is that one may start with a cocycle for some
open cover and construct a fibre bundle from it (Theorem 1.1.12). Furthermore, if one
applies this construction to a cocycle for a fibre bundle E, one recovers the bundle up
to isomorphism (Corollary 1.1.15).
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Theorem 1.1.12 (Fibre Bundle Construction Theorem). Let M,F be smooth manifolds
and U := {Uα}α∈A be an open cover for M indexed by a set A. Let {gαβ} be a cocycle
on M with respect to U where each gαβ maps into Diff(F ). Then there is a fibre bundle
E with a fibre bundle atlas {(Uα, ϕα)} such that the transition functions for this atlas
are the cocycle {gαβ}.

Proof. Let A have the discrete topology. Then M × F × A is a topological space. Let
X := {(x, f, α) ∈ M × F × A | x ∈ Uα}. Then X is a disjoint union of the open sets
Uα × F × {α} for each α. Define an equivalence relation on X by

(x, p, α) ∼ (y, q, β) if and only if x = x′ and q = gβα(x)(p).

Since the gαβ satisfy the cocycle conditions, ∼ is an equivalence relation on X. Let
E := X/ ∼ be the quotient space with the induced topology.

Define a map π : E → M by π([x, p, α]) = x. Then π is well-defined and surjective.
Since the corresponding map from X to M is continuous, in the quotient topology π will
be continuous.

Now let x ∈M . Then π−1(x) = {[x, p, α] | p ∈ F, x ∈ Uα}. Note that if we fix p ∈ F
then [x, p, α] = [x, gαβ(x)p, β] whenever x ∈ Uαβ. Since the gαβ(x) are diffeomorphisms
of F for each (α, β), there is a well-defined bijection π−1(x) → F sending [x, p, α] to
p. Furthermore, this map is clearly continuous in the quotient topology, and indeed is
open. Thus for each x ∈M we have a homeomorphism from π−1(x) to F .

Define a map Uα × F → π−1(Uα) by (x, f) 7→ [x, f, α]. Then this is a continuous
bijection with continuous inverse [x, f, α] 7→ (x, f).

One can define an equivalence relation on cocycles over the same open cover of M by
saying {gαβ} is equivalent to {hαβ} if there exists smooth functions λα : Uα → Diff(F )
with the property that

gβα(x) ◦ λα(x) = λβ(x) ◦ hβα(x)

for every α, β such that Uαβ 6= ∅, and for every x ∈ Uαβ.

Definition 1.1.13. Let V = {Vα} and W = {Wβ} be open covers of a manifold M .
The common refinement of V and W is the open cover U = {Vα ∩Wβ} of all possible
intersections. This will be denoted V ∩W.

Proposition 1.1.14. Two fibre bundles E and S with fibre F are isomorphic if and only
if there exists an open cover U of M trivialising both E and S such that the transition
functions with respect to this cover are equivalent.

Proof. ( =⇒ ) Suppose E and S are isomorphic as fibre bundles. Let U1 be a trivialising
cover for E, and U2 be a trivialising cover for S. Then the common refinement U :=
U1∩U2 is still an open cover of M , and by restriction of local trivialisations, both E and
S are trivial over U =: {Uα}. Denote the fibre bundle atlas for E by {(Uα, ϕα)} and for
S by {(Uα, φα)}.
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Since E and S are isomorphic, there exists a diffeomorphism f : E → S preserving
fibres. Let (x, f) ∈ Uα×F . We may then apply ϕ−1

α to obtain a point ϕ−1
α (x, f) ∈ E|Uα .

Then we may apply f to obtain an element f ◦ϕ−1
α (x, f) ∈ S|Uα . Finally we may apply

φα to obtain φα ◦ f ◦ ϕ−1
α (x, f) ∈ Uα × F .

Because these maps preserve fibres, this element is of the form (x, λα(x)(f)) for some
map λα(x) ∈ Diff(F ). In particular we obtain a smooth function λα : Uα → Diff(F ).

Now on a non-empty intersection Uαβ we have (with a slight abuse of notation)

gβα(x) ◦ λα(x) = ϕβ ◦ ϕ−1
α ◦ ϕα ◦ f ◦ φ−1

α = ϕβ ◦ f ◦ φ−1
α .

On the other hand we have

λβ(x) ◦ hβα(x) = ϕβ ◦ f ◦ φ−1
β ◦ φβ ◦ φ

−1
α = ϕβ ◦ f ◦ φ−1

α .

Thus the two cocycles {gαβ} and {hαβ} are equivalent.
( ⇐= ) Suppose now that E and S have equivalent cocycles of transition functions

with respect to some trivialising open cover U . Define an isomorphism f : E → S as
follows. If π(p) = x ∈ Uα, then write f(p) = φ−1

α ◦ λα ◦ ϕα, where here by composition
with λα we mean the map (x, f) 7→ (x, λα(x)(f)) for (x, f) ∈ Uα × F .

Because the cocycles {gαβ} and {hαβ} are equivalent via these {λα}, this map is
well-defined on overlaps. By composition it is smooth, and one may write down an
inverse by considering the maps x 7→ (λα(x))−1. By definition it preserves fibres. Thus
E and S are fibre bundle isomorphic.

Corollary 1.1.15 (Fibre Bundle Reconstruction Theorem). If π : E →M is an F -fibre
bundle over M with trivialising open cover U , and transition functions {gαβ} with respect
to this open cover, then the fibre bundle E′ constructed from these transition functions
using Theorem 1.1.12 is isomorphic to E.

1.1.4 Pullback Bundles

Let π : E →M be a fibre bundle with fibre F , and suppose f : N →M is a smooth map
from another manifold N . Let f∗E := {(x, p) ∈ N ×E | f(x) = π(p)} ⊂ N ×E. Define
a map π′ : f∗E → N by π′(x, p) = x. Define another map g : f∗E → E by g(x, p) = p.

Equip the set f∗E with the subspace topology induced by N ×E. Further, note that
f∗E is a smooth submanifold of N ×E, and with respect to this smooth structure π and
g are continuous.

Definition 1.1.16 (Pullback Bundle). Let π : E → M be a fibre bundle with fibre F .
Suppose f : N → M is a smooth map from another manifold N into M . Then the
bundle f∗E defined above is called the pullback of E by f .

Let U be a trivialising open cover of M for the bundle E. Then the collection f−1(U)
is an open cover of N . On overlaps f−1(Uα)∩ f−1(Uβ) = f−1(Uα∩Uβ), define functions
(f∗g)αβ by (f∗g)αβ(x) = gαβ(f(x)). Then this open cover with these transition functions
is a trivialisation of f∗E. Indeed one could define the pullback by taking these transition
functions and using the fibre bundle construction theorem.
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Corollary 1.1.17. The pullback of a trivial bundle is trivial.

Proof. A pullback bundle is trivialised over the preimage of the trivialising sets of the
original bundle. Let E → N be a trivial fibre bundle and f : M → N a smooth
map. Then E admits a global trivialisation, so f∗E admits a global trivialisation over
f−1(N) = M .

Corollary 1.1.18. If f : X → Y and g : Y → Z are smooth maps, and E → Z is a
fibre bundle, then (g ◦ f)∗E = f∗g∗E.

Proof. They have exactly the same transition functions.

The main theorem in the theory of pullbacks of fibre bundles is the following.

Theorem 1.1.19. Suppose f0, f1 : N → M are homotopic maps, and that π : E → M
is a fibre bundle with fibre F . Then the bundles f∗0E and f∗1E are homotopic.

Proof.

Corollary 1.1.20 (Classification of Smooth Fibre Bundles over Contractible Manifolds).
Any fibre bundle over a contractible manifold is trivial.

Proof. Let M be contractible, and let ∗ denote the manifold that is a single point. Then
there are maps f : M → ∗ and g : ∗ →M such that g ◦ f ≡ 1M .

Let E → M be a fibre bundle. Then E = 1∗E ∼= (g ◦ f)∗E ∼= f∗g∗E. But g∗E → ∗
is a fibre bundle over a point, which is trivial. Thus f∗g∗E must also be trivial by
Corollary 1.1.17.

1.1.5 Fibred Products

Let π : E →M and π′ : S →M be two fibre bundles over a manifold M , with fibres F
and K respectively.

Consider the set E × S. This is not itself a fibre bundle over M , since one has (in
some sense) two copies of M , one for E and one for S. Given a point (x, y) ∈ E ×S, we
have two natural projections onto M . Firstly, we can take π(x, y) := π(x). Secondly we
have π′(x, y) := π′(y).

Definition 1.1.21. Let E ×M S be the subspace of E × S such that

E ×M S := {(x, y) ∈ E × S | π(x) = π′(y)}.

Then E ×M S is called the fibred product of E and S.

Proposition 1.1.22. The fibred product of E and S is a smooth fibre bundle over M with
fibre F ×K, and projection map p : E×M S →M given by p(x, y) := π(x, y) = π′(x, y).
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Proof. The definition of a fibre bundle implies the projection map π is a submersion.
Thus the condition that π(x) = π′(y) means that E ×M S is a smooth submanifold
of E × S. Furthermore, the maps π and π′ are clearly smooth with respect to this
smooth structure (being smooth as maps on E × S). Given a point x ∈ M , we have
p−1(x) = {(a, b) ∈ E × S | π(a) = π′(b) = x}. For any a ∈ E such that π(a) = x, one
may choose any b ∈ Fx, and this defines a point (a, b) ∈ p−1(x). Thus the fibre is F ×K.

Take trivialisations of E and S, which we will assume to be over the same open cover
{Uα}. Say they have maps ϕα : E|Uα → Uα × F and φα : S|Uα → Uα ×K.

Define maps ψα : E ×M S|Uα → Uα×F ×K by ψα(a, b) = (p(a, b),pr2 ◦ϕα(a), pr2 ◦
φα(b)). Clearly these maps are smooth, and clearly they are bundle maps. Since π(a) =
π′(b), we have a well-defined inverse, which is also clearly smooth.

Thus E ×M S is a fibre bundle over M .

1.1.6 Fibre Subbundles

Definition 1.1.23 (Fibre Sub-bundle). Let π : E → M be a fibre bundle with fibre F
and let S ⊂ E be a submanifold. Then S is called a fibre sub-bundle of E if S is such
that π|S : S → M gives S the structure of a fibre bundle with some fibre K ⊆ F a
submanifold of F .

Without any additional structure on E or F there is not a lot that can be said about
general fibre sub-bundles.

1.1.7 G-Bundles and Reduction of Structure Group

Definition 1.1.24 (G-Bundle). Let G be a Lie group. A G-bundle over M with fibre
F is:

1. A fibre bundle P over M with fibre F .

2. A smooth left action G× F → F on the fibre F , denoted (g, f) 7→ g · f .

3. a fibre bundle atlas {(Uα, ϕα)} for which there exists functions g̃αβ : Uαβ → G with
the property that for (x, f) ∈ Uαβ × F , gαβ(x)(f) = g̃αβ(x) · f .

The last condition in Definition 1.1.24 is saying that the transition functions for the
fibre bundle P are given by maps into a group G, that is not necessarily all of Diff(F ),
but may be identified with a subgroup by the left action. This group G is thus specifying
the structure of P , and one may also refer to a G-bundle as a fibre bundle with structure
group G. As a slight abuse of notation, the transition functions for a G-bundle are
always taken to be the maps g̃αβ : Uαβ → G, with the understanding that G is being
considered as a subgroup of Diff(F ) given by the smooth action of G on F .

If F = Kn for K = R,C, then Diff(Kn) is a complicated group, but the subgroup
G = GL(n,K) ⊂ Diff(Kn) is much simpler to work with. Examples of GL(n,K)-bundles
include all vector bundles, as well as any associated frame bundles.
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1.2 Vector bundles

1.2.1 Definitions

Definition 1.2.1 (Vector Bundle). A K-vector bundle of rank n over a manifold M is
the following data:

1. A GL(n,K)-bundle π : E →M with fibre Kn.

2. A smooth section 0 : M → E called the zero section.

3. For each λ ∈ K, a fibre bundle homomorphism sλ : E → E, and

4. A smooth bundle map + : E ×M E → E, such that on each fibre, sλ|Ex and +|Ex
satisfy the properties of scalar multiplication and addition in a vector space, with
0(x) acting as the origin of the fibre Ex.

5. A trivialisation {(Uα, ϕα)} such that the maps ϕα are linear isomorphisms of vector
spaces when restricted to fibres, with respect to the vector space structure induced
by the map + and the maps sλ, λ ∈ K.

Remark 1.2.2. A vector bundle can be defined in a number of equivalent ways. The
above definition was chosen to emphasize the fact that a vector bundle is a fibre bundle
with fibre Kn, that has some extra structure on it. Equivalently one might simply require
that the fibres have the structure of a vector space by themselves. Then imposing the
condition that the maps ϕα are diffeomorphisms that are linear isomorphisms on fibres
automatically implies that addition and scalar multiplication are smooth (being smooth
locally), and the requirement of E to be a GL(n,K)-bundle implies the existence of a
global 0 section.

Another definition is to simply define the vector space structure on each fibre via
the local vector bundle isomorphisms ϕα and the standard vector space structure on
Kn. On overlaps the transition functions lie in GL(n,K) (and are hence linear with
respect to the defined vector space structure), which means the operations of addition
and scalar multiplication are globally well-defined with respect to this fibrewise vector
space structure.

In the rest of these notes, we will not reference the maps sλ or + again. In practice,
the other definitions of a vector bundle are conceptually more useful, despite all three
being easily equivalent.

We say that two sections s1, s2 of a vector bundle E over M are linearly independent
on some open set U if for every x ∈ U , the vectors s1(x), s2(x) ∈ Ex are linearly
independent.

Definition 1.2.3 (Local Frame). Let π : E → M be a K-vector bundle of rank n over
a manifold M . Let (Uα, ϕα) be a local trivialisation for E. Define ei ∈ Γ(E|Uα) by
ei(x) := ϕ−1

α (x, ei), where the ei in (x, ei) is the ith standard basis vector of Kn. The
collection {ei} of local sections of E over the set Uα is called the local frame of E with
respect to this trivialisation.
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Because ϕα is a linear isomorphism on fibres, the collection of vectors {ei(x)} form
a basis at each fibre Ex for each x ∈ Uα. Thus the collection {ei} forms a basis of the
C∞(M)-module Γ(E|Uα). That is to say, any section s ∈ Γ(E|Uα) can be decomposed
into the form s = siei for some si ∈ C∞(M), simply by decomposing s(x) at each x ∈ Uα
in terms of the basis {ei(x)} ⊂ Ex.

Using {ei} to refer to the local frame and {ei} to refer to the standard basis of the
fibre space is an abuse of notation. However, it is often useful to blur the lines between
considering a section s ∈ Γ(E|Uα) as s = siei on the vector bundle or s = siei on
Uα×Kn. Since the local trivialisation is an isomorphism of vector bundles, there are no
problems with this abuse of notation, and it will be exploited without comment.

Proposition 1.2.4. A vector bundle E of rank n over a manifold M is trivial if and
only if E admits n global globally linearly independent sections.

Proof. ( =⇒ ) Suppose E is trivial, with trivialisation ϕ : E →M × Rn.
Define sections si : M → M × Rn by si(x) = (x, ei). Then these define global

sections s̃i = ϕ−1 ◦ s. Since ϕ−1 is a linear isomorphism on each fibre, the si being
linearly independent implies the s̃i are linearly independent.

(⇐= ) Suppose E admits n global globally linearly independent sections {si}. Fixing
the standard basis of Rn, define a map ψ : M × Rn → E by

(x, c1e1 + · · ·+ cnen) 7→ c1s1(x) + · · ·+ cnsn(x).

This is a fibrewise linear isomorphism as the si are fibrewise linearly independent, and
is clearly a diffeomorphism, and so defines a map ϕ = ψ−1 from E to M × Rn, a
trivialisation of E.

In particular, a vector bundle E is locally trivial over a set Uα if it admits n linearly
independent sections over Uα, since this occurs if and only if E|Uα is globally trivial.
Thus, because of Proposition 1.2.4, one could take the existence of local frames as a
definition of the local triviality of a vector bundle. Indeed this is the approach taken in
some books. The existence of local frames will play a central role in Section 2.1, when
connections on vector bundles are investigated.

In the case where E has rank 1, Proposition 1.2.4 says that a line bundle is trivial
if it admits a global non-vanishing section. This gives one possible intuition for what
non-trivial vector bundles look like. If a line bundle is twisted (i.e. non-trivial), a global
section is forced to cross over the zero-section in order to join back up with itself after
the twist.

1.2.2 Bundle Maps

The bundle maps in the category of vector bundles are simply the bundle maps for the
vector bundles, considered as fibre bundles, that respect the fibre-wise linear structure.

Definition 1.2.5 (Vector Bundle Homomorphism). Let π : E → X and π′ : F → Y be
vector bundles over manifolds X and Y . A vector bundle homomorphism f : E → F is
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a fibre bundle homomorphism such that f |Ex : Ex → Ff̃(x) is linear, where f̃ : X → Y
is the map induced by f .

Definition 1.2.6 (Vector Bundle Homomorphism over M). A vector bundle homomor-
phism over M is a vector bundle homomorphism of bundles E,F over M that covers the
identity.

Vector bundle homomorphisms over a base space have a simple interpretation. At
each point x ∈ M , f is specifying a linear map from EX to Fx, and these linear maps
are varying smoothly.

Definition 1.2.7 (Vector Bundle Isomorphism). Let π : E → M and π′ : F → M be
vector bundles over a manifold M . Then a vector bundle isomorphism from E to F is
a fibre bundle isomorphism that is also a vector bundle homomorphism.

Since the fibrewise linear maps f |Ex : Ex → Fx are bijections for a fibre bundle iso-
morphism (why?), they are linear isomorphisms. In particular, if E and F are isomorphic
vector bundles then they must have the same rank. This is not the case for general vector
bundle homomorphisms. For example one may consider the map M×R2 →M×R given
by (m,x, y) 7→ (m,x). This is a homomorphism of vector bundles of different ranks over
M .

One is tempted to denote the groups of homomorphisms and endomorphism of vector
bundles over a manifold M by Hom(E,F ) and End(E). In fact we will soon see that
such homomorphisms can always be realised as sections of vector bundles, whose fibres
at each x ∈ M are the vector spaces Hom(Ex, Fx) and End(Ex). These vector bundles
will be denoted by the above terms, and the groups of homomorphisms themselves will
subsequently be denoted Γ(Hom(E,F )) and Γ(End(E)).

In addition to this, if E →M is a vector bundle, we will denote by Aut(E) the space
of vector bundle isomorphisms from E to itself. Because GL(n,K) is not a vector space,
we will not be able to identify this group with the sections of some vector bundle. It
can however be identified with the sections of a bundle called Ad(F (E)), where F (E)
denotes the principal GL(n,K)-frame bundle associated to E. This will be expanded
upon in Section 1.4.

1.2.3 Transition Functions

In the definition of a vector bundle, we have required that the local trivialisations are
linear isomorphisms on fibres. In particular this implies the transition functions {gαβ}
for a vector bundle E with respect to some open cover U have values in GL(n,K). Thus
we have:

Lemma 1.2.8. A rank n K-vector bundle E is a GL(n,K)-bundle over M .

We have seen in the case of vector bundles a local trivialisation comes with a local
frame of sections. The transition functions for a vector bundle are defined in terms of
the bundle isomorphisms from Uαβ ×Kn to itself, where {Uα} is some trivialising open
set for a vector bundle E.
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Let {ai} correspond to the local frame of E on Uα, induced by ϕα, and {bj} corre-
spond to the local frame of E on Uβ, induced by ϕβ. Let s be a general section on Uαβ.
Suppose we have s = uiai and s = vjbj for some ui, vj ∈ C∞(Uαβ). That is,

ϕα(s) = (x, ui(x)ei), (Eq. 1.1)

ϕβ(s) = (x, vj(x)ej), (Eq. 1.2)

where {ej} is the standard basis of Kn. Then from (Eq. 1.1), s = ϕ−1
α (x, ui(x)ei), so

ϕβ(s) = (x, gβα(x)(ui(x)ei)). On the other hand, from (Eq. 1.2), ϕβ(u) = (x, vj(x)ej),
so we have

vj(x)ej = gβα(x)(ui(x)ei).

In particular if we let gβα(x)ei := g(x)jiej , for some g(x)ji ∈ K, then we have vj(x)ej =

ui(x)g(x)jiej , so vj(x) = ui(x)g(x)ji . That is, we have

vj = gji u
i (Eq. 1.3)

as the coefficients of s in the two frames {bj} and {ai}. Thus (Eq. 1.3) is the expression
for how coefficients change between frames.

On the other hand, if we let ui = δik for some fixed k, then we have s = δikai = ak.

On the other hand by (Eq. 1.3) we have vj = δikg
j
i = gkj . That is, s = gjkbj . So we

conclude
ak = bjg

j
k. (Eq. 1.4)

This is the formula for how the basis sections of the frame transform under a change of
coordinates.

Notice that if we interpret gβα(x) ∈ GL(n,K) as the matrix g(x)ji , then (Eq. 1.3) is
the matrix multiplication

gβα(x)u(x) = v(x)

where u(x) is the column vector with coefficients ui(x), (i.e. s(x) in the basis {ai(x)}),
and v(x) is the column vector with coefficients vj(x), (i.e. s(x) in the basis {bj(x)}).
Thus the matrix gβα(x) is really the change of basis matrix from {ai(x)} to {bj(x)}.

These computations will be used in Section 2.1.3 in order to determine how a con-
nection form changes under a transition function.

1.2.4 Čech Cohomology

The fibre bundle construction theorem (Theorem 1.1.12) can be applied to the case of
vector bundles, to obtain:

Theorem 1.2.9 (Vector Bundle Construction Theorem). Let M be a smooth manifold,
and U an open cover for M . Let {gαβ} be a cocycle on M with respect to U with values
in GL(n,K). Then there is a rank n K-vector bundle E with transition functions given
by the gαβ.
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Proposition 1.1.14 carries over to the case of vector bundles also, by noting that all
the maps defined are linear in the case of vector bundles.

Because of Theorem 1.2.9, Proposition 1.1.14 implies there is a bijection between
isomorphism classes of vector bundles with trivialising open cover U and equivalence
classes of cocycles {gαβ} with respect to this cover. This set of equivalence classes is
called the Čech cohomology with values in GL(n,K) with respect to an open cover U of
M .

Definition 1.2.10 (Čech Cohomology of an Open Cover). Let M be a manifold and
U be an open cover of M . Let Z1(U ,GL(n,K)) denote the set of cocycles for the open
cover U with values in GL(n,K). Let ∼ be the equivalence relation on cocycles specified
previously. Then the set

Ȟ1(U ,GL(n,K)) := Z1(U ,GL(n,K))

/
∼

is called the first Čech cohomology set for M with respect to the open cover U with
values in GL(n,K).

Note that Ȟ1(U ,GL(n,K)) is a pointed set. There is a distinguished equivalence class
of cocycles corresponding to the trivial vector bundle. One representative for this class
is just the collection {gαβ} where gαβ : Uαβ → GL(n,K) is defined by gαβ(x) = 1n for
all x ∈ Uαβ. We will now construct the Čech cohomology for M , without reference to a
particular open cover U .

Suppose that V is a refinement of an open cover U , and that {gαβ} is a cocycle with
respect to U . Then we may define a new cocycle with respect to V simply by restriction
on overlaps. That is, since every Vα ∈ V is contained inside some Uα ∈ U , we have
Vαβ ⊆ Uαβ, so we can restrict. Obviously the cocycle condition is still satisfied for
this restriction, so we obtain a new cocycle, which we will call {hαβ}. Now if {g′αβ} is
equivalent to {gαβ}, then by restricting the maps λα from Uα to Vα, we get that {h′αβ}
is equivalent to {hαβ}.

Thus we have a well-defined restriction map

rUV : Ȟ1(U ,GL(n,K))→ Ȟ1(V,GL(n,K)).

Lemma 1.2.11. This map rUV satisfies three key properties:

1. This map sends the class of the trivial bundle with respect to U to the class of the
trivial bundle with respect to V. That is, it is a homomorphism of pointed sets.

2. The map rUU is the identity.

3. If W is a refinement of V, then rVW ◦ rUV = rUW .
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Now write U for the set of all open covers of M . We may define a partial ordering
on U by saying U ≤ V if V is a refinement of U , making U into a directed set. Then
because the maps rUV satisfy the above three properties, we obtain a directed system

〈Ȟ1(U ,GL(n,K)), rUV〉

in the category of pointed sets. Thus there is a well-defined direct limit

Ȟ1(M,GL(n,K)) := lim
→

Ȟ1(U ,GL(n,K)).

Definition 1.2.12 (Čech Cohomology). The pointed set Ȟ1(M,GL(n,K)) is called the
first Čech cohomology set for M with values in GL(n,K).

To understand what this set represents, we will need to investigate the mechanism
behind how a direct limit is obtained. The direct limit of the directed system is defined
as

lim
→

Ȟ1(U ,GL(n,K)) :=
⊔
U∈U

Ȟ1(U ,GL(n,K))

/
∼

where ∼ is the equivalence relation defined as follows. If {gαβ} ∈ Ȟ1(U ,GL(n,K))
and {hαβ} ∈ Ȟ1(V,GL(n,K)), then {gαβ} ∼ {hαβ} if and only if there is a common
refinement W of U and V such that

rUW({gαβ}) = rVW({hαβ}),

where this equality is inside the Čech cohomology set Ȟ1(W,GL(n,K)). Note that prop-
erties (2) and (3) of Lemma 1.2.11 are what makes ∼ an equivalence relation.

To expand on what this equivalence relation is saying, two cocycles coming from
different open covers are equivalent if there is a common refinement of these open covers
so that on the common refinement, the cocycles are equivalent in the sense of Proposition
1.1.14. But this is precisely the statement that the vector bundles defined by {gαβ} and
{hαβ} are isomorphic. Furthermore, the distinguished element in this direct limit is the
class of cocycles that define the trivial bundle with respect to any open cover of M .
Thus we have established:

Theorem 1.2.13. The isomorphism classes of rank n K-vector bundles over a manifold
M are in bijection with the pointed set

Ȟ1(M,GL(n,K)).

Furthermore, the distinguished element in this pointed set corresponds to the isomor-
phism class of the trivial bundle.

Remark 1.2.14. It is an unfortunate fact that there is in general no good way of turning
the Čech cohomology with values in GL(n,K) into a group. We will see in Section 3.3
that for Abelian groups G, one can make sense of the Čech cohomology groups Ȟk(M,G)
with values in G. In particular when n = 1, GL(n,K) is an abelian group for K = R,C, so
we obtain a group structure on the isomorphism classes of line bundles over the manifold
M . This group structure is actually given by the tensor product of line bundles, with
inverse given by tensoring with the dual.
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Remark 1.2.15. This entire section could have been formulated in the case of general
fibre bundles over M , rather than vector bundles. One simply replaces GL(n,K) by
Diff(F ) for the fibre F , and obtains the Čech cohomology with values in Diff(F ). This
pointed set would classify all fibre bundle isomorphism classes of F -fibre bundles over
M .

Remark 1.2.16. By choosing different subgroups of GL(n,K), we can obtain isomor-
phism classes of vector bundles with different properties. For example, choosing SL(n,K)
would give isomorphism classes of orientable vector bundles. Choosing O(n) would give
isomorphism classes of vector bundles admitting a metric, and U(n) would give isomor-
phism classes of complex vector bundles admitting a Hermitian metric. Note that since
every vector bundle admits such metrics, the groups Ȟ1(M,GL(n,C)) and Ȟ1(M,U(n))
would be isomorphic, as would Ȟ1(M,GL(n,K)) and Ȟ1(M,O(n,K)).

Exactly how these cases are related depends on the reductions of structure group
possible for vector bundles over M , considered as GL(n,K)-bundles.

1.2.5 Examples of Vector Bundles

Example 1.2.17 (The Möbius Bundle). Let {U, V } be an open cover of S1 such that
each open set is slightly larger than a semi-circle. Then the intersection U ∩ V is a
disconnected set with two components, which we will call A and B. Define a map
g : U ∩ V → GL(1,R) = R\{0} by g(x) = 1 if x ∈ A and g(x) = −1 if x ∈ B. Then
(noticing that (−1)2 = 1) all three compatibility conditions are satisfied by this single
transition function g. In particular the cocycle condition is vacuous (because there are
only two open sets in the cover). Thus we can define a line bundle E from these transition
functions, called the Möbius bundle. The effect of this transition function is, when one
takes a piece of paper and constructs a Möbius band, exactly the twisting and gluing
that occurs during this process.

The above example should be the model for any image you might wish to hold in
your head of a non-trivial vector bundle.

Example 1.2.18 (The Tangent Bundle). Let M be a smooth manifold and {(Uα, ψα)}
an atlas for M . On a non-trivial overlap Uαβ define gαβ(x) := d(ψα◦ψ−1

β )x : Rn → Rn for
each x ∈ Uαβ, where d is just the differential of smooth maps from Rn to Rn. These are
the Jacobians of the transition functions for the atlas. By the chain rule the transition
functions {gαβ} form a cocycle, and the vector bundle associated to this cocycle is called
the tangent bundle of M . Sections of the tangent bundle are vector fields on M .

The tangent bundle, or equivalently the cotangent bundle, is the single most impor-
tant example of a vector bundle on a manifold. We will see later in Section 3.2.3 that
the tangent bundle here is precisely the bundle of sections corresponding to the locally
free sheaf of tangent vector fields over a manifold.

With the help of the construction theorem for vector bundles (Theorem 1.2.9), we
now have a simple method of constructing many new vector bundles from given ones.
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Definition 1.2.19. Let E and F be vector bundles over M with transition functions
{gαβ} and {hαβ} with respect to some open cover U of M .

1. Define E ⊕ F to be the vector bundle over M with fibres Ex ⊕ Fx and transition
functions

kαβ :=

(
gαβ 0
0 hαβ

)
.

Note that the underlying fibre bundle structure of E⊕F is that of the fibred product
E ×M F , equipped with some vector bundle structure induced by E and F .

2. Define E∗ to be the vector bundle over M with fibres (Ex)∗ and transition functions

kαβ := (gαβ
T)−1

the inverse of the transpose of gαβ.

3. Define E ⊗ F to be the vector bundle over M with fibres Ex ⊗ Fx and transition
functions

kαβ := gαβ ⊗ hαβ.

4. Define
∧k E to be the sub-bundle of

⊗k E defined by the subspace of antisymmetric
tensors

∧k Ex ⊂
⊗k Ex at each x.

5. Define Sym(k,E) to be the sub-bundle of
⊗k E defined by the subspace of symmet-

ric tensors Sym(k,Ex) ⊂
⊗k Ex at each x.

6. Define Hom(E,F ) to be the bundle E∗ ⊗ F , noting that on each fibre we have an
isomorphism E∗x ⊗ Fx ∼= Hom(Ex, Fx). Then sections of Hom(E,F ) define bundle
homomorphisms from E to F , and bundle homomorphisms come from sections of
Hom(E,F )

7. Define End(E) to be the bundle E∗ ⊗ E. Similarly, endomorphisms of E are the
same as sections of End(E).

Remark 1.2.20. In the definition of E∗, we take the transition functions to be the
inverse transpose of the original transition functions. This is the technically correct
definition, but requires some interpretation. If {ei} is a basis for a vector space we tend
to write the dual basis as, for example, {εj}, with upper indices. With respect to this
convention, the transition functions should really just be g−1

αβ , but since the definition
of a vector bundle requires that we expression local frames with lower indices, the true

transition functions are g−1
αβ

T
.

In each case above one should check (and it is straight-forward to do so) that the
new transition functions as defined indeed satisfy the required cocycle condition. We
can now produce more interesting examples of vector bundles.

Example 1.2.21 (The Cotangent Bundle). Let M be a smooth manifold. Then the
bundle T ∗M := (TM)∗ is called the cotangent bundle of M .
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Example 1.2.22 (Tensor Bundles). Let M be a smooth manifold. Then the bundle of
(p, q)-tensors on M is the bundle T p,q(M) :=

⊗p TM ⊗
⊗q T ∗M . Sections of T p,q(M)

are p-contra-q-covariant tensor fields on M .

Example 1.2.23 (Determinant Bundle). The determinant bundle of a vector bundle E
of rank n is the line bundle

∧nE.

Note that the determinant bundle really is a line bundle, because if V is an n-
dimensional vector space, then

∧n V has a single basis element e1 ∧ · · · ∧ en where
{e1, . . . , en} is a basis of V .

To say a few words about why the determinant bundle is useful, the Chern class
c1(E) is a characteristic class that may be (reasonably) easily defined for a line bundle,
and one can then define the Chern class of any vector bundle as the Chern class of
its determinant bundle. In fact, the definition of the Chern class depends only on the
cocycle (the cohomology class in Čech cohomology) that defines the vector bundle, and
the transition functions of the determinant line bundle are essentially the same as those
of the vector bundle, so this seems reasonable.

Furthermore, the determinant line bundle is related to the orientability of a vector
bundle.

Definition 1.2.24. A vector bundle E is said to be orientable as a vector bundle if
for some {Uα} a trivialising open cover the determinants of the transition functions gαβ
have constant sign (either positive or negative) over all α, β.

By Proposition 1.2.4, a vector bundle is orientable if and only if its determinant
bundle is trivial.

In particular, the transition functions for the tangent bundle TM of a manifold M
are the Jacobians of the transition functions for the smooth atlas on M , so TM being
orientable as a bundle is equivalent to M being orientable as a manifold. An example of
a non-orientable vector bundle is the Möbius strip.

Note that orientability of a vector bundle is not the same as triviality. The tangent
bundle to the two-sphere TS2 is a non-trivial vector bundle (by the Hairy Ball Theorem
and Proposition 1.2.4), but S2 is an orientable manifold, so TS2 is an orientable bundle.

1.2.6 Metrics

A metric on a smooth vector bundle is a smoothly varying choice of inner product on
each fibre. The inner product varies smoothly if for every pair of sections s, t ∈ Γ(E) we
have g(s, t) ∈ C∞(M), where g(s, t)(x) = gx(s(x), t(x)) ∈ R. This is in fact a complete
definition of a metric on a vector bundle. To give a more invariant description of what
it means to have a smoothly varying inner product, we will present another definition.

Note that this inner product must be real-valued. In the case where E is a real vector
bundle there is no trouble, but if E is a complex vector bundle, the natural definition as
a section of Sym(2, E∗) would allow the inner product to be C-valued. To remedy this
situation, we will view C∞(M) as the space of sections of the trivial bundle M × R.
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Definition 1.2.25 (Metric). Given a vector bundle E, a metric on E is a fibre bundle
homomorphism g : E ×M E → M × R such that g|(E×ME)x

: (E ×M E)x → {x} × R is
a positive-definite bilinear map of vector spaces.

Thus the requirement that the inner product g vary smoothly is precisely that it is
a smooth fibre bundle homomorphism.

Definition 1.2.26 (Riemannian Metric). A Riemannian metric on a manifold M is a
metric on TM .

In this case we really can define a Riemannian metric to be a smooth section of
Sym(2, T ∗M) that is positive-definite on fibres.

Lemma 1.2.27. The trivial bundle admits a metric.

Proof. Let E := M × Kn be the trivial rank n K-vector bundle over M . For each x
let the inner product on Ex just be the standard inner product on Kn (considered as a
vector space over R if K = C).

Lemma 1.2.28. Every vector bundle admits a metric.

Proof. Let π : E → M be a smooth vector bundle and suppose {(Uα, ϕα)} is a triviali-
sation for E. Then E|Uα is trivial for each α, and so admits a metric gα. Let {ρα} be
a partition of unity subordinate to the open cover {Uα} of M . Then for each x ∈ M
define an inner product gx on Ex by

gx :=
∑
α

ρα(x)gαx.

This pieces together to give a global inner product g.

Corollary 1.2.29. Every smooth manifold admits a Riemannian metric.

In addition to real-valued metrics on vector bundles, we also have a notion of Her-
mitian metrics on C-vector bundles.

Definition 1.2.30 (Hermitian Metric). Given a complex vector bundle E, a Hermitian
metric on E is a fibre bundle homomorphism h : E×ME →M×C such that h|(E×ME)x

:
(E ×M E)x → {x} × C is a positive-definite sesquilinear map of vector spaces.

Equivalently, a Hermitian Metric is a choice of Hermitian inner product hx on every
fibre Ex of E that varies smoothly in the sense that if s, t ∈ Γ(E) then h(s, t) is a smooth
C-valued function on M . By the exact same argument to Lemma 1.2.28, every C-vector
bundle admits a Hermitian metric.
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1.2.7 Sub-Bundles and Quotient Bundles

Given a vector bundle E, a sub-bundle F ⊂ E is a subset such that π|F : F →M is also
a vector bundle.

Lemma 1.2.31. Suppose F is a rank k sub-bundle of the rank n vector bundle E over M .
Given a local trivialisation (Uα, ϕα) of E, there exist a local frame of sections s1, . . . , sn
such that for every x ∈ Uα, Fx = SpanK{s1(x), . . . , sk(x)}.

Proof.

Let {(Uα, ϕα)} be a trivialisation for E where each local trivialisation is of the form
specified in Lemma 1.2.31. Then the transition functions {gαβ} with respect to this
trivialisation have the form

gαβ(x) =

(
hαβ(x) A(x)

0 kαβ(x)

)
,

where for each x ∈ Uαβ, hαβ(x) ∈ GL(k,K), kαβ(x) ∈ GL(n − k,K), and A is some
matrix.

Proposition 1.2.32. The sub-bundle F has transition functions {hαβ}.

Proof.

Having defined sub-bundles, we would of course like to define the corresponding
notion of quotient bundles. To present an invariant way of doing this, we will introduce
the notion of an exact sequence of vector bundles.

Definition 1.2.33 (Exact Sequence of Vector Bundles). Let F,E, and S be vector
bundles over a manifold M , and suppose f : F → E and g : E → S are vector bundle
homomorphisms. The sequence

F E S
f g

of vector bundles is called exact at E if for every x ∈M , the sequence

Fx Ex Sx
f |Fx g|Ex

is an exact sequence of vector spaces.

A sequence is called exact if it is exact at every term.

Definition 1.2.34 (Quotient Bundle). A quotient bundle of E by F is the vector bundle
Q and a map j : E → Q such that if i : F ↪→ E is the inclusion map, then the following
sequence is exact.

0 F E Q 0i j
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Lemma 1.2.35 (Existence). Suppose {gαβ} is a collection of transition functions for
E of the form in Lemma 1.2.31. Then the sub-bundle Q of E with transition functions
{kαβ} over the same trivialising set is a quotient bundle of E by F .

Proof.

Lemma 1.2.36 (Uniqueness). Any two quotient bundles of E by F are isomorphic.

Proof.

By virtue of the existence and uniqueness lemmas for quotient bundles, we denote
the quotient of E by F as E/F .

1.2.8 Kernels and Cokernels

In the theory of vector spaces the kernel of a linear map is a vector subspace of the
domain, and the image is a vector subspace of the target. This is no longer true in the
category of vector bundles. The kernel of a homomorphism of vector bundles need not
be a sub-bundle

Example 1.2.37. Let E = [0, 2π)×R2 be the trivial bundle over [0, 2π) and let e1, e2 be
the standard basis of R2. Define a homomorphism f : E → E by sending (θ, ae1+be2) 7→
(θ, ae1 + bRθe2) where Rθ is rotation counter-clockwise by θ. Then for θ = 0 the map f
is the identity, but when θ = π/2, Rθe2 = −e1, so the kernel consists of those elements
ae1 + be2 ∈ R2 such that a = b. This is a one-dimensional subspace, so the kernel is
one-dimensional. This jump in dimension means the fibrewise kernels cannot possibly
piece together to form a sub-bundle of E.

In addition, the image of a homomorphism of vector bundles is not necessarily a
vector bundle. The above example shows why again, since the image jumps from being
two-dimensional to one-dimensional at θ = π/2. In particular this implies that cokernels
of vector bundle homomorphisms (targets quotiented by images) are not in general vector
bundles.

A category which has kernels and cokernels (along with several other properties) is
called an Abelian category, and such a category is open to attack with techniques from
modern algebra. As such it would be desirable if the category of vector bundles over a
manifold were Abelian. The most obvious solution is to simply add in all the kernels
and cokernels to the category, thereby making the category Abelian by brute force. This
is the category of coherent sheaves on a manifold, which we will say no more about.

The other option is to restrict ourselves to those vector bundle homomorphisms for
which kernels and cokernels are well-defined. It turns out that the characterisation of
such homomorphisms is as nice as one could hope for.

Proposition 1.2.38. Let f : E → F be a vector bundle homomorphism of locally
constant rank between vector bundles π : E → M and π′ : F → M or ranks n and m
respectively. Then ker(f) is a sub-bundle of E and im(f) is a sub-bundle of F , and in
particular coker(f) := F/ im(f) is a vector bundle.
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Proof. Define ker f := {p ∈ E | f(p) = 0 ∈ Fπ′(f(p))}. Let {ei} be a local frame of E and
{fj} on U and let be a local frame of F on some neighbourhood of f(U), where U is
chosen so that f is of constant rank. In this frame the homomorphism f takes the form
f(ei) = Ajifj where A is an n × m matrix of smooth functions. Since f has constant
rank, this matrix has constant rank. Thus the kernel has constant rank, and since the
coefficients of A are smooth, the set kerA := {si(x)ei(x) | Aji (x)si(x)fj(x) = 0} is a
smooth sub-bundle of E over U . Since this set coincides with ker f over U , and since
smoothness is a local property, we conclude that ker f is a smooth sub-bundle of E.

In the above notation, the set im(A) := {Aji (x)si(x)fj(x) | si(x)ei(x) ∈ E|U} is a
smooth sub-bundle of F locally, since A is of constant rank with smooth coefficients, so
im(f) is a smooth sub-bundle of F .

1.3 Principal Bundles

1.3.1 Principal G-Bundles

Definition 1.3.1 (Principal Bundle). Let G be a Lie group. A principal G-bundle over
a smooth manifold M is a G-bundle P with fibre G (considered as a smooth manifold!),
and a smooth right action P ×G→ P of G on P , denoted (p, g) 7→ p · g, such that:

1. The local trivialisations ϕα : P |Uα → Uα×G are G-equivariant with respect to the
action of G on P , and right multiplication in the G-factor of Uα ×G.

2. The action of G on P is free.

The group G is usually called the structure group of P .

Note that interpreted globally, the first condition of Definition 1.3.1 implies that
the action of G on P preserves fibres. That is, for every g ∈ G, if Rg denotes right
multiplication by g, the following diagram commutes:

P P

M

Rg

π π

One might ask why we require the action of G on P to be a right action rather
than a left action. Since such a bundle P is a G-bundle, it admits transition functions
with values in the group G. In a local trivialisation, these transition functions are
conventionally taken to act on the left. Thus if we wish for the action of G on P to be
well-defined on overlaps we should require it be a right action, hence commuting with
the transition functions.

We state two simple observations with can be checked easily.

Lemma 1.3.2. Let p ∈ P . Then Pπ(p) = {p · g | g ∈ G}.
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Lemma 1.3.3. The fibres of a principal G-bundle P are G-torsors. That is, if x ∈M ,
for any p, q ∈ Px there exists a unique g ∈ G such that pg = q. In particular, if we fix
any p ∈ Px we can define a multiplication on Px by letting q · r := pgh where q = pg
and r = ph. With respect to this multiplication Px is a Lie group isomorphic to G with
identity p, and isomorphism ϕ : pg 7→ g.

The interpretation of fibres of P as G-torsors can be a useful way of thinking about
principal bundles. In a sense, a principal bundle is almost a Lie group bundle. The
fibres are just waiting to become isomorphic to G as Lie groups, and all they need is a
choice of a single element to call the identity.

A key difference between vector bundles and principal G-bundles is that a principal
bundle need not admit any smooth sections.

Proposition 1.3.4. A principal G-bundle P → M is trivial if and only if it admits a
global section.

Proof. ( =⇒ ) Suppose P is trivial. Then (up to isomorphism) P = M × G, so we can
take a section s : M →M ×G to be defined by s(x) = (x, e) where e ∈ G is the identity.

( ⇐= ) Suppose P admits a global section s. Let ϕx : Px → G be the isomorphism
on each fibre given by taking s(x) ∈ Px to be the identity, as in Proposition 1.3.3. Then
the map ϕ : P → M × G defined by p 7→ (π(p), ϕπ(p)(p)) is a global trivialisation of
P .

The required condition on principal G-bundle homomorphisms is what one would
expect. If P →M , Q→ N are two principal G-bundles over base manifolds M and N ,
then a principal G-bundle homomorphism from P to Q is a fibre bundle homomorphism
that is G-equivariant with respect to the right actions of G on P and Q.

As in the case of fibre bundles and vector bundles we have a principal G-bundle
construction theorem. All that one needs to check is that there is a smooth right action of
G on the fibre bundle P →M constructed by the fibre bundle construction theorem. This
can simply be defined locally by the right multiplication on G, and is well-defined since
right multiplication commutes with the left multiplication of the transition functions.

1.3.2 Frame Bundles

Let E →M be a vector bundle of rank n. There is a natural way to construct a principle
GL(n,K)-bundle out of E, that contains all the information about E and any associated
vector bundles.

On each fibre Ex, consider the collection F(E)x of frames in the vector space Ex.
That is, F(E)x consists of all ordered bases of Ex. This submanifold of (Ex)n admits a
natural free transitive right action of GL(n,K). Fixing some auxillary reference basis,
if an element of F(E)x is written as a matrix of column vectors, then there is a unique
matrix A ∈ GL(n,K) taking this element of F(E)x to any other element.

Define a principal GL(n,K)-bundle F(E) → M by taking F(E) ⊂ E ×M · · · ×M E︸ ︷︷ ︸
ntimes

to be the submanifold (which is a fibre bundle with respect to π|F(E)) whose elements
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consist of F(E)x for every x ∈M , and right action given by the natural GL(n,K)-action
on F(E)x for every x. This action is clearly smooth, being a restriction of the natural
right action of GL(n,K) on the nth fibred product of E with itself.

Definition 1.3.5 (Frame Bundle). Let E → M be a rank n K-vector bundle over a
manifold M . Then the bundle F(E) → M described above is called the frame bundle
associated to E.

As one might expect, the (somewhat) easier way to describe F(E) is via transition
functions. Since E is a GL(n,K)-bundle, one can construct a principal GL(n,K)-bundle
with the same transition functions as E. This is the frame bundle described above.

1.3.3 Associated Fibre Bundles

Let P be a principal G-bundle over a manifold M and let F be a smooth manifold.
Suppose ρ : G→ Diff(F ) is a homomorphism of groups. We may define a right action of
G on the set P × F by (p, f) · g = (p · g, ρ(g−1)(f)). Denote the quotient by this group
action by P ×ρ F .

We claim that this quotient is a fibre bundle (in fact a G-bundle) with fibre F , and
projection given by π′([p, f ]) := π(p) where π : P → M is the projection for P (this is
clearly well-defined).

Proposition 1.3.6. The quotient space P ×ρ F is a G-bundle with fibre F .

Definition 1.3.7. The G-bundle P ×ρ F is called the associated fibre bundle to P with
fibre F with respect to the representation ρ.

This definition in terms of a quotient is not particularly illuminating. In particular
it is very difficult to imagine what the fibre bundle P ×ρ F looks like. The following
proposition will give a nice characterisation of the associated bundle.

Proposition 1.3.8. Suppose {gαβ} is a cocycle for a principal G-bundle P with respect
to an open cover U of a manifold M . If P ×ρ F is an associated fibre bundle with fibre
F , then over the open cover U , P ×ρ F has transition functions {ρ ◦ gαβ}.

That is, the transition functions for P ×ρ F are just the ρ of the transition functions
for P . Essentially, one takes the same gluing data but swaps out one fibre for another.
In particular, P ×ρ F is trivial over the same sets as P , so the associated fibre bundle
cannot be more twisted than P . It can of course be less twisted, for if ρ is the trivial
representation then P ×ρ F is just the trivial bundle M × F .

A key property of associated fibre bundles (that will be important when connections
on principal bundles are discussed) is that sections of associated bundles can be identified
with equivariant maps into the fibre space.

Proposition 1.3.9. Let π : P →M be a principal G-bundle and P ×ρ F an associated
bundle with fibre F . Then sections of the associated bundle P ×ρ F are precisely G-
equivariant maps P → F from P into the fibre. These maps are equivariant with respect
to the right action of G on P and the right action x 7→ ρ(g−1)(x) of G on F .
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Proof. Suppose s : M → P ×ρ F is a section of an associated bundle. Then s is a map
that assigns to each x ∈ M an equivalence class [p, f ] ⊂ P × F where (p′, f ′) ∈ [p, f ] if
(p′, f ′) = (pg, ρ(g−1(f))) for some g ∈ G. Let p ∈ P . Then define s̃(p) := f where f ∈ F
is such that s(π(p)) = [p, f ] (check this does actually define a map). Then s̃ : P → F is
smooth since s is smooth into the quotient P ×ρ F .

If g ∈ G and s̃(p) = f then s̃(pg) = f ′ ∈ F such that s(π(pg)) = [pg, f ′]. But
s(π(pg)) = s(π(p)) = [p, f ], and if [p, f ] = [pg, f ′] then by the definition of these equiva-
lence classes we must have f ′ = ρ(g−1)(f). Thus s̃(pg) = ρ(g−1)s̃(p) and s̃ is equivariant
in the appropriate sense.

On the other hand, suppose s̃ : P → F is a smooth G-equivariant map. Define a
map s : M → P ×ρ F by s(x) := [p, s̃(p)] where p is any element of π−1(x). Since s̃(p)
depends smoothly on p, this is smooth into the quotient. Clearly s is a section with
respect to the projection π′ for P ×ρ F . We need to check that s is well-defined. Thus
let q ∈ π−1(x) with q 6= p. Then q = pg for some g ∈ G, but then s(x) = [q, s̃(q)] =
[pg, s̃(pg)] = [pg, ρ(g−1)(s̃(p))] = [p, s̃(p)]. Thus s is well-defined.

Part of the power of principal bundles lies in the technology of associated vector
bundles. Suppose now that P is the frame bundle F(E) of some vector bundle E →M .
Then we have seen that from E we may construct many different kinds of vector bundles
in natural ways. Each such vector bundle has a fibre of a certain dimension, with
transition functions that can easily be written in terms of those of E (and hence F(E))
via simple representations ρ.

For example, the representation that gives E itself is simply the identity 1 : GL(n,K)→
GL(n,K), the transition functions for E⊕E are given by the representation ρ : GL(n,K)→

GL(2n,K) defined by ρ(A) =

(
A 0
0 A

)
, etc.

Thus all the associated vector bundles of a given vector bundle E can be constructed
as associated bundles of its frame bundle F(E), with representations ρ appropriately
chosen. In this sense the frame bundle contains all of the information about E and all
of its associated bundles.

We will see later that a connection on F(E) in the sense of principal bundles will
determine connections on all possible associated vector bundles. In the case where the
connection on F(E) comes from a connection E, the following diagram will commute:

Connection on E Connection on F(E)

Connection on associated vector bundle

induces

induces induces

1.4 Gauge Transformations

In this section we will discuss Gauge transformations of vector bundles and principal
bundles.
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Let E →M be a vector bundle. Then we can consider the vector bundle End(E) of
all vector bundle homomorphisms from E to itself. The sections of End(E) consist of
assignments of linear maps Ex → Ex for every x ∈M . If we restrict ourselves to sections
that give linear isomorphisms Ex → Ex for every x then we get the automorphisms
Aut(E) ⊂ Γ(End(E)) of the vector bundle E.

Of course, these sections are not all the sections of a vector bundle associated to E,
for its fibre would have to be GL(n,K), which is rather a Lie group. The question we will
answer is the following: What GL(n,K)-bundle is the GL(n,K)-bundle whose sections
are precisely those in Aut(E) ⊂ Γ(End(E))?.

Certainly we know at least one possible choice, namely the frame bundle F(E). We
will see that this is not quite the correct answer to the question momentarily.

1.4.1 Bundle of Gauge Transformations

Let P → M be a principal G-bundle. The representation Ad : G → Aut(G) given by
conjugation gives an associated bundle AdP := P ×Ad G. Sections s ∈ Γ(AdP ) may be
identified with G-equivariant maps P → G, with respect to the natural right action of
G on P , and the conjugation (by the inverse) action of G on itself.

Proposition 1.4.1. Sections of AdP are precisely principal G-bundle isomorphisms
P → P .

Proof. Let s ∈ Γ(AdP ). Then s may be identified with a G-equivariant map s : P → G.
Define a map s̃ : P → P by s̃(p) := ps(p). Since s is smooth this is a smooth map
P → P , and preserves fibres. Thus we need to check s̃ is equivariant. Let g ∈ G. Then
s̃(pg) = pgs(pg) = pgg−1s(p)g = ps(p)g.

Suppose f : P → P is a principal G-bundle isomorphism. Then f preserves the
fibres of P , so the image f(p) of some element p ∈ P can be written f(p) = pfp for
some fp ∈ G. Define a map f̃ : P → G by f̃(p) := fp. Clearly this map is smooth,
so we need to show it is equivariant in the required sense. That is, we need to show
f̃(pg) = g−1f̃(p)g. Let q = pg ∈ P . Then on the one hand f(q) = qfq = pgfq, and
on the other hand f(q) = f(pg) = f(p)g = pfpg. Since the action of G is free and
transitive on fibres, we must have gfq = fpg, or fq = g−1fpg. Changing notation, we
obtain f̃(pg) = g−1f̃(p)g as desired.

Thus we see that for a principal G-bundle P , automorphisms are sections of AdP (in
particular, they are NOT sections of P itself!). Furthermore, the bundle AdP , while a
fibre bundle with fibre G, does not have to look like P itself. Namely, if G is an Abelian
Lie group then the bundle AdP will always be trivial, even if P is not.

Definition 1.4.2 (Gauge Transformations). The bundle AdP is called the bundle of
gauge transformations. The group G := GP := Aut(P ) = Γ(AdP ) of bundle automor-
phisms of P is called the gauge group or group of gauge transformations of P .

Formally G is an infinite-dimensional Lie group, and we can attempt to determine
its Lie algebra. With some thought one can deduce that the Lie algebra of G should be
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the sections of the Lie algebra bundle adP := P ×ad g, where g is the Lie algebra of G
and ad : G→ Aut(g) is the adjoint representation of G on its Lie algebra.

1.4.2 Gauge Transformations and the Frame Bundle

We will now look at the interpretation of gauge transformations for the case of the frame
bundle F(E) of a vector bundle E →M . In this situation the frame bundle is a principal
GL(n,K)-bundle over M whose fibres consist of all ordered bases for the fibres of E.

Consider the group Aut(E) of vector bundle automorphisms of E.

Proposition 1.4.3. A vector bundle automorphism f ∈ Aut(E) of E is precisely a
gauge transformation for the frame bundle F(E).

Proof. Suppose f : E → E is a vector bundle automorphism. Then f induces a lin-
ear isomorphism Ex → Ex for each x ∈ M . If (e1, . . . , en) is a frame of the vector
space Ex, then since f is a linear isomorphism, (f(e1), . . . , f(en)) is again a frame,
and this map depends smoothly on the frame. Thus f may be interpreted as a fibre
bundle map F(E) → F(E). We need to check this map is equivariant on F(E). Let
(e1, . . . , en) ∈ F(E)x and Aji ∈ GL(n,K). Then f(ejA

i
j) = f(ej)A

i
j so the map f is

GL(n,K)-equivariant.
On the other hand, suppose f : F(E)→ F(E) is a gauge transformation of the frame

bundle. Let p ∈ E. Then in any frame p = piei and one can define f(p) := pif(ei).
Clearly this is smooth and linear, and does not depend on the particular choice of frame.
Thus f may be interpreted as a vector bundle automorphism E → E.

Thus if E →M is a vector bundle the gauge transformations of E are precisely the
gauge transformations of the frame bundle F(E). We also observe that the sections of
adP can be identified with vector bundle homomorphisms E → E, and in fact

Lemma 1.4.4. If E →M is a vector bundle of rank n then End(E) ∼= F(E)×adgl(n,K).

Proof. The transition functions for F(E) ×ad gl(n,K) are given by x 7→ ad(gαβ(x)) for
x ∈ Uαβ. That is, if in a local trivialisation we take a point (x,A) ∈ Uαβ × gl(n,K) then
applying the transition functions takes us to (x, gαβ(x)Agαβ(x)−1).

Now on the trivialisation Uα fix gl(n,K) ∼= Mat(n,K) ∼= (Kn)∗ ⊗ Kn and write
A = Ajiε

i ⊗ ej for a basis {ej} of Rn and its dual basis {εi}. Then with respect to this

isomorphism we have ad(gαβ) 7→ g−1
αβ ⊗ gαβ. That is, if gαβ = (gji ) then

(g−1
αβ )⊗ gαβ(Ajiε

i ⊗ ej) = Aji (g
−1
αβ )(εi)⊗ gαβ(ej)

= Aji (g
−1)ikε

k ⊗ gljel
= gljA

j
i (g
−1)ikε

k ⊗ el
= ad(gαβ)(Ajiε

i ⊗ ej).

In particular, with the convention of taking the dual frame to have upper indices,
these are precisely the transition functions of End(E). Since the isomorphisms gl(n,K) ∼=
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Mat(n,K) ∼= (Kn)∗ ⊗ Kn are all canonical, this shows that End(E) is canonically iso-
morphic to F(E)×ad gl(n,K).
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Chapter 2

Connections and Curvature

2.1 Linear Connections

2.1.1 Why Do We Need Connections?

Suppose one has a vector bundle E and a section s ∈ Γ(E). A natural question to ask is
how one might take a derivative of s. Three natural definitions spring to mind. The first
is to define the derivative from first principles. This runs into problems immediately.

In Rn if one has a vector field X ∈ Γ(Rn), we can take a directional derivative of X,
at x, in the direction v, denoted dX(v)(x), using the following expression:

dX(v)(x) := lim
t→0

X(x+ tv)−X(x)

t
.

Notice that dX(v)(x) ∈ Rn for each x, so we obtain another vector field. When we
pass to a manifold, we run into trouble. Firstly, there is no notion of adding two points
on a manifold in the way we have written x+ tv. This is easily rectified of course. Given
a tangent vector v ∈ TxM , we can take a path γ such that γ(0) = x and γ′(0) = v, and
then consider

lim
t→0

X(γ(t))−X(x)

t
. (Eq. 2.1)

Note this expression may depend on the particular path γ chosen, but we are making
progress. Of course this statement is still not well-defined. For each t, X(γ(t)) ∈ Tγ(t)M ,
the tangent space at the point γ(t). But X(x) ∈ TxM , the tangent space at x. Unless
t = 0, these are different vector spaces, so there is no way of subtracting these two
vectors. In Rn there is no problem, because one may transport everything to the origin
and perform computations there, and then transport back. Without a linear structure,
there is no obvious way of doing the same thing on a manifold. This same problem of
course arises for any vector bundle over a manifold, not just the tangent bundle.

The second natural definition to consider is simply to take a local trivialisation U of
a vector bundle E, and write a section s = siei for the local frame {ei}. Then one could
define a derivative by saying Ds := dsi ⊗ ei. When passing between trivialisations, the
coefficients of a section in a local frame transform by si 7→ sjgij for the transition matrix
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g. Thus the definition is not well-defined, unless the transition functions gij are constant,

so that d(sjgij) = dsjgij . This is in general not the case.
The third natural definition, and perhaps the most obvious of all, is to consider a

section s ∈ Γ(E) as a map s : M → E, and take its differential ds : TM → TE. This is of
course a perfectly fine notion of derivative. There are perhaps two complaints. Firstly,
it seems to use nothing about the map s being a section, except that the differential
satisfies dπ ◦ds = 1. Secondly, it uses nothing at all about E being a vector bundle over
M .

Our aim is to describe a notion of derivative of a section that acts similarly to a
directional derivative of vector fields. In particular, one might hope that given a section,
and a vector field, the result would be another section describing the change of the
section in the direction of the vector field. Let X ∈ Γ(TM) be such a vector field. Then
we can consider ds(X) ∈ Γ(TE). The problem with the differential is that ds(X) is not
a section of E itself.

We can however use an interesting property of vector bundles at this point. The
vertical sub-bundle V of the tangent bundle TE is the sub-bundle defined by dπ(v) = 0
for all v ∈ Γ(V ). This is a canonically defined sub-bundle of TE. When E is a vector
bundle, the vertical subspace of the tangent space at p ∈ E is canonically identified with
the fibre Eπ(p), in the same way that the tangent space to a vector space is canonically
identified with the vector space itself.

We could therefore obtain a section of E that is a directional derivative of s in the
direction of X if we could ‘take the vertical part’ of the vector field ds(X) ∈ Γ(TE).
However, there is no canonical projection onto this vertical sub-bundle. Thus we can
define a connection to be a projection onto this vertical sub-bundle, satisfying suitable
linearity conditions.

What has just been described is an Ehresmann connection on a vector bundle. This
theme will be expanded upon in Section 2.2, where we will construct the Ehresmann
connection for general fibre bundles, and show how the vector bundle case naturally
produces the notions we will present in this section.

The rest of this section on linear connections will focus on the correct way of rectifying
the issues presented by the first two natural but flawed definitions of a connection. In
particular, we will develop along the following three paths:

1. Look at what properties a derivative of sections should satisfy, and then define a
connection as something satisfying these properties.

This is the approach of Definition 2.1.1 that we give in the next section.

2. Fix an isomorphism between any two fibres of the vector bundle, depending on
any path between their base points, and define a derivative in the direction of a
vector field at each fibre according to (Eq. 2.1).

This is the notion of parallel transport, which we will investigate in Section 2.1.6.
Indeed this is the motivation for the term connection, as the above recipe describes
how to connect fibres of the vector bundle.
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3. Attempt to define a derivative naively in terms of local trivialisations, observe what
goes wrong, and then define connections as objects that rectify what goes wrong.

This naturally leads to the consideration of local connection forms, which we will
investigate in Section 2.1.3. In particular, these local forms transform in precisely
the right way to counteract the extra dg term that is picked up when passing
between local trivialisations.

2.1.2 The Invariant Definition of a Connection

Definition 2.1.1 (Linear Connection). A connection on a vector bundle E → M is a
K-linear map

∇ : Γ(E)→ Γ(T ∗M ⊗ E)

such that for all f ∈ C∞(M), s ∈ Γ(E),

∇(fs) = df ⊗ s+ f∇(s).

Proposition 2.1.2. In a local trivialisation (U,ϕ) the exterior derivative is a connec-
tion.

Proof. Let s ∈ Γ(E|U ) be a local section of E. Then we know s = siei for the local
frame ei induced by ϕ : E|U → U × Rn. Let ds := (dsi)⊗ ei. Then the claim is that d
acting in this way is a connection on E|U .

Let f ∈ C∞(U). Then fs = (fsi)ei, so d(fs) = ((df)si+fdsi)⊗ei = df⊗s+fds.

Corollary 2.1.3. Connections exist. Given a vector bundle E of rank n over a manifold
M , there exists a connection on E.

Proof. Let {Uα} be a trivialising open cover for E. Then on each Uα we have a connection
dα that is just the exterior derivative d on Uα with its local frame. Let {ρα} be a smooth
partition of unity subordinate to {Uα}, and define

∇ :=
∑
α

ραdα.

This is a well defined operator on sections of E, for if s ∈ Γ(E) then whenever ρα 6= 0,
we have s = siei for some ei a local frame of Uα, thus we may apply dα to s in this
frame.

To verify the Leibniz rule we have

∇(fs) =
∑
α

ραdα(fs)

=
∑
α

ραdf ⊗ s+ ραfdα(s)

= df ⊗ s+ f∇(s).
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A connection is a map from Γ(E) to Ω1(M)⊗C∞(M) Γ(E) = Γ(T ∗M⊗RE). We know
that if s is a section of E and u is a section of the vector bundle Hom(E, T ∗M ⊗R E),
then u(s) is a section of T ∗M ⊗R E. This motivates the question: Is a connection a
section of the bundle Hom(E, T ∗M ⊗R E)?

Remark 2.1.4. That Ω1(M) ⊗C∞(M) Γ(E) = Γ(T ∗M ⊗R E) is a question of sheaf
isomorphisms. This is proved in Section 3.1.3.

This answer to this question is clearly no. The bundle Hom(E, T ∗M ⊗R E) is a real
vector bundle over M , and is thus Γ(Hom(E, T ∗M ⊗RE)) is a module over C∞(M) (by
linearity on each fibre). This means, for every s ∈ E, we must have u(fs) = fu(s).
But we have just seen that for a connection we have ∇(fs) = df ⊗ s + f∇s. This can
be seen as a result of the following lemma. The proof is that presented in the book of
Taubes [Tau11].

Lemma 2.1.5. Let E and F be vector bundles and K : E → F a bundle map such that
K(fs) = fK(s) for all f ∈ C∞(M) and s ∈ Γ(E). Then there exists a unique section u
of Hom(E,F ) such that K(s)x = ux(sx) for all s ∈ Γ(E), x ∈M .

Proof.

Notice that the term df ⊗ s in the definition of a connection (Definition 2.1.1) does
not depend on the particular connection ∇. Indeed, if ∇1 and ∇2 are two connections
on E, then we have (∇1−∇2)(fs) = f(∇1−∇2)s for all f ∈ C∞(M) and s ∈ Γ(E). By
Lemma 2.1.5, ∇1−∇2 may be identified uniquely with a section of Hom(E, T ∗M ⊗RE),
which we also refer to as ∇1 −∇2. Thus we arrive at the following result:

Proposition 2.1.6. The difference of two connections is an element of Γ(Hom(E, T ∗M⊗R
E)).

Let the set of all connections on a vector bundle E be denoted by A . The above
result has the following corollary.

Corollary 2.1.7. Given a connection ∇ and a section a ∈ Γ(Hom(E, T ∗M⊗RE)), ∇+a
is also a connection. In particular, the set A of all connections on a vector bundle E is
an infinite-dimensional affine space modelled on the vector space Γ(Hom(E, T ∗M⊗RE)).

By ‘affine space modelled on Γ(Hom(E, T ∗M ⊗R E))’ we mean, given a choice of
fixed connection ∇, A becomes a vector space isomorphic to the real vector space
Γ(Hom(E, T ∗M ⊗R E)), with origin ∇. In particular, A is infinite dimensional.

To simplify notation in what follows, if E is a vector bundle, then Γ(
∧k T ∗M ⊗R E)

will be written Ωk(E). Note that Γ(
∧k T ∗M⊗RE) = Ωk(M)⊗C∞(M)Γ(E). The sections

in Ωk(E) are called E-valued k-forms on M . One could equivalently refer to such sections
as k-form-valued sections of E.

With this convention, we see a connection is a map ∇ : Ω0(E) → Ω1(E) satisfying
a Leibniz rule. Furthermore, if ∇1 and ∇2 are two connections on E, then ∇1 − ∇2 ∈
Ω1(End(E)).
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Remark 2.1.8. Note that fibrewise, we have Hom(E, T ∗M⊗E)x ∼= (E∗⊗T ∗M⊗E)x ∼=
(T ∗M ⊗E∗⊗E). But E∗⊗E ∼= End(E), so the difference of two connections is actually
a section of the bundle T ∗M ⊗ End(E). This observation is useful in that we see the
difference of two connections looks like a sum ωi ⊗ ui where the ωi ∈ Ω1(M) and the
ui ∈ Γ(End(E)).

Remark 2.1.9. Much as in Section A.1 for matrices, we may construct a local frame of
the vector bundle End(E) that acts as the basis Eij of matrices acting on a vector space
V . Let {ei} be a local frame for E over a trivialising set U . Then one may define a dual
frame {εi} of E∗ by the expression εi(ej) = δij . Equivalently, one could take the local
trivialisation on E∗ defined by the cocycle for E∗ obtained from E as in Section 1.2.5.
That these two local frames agree is a good exercise in the expressions of these objects
in local coordinates. In any case, one can define Eij := εi ⊗ ej ∈ Γ(End(E)|U ).

Remark 2.1.10. Suppose A = ωi ⊗ ui is a section of T ∗M ⊗ End(E). Then in light
of Section A.1 and Remark 2.1.9, we know that ui = U jikE

i
j , where Eij is the standard

matrix basis frame for End(E) given in terms of the local frame {ei} of E. Then we
have A = ωi ⊗ U jikE

i
j = (ωiU jik) ⊗ E

i
j . That is, with respect to the standard basis, A

has matrix coefficients Ajk = ωiU jik. These matrix coefficients are one-forms by virtue of
the ωi, so we see that A is actually a matrix of one-forms. This is the correct way of
thinking of sections of T ∗M ⊗ End(E), or indeed of

∧k T ∗M ⊗ End(E) for any k.

2.1.3 The Local Description of a Connection

The preceding results about differences of connections give us a powerful local charac-
terisation of a connection. Let E be a vector bundle and {Uα} be a trivialising cover for
E. Suppose ∇ is a connection on E. Then in particular ∇ is a connection on E|Uα . But
we already know of an essentially canonical connection on Uα, the exterior derivative d.
Thus there exists some Aα such that ∇|Uα = d + Aα. This means, given some section
s ∈ Γ(E|Uα),

∇s = ds+Aαs (Eq. 2.2)

This notation is in fact quite confusing. The section s is not a function on M , so how
do we apply d to it? Also, A is not simply a matrix that one may apply to the vector s.

We will now investigate this expression in detail in the local frame on a trivialising
open set U . Here we will call the matrix of one-forms simply A.

Let {ei} be the local frame on U . Then we have s = siei for some smooth functions
si ∈ C∞(U). The exterior derivative applied to s will mean the exterior derivative
considered as a connection on U . That is, ds := (dsi) ⊗ ei. If we write s as a vector in
the local frame {ei} we have

s =

s
1

...
sn


and ds corresponds to the element-wise exterior derivative in this vector of functions.
Now we have Aij is a matrix of one-forms which we wish to apply to s. First let us
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determine how the matrix A looks when applied to a vector in the frame, ei say. We
have

∇ei = dei +Aei.

Now dej = 0 for all j, because the coefficients of ej in the frame are all constant.
Furthermore if we consider A as a matrix of one forms, and ei as a column vector with
a 1 in the ith row, then the multiplication Aei is the following:

A
1
1 · · · A1

n
...

. . .
...

An1 · · · Ann




0
...
1
...
0

 =

A
1
i

...
Ani

 = Aji ⊗ ej .

Thus we have that As is the vector As = A(siei) = (siAji )⊗ ej , and further this may
be interpreted as the matrix multiplication

As =

A
1
1 · · · A1

n
...

. . .
...

An1 · · · Ann


s

1

...
sn

 =

s
iA1

i
...

siAni

 .

It is important to realise that we are interpreting the End(E)-valued one-form A
here as a matrix, but the process we are actually doing is taking a section s, and looking
at A = ωi ⊗ ui for some differential forms ωi and endomorphisms ui, and then taking
As = ωi ⊗ (ui(s)). If one writes A in the basis of endomorphisms Eij and compares the

answers, one will see that
∑

i,j A
i
j ⊗ Eij(s) is precisely the vector (sjAji ) ⊗ ej that we

have found doing matrix multiplication.
It is very instructive to sit down and confirm and convince yourself that this is the

case. It will help immensely in feeling comfortable with connections and curvature.
In any case, we have the full formula for the connection ∇ applied to a vector s:

∇(s) = (d+A)s

= dsi ⊗ ei + siAji ⊗ ej
= dsi ⊗ ei + sjAij ⊗ ei
= (dsi + sjAij)⊗ ei

Definition 2.1.11 (Connection form). Let U be a trivialising set for a vector bun-
dle E and suppose ∇ is a connection on E. Then the End(E)-valued one-form A ∈
Ω1(End(E|U )) defined by A := ∇|U − d is called the local connection one-form for ∇ on
the trivialising set U .

The above definition is perhaps one of the most important in the entire theory of
vector bundles. As a fair warning for the rest of these notes, and for the entire world
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of differential geometry, the characters ∇ and A are used interchangeably to refer to a
connection on a vector bundle. The letter A will be used to refer to the connection as
well as its local connection form in any given trivialisation. Only when one is interested
in the difference between connection forms on different trivialisations will care be taken
in specifying which connection one-form is being used.

This will become confusing if you do not keep track of what is going on. It is vitally
important to point out that the connection forms defined locally do not piece together
to form a global End(E)-valued one-form.

Suppose Uα, Uβ are two trivialising open sets for E with Uαβ 6= 0, and let ∇ be a
connection on E. Then we have local connection forms Aα and Aβ defined as above.
Suppose {ei} is the frame on Uα and {fj} is the frame on Uβ.

Let gij := (gβα)ij . Then we know from Section 1.2.3 that the frames transform by
(Eq. 1.4). That is,

ei = fjg
j
i (Eq. 2.3)

Now in the local frame on Uα we have

∇ei = (Aα)ji ⊗ ej .

Using (Eq. 2.3), this becomes

∇(flg
l
i) = (Aα)ji ⊗ (fkg

k
j ).

By the Leibniz rule for the connection, this becomes

dgli ⊗ fl + gli∇fl = gkj (Aα)ji ⊗ fk.

Now using the connection with respect to Uβ we have

∇fl = (Aβ)kl ⊗ fk,

so we obtain
dgli ⊗ fl + gli(Aβ)kl ⊗ fk = gkj (Aα)ji ⊗ fk.

Changing the index in the first term, we find

dgki + gli(Aβ)kl = gkj (Aα)ji

for all k.
To turn this index expression into matrix multiplication, we need to rearrange the

repeated indices to go from lower index to higher index, after which we obtain

dgβα +Aβgβα = gβαAα.

Multiplying on the left by g−1
βα , we conclude

Aα = g−1
βαdgβα + g−1

βαAβgβα (Eq. 2.4)

35



This formula for how the connection form changes under a change of basis is one of
the key ways of interpreting a connection. In particular it shows that the connection
forms do not piece together to make a global form. If the local forms pieced together
to make a global form, they would transform according to the change of basis rule on
overlaps, but the extra g−1

βαdgβα term prevents this.

Remark 2.1.12. Suppose one attempted to define a connection naively by taking the
exterior derivative of the coefficients of a section in a local frame (this is precisely what
the derivative of a vector field in Rn is). Doing this calculation one would observe that
on an overlap, one would differentiate the transition functions gβα, and by the Leibniz
rule, pick up a term of the form g−1

βαdgβα. This is not a coincidence. A connection form

transforms according to (Eq. 2.4) precisely to cancel out this factor of g−1
βαdgβα that one

picks up when changing coordinates.

We conclude this section by observing that a collection of local forms satisfying
(Eq. 2.4) piece together to give a connection with local action d+Aα. This is a straight
forward verification that the resulting connection satisfies a Leibniz rule, and is well-
defined on overlaps. The former is due to the exterior derivative in d + Aα, and the
latter is satisfied because of (Eq. 2.4). To sum up:

Theorem 2.1.13. Let E → M be a vector bundle with local trivialisation {(Uα, ϕα)}.
Suppose {Aα} is a collection of End(E)-valued one-forms with Aα ∈ Ω1(End(E|Uα))
such that

Aα = g−1
βαdgβα + g−1

βαAβgβα

on overlaps Uαβ, where {gαβ} are the transition functions with respect to the trivial-
isation. Then the linear operator ∇ defined by ∇|Uα := d + Aα is a connection on
E.

2.1.4 Gauge Transformations

A gauge transformation of a vector bundle E is an element of Aut(E), a vector bundle
isomorphism from E to itself. By composition, the the gauge transformations of a bundle
E form a group G .

A gauge transformation u ∈ G can be identified with a section of of the bundle
Ad(F (E)). That is, a gauge transformation is a smooth assignment of a linear isomor-
phism Ex → Ex for each fibre Ex of the vector bundle x. The composition of bundle
isomorphisms in G is precisely the fibrewise composition of linear isomorphism under
this identification.

Given a gauge transformation u ∈ G , one obtains a gauge transformation of the
bundle of E-valued one-forms, T ∗M ⊗E, which is simply the identity on the T ∗M part
of the fibre T ∗xM ⊗ Ex. We will also call this u. Let ∇ be a connection on E. Then we
have a commutative diagram
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Ω0(E) Ω1(E)

Ω0(E) Ω1(E)

∇

u u

u·∇

where u · ∇(s) := u(∇(u−1(s))).

Lemma 2.1.14. The map u · ∇ is a connection on E.

Proof. Let f ∈ C∞(M) and s ∈ Ω0(E). Then because u, u−1 ∈ G ,

u · ∇(fs) = u(∇(u−1(fs)))

= u(∇(fu−1(s)))

= u(df ⊗ u−1(s)) + u(f∇(u−1(s)))

= df ⊗ s+ fu · ∇.

Thus u · ∇ satisfies the Leibniz rule, and is a connection on E.

If we consider the space of all connections as the affine space A , then we have
u · ∇ ∈ A whenever ∇ ∈ A .

Lemma 2.1.15. The map G ×A → A defined by (u,∇) 7→ u · ∇ is a left action of G
on A .

Proof. Clearly 1 · ∇ = ∇. Given u, v ∈ G , s ∈ Ω0(E), we have

(uv) · ∇(s) = (uv)(∇((uv)−1(s)))

= u(v∇v−1(u−1(s)))

= u · (v · ∇)(s).

One might be tempted to now take a quotient A
/
G . This presents many problems,

that we will not investigate at this time. In particular, one must specify a topology on
A , and even when this is done, the quotient space will not be Hausdorff, and may have
other pathological properties. Defining such a quotient in a suitable way is a question
in the realm of the theory of moduli spaces.

We will conclude this brief discussion by mentioning how the connection form changes
under a gauge transformation. On a trivialisation U , for which the connection has local
form A, a gauge transformation is equivalent to a smooth map u : U → GL(n,K). Let ϕ
be the trivialisation map on U . Define a new trivialisation (U, ϕ̃) by defining ϕ̃ := ϕ ◦u.
If {ei} is the local frame with respect to ϕ and {fj} is the local frame with respect to
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ϕ̃, then u−1(ei) = fi. Let ∇(fi) = Bj
i ⊗ fj for a local connection form B with respect to

the trivialisation ϕ̃. Then

u · ∇(ei) = u(∇(u−1(ei)))

= u(∇(fi))

= u(Bj
i ⊗ fj)

= Bj
i ⊗ u(fj)

= Bj
i ⊗ ej

Thus the connection form for u · ∇ with respect to the local trivialisation (U,ϕ) is
the same as the connection form for ∇ with respect to the local trivialisation (U,ϕ ◦ u).
This if we can show that the transition function g from (U,ϕ) to (U, ϕ̃) is u, (Eq. 2.4)
will give us the transformation law.

Now the composition ϕ̃ ◦ ϕ−1 takes (x, v) to (x, u(v)). To see this, let {αi} be the
standard basis of Kn. Then ϕ−1(x, viαi) = viei, so u ◦ ϕ−1(x, viαi) = viu(ei) = viujiej .

Then ϕ̃ ◦ ϕ−1(x, viαi) = (x, viujiαj) = (x, u(viαi)), so the transition function from ϕ to
ϕ̃ is precisely u. Then by (Eq. 2.4) we have

A = u−1du+ u−1Bu.

To sum up:

Proposition 2.1.16. Let ∇ be a connection on a vector bundle E, and u ∈ G be a gauge
transformation of E. If ∇ is has local connection form A and u · ∇ has local connection
form B, then

B = uAu−1 + duu−1.

Later we will see this same formula appear in the more general case of gauge trans-
formations on principal G-bundles. In the case where G is a linear group (as in the case
of vector bundles), the Maurer-Cartan form of G is g−1dg. Indeed, in this general case
the u−1du term obtained above will be replaced by the Maurer-Cartan form of the Lie
group.

That the Maurer-Cartan form is g−1dg as opposed to dg g−1 explains why we some-
times choose to express the change of formula in the opposite way to what one might
expect (i.e. choosing to write A = instead of B =, even though we started with A).

2.1.5 Directional Derivatives

Given a section s ∈ Ω0(E) and a connection ∇ on E, we have ∇(s) ∈ Ω1(E). In
particular ∇(s) = ωi⊗ si for some one-forms ωi ∈ Ω1(M) and some sections si ∈ Ω0(E).

Given a vector field X ∈ Γ(TM), we can contract ∇(s) with this vector field to
obtain ∇X(s). In particular this is done by writing ∇X(s) = ωi(X)si. Notice that
∇X(s) ∈ Ω0(E).
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Definition 2.1.17 (Covariant Derivative). The covariant deriative of a section s ∈
Ω0(E) in the direction of X ∈ Γ(TM) is the section

∇Xs ∈ Γ(E).

The covariant derivative of s in the direction of X may also be referred to as the
directional derivative of s in the direction of X.

Lemma 2.1.18. The covariant derivative is C∞(M)-linear in the X argument.

Proof. This follows immediately from observing that ω(fX + gY ) = fω(X) + gω(Y ) for
vector fields X,Y , smooth functions f, g, and a one-form ω.

Definition 2.1.19 (Horizontal Section). A section s ∈ Ω0(E) is called horizontal if
and only if ∇Xs = 0 for all x ∈ Γ(TM). Equivalently, s is horizontal if and only if
∇s = 0 ∈ Ω1(E).

A horizontal section is also called a covariantly constant section. That the two
definitions given are equivalent follows from Lemma 2.1.18. The terminology ‘horizontal’
will be explained more thoroughly when we investigate Ehresmann connections in Section
2.2. For now, one may interpret it as saying they are horizontal much the same way as
a constant function is a horizontal line.

Lemma 2.1.20. The covariant derivative in the direction of a vector field X at a point
p ∈M depends only on the value of X at p.

Proof. This is essentially just the statement that a differential form is C∞(M) linear.
In particular ∇s is an E-valued one-form, and when contracting with a vector field X,
∇s(p) acts like an Ep-valued linear functional on TpM , so clearly only depends on Xp,
the element of TpM that is put into it.

Definition 2.1.21 (Covariant Derivative Along a Curve). Let γ : (a, b) → M be a
curve, and suppose s ∈ Ω0(E) is a section of E. Let X be a vector field defined on a
neighbourhood of γ such that Xγ(t) = γ̇(t) for every t ∈ (a, b). Define an operator

D

dt

by
Ds

dt
(t0) := ∇Xs(γ(t0))

for all t0 ∈ (a, b).

Remark 2.1.22. Such an extension X of γ̇ to a neighbourhood of γ clearly exists (since
one may define it on local trivialisations and use a partition of unity). By Lemma
2.1.20 the definition above is well-defined. That is, it does not depend on the particular
extension X of γ̇.
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Lemma 2.1.23. The covariant derivative of a section s ∈ Ω0(E) along a curve γ only
depends on the values of s along the curve γ.

Proof. Suppose γ is contained entirely within a single trivialising set U , and A is the
corresponding local connection form. Then the expression for Ds

dt (t0) for t0 ∈ [0, 1] is

Ds

dt
(t0) = (dsi(γ̇(t0)) + sj(t0)Aij(γ̇(t0)))ei.

The second term of this expression only depends on the value of s at t0. Furthermore,
γ̇(t0) is defined to be dγt0( ∂∂t(t0)), so dsi(γ̇(t0)) = d(si ◦ γ)t0( ∂∂t(t0)). But since we are
composing si with γ, this term then only depends on the value of si along the curve
γ.

Remark 2.1.24. Because of Lemma 2.1.23, one may take the covariant derivative along
a curve γ of a section defined only along the curve γ. In particular one must take an
extension of the section s to a neighbourhood of γ, and the lemma implies the result
does not depend on the choice of extension. This will be useful when we give define
parallel transport in the next section.

Definition 2.1.25 (Horizontal Section Along a Curve). Let s ∈ Ω0(E|γ) be a section
defined along a curve γ in M . The section s is called horizontal along the curve γ if
Ds
dt = 0, where D

dt is the covariant derivative along γ.

Again, the section s may equivalently be called covariantly constant along γ. To link
with the previous definition of horizontal sections, a section s of the whole vector bundle
E is horizontal if and only if it is horizontal along every curve.

2.1.6 Parallel Transport and Holonomy

Parallel Transports

Let γ : [0, 1]→M be a smooth path in a smooth manifold M . Let ξ0 ∈ Eγ(0).
Given a connection ∇ on the vector bundle E, there is a unique element ξ1 ∈ Eγ(1)

called the parallel transport of ξ0 along γ.
Let s be a section of E along γ. Then we may consider the differential equation

Ds

dt
= 0; s(γ(0)) = ξ0. (Eq. 2.5)

Suppose that the image of γ is contained within a single trivilising set U for the vector
bundle E, and that A is the connection one-form with respect to this trivialisation.
Suppose s = siei where {ei} is the local frame of U , and si ∈ C∞(U). Then we saw in
Lemma 2.1.23 that

Ds

dt
= (dsi(γ̇) + sjAij(γ̇))ei.

Thus in the local trivialisation U , (Eq. 2.5) is the following system of ordinary differential
equations in the coefficients si of the section s.
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dsi(γ̇) + sjAij(γ̇) = 0, s(γ(0)) = ξ0. (Eq. 2.6)

Note that γ̇(t) ∈ Tγ(t)M is defined to be

γ̇(t) := dγt

(
∂

∂t

∣∣∣∣
t

)
.

Thus dsi(γ̇) = dsi ◦ dγ
(
∂
∂t

)
= d(si ◦ γ)

(
∂
∂t

)
. By definition this is denoted dsi

dt , so we may
write the equations (Eq. 2.6) in the more suggestive form

dsi

dt
+ sjAij(γ̇) = 0, s(γ(0)) = ξ0.

Now existence and uniqueness theorems for solutions to systems of ordinary differ-
ential equations state that for any given initial condition s(γ(0)) = ξ0, there is a unique
smooth solution s, a section along γ. Define ξ1 := s(γ(1)).

Definition 2.1.26. The element ξ1 ∈ Eγ(1) constructed above is called the parallel
transport of ξ0 along γ.

Remark 2.1.27. The above construction was restricted to the case where the image of
γ was contained within a single trivialisation. If γ passes between trivialisations, then
on each trivialisation it passes through there is a unique s, so the construction above
applied to each trivialisation must agree on overlaps by uniqueness. Thus one obtains a
well-defined parallel transport along any γ.

Remark 2.1.28. Suppose γ1, γ2 : [0, 1]→ M are two smooth curves such that γ1(1) =
γ2(0). Define the parallel transport of ξ0 ∈ Eγ1(0) along the concatenated curve γ2 · γ1

by first taking the parallel transport of ξ0 along γ1, and then parallel transporting the
resulting vector along γ2. This gives a notion of parallel transport along piecewise smooth
curves in M .

Now the equations (Eq. 2.5) are linear, so if s is the solution for ξ0, and s′ is the
solution for ξ′0, then s + s′ is the solution for ξ0 + ξ′0. Similarly the solution to cξ0

for c ∈ K is cs. In particular the map ξ0 7→ ξ1 is linear. Thus the path γ defines a
linear homomorphism from Eγ(0) to Eγ(1). If one reverses the path γ by defining δ(t) :=
γ(1−t), then the parallel transport of ξ1 along δ is ξ0. Thus this linear homomorphism is
invertible. In particular it is an element of GL(n,K), which we call the parallel transport
map associated to γ.

We will denote the parallel transport map along γ from p to q by P∇p,q,γ : Ep →
Eq. Thus P∇p,q,γξ0 = ξ1, where ξ0 ∈ Ep, and γ : [0, 1] → M is a curve from p to q.

Furthermore in this notation we have P∇p,q,γ = (Pq,p,γ−)−1. Because we often refer to the
map γ : [0, 1] → M and the image γ([0, 1]) ⊂ M interchangeably, we will be slack in
writting γ− for the reversed path. Only when γ is a loop is it critical to keep track of
which direction around γ we are going from p to q. We will also use the fact that if γ
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does not pass through the point p twice, that P∇p,p,γ = 1. If γ does pass through p twice,
one should be precise about the curve γ and its orientation.

These parallel transport maps are where the name connection comes from. Given a
curve γ, the parallel transport map defines a way of connecting Eγ(0) and Eγ(1). The
following theorem gives the relation between parallel transport and connections, when
considered as separate concepts. In particular, it implies one may recover a connection
from its parallel transport.

Theorem 2.1.29. Let ∇ be a connection on a vector bundle E. Let s ∈ Ω0(E) be a
section and X ∈ Γ(TM) be a vector field. Let p ∈ M and suppose γ : (−ε, ε) → M is
an integral curve for X near p. Then

∇Xs(p) =
d

dt

(
P∇γ(t),p,γs(γ(t))

)
t=0

.

Proof. Pick a basis {ei(p)} of Ep, and use the parallel transport defined by ∇ to extend
this to a frame along the curve γ. Note that the parallel transport maps from the curve
γ are isomorphisms, so linear independence is preserved and this really does define a
frame along γ. In this basis we have s|γ = siei where si ∈ C∞(γ). Now along γ we have

∇Xs|γ =
Ds

dt
=
D

dt
(siei) = dsi(X)ei + si

D

dt
(ei).

Since we defined the ei to be horizontal along γ, we have

∇Xs(γ(t)) = dsi(X)(γ(t))ei(γ(t)). (Eq. 2.7)

On the other hand,

d

dt

(
P∇γ(t),p,γs(γ(t))

)
t=0

=
d

dt

(
P∇γ(t),p,γs

i(γ(t))ei(γ(t))
)
t=0

=
d

dt

(
si(γ(t))P∇γ(t),p,γei(γ(t))

)
t=0

=
d

dt

(
si(γ(t))

)
t=0

P∇γ(0),p,γei(γ(0))

+ si(γ(0))
d

dt

(
P∇γ(t),p,γei(γ(t))

)
t=0

.

Now the ei were defined as the parallel transports of ei(p), so P∇γ(t),p,γei(γ(t)) = ei(p)

for all t. But then the derivative of this second term is zero. Furthermore since γ(0) = p
and P∇p,p,γ = 1, the first term becomes

d

dt

(
P∇γ(t),p,γs(γ(t))

)
t=0

=
d

dt

(
si(γ(t))

)
t=0

ei(p).

But this is precisely ∇Xs(γ(0)), according to the expression for the covariant deriva-
tive derived above (Eq. 2.7).
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Note that the derivative in the statement of Theorem 2.1.29 may be equivalently
written in the form

d

dt

(
P∇γ(t),p,γs(γ(t))

)
t=0

= lim
h→0

P∇γ(h),p,γs(γ(h))− s(γ(0))

h
,

where the subtraction here is now well-defined, occuring in the single vector space Ep.
This expression is perhaps the best evidence that a connection is the correct generalisa-
tion of directional derivatives of vector fields.

If care is taken, it is possible to define a connection via parallel transports. The
difficulty comes in identifying the correct statement of how the parallel transport maps
should depend smoothly on each of their arguments. If this is done, then Theorem 2.1.29
gives the definition of the corresponding covariant derivative.

Holonomy

In the case of the trivial connection on Rn, the parallel transport along any curve is
constant. On the sphere, however, parallel transport is non-trivial. This can for example
be observed by performing parallel transport of a vector around the boundary of a
quarter of a hemisphere. In this case, the vector will be rotated by π/2 once it has been
transported back to its starting point.

The difference in these two situations is that in the case of the sphere, the connection
has curvature. The notion of the curvature of a connection will be investigated momen-
tarily, but first, based on the above examples of Rn and the sphere, we will now define
the holonomy of a connection.

Fix a point p ∈M . Let γ : [0, 1]→M be a smooth curve such that γ(0) = γ(1) = p.
Then the parallel transport along γ defines an isomorphism of Ep to itself. We call this
element the holonomy of the connection ∇ at the point p around the loop γ, and denote
it by

Hol∇(p, γ) ∈ GL(n,K).

Definition 2.1.30 (Holonomy). Define the set

Hol∇(p) := {A ∈ GL(n,K) | A = Hol∇(p, γ) for some γ : [0, 1]→M}.

This set is called the holonomy of ∇ around (or at) p.

Proposition 2.1.31. The holonomy of a connection ∇ around a point p ∈M is a group.

Proof. The group operation is defined by parallel transport around concatenated curves
γ2 ·γ1, as defined in Remark 2.1.28. The identity element is the element corresponding to
the constant loop. As mentioned previously, the inverse of an element corresponding to
γ1 is the holonomy around the reversed loop γ−1 . Associativity follows from the definition
of parallel transport for piecewise smooth curves.

Lemma 2.1.32. Suppose M is a path connected manifold. Then Hol∇(p) and Hol∇(q)
are conjugate in GL(n,K) for any p, q ∈M .
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Proof. Let γ : [0, 1] → M be a path from p to q. Then for each δ a loop around p,
γ · δ · γ−1 is a loop around q. Thus if g ∈ GL(n,K) denotes the parallel transport map
associated to γ, we have gHol∇(p)g−1 ⊆ Hol∇(q). Now given any h ∈ Hol∇(q), we have
some loop κ such that h is the holonomy around κ. Define a new loop η around p by
η := γ−1 · κ · γ. Then gHol∇(p, η)g−1 = Hol∇(q, γ · γ−1 · κ · γ · γ−1) = Hol∇(q, κ). Thus
we can always find a loop η around p such that γ · η · γ−1 has the same holonomy as κ.
In particular this implies Hol∇(q) ⊆ gHol∇(p)g−1.

By virtue of Lemma 2.1.32, the holonomy of a connection around any two points is
isomorphic (for a connected manifold). Thus one will often refer simply to the holonomy
of the connection, with the understanding that the holonomy for any two points are
conjugate. There is a distinguished subgroup of the holonomy group around any point
p.

Definition 2.1.33. Let E be a vector bundle over M with connection ∇. Denote by
Hol∇0 (p) the subgroup of the holonomy around p defined by contractible loops around p.

For a simply connected manifold M , Hol∇0 (p) = Hol∇(p) for any p ∈M . If one has a
loop γ based at p, and a contractible loop δ, the loop γ · δ · γ−1 is contractible. This can
be observed by contracting the δ component of the curve to a point while leaving γ and
γ−1, and then contracting the loop left by γ · γ−1. Thus Hol∇0 (p) is a normal subgroup
of Hol∇(p). There is a natural homomorphism from π1(M) to Hol∇(p)

/
Hol∇0 (p) taking

[γ] to the coset P∇p,p,γ ·Hol∇0 (p).
Once we have investigated curvature, we will see how the holonomy gives a geometric

interpretation of the curvature of a connection at a point p. The curvature at p is in a
precise sense the limit of the holonomy around p as one takes smaller and smaller loops
γ.

In the case where the connection is flat, we will see that the holonomy depends only
on the homotopy class of the loop γ. Then in the case where the manifold is connected,
Hol∇0 (p) is trivial, so the natural homomorphism described above is into GL(n,K), or the
structure group of the vector bundle. Thus one may phrase the study of representations
of the fundamental group into linear groups in terms of the study of connections on
vector bundles. In fact, the connection ∇ is flat if and only if Hol∇0 (p) is trivial.

Later we will investigate connections on principal G-bundles, in which case the cor-
responding notion of holonomy will allow one to extend this discussion to obtain repre-
sentations of π1(M) into an arbitrary Lie group G.

2.1.7 Curvature

A connection ∇ can be thought of as a map dA : Ω0(E)→ Ω1(E) satisfying the Leibniz
rule, where we are labelling dA := ∇ by some letter A. Of course, we have chosen to use d
here to be suggestive. In the same way that the exterior derivative d : Ω0(M)→ Ω1(M)
may be extended to a differential operator on the full algebra Ω•(M), we can extend ∇
to an operator dA on Ω•(E).
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Definition 2.1.34. Given a connection ∇, define the kth exterior covariant derivative

dkA : Ωk(E)→ Ωk+1(E)

on pure tensors by
dkA(ω ⊗ s) = dω ⊗ s+ (−1)kω ∧∇s

where ω ∈ Ωk(M) and s ∈ Γ(E). Extend by linearity to all sections in Ωk(E). Here
ω ∧∇s means wedging the form ω with the one-form part of ∇s.

As in the case of the exterior derivative, the index k is usually suppressed, and we
take d0

A to be ∇. In the rest of these notes, we will at times refer to applications of the
connection ∇ to sections of Ωk(E), and to sections of any associated bundles upon which
∇ induces a connection, as dA. This is a slight abuse of notation, but we will justify
what we mean by dA in every case in which we apply it. The main property of dA, that
it satisfies a Leibniz rule, will remain constant throughout, so it is often constructive to
blur the line (though not always).

In the case of the exterior derivative, dk+1 ◦ dk = 0 for any k. In general this is not
true for the exterior covariant derivative. The obstruction to this property is called the
curvature of the connection.

Definition 2.1.35. The curvature FA of a connection A is the map (dA)2 : Ω0(E) →
Ω2(E).

The curvature is a measure of the extent to which the complex (Ω•(E), dA) fails to
be a chain complex.

In general the curvature map is non-zero, and we will soon see a local characterisation
of FA as a two-form, in terms of the one-forms defined in Section 2.1.3. Before this, we
have the following fundamental result about the curvature of a linear connection.

Theorem 2.1.36. The curvature of a connection A is C∞(M)-linear.

Proof. Let s ∈ Γ(E) and f ∈ C∞(M). Then

FA(fs) = dA(df ⊗ s+ fdA(s))

= dA(df ⊗ s) + dA(fdA(s))

= d2f ⊗ s− df ∧ dA(s) + df ∧ dA(s) + fd2
A(s)

= fF∇(s).

Here we have used the following lemma.

Lemma 2.1.37. Let f ∈ C∞(M) and s ∈ Ω0(E). Then for any connection A on E, we
have

dA(fdA(s)) = df ∧ dA(s) + fd2
A(s).
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Proof. We have s ∈ Ω0(E) is a general section of E. Thus dA(s) ∈ Ω1(E) is an E-valued
one-form. Suppose dA(s) = ωi ⊗ si for some one-forms ωi and sections si.

dA(fdA(s)) = dA(f(ωi ⊗ si))
= dA((fωi)⊗ si)
= d(fωi)⊗ si + fωi ∧ dA(si)

= (df ∧ ωi + fdωi)⊗ si + fωi ∧ dA(si)

= df ∧ ωi ⊗ si + f(dωi ⊗ si + ωi ∧ dA(si))

= df ∧ dA(s) + fd2
A(s).

From this theorem, we obtain the curvature is a C∞(M)-linear mapping from Ω0(E)
to Ω2(E). By Lemma 2.1.5, this implies that FA ∈ Γ(End(E)⊗Ω2(M)) = Ω2(End(E)),
so FA is an End(E)-valued 2-form on M . In light of Remark 2.1.10, the curvature is
(locally) a matrix of two-forms.

Remark 2.1.38. The letter A is the standard label for connections and their local con-
nection forms due to a coincidence coming from physics. In classical electromagnetism,
the electromagnetic potential tensor is denoted by the letter A. The corresponding
electromagnetic field strength tensor is then denoted by F . Remarkably, the theory
of classical electromagnetism, including all of Maxwell’s equations of electromagnetism,
can be naturally interpreted in the language of connections and curvature of vector bun-
dles. In particular, the electromagnetic potential is in a natural way a connection on a
principal U(1)-bundle over spacetime, and the electromagnetic field strength F is its cur-
vature. One can then write down the Yang-Mills functional in the case of connections
on principal U(1)-bundles. The Yang-Mills equations (the Euler-Lagrange equations
for this functional) together with the Bianchi identity (Proposition 2.1.52) completely
recover Maxwell’s equations of electromagnetism.

This phenomenon explains the labels A and FA for connections and their curvature.

2.1.8 Operations on End(E)-valued Differential Forms

Before we continue, we will define some operations on End(E)-valued differential forms.
These will come up when analysing the properties of the curvature in local trivialisations.

First, suppose A ∈ Ωk(End(E)) is an End(E)-valued k-form. Then we may write
A = ηi⊗Ni for some ηi ∈ Ωk(M) and Ni ∈ Ω0(End(E)). Further, suppose B = µj⊗Mj

is an element of Ωl(End(E)), an End(E)-valued l-form.
Define the wedge product A ∧B by

A ∧B := (ηi ∧ µj)⊗ (NiMj).

This is well defined since the ηi and µj are differential forms on M , for which the
wedge product makes sense, and the Ni and Mj are endomorphisms of E, so we may
compose them to get new endomorphisms NiMj .
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This wedge product is perhaps the most natural way of defining a multplication
operation on End(E)-valued differential forms, but there is another useful operations
that one may perform:

Define the commutator [A,B] of A and B by

[A,B] := (ηi ∧ µj)⊗ [Ni,Mj ]

where the commutator on the right is that of endomorphisms, defined by [Ni,Mj ] =
NiMj −MjNi.

First we remark that the commutator [A,B] satisfies

[A,B] = (−1)deg(A) deg(B)+1[B,A].

This can be seen from combining the (−1)deg(A) deg(B) term one gets when interchang-
ing the forms ηi and µj , as well as the −1 from the commutator of endomorphisms. In
addition we have

Lemma 2.1.39.
[A,B] = A ∧B − (−1)deg(A) deg(B)B ∧A

Proof.

[A,B] = (ηi ∧ µj)⊗ [Ni,Mj ]

= (ηi ∧ µj)⊗NiMj − (ηi ∧ µj)⊗MjNi

= (ηi ∧ µj)⊗NiMj − (−1)deg(A) deg(B)(µj ∧ ηi)⊗MjNi

= A ∧B − (−1)deg(A) deg(B)B ∧A.

For one-forms the above expression implies 1
2 [A,A] = A ∧ A. In the literature, the

curvature of a connection may be denoted using either of these expressions, and the
above discussion gives the relation between them. The form in terms of [·, ·] is more
common when discussing how connections on vector bundles arise from connections on
associated principal bundles. For example in the case of the adjoint Lie algebra bundle,
the commutator of endomorphisms used in the definition of [·, ·] is precisely the Lie
bracket on the fibres of the adjoint bundle.

2.1.9 Local Curvature Form

Definition 2.1.40. Let dA be a connection on a bundle E. Then the curvature FA
corresponds to a form we will also denote FA ∈ Ω2(End(E)). This is the curvature form
of the connection dA.

Proposition 2.1.41 (Cartan’s Structure Equation). Suppose dA has local connection
form A on some trivilising set U . Then the curvature FA locally has the form ΩA =
dA+A ∧A, where ΩA ∈ Ω2(End(E)|U ).
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Proof. Let {ei} be the local frame on a trivialisation U , and A the local connection form.
Then we have

FA(ei) = dA(Aji ⊗ ej)
= dAji ⊗ ej −A

j
i ∧ dA(ej)

= dAki ⊗ ek −A
j
i ∧A

k
j ⊗ ek

= (dAki +Akj ∧A
j
i )⊗ ek.

That is, (ΩA)ki = dAki +Akj ∧A
j
i . In light of Sections 2.1.3 and A.1, this wedge product

corresponds to the matrix multiplication of A with itself, where the coefficient multipli-
cation is wedging of one-forms. This is precisely the wedge product of End(E)-valued
forms defined in the previous section. In particular we have

ΩA = dA+A ∧A.

To say that the curvature is locally the End(E)-valued two-form ΩA means that given
some s = siei written in the local frame on U , we have

d2
A(s) = ΩAs = dAs+A ∧As,

where the term on the right is interpreted as genuine matrix multiplication.

Remark 2.1.42. Since FA is a global End(E)-valued two-form on M , the local curvature
forms ΩA should be compatible on overlaps, in contrast to the local connection forms A.
Indeed using (Eq. 2.4) for how A transforms under a change of basis, if we have local
forms Aα = A and Aβ = B, with gβα = g, then

ΩA = dA+A ∧A
= d(g−1dg + g−1Bg) + (g−1dg + g−1Bg) ∧ (g−1dg + g−1Bg)

= dg−1 ∧ dg + dg−1 ∧Bg + g−1dBg − g−1B ∧ dg + g−1dg ∧ g−1dg+

g−1dg ∧ g−1Bg + g−1B ∧ dg + g−1B ∧Bg
= g−1(dB +B ∧B)g + dg−1 ∧ dg + dg−1 ∧Bg + g−1dg ∧ g−1dg + g−1dg ∧ g−1Bg.

Now because 0 = d(gg−1) = dgg−1 + gdg−1, we have dg = −gdg−1g. Substituting this
into the above expression, we have

ΩA = g−1ΩBg − dg−1 ∧ gdg−1g + dg−1g ∧ dg−1g + dg−1 ∧Bg − dg−1 ∧Bg
= g−1ΩBg

= gαβΩBg
−1
αβ

This is the change of basis formula for End(E)-valued forms, so the local curvature forms
ΩA piece together into the global form FA, as expected. We may refer to the curvature
form as either FA or ΩA in the future. Doing local calculations it is suggestive to use
ΩA, due to its dependence on the local connection forms A, which don’t themselves piece
together into a global form.
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Remark 2.1.43. Because A∧A = 1
2 [A,A], one will often see Cartan’s Structure Equa-

tion written in the form ΩA = dA + 1
2 [A,A] in the literature. This notation is related

to the expression for the curvature of a connection in associated bundles to principal
bundles, where the bracket [·, ·] corresponds to a Lie bracket.

Remark 2.1.44. One will often see Cartan’s Structure Equation written in the form
dA−A∧A in the literature. This expression is not the natural wedge product on End(E)-
valued forms as defined in the previous section. In fact this minus sign follows from not
keeping track of indices, and interpreting −Aji ∧Aij as a matrix multiplication. In these

cases, dA−A∧A is shorthand notation for dAki −A
j
i ∧Akj , and should not be interpreted

as matrix multiplication (i.e. composition of End(E) components of End(E)-valued
forms).

2.1.10 Induced Connections

Given a vector bundle E →M , and a connection dA on E, one obtains connections, also
typically labelled dA, on vector bundles associated to E. In this section we will review
how one obtains such connections.

Dual Bundles

First we will consider the case of the dual bundle E∗. One may define a connection dA
on E∗ by the formula

d〈`, s〉 = 〈dA(`), s〉+ 〈`, dA(s)〉, (Eq. 2.8)

where ` ∈ Ω0(E∗), s ∈ Ω0(E), and the pairing 〈·, ·〉 is the natural one between E∗ and
E. Note that since dA(`) and dA(s) are section-valued one-forms, the pairing here means
pairing on the section part, while leaving the one-form part alone. We will see what this
means momentarily.

To check that this formula does indeed define a connection on E∗, we need only check
that it satisfies the Leibniz rule. We have

〈dA(f`), s〉 = d〈f`, s〉 − 〈f`, dA(s)〉
= (df)〈`, s〉+ fd〈`, s〉 − f〈`, dA(s)〉
= 〈df ⊗ `, s〉+ f〈dA(`), s〉
= 〈df ⊗ `+ fdA(`), s〉.

Since this holds for all sections s ∈ Ω0(E), we conclude that dA(f`) = df ⊗ `+ fdA(`).

Definition 2.1.45. The connection dA defined on E∗ above is called the dual connection
to dA on E.

We can easily compute the local connection form for the dual connection dA. Let
{ei} be a local frame for E on a trivialising set U , and let {εj} be the corresponding
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dual frame on E∗ over U . Suppose we write dA(εj) := Bj
i ⊗ εi for some one-forms Bj

i .
Then using (Eq. 2.8) we have

d〈εj , ei〉 = 〈Bj
k ⊗ ε

k, ei〉+ 〈εj , Aki ⊗ ek〉
= Bj

k〈ε
k, ei〉+Aki 〈εj , ek〉

= Bj
kδ
k
i +Aki δ

j
k

= Bj
i +Aji .

Now 〈εj , ei〉 = δji , which is a constant function (either one or zero, depending on i and
j), so the left-hand-side of this expression is zero. Thus we obtain

Bj
i = −Aji .

In particular, we have the following expression for how the dual connection acts on a
section s = siε

i ∈ Ω0(E∗):

dA(siε
i) = (dsi − sjAji )⊗ ε

i (Eq. 2.9)

Given this expression for the action of the connection dA on the dual bundle, one can
now proceed, just as in Section 2.1.7, to extend dA to Ω•(E∗), and for example compute
the curvature.

Remark 2.1.46. In the sense of Section 2.1.3, the expression in (Eq. 2.9) is not the true
action of the connection form on E∗. In particular it is not of the form ∇s = ds − As.
This is notational, due to the convention of writing the dual basis {εj} with upper
indices. With this convention (Eq. 2.9) says that dA(s) = ds− sA (in matrix notation).

If one were to write the dual basis as {εj} (considering E∗ as a standalone vector
bundle), satisfying the same relations 〈εi, ej〉 = δij , then the genuine connection form

Bj
i on E∗ would be given by −Aij , the negative transpose of A.

We will now compute the curvature on the dual bundle in two ways. Firstly, writing
the dual basis as {εi} we have

d2
A(εi) = dA(−Aij ⊗ εj)

= −dAij ⊗ εj +Aij ∧A
j
k ⊗ ε

k

= (−dAij +Aik ∧Akj )⊗ εj .

Since the curvature is C∞(M)-linear, if we denote by Ω̃A the local curvature form in
this basis, we have the matrix expression

d2
A(s) = −sdA+ sA ∧A.

Again, since we are interpreting s as a row vector (being a section of the dual bundle),
our expression varies from that found in Section 2.1.9. If we instead write our dual basis
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as {εj} and use the connection form as described in Remark 2.1.46, we obtain

d2
A(εi) = dA(−Aji ⊗ εj)

= −dAji ⊗ εj +Aji ∧A
k
j ⊗ εk

= −(dAji +Ajk ∧A
k
i )⊗ εj

= −(ΩA)ji ⊗ εj .

Writing a dual section as s = siεi, we now obtain the matrix expression

d2
A(s) = −ΩAs.

These varying expressions for the connection form and curvature form on the dual
bundle are all based on notational conventions. It is useful to see where each comes into
play, so as to make sure one uses the write expression when doing computations. In
particular, one should be wary of writing that the curvature of the dual bundle is −ΩA

unless the dual sections are being expressed in the form siεi.
Nevertheless, the notion of the induced connection on the dual bundle is invariantly

defined by (Eq. 2.8), so the differences between these notational conventions is only a
secondary consideration.

Direct Sum Bundles

Given two vector bundles E,F over a manifold M , with connections dA and dB, one may
define a connection on the direct sum bundle E ⊕ F . Sections s ∈ Ω0(E ⊕ F ) uniquely
split into sections s1 ∈ Ω0(E) and s2 ∈ Ω0(F ), such that

s = s1 + s2.

Thus one obtains the induced connection dA⊕B on E ⊕ F by the expression

dA⊕B(s) := dA(s1) + dB(s2).

To see that this is a connection, we again need to verify the Leibniz rule.

dA⊕B(fs) = dA(fs1) + dB(fs2)

= df ⊗ s1 + fdA(s1) + df ⊗ s2 + fdB(s2)

= df ⊗ (s1 + s2) + fdA⊕B(s1 + s2)

= df ⊗ s+ fdA⊕B(s).

The standard notation for this connection is dA⊕B = dA⊕dB. In this sense the local
connection form on a common trivialisation for E and F with local forms A and B is
A⊕B. That is, if {e1, . . . , en, e

′
1, . . . , e

′
m} is the local frame of E⊕F on this trivialisation,

where the ei correspond to the rank n bundle E, and the e′j correspond to the rank m
bundle F , we have

dA⊕B(ej) = Aij ⊗ ei, dA⊕B(e′j) = Bi
j ⊗ ei.

Then if s = aiei + bje′j , letting s1 = aiei and s2 = bje′j we have

dA⊕B(s) = ds+As1 +Bs2.
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Tensor Product Bundles

Given two vector bundles E and F , with connections dA and dB, one obtains an induced
connection dA⊗B on the tensor product bundle E ⊗ F . This is defined according to the
expression

dA⊗B := dA ⊗ 1 + 1 ⊗ dB. (Eq. 2.10)

Then for a (pure) section s⊗ t ∈ Ω0(E ⊗ F ), we have

dA⊗B(s⊗ t) = dA(s)⊗ t+ s⊗ dB(t).

Note that this second term on the right is actually a section of E⊗T ∗M⊗F . Since there
is a canonical isomorphism E ⊗ T ∗M ⊗ F ∼= T ∗M ⊗ E ⊗ F , one interprets the section
s ⊗ dB(t) by declaring that the one-form part of dB(t) is written first, as according to
this isomorphism. If this is understood, then dA⊗B defines a map from sections of E⊗F
to sections of T ∗M ⊗ E ⊗ F . To see that this defines a connection, we have

dA⊗B(fs⊗ t) = dA(fs)⊗ t+ fs⊗ dB(t)

= df ⊗ (s⊗ t) + f(dA(s)⊗ t+ s⊗ dB(t))

= df ⊗ (s⊗ t) + fdA⊗B(s⊗ t).

Thus dA⊗B satisfies the Leibniz rule. Indeed this is why we require the tensor product
to be of the form given in (Eq. 2.10). The expression dA ⊗ dB for example does not
satisfy the Leibniz rule.

Just as in Section 2.1.7, we can extend dA⊗B to Ω•(E ⊗ F ) by the expression

dA⊗B(ω ⊗ s⊗ t) := dω ⊗ s⊗ t+ (−1)degωω ∧ dA⊗B(s⊗ t). (Eq. 2.11)

Using this, we can now determine the curvature of the connection dA⊗B in terms of dA
and dB. Let {ei} and {fj} be local frames for E and F over a common trivialising set
U , which also trivialises E ⊗ F . Then one has a local frame {ei ⊗ fj} of E ⊗ F in this
trivialisation. If we say dA has local connection form A, and dB has local connection
form B, then

FA⊗B(ei ⊗ fj) = d2
A⊗B(ei ⊗ fj)

= dA⊗B(Aki ⊗ ek ⊗ fj +Bk
j ⊗ ei ⊗ fk)

= dAki ⊗ ek ⊗ fj −Aki ∧ dA⊗B(ek ⊗ fj) + dBk
j ⊗ ei ⊗ fk −Bk

j ∧ dA⊗B(ei ⊗ fk)
= dAki ⊗ ek ⊗ fj + dBk

j ⊗ ei ⊗ fk
−Aki ∧ (Alk ⊗ el ⊗ fj +Bl

j ⊗ ek ⊗ fl)−Bk
j ∧ (Ali ⊗ el ⊗ fk +Bl

k ⊗ ei ⊗ fl)
= dAki ⊗ ek ⊗ fj +Alk ∧Aki ⊗ el ⊗ fj + dBk

j ⊗ ei ⊗ fk +Bl
k ∧Bk

j ⊗ ei ⊗ fl
−Aki ∧Bl

j ⊗ ek ⊗ fl −Bk
j ∧Ali ⊗ el ⊗ fk

= (ΩA)ki ⊗ ek ⊗ fj + (ΩB)kj ⊗ ei ⊗ fk −Ali ∧Bk
j ⊗ el ⊗ fk +Ali ∧Bk

j ⊗ el ⊗ fk
= FA(ei)⊗ fj + ei ⊗ FB(fj).
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That is, the curvature of the tensor product connection of two vector bundles E and F
with connections dA and dB is given by

FA⊗B = FA ⊗ 1 + 1 ⊗ FB. (Eq. 2.12)

Note that the induced connections on dual bundles and tensor product bundles mean
that given a connection dA on a vector bundle E, one obtains induced connections on
all tensor bundles associated to E. These include dual bundles, bundles of p-co-q-
contravariant tensors on E, symmetric tensor powers of E, antisymmetric tensor power
of E, and so on.

This vast array of information is better formulated in terms of a single connection
on the principal frame bundle associated to the vector bundle E. The connections on
all associated tensor bundles can then be seen as coming from the principal connection
in a natural way.

The Endomorphism Bundle

The computations of the previous subsections allow us to write down a nice formula
for the induced connection on the endmorphism bundle End(E) ∼= E∗ ⊗ E, and on the
bundles of End(E)-valued differential forms.

Let E be a vector bundle over M with connection dA. Let {ei} be a local frame for
E on a trivialising set U , and {εj} be the corresponding dual frame. Suppose A is the
local connection form on U .

In what follows, we will refer to the induced connection on E∗ ⊗ E simply by dA.

Proposition 2.1.47. Let α ∈ Ωk(End(E)) be a global End(E)-valued k-form. Then on
a local trivialisation such that A is the connection form for dA and α|U := a = aij⊗εj⊗ei
is the local form of α, we have

dA(α) = da+ [A, a].

Proof. By (Eq. 2.11) and (Eq. 2.10), we have

dA(aij ⊗ εj ⊗ ei) = daij ⊗ εj ⊗ ei + (−1)deg aaij ∧ dA(εj ⊗ ei)

= daij ⊗ εj ⊗ ei + (−1)deg aaij ∧ (−Ajk ⊗ ε
k ⊗ ei +Aki ⊗ εj ⊗ ek)

= daij ⊗ εj ⊗ ei + (−1)deg a+1aij ∧A
j
k ⊗ ε

k ⊗ ei
+ (−1)deg aaij ∧Aki ⊗ εj ⊗ ek

= daij ⊗ εj ⊗ ei − (−1)deg aaij ∧A
j
k ⊗ ε

k ⊗ ei
+ (−1)deg a(−1)deg a·1Aki ∧ aij ⊗ εj ⊗ ek

= daij ⊗ εj ⊗ ei +Aik ∧ akj ⊗ εj ⊗ ei − (−1)deg aaik ∧Akj ⊗ εj ⊗ ei
= (daij + [A, a]ij)⊗ εj ⊗ ei.
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That is, in matrix notation,
dA(a) = da+ [A, a].

Remark 2.1.48. If α has local representative aα := α|Uα and similarly one has aβ, then
if g = gβα we have aβ = gaαg

−1. In particular using this expression and (Eq. 2.4) we
can see that the local expression given in Proposition 2.1.47 for dA(α) pieces together to
give a well-defined global End(E)-valued (k + 1)-form. This is expected, since the form
dA(α) is globally well-defined by assertion.

To justify the idea that this connection on End(E) that we have constructed is indeed
natural, we will prove the following lemma, which indicates that the connection dA on
End(E) is about as nice as one could hope. In addition this lemma will give us a nice
characterisation of the action of G on A as described in Section 2.1.4.

Lemma 2.1.49. The connection dA induced on End(E) by dA on E, according to
(Eq. 2.10), satisfies the Leibniz rule

dA(u(s)) = dA(u)s+ udA(s).

Proof. Let u = uji ε
i ⊗ ej and s = skek. Then

dA(u(s)) = dA(ujis
kδikej)

= d(ujis
i)⊗ ej + ujis

idA(ej)

= dujis
i ⊗ ej + ujids

i ⊗ ej + ujis
iAkj ⊗ ek.

dA(u)s = dA(uji ε
i ⊗ ej)(s)

= (dA(uji ε
i)⊗ ej)(s) + (uji ε

i ⊗ dA(ej))(s)

= (duji ⊗ ε
i ⊗ ej)(s) + (ujidA(εi)⊗ ej)(s) + uji ε

i(skek)A
l
j ⊗ el

= duji ε
i(skek)⊗ ej − (ujiA

i
k ⊗ εk ⊗ ej)(s) + ujis

iAlj ⊗ el
= dujis

i ⊗ ej − ujiA
i
ks
k ⊗ ej + ujis

iAkj ⊗ ek.

udA(s) = (uji ε
i ⊗ ej)((dsk + slAkl )⊗ ek)

= uji δ
i
k(ds

k + slAkl )⊗ ej
= ujids

i ⊗ ej + ujis
kAik ⊗ ej .

Adding the second two expressions we see that it equals the first.

Remark 2.1.50. In Section 2.1.4 we observed that the gauge group G of a vector bundle
naturally acts on the space A of connections. Further, we determined the explicit action
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in terms of local connection forms. The induced connection on End(E) allows us to write
down a more invariant formula for the action of G on A . Let u ∈ G and dA ∈ A . Then

u · dA(s) = u(dA(u−1(s)))

= u(dA(u−1)(s) + u−1dA(s))

= u(−u−1dA(u)u−1(s)) + dA(s)

= dA(s)− dA(u)u−1(s).

Thus we have the action of G on A is u · dA = dA − dA(u)u−1.

2.1.11 More Properties of Curvature

We have seen that given a connection dA, and an End(E)-valued one-form a ∈ Ω1(E),
the sum dA + a is again a connection on E. How does FA compare to FA+a?

Proposition 2.1.51. If a ∈ Ω1(End(E)), then

FA+a = FA + dA(a) + a ∧ a.

Proof. Suppose dA has local connection form A. Then we have that dA+a has local
connection form A+ a. Then

ΩA+a = d(A+ a) + (A+ a) ∧ (A+ a)

= dA+ da+A ∧A+A ∧ a+ a ∧A+ a ∧ a
= ΩA + da+ [A, a] + a ∧ a
= ΩA + dA(a) + a ∧ a.

Since this is true locally, and ΩA+a pieces together to form FA+a, we have

FA+a = FA + dA(a) + a ∧ a

as desired.

Proposition 2.1.52 (Bianchi Identity).

dAFA = 0

Proof. Suppose dA has local connection form A, and local curvature form ΩA. Then
using the expression for the commutator [A,ΩA] in terms of the wedge product on
End(E)-valued forms,

dA(ΩA) = dΩA + [A,ΩA]

= d(dA+A ∧A) +A ∧ (dA+A ∧A) + (−1)2+1(dA+A ∧A) ∧A
= d(A ∧A) +A ∧ dA+A ∧A ∧A− dA ∧A−A ∧A ∧A
= dA ∧A−A ∧ dA+A ∧ dA− dA ∧A
= 0.

But then we have dAFA = 0, since it is zero locally.
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Remark 2.1.53. The Bianchi identity rears its head in a number of different forms
in differential and pseudo-Riemannian geometry. For example, one will often see the
Bianchi identity stated as

dFA = FA ∧A−A ∧ FA.
This is of course equivalent to the above expression, by the formula for the induced
connection on End(E)-valued forms. However, given Cartan’s structure equation for the
curvature, one may then derive the Bianchi identity in this form directly, by taking the
exterior derivative:

dFA = d(dA+A ∧A)

= dA ∧A−A ∧ dA
= (dA+A ∧A) ∧A−A ∧ (dA+A ∧A)

= FA ∧A−A ∧ FA.

In Proposition 2.1.52 we have stated the Bianchi identity in a more invariant form, albeit
one that requires determining the correct formula for the induced connection on End(E).

2.1.12 Curvature and Directional Derivatives

2.1.13 Curvature and Holonomy

2.2 Ehresmann Connections

2.2.1 Definitions

Suppose E is a vector bundle over M , and ∇ is a connection on E. This differential
operator ∇ defines a notion of parallel, or horizontal sections of E. A section s ∈ Γ(E) is
horizontal if ∇s = 0. That is, for every X ∈ Γ(TM), ∇Xs = 0; s is covariantly constant
in the direction of X.

An Ehresmann connection specifies this notion of parallelism axiomatically, without
reference to a covariant derivative ∇.

Definition 2.2.1 (Vertical Bundle). Let π : E → M be a fibre bundle over M , with
fibre F . At each p ∈ E consider the subspace Vp := ker(dπp : TpE → Tπ(p)M) of TpE.
This is called the vertical subspace of TpE. The bundle V ⊂ TE of vertical subspaces is
called the vertical bundle of E. This is a smooth sub-bundle because π is.

The vertical bundle of a fibre bundle E is canonically defined due to the existence
of the projection map π : E →M . Indeed V has a concrete visual interpretation as the
subspace of tangent vectors to E pointing along the fibre at each point. Because the
bundle locally varies along the fibre, but also along the base manifold, tangent vectors
to E do not have to sit entirely within the vertical bundle V .

One would hope for some kind of complement to the vertical bundle that describes
the tangent vectors pointing “along the base space.” Unfortunately, there is no canonical
choice of such a complement. A choice of such a complementary bundle is precisely what
an Ehresmann connection is.
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Definition 2.2.2 (Ehresmann Connection). Let E be a fibre bundle over a manifold M ,
with fibre F . An Ehresmann connection on E is a horizontal sub-bundle H ⊂ TE such
that for every p ∈ E, TpE = Hp ⊕ Vp.

Recall that a sub-bundle of a vector bundle is required to be smoothly varying. Let
X ∈ Γ(TE). Then by the direct sum splitting we have X(x) = Xh(x) +Xv(x) for some
unique Xh(x) ∈ Hp and Xv(x) ∈ Vp. Define projections h : TE → TE and v : TE → TE
by h(X)(x) := Hx(x) and v(X)(x) := Xv(x).

For the horizontal distribution H to vary smoothly means that for any vector field
X ∈ Γ(TE), the horizontal projection Xh ∈ Γ(TE), defined by the direct sum decom-
position X = Xh +Xv, is also a smooth vector field.

Note that Ehresmann connections certainly exist. Since Riemannian metrics always
exist (Corollary 1.2.29) one may choose a Riemannian metric on E considered as a
smooth manifold, and then the orthogonal bundle V ⊥ defines a horizontal sub-bundle
of TE.

The map v : TE → TE is fibrewise linear map that takes in tangent vectors to E
and produces tangent vectors. Thus it may be interpreted as a TE-valued one-form on
E. That is, v ∈ Ω1(TE). Indeed v is actually a V -valued one-form, v ∈ Ω1(V ). Then
we have that ker(vp : TpE → Vp) = Hp, so ker(v) = H is just the connection on E.

Definition 2.2.3 (Connection Form). The vertical-bundle-valued one-form v ∈ Ω1(V )
is the connection form of the Ehresmann connection H.

Note that this connection form v satisfies the property that v2 = v. Given that this
additional property is satisfied, one may go in the other direction.

Proposition 2.2.4. Let v ∈ Ω1(V ) be a vertical-bundle-valued one-form on E such that
v2 = v. Then H := ker(v) is an Ehresmann connection on E.

Proof. Let X(p) ∈ TpE. Define Xh(p) := X(p)− vp(X). Then vp(Xh(p)) = vp(X(p))−
v2
p(X(p)) = 0, so Xh(p) ∈ ker(vp) and this defines a direct-sum decomposition TpE =

ker(vp) ⊕ Vp. Since v is a smooth one-form, the horizontal projection h : TE → TE is
smooth, being the map X 7→ X − v(X). Thus H is an Ehresmann connection for E,
with connection form v.

2.2.2 Linear Connections as Ehresmann Connections

2.2.3 Horizontal Lifts and Holonomy

2.3 Principal Connections

2.3.1 Definitions

A principal connection on a principal G-bundle is simply an Ehresmann connection that
is suitably equivariant with respect to the right action of G on the bundle.
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Definition 2.3.1 (Principal Connection). Let π : P → M be a principal G-bundle. A
principal connection on P is an Ehresmann connection H satisfying

Hp·g = d(Rg)pHp

for all p ∈ P and g ∈ G.

2.3.2 Connection Forms

2.3.3 Curvature

2.4 Relations between Principal Connections and Linear
Connections

2.4.1 Induced Connections on the Frame Bundle

2.4.2 Induced Connections on Associated Vector Bundles

2.5 Flat Connections and Representations

2.5.1 Flat Connections

2.5.2 Representations of the Fundamental Group

2.5.3 Projectively Flat Connections

2.5.4 Projective Representations of the Fundamental Group
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Chapter 3

Sheaves

3.1 Sheaves of R-Modules

3.1.1 The Étale Space of a Sheaf

Definition 3.1.1 (Sheaf). Let K be a principal ideal domain. Let M be a manifold. A
sheaf over M is a topological space S and a continuous surjection π : S →M such that

1. π is a local homeomorphism,

2. π−1(x) has the structure of a K-module for every x ∈M ,

3. for each λ ∈ K, the map sλ : S → S defined by sλ(p) := λp is continuous, and

4. if S ◦ S := {(s1, s2) ∈ S × S | π(s1) = π(s2)}, then the map + : S ◦ S → S defined
by (s1, s2) 7→ s1 + s2 is continuous.

3.1.2 Presheaves

3.1.3 Complete Presheaves

3.2 Locally Free Sheaves

3.2.1 Definitions

3.2.2 Vector Bundles

3.2.3 The Tangent Bundle

3.3 Cech Cohomology

3.3.1 Fine Sheaves

3.3.2 Cech Cohomology Groups
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Chapter 4

Complex Geometry

4.1 Complex Manifolds

4.1.1 Complex Structure

Definition 4.1.1 (Complex Manifold). A complex manifold is a topological space M
such that

1. M is Hausdorff and paracompact,

2. M admits an open cover {Uα} for which there exists open sets Vα ⊆ Cn for some
n and homeomorphisms ϕα : Uα → Vα, and

3. for each Uα ∩ Uβ := Uαβ 6= ∅, the maps

ϕα ◦ ϕ−1
β : ϕβ(Uαβ)→ ϕα(Uαβ)

are biholomorphisms of open subsets of Cn.

Definition 4.1.2 (Complex Tangent Bundle). Let M be a complex manifold. The com-
plex tangent bundle of M is the complex vector bundle

TM ⊗ (C×M).

Definition 4.1.3 (Canonical Bundle). Let M be a complex manifold. The canonical
bundle of M is the line bundle K := detT ∗M .

4.1.2 Almost Complex Structure

4.1.3 Dolbeault Cohomology

4.1.4 Riemann-Roch

Theorem 4.1.4 (Riemann-Roch). Let Σ be a Riemann surface of genus g and L a
holomorphic line bundle over Σ. Then

dimH0(M,L)− dimH1(M,L) = degL − g + 1.
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Definition 4.1.5. Let E be a holomorphic vector bundle of rank n over a compact
complex manifold M . The holomorphic Euler characteristic of E is the integer

χ(E) :=
n∑
i=0

(−1)i dimCH
i(M, E).

Theorem 4.1.6 (Hirzebruch-Riemann-Roch). Let M be a compact complex manifold
and E be a holomorphic vector bundle over M . Then

χ(E) =

∫
M

Ch(E) Td(M)

Let Σ be a Riemann surface of genus g and E = L a holomorphic line bundle. The
Hirzebruch-Riemann-Roch theorem then says

dimH0(M,L)− dimH1(M,L) =

∫
Σ

Ch(L) Td(Σ). (Eq. 4.1)

Now Ch(L) = exp(c1(L)) for a line bundle L, and further we have

exp(c1(L)) = 1 + c1(L)

because the higher powers vanish on a surface Σ. Here 1 is the generator of H0(Σ,Z),
interpreted as the constant function 1.

On the other hand, Td(Σ) = 1 + c1(Σ)
2 for a surface Σ, so the right-hand-side of

(Eq. 4.1) becomes∫
Σ

(
c1(Σ)

2
+ c1(L)

)
=

1

2
(2− 2g) + degL = degL − g + 1.

Thus in the case of line bundles on Riemann surfaces, the Hirzebruch-Riemann-Roch
theorem (Theorem 4.1.6) recovers the classical Riemann-Roch theorem (Theorem 4.1.4).

4.2 Symplectic Manifolds

4.2.1 Symplectic Vector Spaces

Let V be a finite-dimensional real vector space. Let ω : V ×V → R be an antisymmetric
bilinear form on V . That is, ω(v, w) = −ω(w, v) for all v, w ∈ V . Define kerω to be the
collection of v ∈ V such that ω(v, w) = 0 for all w ∈ V . Note taking v in the first or
second position is equivalent, since ω is anti-symmetric.

Such a bilinear form ω is called non-degenerate if kerω = 0. That is, for every v ∈ V
such that v 6= 0, ω(v, w) = 0 if and only if w = 0. Equivalently, if we define a map
λ : V → V ∗ by λ(v)(w) := ω(v, w), then ω is non-degenerate if and only if this map is a
linear isomorphism. Indeed kerω is just the kernel of this map λ considered as a regular
linear map.
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Definition 4.2.1 (Symplectic Vector Space). Let V be a finite-dimensional real vector
space. A symplectic form ω on V is an element of

∧2 V ∗ that is non-degenerate as a
bilinear map ω : V × V → R. The pair (V, ω) is called a symplectic vector space.

Example 4.2.2. Let {e1, . . . , en, f1, . . . , fn} be a basis for R2n. Suppose {ε1, . . . , εn, ξ1, . . . , ξn}
is the dual basis. Define a form ω : R2n × R2n → R by

ω :=
n∑
i=1

εi ∧ ξi.

The form ω is clearly antisymmetric and bilinear. Now with respect to the standard
basis ω has the matrix

ω =

(
0 1n
−1n 0

)
.

This matrix is clearly invertible, so ω is non-degenerate. The pair (R2n, ω) is called the
standard symplectic vector space, and ω is called the standard symplectic form on R2n.

Consider R2n as Cn and let h : Cn × Cn → C be the standard Hermitian form on
Cn. Then as a bilinear form h splits into real and imaginary parts h = g + iω. The
symmetric bilinear form g is the standard inner product on R2n and the anti-symmetric
bilinear form ω is the standard symplectic form on R2n.

Definition 4.2.3. Let (V, ω) be a symplectic vector space, and suppose U ⊂ V is a
subspace. Define U⊥ to be the subspace

U⊥ := {v ∈ V | ω(u, v) = 0 for all u ∈ V }.

Then U⊥ is called the symplectic complement of U .

Lemma 4.2.4. Let (V, ω) be a symplectic vector space. Then there is a basis {e1, . . . , en, f1, . . . , fn}
of V such that ω(ei, fj) = δij.

Proof. Let 0 6= e1 ∈ V . Then there exists f1 ∈ V such that ω(e1, f1) = 1. Let U1 =
Span{e1, f1}. Suppose u ∈ U1 ∩ U1

⊥. Then u = ae1 + bf1. Since u ∈ U1
⊥, ω(u, e1) = 0.

That is, a = 0. Similarly ω(u, f1) = 0, so b = 0. But then U1∩U1
⊥ = 0. Now suppose v ∈

V . Then define ω(e1, v) := a and ω(v, f1) := b. We have v = (ae1 +be2)+(v−ae1−be2),
where the first term is in U1 and the second is in U1

⊥. Thus V = U1 ⊕ U1
⊥.

If U1
⊥ is the zero vector space, we are done. Suppose not, then let 0 6= e2 ∈ U1

⊥.
Since ω is non-degenerate, there must exist f2 ∈ U1

⊥ such that ω(e2, f2) = 1. Note that
f2 cannot be in U1, since ω(e2, u) = 0 for all u ∈ U1. Then define U2 := Span{e2, f2}.
Then we obtain V = U1 ⊕ U2 ⊕ U2

⊥.
Since V is finite-dimensional, this process must eventually terminate, after which we

obtain
V = U1 ⊕ U2 ⊕ · · · ⊕ Un

for some n. Then the basis {e1, . . . , en, f1, . . . , fn} is the desired basis for V .
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The basis for V formed above is called a canonical basis for (V, ω). There may be
many such bases, but there is always one.

Corollary 4.2.5. Let (V, ω) be a symplectic vector space. Then dimV is even.

Note that the block matrix for ω with respect to a canonical basis is

ω =

(
0 1n
−1n 0

)
.

Definition 4.2.6. Let f : V → W be a linear isomorphism of two symplectic vector
spaces V and W . Then f is a symplectomorphism if ωV (u, v) = ωW (f(u), f(v)) for all
u, v ∈ U . That is, f∗ωV = ωU .

Thus Lemma 4.2.4 says that if (V, ω) is a 2n-dimensional symplectic vector space,
then V is symplectomorphic to R2n with its standard symplectic form.

Lemma 4.2.7. Let U ⊂ V be a subspace of a symplectic vector space (V, ω). Then

1. dimU + dimU⊥ = dimV .

2. (U⊥)
⊥

= U .

3. If U ⊂W , then W⊥ ⊂ U⊥.

Proof. For (1), consider the map f : V → U∗ defined by v 7→ ω(v, ·)|U . Then dim ker f =
dimU⊥. Since ω is non-degenerate, f is surjective, so the rank of f is dimU∗ = dimU .
Then by the rank theorem dimU + dimU⊥ = dimV .

For (2), let u ∈ U . Then since ω(u, v) = 0 for all v ∈ U⊥, u ∈ (U⊥)
⊥

. But we

know dimU + dimU⊥ = dimU⊥ + dim (U⊥)
⊥

= dimV , so dimU = dim (U⊥)
⊥

. Thus

U = (U⊥)
⊥

.
(3) is obvious.

Definition 4.2.8. Let U ⊂ V be a subspace. Then U is

1. symplectic if U ∩ U⊥ = {0},

2. isotropic if U ⊂ U⊥,

3. coisotropic if U ⊃ U⊥, or

4. Lagrangian if U = U⊥.

A subspace U is symplectic if and only if ω|U is a symplectic form on U . Note that
we also have V = U ⊕ U⊥ in this case.

A subspace U is isotropic if and only if ω|U is the zero form. Note that since
ω(v, v) = 0 for any v ∈ V , one-dimensional subspaces of V are isotropic.

A subspace U is coisotropic if and only if U
/
U⊥ is a symplectic space with respect

to the induced form defined by ω(u+U⊥, v+U⊥) := ω|U (u, v). This is because the part
of U making the form ω|U non-degenerate is the U⊥ part, so removing this produces a
symplectic space.

A subspace is Lagrangian if and only if it is isotropic and coisotropic.
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Lemma 4.2.9. Suppose U ⊂ V is Lagrangian. Then dimU = 1
2 dimV .

Proof. Since U is Lagrangian, it is isotropic and coisotropic. Suppose dimU > 1
2 dimV .

Then since U ⊆ U⊥, dimU⊥ > 1
2 dimV . But then dimU+dimU⊥ > dimV . Similarly if

dimU < 1
2 dimV , by coisotropy one must have dimU + dimU⊥ < dimV . Since neither

of these can occur, we must have dimU = 1
2 dimV .

Proposition 4.2.10. An antisymmetric bilinear form ω on an even-dimensional vector
space V is non-degenerate if and only if ωn ∈

∧2n V ∗ is non-zero.

Proof. ( =⇒ ) Suppose ω is non-degenerate. Let {ei, fi} be a canonical basis for the
symplectic vector space (V, ω), and let {εi, ξi} be the dual basis. Then ωn = n!ε1 ∧ ξ1 ∧
· · · ∧ εn ∧ ξn, which is non-zero.

(⇐= ) Suppose ω is degenerate. Then there is some v 6= 0 such that ω(v, w) = 0 for
all w ∈ V . Complete v to a basis {v, w2, . . . , w2n} of V . Then ωn(v, w2, . . . , w2n) = 0.
But if {εi} is the dual basis to {v, wj} then ωn = kε1 ∧ · · · ∧ ε2n for some k. Since
v ∧w2 ∧ · · · ∧w2n is the dual basis to ε1 ∧ · · · ∧ ε2n inside

∧2n V ∗, one must have k = 0,
so ωn = 0.

The form dvol := ωn
/
n! is called the symplectic volume form on (V, ω). The nor-

malisation factor is to make the area of the unit parallelepiped in a canonical basis for
ω equal to 1.

4.2.2 Symplectic Manifolds

Definition 4.2.11 (Symplectic Manifold). Let M be a smooth manifold, and ω ∈
Ω2(M). Then ω is symplectic if ω is closed, and ω|p : TpM × TpM → R is symplectic.
The pair (M,ω) is called a symplectic manifold, and ω is the symplectic form.

Note in particular that symplectic manifolds must be even-dimensional, since the
dimension of the tangent space at each point is equal to the dimension of the manifold.

Example 4.2.12. Let (x1, . . . , xn, y1, . . . , yn) be the standard coordinates on R2n. Then
the form

ω =
n∑
i=1

dxi ∧ dyi

gives R2n the structure of a symplectic manifold. This is the standard symplectic form
on R2n.

Example 4.2.13. Let (z1, . . . , zn) be the standard coordinates on Cn. Then the form

ω :=

n∑
i=1

dzi ∧ dz̄i

gives Cn a symplectic structure. This is the standard symplectic form on Cn.
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Let (M,ω) be a symplectic manifold of dimension 2n. Since ω is everywhere non-
degenerate, it defines a volume form dvol := ωn

/
n!. In particular, M is orientable. As

was mentioned earlier, M must also be even dimensional.
Suppose further that M is compact. Then the closed form ω defines a non-zero

cohomology class in H2(M,R). The volume form dvol also defines a non-zero cohomology
class in H2n(M,R). Since dvol = ωn, we must have ωk 6= 0 for every k. In particular
H2k(M,R) must be non-trivial for all k = 1, . . . , n.

This gives us a collection of simple obstructions to the existence of a symplectic struc-
ture on a smooth manifold. A manifold that fails to satisfy those properties mentioned
above cannot admit any symplectic structure.

Example 4.2.14. The Lie group U(2) ∼= S3 × S1 is compact, even-dimensional, and
orientable. However, by the Künneth formula, the second degree cohomology of U(2) is
zero. Thus U(2) does not admit any symplectic structures.

Similarly to the linear case, we can define a notion of equivalence of symplectic
manifolds.

Definition 4.2.15 (Symplectomorphism). Let (M,ω) and (N, η) be symplectic man-
ifolds. Let f : M → N be a diffeomorphism. Then f is a symplectomorphism if
f∗ωN = ωM .

Equivalently, f is a symplectomorphism if df |TpM is a symplectomorphism of sym-
plectic vector spaces, for each p ∈M .

In the Riemannian case, it is a fantastic result of Nash that any Riemannian manifold
of arbitrary dimension (and arbitrary smoothness class Ck for 3 ≤ k ≤ ∞ ≤ ω) can be
isometrically embedded with a map of the same smoothness class into some RN .

A natural question to ask is whether there is such an embedding theorem for sym-
plectic manifolds. Consider (R2N , ω), where ω is the standard symplectic form. This
form ω can be written as −dθ for a one-form θ =

∑N
i=1 y

idxi. In particular, ω is exact.
Now suppose ι : M ↪→ R2N is a compact submanifold of R2n. Then −d(ι∗θ) =

−ι∗d(θ) = ι∗ω ∈ H2(M,R). But then the induced two-form on M is cohomologically
trivial. If one chooses a symplectic form on M that is cohomologically non-trivial, such
a form cannot be the pullback of the standard form ω on R2N for any N . Thus we must
conclude there is no symplectic embedding theorem.

4.2.3 Phase Space

In the previous section, we saw that the standard symplectic form ω on R2n may be
written as −dθ for a one-form θ. In this section we will expand on this observation.

Let M be a smooth manifold, and (U, (x1, . . . , xn)) be a coordinate chart. Let ϕ :
T ∗M |U → U × Rn be the trivialisation, and φ : U → Rn be the chart. Then one can
define coordinates ψ := (φ,1) ◦ ϕ.

Given a point p ∈ T ∗M |U with φ(π(p)) = (x1, . . . , xn), one has ψ(p) = (x1, . . . , xn, y1, . . . , yn)
for some y1, . . . , yn ∈ R. Indeed if {dxi} is the local frame for the cotangent bundle over
U , then p = yidx

i ∈ T ∗πpM .
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Definition 4.2.16 (Canonical Coordinates). The coordinates (x1, . . . , xn, y1, . . . , yn) de-
fined above on T ∗M |U are called the canonical coordinates on T ∗M .

Let M be a smooth manifold. Let N := T ∗M . Define a one-form θ on T ∗M as
follows. Let π : N →M be the standard projection, and consider dπ : TN → TM . Let
n ∈ TN . Then if π(n) = q, we may interpret n as a linear functional n : TqM → R on
the tangent space at q. Define θ|n := n ◦ dπ|TqN . That is, given a covector n ∈ TqM
and a tangent vector v in Tn(T ∗M), project v to a tangent vector dπ(v) in TqM , and
then evaluate dπ(v) on the covector n, to obtain a real number.

Definition 4.2.17 (Tautological One-Form). The differential form θ on N = T ∗M is
called the tautological one-form of M .

If one considers R2n as T ∗Rn, with the standard global coordinates on Rn, then the
one-form θ as described in the previous section is precisely the tautological one-form on
Rn.

Definition 4.2.18 (Canonical Symplectic Form). Let ω := −dθ. Then ω is called the
canonical symplectic form.

The form ω is clearly symplectic, because in canonical coordinates

ω =
n∑
i=1

dxi ∧ dyi.

This construction gives us a wealth of examples of symplectic manifolds. Namely, any
smooth manifold produces a symplectic manifold. The cotangent bundle N = T ∗M
equipped with its canonical symplectic form is often called a phase space. This ter-
minology arises from physics, where M is usually the configuration space of a classical
system, whose points describe positions of all the particles in the system. Then the
cotangent vectors on this configuration space are the momentums of the particles. A
point in the cotangent space thus completely describes the state of the system, and so is
called the phase space. The dynamics of the classical system can be naturally interpreted
in terms of the canonical symplectic form.

Before moving on, we will observe an interesting property of the tautological one-
form.

Proposition 4.2.19. The tautological one-form on a manifold M satisfies ξ∗θ = ξ for
every ξ ∈ Ω1(M).

Proof. Let ξ ∈ Ω1(M) be a one-form. Then we may interpret ξ as a section ξ : M →
T ∗M . Then ξ∗θ = ξ. To see this, let p ∈M and v ∈ TpM . Then

ξ∗θ|p (v) = θ ξ|p(dξ(v))

= ξ|p ◦ dπ ◦ dξ(v)

= ξ|p ◦ d(π ◦ ξ)(v)

= ξ|p (v).
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4.2.4 Darboux’s Theorem

In Riemannian geometry, an arbitrary Riemannian manifold (M, g) is not locally iso-
metric to Euclidean space. The obstruction to this local triviality of the Riemannian
structure is the Riemannian curvature tensor. The symplectic case is remarkably differ-
ent, in that any symplectic manifold is locally symplectomorphic to (an open set in) R2n

with its trivial symplectic structure. This is the famous Darboux theorem.

Theorem 4.2.20 (Darboux Theorem). Let

4.2.5 Coadjoint Orbits

Definition 4.2.21 (Coadjoint Representation). Let G be a Lie group and g its Lie
algebra. Let ad : G → GL(g) denote the adjoint representation of G on g. Let ξ ∈ g∗.
Define the coadjoint representation of G on g∗ by

〈ad∗(g)ξ,X〉 := 〈ξ, ad(g)X〉

for all g ∈ G, and X ∈ g.

Let ξ ∈ g∗. The coadjoint orbit of ξ is the orbit of ξ under the coadjoint action
of G on g. If SG(ξ) denotes the subgroup of G that stabilises ξ under the coadjoint
representation, then G · ξ ∼= G

/
SG(ξ).

Proposition 4.2.22. The coadjoint orbit of any ξ ∈ g∗ is a smooth manifold.

Proof. Since the action of G on g∗ is smooth, the stabiliser SG(ξ) of any ξ ∈ g∗ is a
closed subgroup of G. Hence it is a Lie subgroup, and the quotient G

/
SG(ξ) admits the

structure of a smooth manifold, for any ξ ∈ g∗.

Now let ζ ∈ g∗ be arbitrary. For each such ζ, one may define a bilinear form
Bζ : g× g→ R by the expression

Bζ(X,Y ) := 〈ζ, [X,Y ]〉

for all X,Y ∈ g. Note that the bilinear form Bζ is antisymmetric.
Suppose G · ξ is a coadjoint orbit in g∗. Since G · ξ ∼= G

/
SG(ξ), if ζ ∈ G · ξ is

arbitrary, then TζG · ξ = TζG · ζ ∼= g
/
sG(ζ), where sG(ζ) denotes the Lie subalgebra of

g corresponding to the Lie subgroup SG(ζ).
Let X,Y ∈ TζG · ξ. Then there are unique X̃, Ỹ ∈ g such that X̃ + sG(ζ) and

Ỹ + sG(ζ) correspond to X and Y . Define a two-form ω ∈ Ω2(G · ξ) by

ω|ζ (X,Y ) := Bζ(X̃, Ỹ ).

Lemma 4.2.23. The two-form ω is well-defined.
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Proof. It suffices to show sG(ξ) = kerBξ, where ξ ∈ g∗. Now X ∈ sG(ξ) if and only if
(ad ∗)∗(X)ξ = 0. We have〈

d

dt
(ad∗(exp(tX))ξ)t=0 , Y

〉
=

d

dt
(〈ad∗(exp(tX))ξ, Y 〉)t=0

=
d

dt
(〈ξ, ad(exp(−tX))Y 〉)t=0

=

〈
ξ,
d

dt
(ad(exp(−tX))Y )t=0

〉
= 〈ξ,−[X,Y ]〉.

Thus X ∈ sG(ξ) if and only if Bξ(X,Y ) = 0 for all Y ∈ g. In particular the two-form ω
above is well-defined, for all ζ ∈ G · ξ and for all X,Y ∈ TζG · ξ.

Lemma 4.2.24. The two-form ω is closed.

Proof.

Thus the pair (G ·ξ, ω) is a symplectic manifold for every ξ ∈ g∗. The form ω is called
the Kirillov-Kostant form of the coadjoint orbit ξ. In particular this gives a plentiful
supply of examples of symplectic manifolds.

4.2.6 Hamiltonian Vector Fields and the Poisson Bracket

Let (M,ω) be a symplectic manifold and f ∈ C∞(M) be a smooth function on M . Then
df ∈ Ω1(M) is a one-form.

Let X ∈ Γ(TM). Let iX be the contraction operator iX : Ωk(M) → Ωk−1(M)
defined by

iXη(X2, . . . , Xk) := η(X,X2, . . . , Xk)

for η ∈ Ωk(M) and X2, . . . , Xk ∈ Γ(TM), and iX |Ω0(M) := 0.

Then we have iXω ∈ Ω1(M) for our symplectic form ω and for anyX ∈ Γ(TM). Since
ω is non-degenerate, it defines an isomorphism Γ(TM) → Ω1(M) given by X 7→ iXω.
But then given f ∈ C∞(M), there exists a smooth vector field Xf ∈ Γ(TM) such that
iXfω = −df (why we require a negative sign will become clear later).

Definition 4.2.25. Let (M,ω) be a symplectic manifold and let f ∈ C∞(M). Then the
unique vector field Xf ∈ Γ(TM) such that

iXfω = −df

is called the Hamiltonian vector field associated to f .

Note that not every vector field X ∈ Γ(TM) is Hamiltonian, because not every one-
form η is necessarily exact. If H1(M,R) = 0 however, that is, M is simply connected,
then every vector field is the Hamiltonian vector field of some function.
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A natural question one might ask is whether the Hamiltonian vector fields are closed
under natural operations one can perform on vector fields. Clearly the Hamiltonian
vector fields form a vector subspace of Γ(TM) by linearity of d. What about the com-
mutator [Xf , Xg] of two Hamiltonian vector fields?

First we recall a useful formula of Cartan.

Theorem 4.2.26 (Cartan’s Magic Formula). Let X ∈ Γ(TM) and ω ∈ Ωk(M). Then

LXω = iXdω + d(iXω).

Lemma 4.2.27. Let f, g ∈ C∞(M) and let h := ω(Xf , Xg). Then [Xf , Xg] = Xh.

Proof. Using Cartan’s magic formula, we have

LXf (g) = iXfdg = iXf (−iXgω) = ω(Xf , Xg).

Then

d(ω(Xf , Xg)) = d(LXf g)

= LXf (dg)

= −LXf (iXgω).

Now LU (iV α) = i[U,V ]α+ iV LU (α), and by Cartan’s magic formula if α is closed and
iUα is closed, then LUα = 0. Since iXfω = −df is exact, it is closed, so we have

d(ω(Xf , Xg)) = −i[Xf ,Xg ]ω

as desired.

Definition 4.2.28. Let f, g ∈ C∞(M) and suppose Xf , Xg ∈ Γ(TM) are their cor-
responding Hamiltonian vector fields. Define the Poisson bracket of f and g to be the
smooth function

{f, g} := ω(Xf , Xg).

We recall a useful characterisation of the Lie derivative for differential forms:

Theorem 4.2.29 (Cartan’s Magic Formula). Let X ∈ Γ(TM) and ω ∈ Ωk(M). Then

LXω = iXdω + d(iXω).

By Cartan’s magic formula we can write the Poisson bracket is several equivalent
ways:

LXf (g) = iXfdg = iXf (−iXgω) = ω(Xf , Xg) = {f, g}.

From the definition of the Poisson bracket, we have that {f, g} = −{g, f} for f, g ∈
C∞(M), and
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4.2.7 Moment Maps and Symplectic Reduction

4.3 Kähler Manifolds

4.4 Hyper-Kähler Manifolds

4.5 Holomorphic Vector Bundles

4.5.1 Dolbeault Operators

4.5.2 Line Bundles on Riemann Surfaces

Smooth Case

Let L → Σ be a smooth C-line bundle over a Riemann surface of genus g. Let C∞
(resp. C∗∞))denote the sheaf of smooth C-valued (resp. C∗-valued) functions on Σ.
Since GL(1,C) ∼= C∗, smooth complex line bundles are classified up to isomorphism by
the group H1(Σ,C∗∞).

Consider the short exact sequence of constant sheaves

0 Z C∞ C∗∞ 0,
exp

where exp : C∞ → C∗∞ sends f to exp(2πif).
This induces a long exact sequence in sheaf cohomology, which takes the form

0 H0(Σ,Z) H0(Σ,C∞) H0(Σ,C∗∞)

H1(Σ,Z) H1(Σ,C∞) H1(Σ,C∗∞)

H2(Σ,Z) H2(Σ,C∞) H2(Σ,C∗∞) 0.

Now C∞ is a fine sheaf, so H i(Σ,C∞) = 0 for all i > 0. Thus we obtain the short
exact sequence

0 H1(Σ,C∗∞) H2(Σ,Z) 0.

Now H2(Σ,Z) ∼= Z, from which we conclude

Theorem 4.5.1. Isomorphism classes of smooth complex line bundles over a Riemann
surface are in bijection with the integers.

Label the map H1(Σ,C∗∞) → H2(Σ,Z) by deg. The image of a line bundle L ∈
H1(Σ,C∗∞) under deg is called the degree of the line bundle. Thus the theorem above
states that smooth complex line bundles on a surface are classified by their degree.
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Furthermore, the above isomorphism is one of groups. The group structure on
H1(Σ,C∗∞) is by multiplication of transition functions on overlaps Uαβ. In the case
of line bundles, this is the same as the tensor product of transition functions, as per the
construction of the tensor product bundle, from which we conclude:

Corollary 4.5.2.

({Isomorphism classes of smooth complex line bundles on Σ} ,⊗) ∼= (Z,+)

as groups.

The degree as stated here has several interpretations. Firstly, the degree is equal to
the integral of the first Chern class c1(L) of the line bundle, over Σ. Secondly, the degree
is the number of zeros, counted with multiplicity, of a section of L which intersects the
zero-section transversally. Thirdly, in the case of the sphere S2, the degree is the winding
number of the clutching function defined on (a tubular neighbourhood of) the equator.

Holomorphic Case

Let L → Σ be a holomorphic line bundle over a Riemann surface Σ of genus g. Then we
have a short exact sequence

0 Z O O∗ 0.
exp

Then we obtain a long exact sequence

0 H0(Σ,Z) H0(Σ,O) H0(Σ,O∗)

H1(Σ,Z) H1(Σ,O) H1(Σ,O∗)

H2(Σ,Z) H2(Σ,O) H2(Σ,O∗) 0

Now since Σ has complex dimension one, the group H2(Σ,O) = 0. The map O → O∗
is surjective, so the image of the map H0(Σ,O∗) → H1(Σ,Z) is 0. Thus we obtain an
exact sequence

0 H1(Σ,Z) H1(Σ,O) H1(Σ,O∗) H2(Σ,Z) 0.

By the first isomorphism theorem, the image of H1(Σ,Z)→ H1(Σ,O) is isomorphic
to the quotient H1(Σ,O)

/
H1(Σ,Z), so we have a reduction to the short exact sequence

0 H1(Σ,O)
/
H1(Σ,Z) H1(Σ,O∗) H2(Σ,Z) 0.

Now H1(Σ,Z) ∼= Z2g, and H1(Σ,O) ∼= Cg. We also know that H2(Σ,Z) ∼= Z. Thus
we obtain the exact sequence

71



0 Cg
/
Z2g H1(Σ,O∗) Z 0.

Let L ∈ H1(Σ,O∗) be a line bundle. Then the image under the map H1(Σ,O∗)→ Z
is called the degree of L. This is the same as deg(L) where L is L interpreted as a smooth
bundle. It follows from the above diagram that the group Jac(Σ) of all line bundles of
degree zero is isomorphic to the torus

Jac(Σ) ∼= Cg
/
Z2g.

It follows that the set Pic(Σ) of all holomorphic line bundles over Σ up to isomorphism
is isomorphic to a countable disjoint union of g-tori. In particular if Picd(Σ) denotes the
set of all holomorphic line bundles of a fixed degree d, then Picd(Σ) ∼= Cg

/
Z2g for all

d ∈ Z.

Riemann-Roch for Surfaces

Now H0(Σ,L) is the space of global holomorphic sections of L. Suppose then that
degL > g − 1. Then by (Eq. ??) we have

dimH0(Σ,L)− dimH1(Σ,L) > 0.

Since the dimension is always a non-negative integer, when this is the case we can
conclude that

dimH0(Σ,L) > 0.

Also, if degL < g − 1 we can similarly conclude that dimH0(Σ,L) = 0. Thus degL,
which is purely topological in nature, gives us holomorphic information about the line
bundle L. Its size determines the existence of holomorphic sections. Note that if degL =
g − 1 we cannot conclude anything about the existence of holomorphic sections.

Later we will study the slope of a vector bundle on a Riemann surface, and will
discover that this (rational) number, defined topologically (it is the degree divided by
the rank), also contains important holomorphic information.

4.5.3 Stable Bundles

72



Chapter 5

Moduli Spaces

5.1 The Yang-Mills equations

5.1.1 The Hodge star

The Inner Product on Differential Forms

Let M be an oriented Riemannian manifold with volume form dvol and metric g.
The metric g on M induces a metric on Ωk(M) for every k as follows:
Suppose ω, η ∈ Ωk(M) are k-forms. In local coordinates we can always split these

k-forms into sums of wedge products of one-forms. For example, for ω we might have

ω =
∑
i

ωi1 ∧ · · · ∧ ωik

where the ωij ∈ Ω1(M).

The metric g on M induces an isomorphism (·)[ : Γ(TM)→ Ω(M). This is fibrewise
the isomorphism of TpM and T ∗pM given by v 7→ g(v, ·).

Thus from ω we obtain an element of
∧k TM

ω] :=
∑
i

(ωi1)] ∧ · · · ∧ (ωik)
].

Now suppose for a moment that ω and η are pure differential k-forms. That is,
ω = ω1 ∧ · · ·ωk and η = η1 ∧ ηk for some ωi, ηj ∈ Ω1(M). Since the inner product will
be bilinear, it suffices to define the inner product just on these such k-forms.

Define
〈ω, η〉g := det(g((ωi)

], (ηj)
])).

First we note that this definition makes sense. The terms (ωi)
] and (ηj)

] are (at least
locally) sections of the tangent bundle, so it makes sense to apply the metric g to them.

This definition produces a smooth function 〈ω, η〉g on M , that satisfies the properties
of the inner product (all following from the properties of g and the musical isomorphisms
[ and ]).
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One must of course check that this definition is independent of which one-forms
we write ω and η as. It would suffice to consider local charts on M and expand these
differential forms in the coordinate one-form basis and compute the change of coordinates
there.

The Hodge Star on Differential Forms

Let ω ∈ Ωk(M) be a k-form. Define the n−k-form ?ω to be the unique differential form
such that

η ∧ ?ω = 〈η, ω〉gdvol

for all differential k-forms η.
Such an n− k-form is indeed unique, because if µ also satisfied the above condition,

on a local coordinate chart (U,ϕ) we would have

dxi ∧ ?ω = 〈dxi, ω〉gdvol = dxi ∧ µ

for the entire coordinate one-form basis {dxi}. But then ?ω = µ.
The existence of such a form can be deduced as follows: In local coordinates the

k-forms dxi1 ∧ · · · ∧ dxik form a basis for the k-forms on the local chart, (U,ϕ) say. Let
(i1, . . . , in) be any permutation σ of (1, . . . , n). Then one may define

?(dxi1 ∧ · · · ∧ dxik) := sgn(σ)dxik+1 ∧ · · · ∧ dxin .

This defines the Hodge star on the basis of the k-forms, and if we consider ? to be
an operator on differential forms that is linear over C∞(M), this defines the Hodge star
of any differential k-form on U . By uniqueness of the Hodge star of a differential form,
the above expressions will be equal on overlaps of coordinates, so we get a well defined
Hodge star of any differential k-form defined on all of M .

To see what the Hodge star does, we need only look at the simplest examples. In R3

with the standard coordinate one-forms, we have the standard volume form dx∧dy∧dz,
and by the above definition

? dx = dy ∧ dz,
? (dx ∧ dy) = dz,

? (dx ∧ dy ∧ dz) = 1.

So the Hodge star is the operator that gives you “the rest of the differential form.”
One would expect that any differential k-form could be wedged with something to pro-
duce some multiple of the volume form, and the Hodge star is precisely this n− k-form.

The L2 inner product on differential forms with values in a vector bundle

Suppose E is some vector bundle over M and ω ∈ Ωk(E). Then we can write ω = ωi⊗si
for some k-forms ωi and sections si of E. One can hence define ?ω := (?ωi)⊗ si.
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Now suppose further that E has a metric. That is, an inner product h on each fibre
of E, varying smoothly in the sense that h(s, s′) ∈ C∞(M) for all s, s′ ∈ Ω0(E).

Suppose now that a, b ∈ Ωk(E) are differential k-forms with values in E. Suppose
a = ωi ⊗ si and b = ηj ⊗ tj , where ωi, ηj are k-forms on M and si, tj ∈ Ω0(E). Define
an operator h(a ∧ b) by

h(a ∧ b) := h(si, tj)(ω
i ∧ ηj).

Then finally define

〈a, b〉L2 :=

∫
M
h(a ∧ ?b).

5.1.2 Derivation of the Yang-Mills equations

Suppose M is an oriented Riemannian manifold and E is a smooth vector bundle over
M . The trace defines a metric on End(E). Thus we can define the Yang-Mills functional
as

YM(∇) := 〈F∇, F∇〉2L.

This will also be written

YM(A) :=

∫
M

tr(FA ∧ ?FA)

:= |F∇|2L2

:=

∫
M
|F∇|2dvol

Let A ∈ A be a connection. The critical points of the Yang-Mills functional occur when
the first variation vanishes. That is, when

d

dt
(YM(A+ ta))t=0 = 0

We know from the previous section that FA+ta = FA + tdA(a) + t2a ∧ a so we have

YM(A+ ta) =

∫
M

tr((FA + tdA(a) + t2a ∧ a) ∧ ?(FA + tdA(a) + t2a ∧ a))

Observe that the only terms of order t in this expression are FA∧?dA(a) and dA(a)∧?FA,
so we have

d

dt
(YM(A+ ta))t=0 =

∫
M

tr(FA ∧ ?dA(a)) +

∫
M

tr(dA(a) ∧ ?FA)

for any a ∈ Ω1(End(E)).
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But this is just the inner product as defined in the previous section, so we may collect
these two terms and take an adjoint to conclude

d

dt
(YM(A+ ta))t=0 =

∫
M

tr(d∗AFA ∧ ?a).

Since this holds for any a ∈ Ω1(End(E)), the critical points of the Yang-Mills equa-
tions occur precisely when d∗AFA = 0.

5.2 Line Bundles on a Riemann Surface

5.2.1 Smooth Case

Let L → Σ be a smooth complex line bundle on a Riemann surface Σg of genus g.
Let C∞(C) (resp. C∞(C∗)) denote the sheaf of smooth C-valued (resp. C∗-valued)
functions on Σg. Since GL(1,C) ∼= C∗, smooth complex line bundles are classified up to
isomorphism by their representative in H1(Σ, C∞(C∗)).

Let Z denote the constant Z sheaf on Σg. Consider the short exact sequence sheaf
sequence

0 Z C∞(C) C∞(C∗) 0,
exp

where exp : C∞(C)→ C∞(C∗) sends f to exp(2πif).
This induces a long exact sequence in sheaf cohomology, which takes the form

0 H0(Σg,Z) H0(Σg, C
∞(C)) H0(Σg, C

∞(C∗))

H1(Σg,Z) H1(Σg, C
∞(C)) H1(Σg, C

∞(C∗))

H2(Σg,Z) H2(Σg, C
∞(C)) H2(Σg, C

∞(C∗)) 0.

Now C∞(C) is a fine sheaf, so H i(Σ, C∞(C)) = 0 for all i > 0. Thus we obtain the
short exact sequence

0 H1(Σg, C
∞(C∗)) H2(Σg,Z) 0.

Now H2(Σg,Z) ∼= Z, from which we conclude:

Theorem 5.2.1. Isomorphism classes of smooth complex line bundles over a Riemann
surface are in bijection with the integers.

Label the map H1(Σg, C
∞(C)) → H2(Σg,Z) by deg. The image of a line bundle

L ∈ H1(Σg, C
∞(C∗)) under deg is called the degree of the line bundle. Thus the theorem

above states that smooth complex line bundles on a surface are classified by their degree.
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Furthermore, the above isomorphism is one of groups. The group structure on
H1(Σg, C

∞(C∗)) is by multiplication of transition functions on overlaps Uαβ. In the
case of line bundles, this is the same as the tensor product of transition functions, as
per the construction of the tensor product bundle, from which we conclude:

Corollary 5.2.2.

({Isomorphism classes of smooth complex line bundles on Σg} ,⊗) ∼= (Z,+)

as groups.

The degree as stated here has several interpretations. Firstly, the degree is equal to
the integral of the first Chern class c1(L) of the line bundle, over Σ. Secondly, the degree
is the number of zeros, counted with multiplicity, of a section of L which intersects the
zero-section transversally. Thirdly, in the case of the sphere S2, the degree is the winding
number of the clutching function defined on (a tubular neighbourhood of) the equator.

5.2.2 Holomorphic Case

Consider the exponential sequence

0 Z O O∗ 0.
exp

This induces a long exact sequence

0 H0(Σg,Z) H0(Σg,O) H0(Σg,O∗)

H1(Σg,Z) H1(Σg,O) H1(Σg,O∗)

H2(Σg,Z) H2(Σg,O) H2(Σg,O∗) 0.

Since Σg has complex dimension one, the group H2(Σg,O) = 0. Since Σg is com-
pact, global holomorphic sections in O or O∗ are constant. Thus H0(Σg,O) ∼= C and
H0(Σg,O∗) ∼= C∗. But then taking a logarithm, the map H0(Σg,O) → H0(Σg,O∗) is
surjective. Since the sequence is exact, we must have H0(Σg,O∗)→ H1(Σg,Z) has full
kernel. In particular, the image of this map is zero, so we get a reduction of our sequence
to

0 H1(Σg,Z) H1(Σg,O) H1(Σg,O∗) H2(Σg,Z) 0.

By the first isomorphism theorem, the image of H1(Σg,O) → H1(Σg,O∗) is iso-
morphic to the quotient H1(Σ,O)

/
H1(Σ,Z), so we have a reduction to the short exact

sequence

0 H1(Σ,O)
/
H1(Σ,Z) H1(Σ,O∗) H2(Σ,Z) 0.
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Now H1(Σ,Z) ∼= Z2g, and H1(Σ,O) ∼= Cg. We also know that H2(Σ,Z) ∼= Z. Thus
we obtain the exact sequence

0 Cg
/
Z2g H1(Σ,O∗) Z 0,

Remark 5.2.3. Note that the map H1(Σg,Z) → H1(Σg,O) is injective, so Z2g sits
inside Cg as a lattice. In particular the quotient Cg

/
Z2g is a torus.

Let L ∈ H1(Σg,O∗) be a line bundle. Then the image under the map H1(Σg,O∗)→
Z is again called the degree degL of L. To show that this is the same notion of degree
as before, consider the homomorphism of short exact sequences of sheaves given by

0 Z O O∗ 0

0 Z C∞(C) C∞(C∗) 0.

exp

exp

This induces a homomorphism of the corresponding long exact cohomology sequences.
The relevant part of this homomorphism of sequences is the following commutative dia-
gram:

· · · H1(Σg,O) H1(Σg,O∗) H2(Σg,Z) 0

· · · 0 H1(Σg, C
∞(C∗)) H2(Σg,Z) 0.

∼=

This last square shows that two holomorphic line bundles have the same smooth
degree if and only if they have the same holomorphic degree. Thus one simply denotes
the degree of a line bundle by degL, regardless of whether L is being considered as
smooth or holomorphic.

It follows from the above diagram that the group Jac(Σ) of all line bundles of degree
zero is isomorphic to the torus

Jac(Σg) ∼= Cg
/
Z2g.

It follows that the set Pic(Σ) of all holomorphic line bundles over Σ up to isomorphism
is isomorphic to a countable disjoint union of g-tori. In particular if Picd(Σ) denotes the
set of all holomorphic line bundles of a fixed degree d, then Picd(Σ) ∼= Cg

/
Z2g for all

d ∈ Z.

5.2.3 Flat Case

The group H1(Σg,C∗) classifies flat complex line bundles on a Riemann surface Σg.
These are the smooth complex line bundles that admit a trivialisation with constant
transition functions. Equivalently, flat line bundles are those admitting a flat connection.
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There exists an isomorphism from the sheaf cohomology groups H i(Σg, G) for some
Abelian group G with the singular cohomology groups H i(Σg, G). By the univer-
sal coefficients theorem, H i(Σg, G) ∼= H i(Σg,Z) ⊗Z G. Thus we have H1(Σg,C∗) ∼=
H1(Σg,Z)⊗Z C∗ ∼= (C∗)2g.

Now we also may consider the group U(1) ⊂ C∗. By the above argument we have
H1(Σg,U(1)) ∼= U(1)2g. In particular, this is a torus of dimension 2g. The cohomology
group H1(Σg,U(1)) classifies flat unitary complex line bundles; those with constant
transition functions in U(1). Equivalently, these are the line bundles admitting a flat
unitary connection with respect to some auxillary Hermitian metric.

One might ask if this torus U(1)2g is the same as the torus Jac(Σg) constructed in the
previous section. Indeed this is the case. A flat unitary line bundle L ∈ H1(Σg,U(1))
admits a (flat) unitary connection with respect to some Hermitian metric h. The (0, 1)-
part of this connection gives a Dolbeault operator on the bundle L, which provides it
with the structure of a holomorphic line bundle.

Conversely, given a Hermitian metric h on a holomorphic line bundle L → Σg with
degL = 0, there exists a unique unitary connection dA such that the (0, 1) part of
this connection is the Dolbeault operator of the original holomorphic structure. Since
degL = 0, this connection dA is flat. Thus L has the structure of a flat unitary line
bundle on Σg.

Given that this isomorphism exists for the case of flat unitary bundles, it is natural
to ask if there is an isomorphism for flat bundles that are not necessarily unitary. In
fact the moduli space of flat bundles (C∗)2g can be identified not with a moduli space of
holomorphic line bundles, but with a moduli space of holomorphic Higgs line bundles.
In turn this moduli space can be identified with the cotangent bundle of Jac(Σg).

5.2.4 Classification of Smooth Vector Bundles

As an application of the notion of degree, in this section we will classify all smooth vector
bundles on a Riemann surface.

Definition 5.2.4. Let E → Σg be a smooth (or holomorphic) complex vector bundle of
rank n on a Riemann surface Σg. The degree of E, denoted degE, is defined to be the
degree of the smooth (or holomorphic) line bundle

∧nE.

Lemma 5.2.5. Let E → Σg be a smooth complex vector bundle of rank n on a Riemann
surface Σg of genus g. Then if s ∈ Γ(E) is a non-vanishing section, E ∼= E′ ⊕ (C×Σg)
where E′ has rank n− 1.

Proof. Since s is non-zero, one can define a sub-bundle I := Span{s}. This sub-bundle
admits a global non-vanishing section (namely s) so I ∼= C×Σg. Take any metric on E,
and let E′ := I⊥. Then E′ has rank n− 1 and E ∼= E′ ⊕ (C× Σg).

Lemma 5.2.6. Let E → Σg be a smooth complex vector bundle of rank n on a Riemann
surface Σg. If n > 1 there exists a non-vanishing section.
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Proof. Let s ∈ Γ(E) be any section. Then s defines a smooth 2-dimensional submanifold
of the smooth (2n+2)-dimensional manifold E. The zero section defines another smooth
2-dimensional submanifold. Since n > 1, these two 2-dimensional submanfiolds meet
inside a space of dimension at least 5. In particular the section s may be smoothly
homotopied to a peturbed section s′ that no longer intersects the zero section.

Theorem 5.2.7. Smooth complex vector bundles on a Riemann surface Σg are classified
up to isomorphism by their rank and degree.

Proof. Let E → Σg be a smooth complex vector bundle of rank n. If n = 1 then E is
classified by its degree.

Suppose n > 1. Then by Lemma 5.2.6 E has a non-vanishing section s. By Lemma
5.2.5 then E ∼= E′ ⊕ (C × Σg) where E′ has rank n − 1. Repeating this process a total
of n− 1 times we obtain E ∼= L⊕ (Cn−1 × Σg) for some smooth complex line bundle L
of some degree d := degL.

We claim the pair (n, d) classifies E up to isomorphism. First we will show d does not
depend on the particular choice of deconstruction of E. In particular we have d = degE.

To see this, note that
∧nE ∼=

∧n(L ⊕ (Cn−1 × Σg)). Furthermore, note that the
isomorphism

∧
(V ⊕W ) ∼=

∧
(V ) ⊗

∧
(W ) of exterior algebras of vectors spaces (or of

exterior algebra bundles of vector bundles) is graded in the sense that∧n
(L⊕ (Cn−1 × Σg)) ∼=

⊕
p+q=n

(∧p
L
)
⊗
(∧q

(Cn−1 × Σg)
)
.

Since L is rank one, any higher exterior powers of L are the zero vector bundle, so we
must have ∧n

E ∼= L⊗
∧n−1

(Cn−1 × Σg) ∼= L⊗ (C× Σg) ∼= L.

But then degE = degL = d.
Now suppose F → Σg is another vector bundle of rank n with degF = degE. Then

we may similarly deconstruct F as F ∼= L′ ⊕ (Cn−1 × Σg) for some line bundle L′ of
degree degE. Then since they have the same degrees, we have an isomorphism L ∼= L′

of line bundles. Using the identity on the trivial part, we then obtain an isomorphism
E ∼= F . Clearly we also have that if E ∼= F then degE = degF and the two bundles
have the same rank, so we conclude E ∼= F if and only if they have the same rank and
degree.

5.3 Stable Bundles

In the previous section the case of moduli spaces for holomorphic line bundles was
investigated. When the rank n of a holomorphic vector bundle is greater than one, the
situation becomes considerably more complex.

Let D be the space of Dolbeault operators on a smooth complex vector bundle E
over a surface Σ. Then we know D is an affine space modelled on Ω0,1(Σ,End(E)).
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Let Ds be the subset of D corresponding to the stable holomorphic structures on E.
Then we have

Nn,d := D
/
G C.

Since D is an affine space, the tangent space to D at ∂E is Ω0,1(Σ,End(E)).
Let π : Ds → Nn,d be the natural projection. Then

T[∂E ]Nn,d
∼= T∂EDs

/
ker(dπ : T∂EDs → T[∂E ]Nn,d).

Proposition 5.3.1.
T[∂E ]Nn,d

∼= H0,1

∂E
(Σ,End(E)),

where

H0,1

∂E
(Σ,End(E)) :=

ker(∂E : Ω0,1(Σ,End(E))→ Ω0,2(Σ,End(E)))

im((∂E : Ω0(Σ,End(E))→ Ω0,1(Σ,End(E)))
.

Proof. Let ∂E(t) := ∂E + tα for some α ∈ Ω0,1(Σ,End(E)). Then α is in the kernel
of dπ at ∂E ∈ D precisely when this line ∂E(t) comes from a one-parameter family of
gauge transformations gt ∈ G C such that

∂E(t) = gt∂Eg
−1
t .

Then we have
∂E + tα = gt∂Eg

−1
t

which implies (when t 6= 0) that

α =
gt∂Eg

−1
t − g0∂Eg

−1
0

t
,

where g0 = 1 ∈ G C.
Then we must have

α = lim
t→0

gt∂Eg
−1
t − g0∂Eg

−1
0

t
,

which may be written as

α = ∂t(gt∂Eg
−1
t )t=0

= ∂t(gt)t=0∂Eg
−1
0 + g0∂t(∂E)t=0g

−1
0 + g0∂E(∂t(g

−1
t )t=0)

= 0 + 0 + ∂E(∂t(g
−1
t )t=0)

= −∂E(∂t(gt)t=0)

= −∂Ea.

Here a := ∂t(gt)t=0 ∈ TeG C ∼= Ω0(Σ,End(E)). But then we have α ∈ ker(dπ) precisely
when α is in the image of ∂E . Since ∂E is the zero map on Ω0,1(Σ,End(E)) because Σ
has complex dimension one, we are done.
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Corollary 5.3.2. The dimension of Nn,d is 1 + n2(g − 1).

Proof. Let [∂E ] correspond to a stable holomorphic structure on E. Then by the
Hirzebruch-Riemann-Roch theorem (Theorem 4.1.6), we have

χ(End(E)) =

∫
Σ

Ch(End(E)) Td(Σ)

with
χ(End(E)) = dimH0(Σ,End(E))− dimH1(Σ,End(E)).

On the other hand, Ch(End(E)) = Ch(E∗) Ch(E) = (n2 − c1(E))(n2 + c1(E))

5.4 Higgs Bundles

Definition 5.4.1. Let Σ be a Riemann surface. A Higgs bundle is a pair (E,Φ) where
E is a rank n holomorphic vector bundle E → Σ and Φ : E → E ⊗K is holomorphic
End(E)-valued 1-form.

5.4.1 Higgs Line Bundles

When L→ Σ is a line bundle, End(E) is trivial so a Higgs pair (E,Φ) decouples into a
holomorphic line bundle L and a holomorphic one-form Φ.

5.5 One-Dimensional Representations of the Fundamental
Group

5.5.1 Complex Representations
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Chapter 6

Geometric Quantization

6.1 Prequantization and Kähler Polarizations

Given a symplectic manifold (M,ω), it is a general problem of physical motivations to
quantize the corresponding classical system described by M . By quantize, one roughly
means associate to (M,ω) a Hilbert space (of states) and to each smooth function (ob-
servable) f ∈ C∞(M) a (possibly unbounded) operator on this Hilbert space, satisfying
various axioms of physical origins.

One method of achieving this is via geometric quantization, where the Hilbert space
is (the completion of) the space of holomorphic sections of a holomorphic line bundle
over M , where M is equipped with a certain complex structure.

Before putting this complex structure on M , one needs a smooth complex line bundle.

Definition 6.1.1. Let (M,ω) be a compact symplectic manifold with [ω] ∈ H2(M,Z),
so that ω is an integral form. A prequantum line bundle for (M,ω) is a Hermitian
line bundle L → M with Hermitian connection ∇ such that c1(L) = [ω]. That is,
[F∇] = [−2πiω].

Given such a line bundle, to continue the geometric quantization process one needs
a complex structure.

Definition 6.1.2. Let (M,ω) be a compact symplectic manifold. A Kähler Polarization
of M is an integrable almost complex structure I : TM → TM such that with respect to
I, ω is a Kähler form for M .

When a Kähler polarization of M exists, we obtain a holomorphic structure on
the Hermitian line bundle L. This can be specified by defining the (0, 1) part of the
connection ∇ on L, by

∇0,1 :=
i

2
(1 + iI)∇.

Correspondingly ∇1,0 := i
2(1 − iI)∇ and ∇ = ∇1,0 +∇0,1.
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To check this does in fact define a complex structure, one needs to check the existence
of local solutions to the equation ∇0,1s = 0. Locally ∇0,1 is of the form

∇0,1(s) =

(
∂s

∂z̄i
+Ais

)
⊗ dz̄i

where A is a (0, 1)-form with A = Aidz̄
i. The Dolbeault Lemma asserts a solution s

exists when ∂A = 0. But dA = −2πiω + dθ is a (1, 1)-form on the Kähler manifold
(M,ω, I), so ∂A = ω0,2 = 0 and ∇0,1 does define a holomorphic structure on L. Write
LI for the holomorphic line bundle structure induced by I.

Finally, to this Kähler polarization we associate the vector space H0(M,LI) which
acts as the geometric quantization of (M,ω).

6.2 Hitchin’s Connection

In the above discussion of geometric quantization, a choice of complex structure I was
made. It is important to determine the dependence of the final Hilbert space H0(M,LI)
on this choice of complex structure.

Firstly, how does the dimension depend on I? By the Hirzebruch-Riemann-Roch
formula, we have ∑

i

(−1)i dimH i(M,LI) =

∫
M

Ch(LI) Td(M),

where the right side does not depend on the holomorphic structure of LI .
If one takes a sufficiently high power LkI of the line bundle LI , then by the Kodaira

vanishing theorem Hj(M,LkI ) vanishes for j > 0. Thus replacing LI with LkI and ω with
kω we have that dimH0(M,LkI ) does not depend on the choice of I.

At this point, we will consider a parameter space T of Kähler polarizations for
(M,ω,L) a prequantized compact symplectic manifold. Taking k ∈ Z large enough that
the dimension of H0(M,LkIσ) does not depend on the complex structure Iσ corresponding
to σ ∈ T , we obtain a vector bundle V → T with fibres the corresponding geometric
quantizations of (M,ω) for each polarization. That this object is a vector bundle follows
from Kodaira’s work on deformations of complex structures, where the vector spaces
H0(M,LkIσ) are the kernels of a family of elliptic operators varying smoothly on a family
of line bundles varying smoothly over M . Elliptic regularity then implies the kernels
form a smooth sub-bundle of the infinite-dimensional bundle T × C∞(M,Lk)→ T .

To satisfactorily complete the geometric quantization of (M,ω), we would like an
identification of the fibres Vσ of this vector bundle V → T that does not depend on
any more choices. Thus we would like to find a projectively flat connection on V , with
parallel transport giving the identification of fibres. Up to a constant, this identification
will not depend on the path chosen.

Such a connection is known as a Hitchin connection, and this problem was first
studied by Nigel Hitchin in [Hit90] when M is the moduli space N of stable bundles on
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a Riemann surface. Here the symplectic structure is from the Atiyah-Bott symplectic
form on N constructed in [AB83]. The prequantum line bundle L→ N is the so called
determinant line bundle on N defined by Daniel Quillen in [Qui85].

6.3 Geometric Quantization for the Moduli Space of Higgs
Bundles

In the following, we will be concerned with generalising Hitchin’s work in [Hit90] to
the moduli space M of stable Higgs bundles over a Riemann surface. The geometric
quantization of this space presents challenges not present in the case of N , since M is
non-compact. Fortunately, M does come equipped with a natural C∗ action given by
multiplication of the Higgs field, and this action can help to complete the quantization.
Additionally, the presence of the C∗ action begs the question of whether a quantization
of M exists that respects this C∗ action.

The cotangent bundle T ∗N to the moduli space of stable bundles sits inside M as
an open dense subset, and Hitchin observed that (at least for g > 1) the complement has
codimension at least 2. Therefore the line bundle L → N can be pulled back to T ∗N
and extended over this codimension 2 subspace to obtain a line bundle LH →M. This
line bundle LH will act as the prequantum line bundle for the geometric quantization of
M.
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