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1 Motivation

Consider the problem of classifying vector bundles on a Riemann surface Σg of
genus g.

1.1 Smoothly/Topologically:

Up to smooth or topological isomorphism, a complex vector bundle E → Σg is
classified by its rank and degree. Recall

deg(E) := deg(
∧

rkEE) = c1(E)[Σg] ∈ Z,
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or

deg(E) =

∫
Σg

i

2π
trF∇

for any connection ∇ on E.
This is proved using the following interesting fact about vector bundles:

Theorem 1.1. Let E → M be a real vector bundle over a manifold. Then if
rkE > dimM , there is a real vector bundle E ′ of rank rkE ′ = dimM such that

E ∼= E ′ ⊕ 1
⊕(rkE−dimM)
M ,

where 1M is the trivial rank one real vector bundle on M .

This theorem in essence says nothing interesting can happen to a vector bundle
above the dimension of the base manifold. The number of non-trivial vector
bundles is in some sense bounded by the dimension of the manifold. This the-
orem can be proved using some simple facts about homotopy and transversality of
sections of vector bundles.

1.2 Holomorphically

If two holomorphic vector bundles E ,F over Σg are biholomorphic, then they are
certainly diffeomorphic. So for any hope that E and F are biholomorphic, they
must already be smoothly equivalent. That is, they must have equal rank and
degree.

Thus the holomorphic classification of bundles happens in discrete steps: one
by one for each possible pair (n, d) of rank and degree.

For rk E = 1, deg E = 0, the classification is well-known to be given by the
Jacobian

Jac0(Σg) ∼= Cg/Z2g.

Here the subscript indicates we are taking the degree zero bundles. The Jacobian
is a complex torus of complex dimension g.

When rk E = 1 and the degree is arbitrary, holomorphic bundles are classified
by the sheaf cohomology group

Ȟ1(Σg,O∗) ∼= Z× Jac0(Σg) =: Pic(Σg),

commonly called the Picard variety of Σg. This variety is a disjoint union of
Z copies of Jac0(Σg), and one may pass between them by tensoring by a fixed
line bundle of the correct degree. The degree d component of Pic(Σg) is denoted
Jacd(Σg).

What about when rkE > 1?
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The situation for line bundles indicates that it is too much to hope for for the
classification to be discrete, as it was when considering smooth vector bundles.
Instead one would like a moduli space, say N g

n,d, of holomorphic vector bundles
of rank n, degree d, on a Riemann surface Σg. Notice this notation supresses the
complex structure on Σg, only remembering the genus. It turns out that changing
the complex structure does not change the topological type of N g

n,d, but only its
own complex structure, so no more information is lost than there is when one
writes Σg, which does not explicitly reference the complex structure of Σg.

Note that it is enough to just consider the possible holomorphic structures on
a fixed smooth vector bundle E → Σg of rank n, degree d, because any other
holomorphic bundle with such rank and degree must necessarily be smoothly iso-
morphic to E, so no information is lost.

2 Moduli of Stable Bundles

2.1 Dolbeault Operators

In order to define a moduli space, one needs a way of describing the set of all holo-
morphic structures. This can be done via algebraic geometry (Quot schemes) or
differential geometry (Dolbeault operators). Each method has its own advantages
and disadvantages, but we use the second, because it is easier to describe.

To begin, notice that given any holomorphic vector bundle E → X over a
complex manifold X, there is an operator that picks out the holomorphic sections
of E . Namely, in a local holomorphic chart given by a frame eα, any section may
be written as

s|Uα =
∑

siei

for some functions si. Then define

∂̄E(s|Uα) :=
∑

∂̄(si)⊗ ei.

This section of Ω0,1(EUα|) will vanish if and only if s is holomorphic on Uα. Fur-
thermore, on an overlap of trivialisations this operator is well-defined: a section
s will differ in two trivialisations by a system of holomorphic transition functions
(because E is holomorphic), and so the term containing ∂̄gαβ = 0 will vanish.

Flipping this around, we get the following definition:

Definition 2.1. A Dolbeault operator on a smooth complex vector bundle E → X
on a complex manifold X is a C-linear operator

∂̄E : Γ(X,E)→ Ω0,1(X)⊗ Γ(X,E) =: Ω0,1(E)
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such that ∂̄2
E = 0, and

∂̄E(fs) = ∂̄f ⊗ s+ f∂̄Es

for any function f on X and section s of E.

By an application of the Newlander-Nirenberg theorem, a Dolbeault operator
defines a unique holomorphic structure for which it is the operator for (as con-
structed above), and the holomorphic sections of this holomorphic vector bundle
E with underlying smooth bundle E are precisely those s ∈ Γ(X,E) such that
∂̄Es = 0.

Let Dol(E) denote the set of all Dolbeault operators on a fixed smooth complex
vector bundle E → Σg. Then the set of holomorphic structures on E is in bijection
with Dol(E). There is however redundancy in this: two Dolbeault operators may
give isomorphic holomorphic structures.

Two Dolbeault operators are said to be equivalent if there is an automorph-
ism of the smooth bundle E which conjugates one to the other. The group of
automorphisms (the gauge group), is denoted GC.

Then we have that holomorphic structures on E up to isomorphism are in
bijection with

Dol(E)/GC.

What does this set look like? Dolbeault operators are like connections with
only a (0, 1)-part. In particular, Dol(E) is an affine space modelled on the infinite-
dimensional vector space Ω0,1(End(E)) = Ω0,1(Σg) ⊗ Γ(Σg, E). One may put
a reasonable topology on this affine space, but the quotient Dol(E)/GC is not
Hausdorff! To get around this, we need to use geometric invariant theory (GIT).

2.2 The Moduli Space

Definition 2.2. A holomorphic bundle E → Σg is (semi-)stable if for all F ⊂ E
proper non-zero holomorphic subbundles, we have

degF
rkF

< (≤)
deg E
rk E

.

We write

µ(E) :=
deg E
rk E

for the quotient appearing here, which is called the slope of the vector bundle.
Denote by Dol(E)s and Dol(E)ss the sets of stable an semi-stable holomorphic
bundles inside Dol(E).

Then geometric invariant theory says that Dol(E)ss//GC and Dol(E)s/GC are
Hausdorff (and in fact much more). Here the double slash means there is something
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more going on in this quotient (one has to identify S-equivalence classes of semi-
stable bundles, and in fact this is necessary: there is no reasonable way of making
Dol(E)ss/GC Hausdorff in the strictly semi-stable case).

Problem 2.3. When (n, d) = 1, (i.e. rank and degree of E are coprime) then
semi-stable ⇔ stable.

Definition 2.4. The moduli space of stable holomorphic vector bundles of rank n
and degree d over a Riemann surface Σg is

N g
n,d := Dol(E)s/GC.

Theorem 2.5 (Mumford, Narasimhan-Seshadri, Atiyah-Bott, Ramanan, oth-
ers..). When (n, d) = 1, N g

n,d is a non-singular, projective complex algebraic vari-
ety, and a fine moduli space for the classification problem we are considering (i.e.
there is a universal bundle over Nn,d×Σg which restricts to each given holomorphic
vector bundle E on each slice {[E ]} × Σg).

Theorem 2.6 (Narasimhan-Seshadri ’65, Donaldson ’82). The following three
spaces are isomorphic:

1. N g
n,d

2. Moduli space of projectively flat irreducible connections on the underlying
smooth bundle E → Σg

3. The character variety Homirr
d (π̂1(Σg),U(n))/U(n) classifying irreducible pro-

jective unitary representations of the fundamental group of Σg (of a certain
type).

The equivalence (1) ⇔ (3) was the original theorem of Narasimhan-Seshadri,
and uses algebraic geometry and representation theory. The equivalence (2)⇔ (3)
is given by taking the holonomy of the connection, and in the other direction by
constructing the associated bundle to the universal π1(Σg)-bundle over Σg given
by its universal cover. The equivalence (1) ⇔ (2) was proven by Donaldson, who
used gauge theory techniques.

It was proven by Goldman that the representation variety is symplectic, and
by Atiyah-Bott that the moduli space of flat connections is symplectic (this struc-
ture is called the Atiyah-Bott symplectic form). These two symplectic structures
agree. Since N g

n,d is naturally a complex manifold, it turns out that through
the Narasimhan-Seshadri theorem it is a compact Kähler manifold (at least when
(n, d) = 1).

The dimension of moduli space is given by

dimRN g
n,d = 2 + 2n2(g − 1).
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Remark 2.7. In the case n = 1, d = 0 one should expect to recover the Jacobian
variety of the Riemann surface Σg, which classifies holomorphic line bundles of
degree 0. This is indeed the case, and it is even possible to see how the infinite
dimensional quotients here can be reduced to the quotient

Jac0(Σg) ∼= H1(Σg,O)/H1(Σg,Z).

For more details see the notes of Goldman-Xia on Higgs bundles of rank one.

Remark 2.8. By taking the map induced by tensoring with a line bundle of
fixed degree d0, one obtains an isomorphism between the moduli spaces N g

n,d and
N g
n,d+nd0

. In particular the moduli space for fixed Σg depends only on the pair
(n, d mod n)!

One can throw in a fourth equivalent characterisation of the moduli space.
Namely, if ∂̄E is a stable vector bundle, then by the theorem there is a Hermitian
metric on E such that the associated Chern connection ∇ is projectively flat.
Concretely this means

?F∇ = −2πiµ(E)

where we have chosen a Riemannian metric on Σg and normalised so that Vol(Σg) =
1. In other words F∇ = −2πiµ(E)1E ⊗ ω where ω is the associated Kähler form
on Σg to the Riemannian metric. In particular notice that

d∇ ? F∇ = 0,

that is, ∇ solves the Yang-Mills equations ! The Narasimhan-Seshadri theorem can
be rephrased as saying the moduli space of stable vector bundles is isomorphic to
the moduli space of solutions to the Yang-Mills equations!.

Remark 2.9. All of this above was formal, in so far as to actually set up the
problem in this form, one should complete the spaces Dol(E) and GC to Banach
manifolds and Banach Lie groups, and prove some hard analytical details. In fact
Atiyah-Bott prove that every L2-equivalence class of connections contains a smooth
representative, and if two such smooth connections are gauge-equivalent by an L2-
gauge transformation, then they are equivalent by a smooth gauge transformation.
The upshot of this is that the quotient spaces will be isomorphic, and we don’t
have to care and can just formally write everything down as we have done!

Question: What if we replace U(n) in the Narasimhan-Seshadri theorem with
GL(n,C)? Or equivalently, if we replace ”projectively flat unitary connections”
with ”projectively flat connections”?

Answer:
There is a general principle in geometry that has appeared since the work of

Donaldson on the Narasimhan-Seshadri theorem:
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Stable algebraic objects correspond to extremal objects in differential
geometry

Remark 2.10. There are now many instances of this principle being realised.
The most concrete example is the theorem above, but arguably the first example
is the uniformization theorem: every smooth curve (Deligne-Mumford showed that
smooth curves are stable) admits a metric of constant scalar curvature either
+1, 0, or −1. These metrics are extremal in that they are Kähler-Einstein. The
Narasimhan-Seshadri has also been generalised significantly (in at least one dir-
ection) to the Hitchin-Kobayashi correspondence (or Donaldson-Uhlenbeck-Yau
theorem), which says that (poly)stable holomorphic vector bundles over compact
Kähler manifolds (in fact work of Li-Yau allows you to remove Kähler) correspond
to Hermitian Yang-Mills connections.

Another instance of the principle is for manifolds themselves: a theorem of
Chen-Donaldson-Sun from 2012 says that a Fano manifold is Kähler-Einstein if and
only if it is K-polystable, and it is conjectured (the Yau-Tian-Donaldson conjecture)
that a compact Kähler manifold admits a constant scalar curvature metric if and
only if it is K-polystable.

In our case the principle indicates there should be an algebraic object and a
stability condition so that stable objects correspond to these connections.

The answer of course is Higgs bundles.

3 Higgs Bundles

Definition 3.1 (Higgs bundle). A Higgs bundle is a pair

(E ,Φ)

where E → Σg is a holomorphic vector bundle and

Φ : E → E ⊗K

is an End E-valued holomorphic (1, 0)-form on Σg. That is,

Φ ∈ H0(Σg,End E ⊗K).

These bundles were first investigated by Hitchin in 1987 (although the term
Higgs bundle and their pure algebraic definition was probably coined by Carlos
Simpson a few years later). The field Φ is called the Higgs field of the Higgs bundle,
and is so named by analogy with the Higgs field in physics: an additional scalar
field ”coupled” to other particle fields (i.e. there are terms in the Lagrangian of
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the standard model involving both this scalar field and other fields) in such a way
that it imbues particles with mass. Any time someone adds on an auxilliary field
that is coupled to the original data in geometry, they call it a Higgs field (see:
magnetic monopoles/the Bogomolny equation).

If we want to make a moduli space, then we should rephrase the definition in
terms of Dolbeault operators. A Higgs bundle is given by a pair

(∂̄E ,Φ)

such that ∂̄E(Φ) = 0, this condition implying that Φ is holomorphic. Our analogue
of Dol(E) will be

B := {(∂̄E ,Φ) ∈ Dol(E)× Ω1,0(End(E)) | ∂̄E(Φ) = 0}.

If everything is set up right then B is an infinite-dimensional orbifold, and there
is an action of GC on B by conjugation on both the Dolbeault operator and the
Higgs field:

g · (∂̄E ,Φ) = (g∂̄Eg
−1, gΦg−1).

Definition 3.2. Call a Higgs bundle (E ,Φ) (semi-)stable if

µ(F) < (≤)µ(E)

for all proper, non-trivial, Φ-invariant subbundles F ⊂ E .

Example 3.3. 1. If rk E = 1, then (E ,Φ) is stable for any Φ ∈ H0(Σg, K), a
holomorphic 1-form on Σg.

2. If E is (semi-)stable, then (E ,Φ) is (semi-)stable for any Φ.

3. Let g > 1 and fix a square root K1/2 of the canonical bundle K → Σg. Define
a holomorphic vector bundle by

E := K1/2 ⊕K−1/2.

Then µ(E) = 0. The endomorphisms of E split under the direct sum, and
one piece is Hom(K1/2, K−1/2) ∼= K−1. Thus Hom(K1/2, K−1/2) ⊗ K ∼= O,
which has the constant section 1. Thus we can take

Φ =

(
0 0
1 0

)
(i.e. just take Φ to be zero on all other components). The only Φ-invariant
subbundle is K−1/2, which has degree 1 − g < 0 for g > 1, and so (E ,Φ) is
a stable Higgs bundle! Notice that µ(K1/2) > 0 so in fact E is not stable
as a holomorphic vector bundle, but K1/2 is not Φ-invariant so does not
destabilise (E ,Φ).
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4. If (E ,Φ) is (semi-stable), then so is (E , tΦ) for any t ∈ C∗. This will give us
a C∗ action on the moduli space of Higgs bundles.

Definition 3.4. Define the moduli space of stable Higgs bundles of rank n, degree
d on a Riemann surface Σg by

Mg
n,d := Bs/GC,

where Bs denotes the subset of B consisting of stable Higgs bundles.

Theorem 3.5 (Hitchin ’87, Simpson ’90s, Donaldson-Corlette). The following
spaces are isomorphic:

1. Mg
n,d

2. The moduli space of irreducible projectively flat connections on E → Σg

3. The character variety Homirr
d (π̂1(Σg),GL(n,C))/GL(n,C) classifying com-

plex representations of the fundamental group (of a certain type).

This theorem is sometimes called the non-Abelian Hodge theorem for reasons
that we will explain later. Hitchin proved (1) ⇔ (2), in the case of n = 2, d = 1
(and fixed determinant bundle). Work of Donaldson-Corlette on harmonic repres-
entations gives (2)⇔ (3), and Carlos Simpson proved the rest of the theorem for
any (n, d).

Remark 3.6. The Narasimhan-Seshadri theorem can be recovered by taking Φ =
0 in this theorem. This theorem has also been significantly generalised, primarily
by Carlos Simpson, to the case of Higgs bundles over any compact Kähler manifold
(where one also requires the condition Φ∧Φ = 0 in general). This theorem is usu-
ally known as the non-Abelian Hodge theorem, but I prefer the name Narasimhan-
Seshadri-Hitchin-Kobayashi-Donaldson-Uhlenbeck-Yau-Simpson-Corlette theorem.

What is Mg
n,d like? Again in the situation where (n, d) = 1, Mg

n,d is a non-
singular quasi-projective complex algebraic variety. Notice how beforeN g

n,d became
Kähler by using a symplectic structure coming from the representation space. In
this setting the representation space is itself a complex manifold, soMg

n,d has two
different complex structures, I, J say! In fact, one can show these are distinct, and
further that IJ = −JI. That is, if one writes K = IJ , then the triple (I, J,K)
turns Mg

n,d into a hyper-Kähler manifold ! The moduli space of projectively flat
connections also has a complex structure, but it turns out this is the same as J ,
the structure coming from the representations.

The dimension is dimRMg
n,d = 4 + 4n2(g − 1), which is twice the dimension

fo N g
n,d. This is not a coincidence! Given a stable vector bundle E , standard
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moduli space voodoo tells you that the tangent space to N g
n,d at [E ] is given by the

cohomology group H1(Σg,End(E)). The Serre duality theorem tells you that

T ∗[E]N
g
n,d
∼= H1(Σg,End E)∗ ∼= H0(Σg,End(E)⊗K),

which is precisely the space of compatible Higgs fields for E ! Namely, there is an
inclusion

T ∗N g
n,d ⊂M

g
n,d

of the cotangent bundle to the stable bundle moduli space into the Higgs bnudle
moduli space! This subset is open and dense, and the complement has (in most
cases) complex codimension ≥ 2. In particular Mg

n,d has dimension twice that of
N g
n,d.

Remark 3.7. Notice that the representation variety in the Higgs case is an affine
variety! In particular the different complex structures on Mg

n,d are very different:
one is (essentially) the cotangent bundle of a projective variety, whereas the other
is a Stein manifold.

Example 3.8. In the rank 1 case, there are no Higgs bundles that aren’t arising
from stable vector bundles (of course everything is stable), so there is an isomorph-
ism

Mg
1,d
∼= T ∗N g

1,d
∼= T ∗ Jacd(Σg) ∼= (Cg/(Z2g))× R2g.

In this case the complex structures and geometric structures on Mg
1,d are all very

explicit (see the notes of Goldman-Xia on Higgs bundles of rank one). In this case
the theorem for Higgs bundles says

T ∗ Jac0(Σg) ∼= (C∗)2g,

but only as smooth manifolds! These spaces have different explicit complex struc-
tures, and one may verify they satisfy IJ = −JI!

What else is known about these moduli spaces?

Theorem 3.9 (Hitchin). The Betti polynomial of M̂2
2,1 (the hat means fixed holo-

morphic structure on the determinant of E) is

Pt(M̂2
2,1) = 1 + t2 + 4t3 + 2t4 + 34t5 + 2t6,

and dimR M̂2
2,1 = 12.

We remark that all the things said about the Higgs moduli space (and indeed
stable bundle moduli space) hold when we fix a determinant line bundle. In some
sense this is a simpler space (when you don’t fix a line bundle, there is some
redundancy in the moduli space coming from an action of the Jacobian Jac0(Σg)
which you can get rid of, and the ”interesting parts” of the moduli space come
from the space where you have fixed the determinant).
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Remark 3.10. Notice that whilst the dimension of M̂2
2,1 is 12, it only has Betti

numbers up to dimension 6. This phenomenon always occurs, and is a result of the
remark we made earlier that one of the complex structures onMg

n,d is as an affine
variety (or Stein manifold). It is a remarkable theorem that every Stein manifold of
complex dimension n actually has the homotopy type of a space of real dimension
n, and therefore only has Betti numbers up to half of its real dimension! Even
thoughMg

n,d is not affine with respect to its regular construction, its hyper-Kähler
structure causes this phenomenon!

Through work of Atiyah-Bott, Harder-Narasimhan, and Newstead, the Betti
numbers of N̂ g

n,d are known for all (n, d, g). In fact this was first proved by Harder-

Narasimhan in 1975 by counting the number of points in N̂ g
n,d over finite fields

and applying the Weil conjectures (which had only just been proven by Deligne).
Atiyah and Bott used a very clever infinite-dimensional equivariant Morse-Bott
theory to arrive at the same Betti numbers (essentially: the norm-squared of the
curvature f(∇) = ‖F∇‖2 is an equivariantly perfect Morse-Bott function for the
action of the gauge group G ).

In contrast, not much is known about the Betti numbers of the Higgs moduli
space in general, and it is only computed up to (I believe) n = 4. There is even
less known about the cohomology ring structure, which is only known up to n = 3
(but probably in much more generality for the stable bundle moduli space).

4 Applications

4.1 Hitchin Integrable System

Since Φ ∈ H0(Σg,End(E)⊗K),

1

k
tr(Φk) ∈ H0(Kk).

Define a map

h :Mg
n,d →

n⊕
k=1

H0(Σg, K
k) =: A.

Theorem 4.1 (Hitchin).

dimA =
1

2
dimMg

n,d = 2 + 2n2(g − 1),

and h is a completely integrable Hamiltonian system.

Such completely integrable systems are generally quite rare. In 2010 Ngõ used
the Hitchin integrable system over finite fields to prove the Fundamental Lemma
in the Langlands program, for which he was awarded the Fields medal!
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4.2 Mirror Symmetry

It is possible to defineM(G), the moduli space of G-Higgs bundles for arbitrary Lie
groups G = GL(n,C), SL(n,C),PGL(n,C), ... (where GL is the regular situation
and SL is the fixed determinant situation). Essentially this is done by considering
holomorphic principal G-bundles (in fact one can even define this notion for real
compact Lie groups).

The Hitchin system h : M(G) → A is generally regular, and h−1(p) is an
Abelian variety for p ∈ Areg (in fact, there is a special curve called the spectral
curve such that h−1(p) is the Jacobian of this curve).

For M(PGL(n,C)) and M(SL(n,C)), dimA is the same and there exists a
diagram such that h−1

1 (p)̌ ∼= h−1
2 (p) for p ∈ Areg. That is, the Abelian varieties

M(PGL(n,C)) M(SL(n,C))

A

h1

h2

over a point are dual.
This is an example of an SYZ fibration in Mirror symmetry, and it is expected

this works for any pair G, LG where LG is the Langlands dual group.
Hitchin has proven this for G = Sp(n), LG = SO(2n+ 1) and G =L G = G2!
It turns out that these mirror manifolds do not neccesarily satisfy precisely the

Hodge diamond mirror relations that mirror symmetry predicts, but do satisfy an
alternative set of relations between Hodge numbers. This is work of Hausel and
Thaddeus.

4.3 Physics

N g
n,d and Mg

n,d are the configuration spaces of Chern-Simons gauge theory for
U(n), GL(n,C) in 2 + 1 dimensions, for the three-manifolds Σg × [0, 1].

In 2007, Kapustin-Witten usedMg
n,d to describe S-duality in string theory, and

mathematically this translates to a ”geometric Langlands correspondence.”

4.4 Non-Abelian Hodge Theorem

The Hodge theorem states that

H1(Σg,C) = H1,0(Σg)⊕H0,1(Σg) = H1(Σg,O)⊕H0(Σg, K).

And it is straightforward to see

H1(Σg,C) ∼= H1(π1(Σg),C) = Hom(π1(Σg),C).
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The non-Abelian Hodge theorem in higher dimensions takes in a representation of
the fundamental group modulo conjugation, i.e. an element of

H1(Σg,GL(n,C)) = H1(π1(Σg),GL(n,C)) = Hom(π1(Σg),GL(n,C))/GL(n,C),

and produces a holomorphic vector bundle and a Higgs field, i.e. an element of

H1(Σg,GL(n,C))⊕H0(Σg,GL(n,C)⊗K)

where we are taking the sheaf of holomorphic sections of GL(n,C). Since these
groups are non-Abelian the corresponding cohomology groups are not actually
groups, but only pointed sets (with distinguished point corresponding to zero).
This is where the name ”non-Abelian Hodge theorem” comes from.

Obviously this is only formally true, and not literally an isomorphism of co-
homology sets.
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