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1. Introduction This paper is concerned with a classical problem of actuarial mathematics,
strategies for optimal pay-out of dividends when two collaborating lines of business are taken into
account. Since De Finetti (1957) introduced the dividend barrier model, in which all surpluses
above a given level are transferred (subject to a discount rate) to a beneficiary, and raised the
question of how to optimize this barrier, it has been of particular interest to determine the optimal
dividend payment strategy which maximizes discounted dividend payments. Gerber (1972) consid-
ered an optimal dividend strategy problem, where the income process of a firm is assumed to be a
homogeneous Markov process (discrete or continuous).

A classical model is Cramér-Lundberg model, i.e., a compound Poisson risk model. In 1969,
Gerber showed that if the free surplus of an insurance portfolio is modelled by a compound Poisson
risk model, it is optimal to pay dividends according to a so-called band strategy, which collapses to
a barrier strategy for exponentially distributed claim amounts. Whereas Gerber found this result
by taking a limit of an associated discrete problem, this optimal dividend problem was later studied
with techniques of modern stochastic control theory (see Azcue and Muler (2014) for summary).

In Gerber and Shiu (2004), the surplus of a company is a Brownian motion with a positive
drift and the dividends are paid according to a barrier strategy. The optimal barrier is determined
in that paper. Asmussen and Taksar (1996) consider the optimal dividend strategy problem in
diffusion approximation model in both of the following cases: (1) the dividend rate is restricted;
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(2) the dividend rate is unrestriced. They showed that, in both cases, the optimal strategies are
barrier strategies.

All these control problems have been formulated and studied in the one-dimensional framework.
However, in recent years there has been an increased interest in risk theory in considering the
dynamics of several connected insurance portfolios simultaneously, see e.g. Asmussen and Albrecher
(2010) for an overview. Albrecher et al. (2015) extend the optimal dividend problem from univariate
risk theory to a two-dimensional setup of two collaborating companies under a compound Poisson
model framework. The collaboration consists of paying the deficit (’bailing out’) of the partner
company if its surplus is negative and if this financial help can be afforded with the current own
surplus level.

In this paper, we consider the optimal dividend payment strategy for an insurance company,
having two collaborating business lines. The surpluses of the business lines are modeled by diffusion
processes. The collaboration between the two business lines permits that money can be transferred
from one line to another with or without transaction costs while money must be transferred from
one line to another to help both business lines keep running before simultaneous ruin of the two
lines eventually occur. In contrast to Albrecher et al. (2015), the continuity of the non-controlled
processes prevents the situation where one line cannot afford to save another line while keeping
itself out of trouble. So the situation in Albrecher et al. (2015) where one business line continues
after another business line has gone ruin, and even failed to pay the last claim, cannot happen
here. Therefore ruin is defined by simultaneous ruin.

Although the setup with two risk processes is similar to that of Albrecher et al. (2015), we
prefer to think of the two-dimensional problem as arising from capital control in two business lines
within one company rather than two cooperating companies. The presentation is fairly generic but
the reader can think of two business lines, like e.g. motor insurance and theft insurance. For our
diffusion approximation to be reasonable, think of two light-tailed business lines. Each line has his
own manager being responsible for the profitability of his business line. The manager of the whole
company can allocate capital to the two business lines in order to serve a given objective. Actually,
this is a practically realistic setup and capital allocation is an important management discipline
nowadays, typically performed with the objective to minimize the amount of total supporting
capital it takes to be solvent as a company. Our problem here is the similar decision problem with
the classical objective to maximize the dividend payouts obtained from the two business lines until
ruin of the whole company.

The main results of the paper are the following. First, we find the optimal dividend strategy when
money is transferred between the two business lines with no transaction costs. Second, we prove
the optimal value function is a continuous viscosity solution to the corresponding HJB equation
in the case with transaction costs. A verification theorem is also proven. Further, we characterize
explicitly the solution in the special case where the problem is symmetric in the two business lines.

The technical contribution is a novel characterization (Prop. 8) of the viscosity solution of the
HJB equation and the optimal control when transaction costs are taken into account. Consequently,
a new verification theorem (Thm. 3) is obtained. This characterization also leads us to find the
optimal control in the symmetric case and enlightens us to search the optimal control in general
cases.

The remainder of the paper is structured as follows. In Section 2, we present the diffusion model
with no transaction costs. In Section 3, we find the optimal value function and the optimal dividend
strategy. In Section 4, we prove that, when transaction costs occur, the optimal value function is
a continuous viscosity solution to the corresponding HJB equation. A verification theorem is also
given. In section 5, we search the optimal dividend strategy in the symmetric case. Conclusions
are given in Section 6.
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2. The Model We consider an insurance company, having two collaborating business lines,
line One and line Two. Let us call X1(t) the free surplus of Business One and X2(t) the one of
Business Two. We assume that the free surplus of each of the lines of business follows a diffusion
process such that

X1(t) = x1 +µ1t+σ1W1(t),
X2(t) = x2 +µ2t+σ2W2(t),

where x1 and x2 are the respective initial surplus levels and W1 and W2 are independent standard
Brownian motions.

There is a contract of collaboration: If the current surplus of line One hits zero, there is a positive
cash flow from line Two to line One to help One remain non-negative, and vice versa. Hence, ruins
of the two businesses occur simultaneously at the moment that both surplus processes hit zero.
Moreover, both businesses are free to transfer money to each other.

Both businesses use part of their surplus to pay dividends to their shareholders. The dividend
payment strategy L= (L1,L2) is the total amount of dividends paid by the two businesses up to
time t. The associated controlled surplus processes become

X̄1(t) = X1(t)+C21(t)−C12(t)−L1(t),
X̄2(t) = X2(t)+C12(t)−C21(t)−L2(t),

where C21(t) corresponds to the cumulative amount transferred from Business Two to One up to
time t; C12(t) corresponds to the cumulative amount transferred from Business One to Two up to
time t. The ruin time of the businesses is defined as

τ := inf{t > 0 : X̄1(t), X̄2(t)< 0}.

We call a dividend and transferring strategy (L,C) = (L1,L2,C12,C21) is admissible, denoted as
(L,C)∈ π(x1,x2), if

1. L1,L2 are left continuous with right limits and Ft-predictable, where Ft is the natural filtration
generated by X̄1 and X̄2.

2. C12,C21 are right continuous with left limits and Ft-adapted.
3. L1,L2,C12,C21 are non-negative and non-decreasing.
4. L1(t)≤X1(t)+C21(t)−C12(t) and L2(t)≤X2(t)+C12(t)−C21(t)
Let R2

+ denote the set {(x1, x2) : x1 ≥ 0, x2 ≥ 0} throughout the paper. For any initial surplus
level (x1, x2)∈R2

+, we write the optimal value function as the following

V (x1, x2) = sup
(L,C)∈π(x1,x2)

VL,C(x1, x2),

where

VL,C(x1, x2) =Ex1,x2

(
a

∫ τ

0

e−βsdL1(s)+ (1− a)

∫ τ

0

e−βsdL2(s)

)
.

The weights a and (1− a) just reflects that there may be different proportional costs connected
with drawing money out of the two business lines.

Remark 1. As V is the optimal value function, we conclude some facts without proof.

V (x1 +∆x,x2)−V (x1, x2)≥ a∆x, ∆x≥ 0,
V (x1, x2 +∆x)−V (x1, x2)≥ (1− a)∆x, ∆x≥ 0,
V (x1 +∆x,x2 −∆x) = V (x1, x2), ∆x∈R.
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The corresponding HJB equation is given by

0 = max
(
L(V )(x1, x2), a− ∂V

∂x1
(x1, x2), (1− a)− ∂V

∂x2
(x1, x2),

∂V
∂x1

(x1, x2)− ∂V
∂x2

(x1, x2),
∂V
∂x2

(x1, x2)− ∂V
∂x1

(x1, x2)
)
,

0 = V (0,0),

(1)

where a∈ (0,1) and

L(V ) = µ1

∂V

∂x1

+µ2

∂V

∂x2

+
1

2
σ2
1

∂2V

∂x2
1

+
1

2
σ2
2

∂2V

∂x2
2

−βV.

Due to symmetry, without loss of generality, we assume that a≥ 1
2
.

3. Optimal Strategy

Proposition 1. Let X̄1, X̄2 be the controlled surplus processes with control (L,C) and initial
values x1, x2. For any twice continuously differentiable function ψ on R2

+ and a finite stopping time
τ ∗ ≤ τ , if one of the following two conditions holds, (1) X̄1, X̄2 are bounded; (2) ψ has bounded
first derivatives, then, we have

e−βτ∗ψ(X̄1(τ
∗), X̄2(τ

∗))−ψ(x1, x2)

=
∫ τ∗

0
e−βsL(ψ)(X̄1(s−), X̄2(s−))ds+M(τ ∗)

+
∫ τ∗

0
e−βs[ψx1(X̄1(s−), X̄2(s−))−ψx2(X̄1(s−), X̄2(s−))]dCC

21(s)

+
∫ τ∗

0
e−βs[ψx2(X̄1(s−), X̄2(s−))−ψx1(X̄1(s−), X̄2(s−))]dCC

12(s)
+
∑

X̄1(s−)̸=X̄1(s),X̄2(s−)̸=X̄2(s),s≤τ∗ e
−βs[ψ(X̄1(s), X̄2(s))−ψ(X̄1(s−), X̄2(s−))]

−
∫ τ∗

0
ae−βsdL1(s)−

∫ τ∗

0
(1− a)e−βsdL2(s)

+
∫ τ∗

0
(a−ψx1(X̄1(s−), X̄2(s−)))e−βsdLC

1 (s)

+
∑

L1(s+) ̸=L1(s),s<τ∗
∫ L1(s+)−L1(s)

0
(a−ψx1(X̄1(s)−α, X̄2(s)))e

−βsdα

+
∫ τ∗

0
((1− a)−ψx2(X̄1(s−), X̄2(s−)))e−βsdLC

2 (s)

+
∑

L2(s+) ̸=L2(s),s<τ∗
∫ L2(s+)−L2(s)

0
((1− a)−ψx1(X̄1(s+), X̄2(s)−α))e−βsdα,

(2)

where M is a martingale and LC
i ,C

C
ij are the continuous parts of Li,Cij.

Proof. Since Li is nondecreasing and left continuous, we can write

Li(t) =

∫ t

0

dLC
i (s)+

∑
X̄i(s+) ̸=X̄i(s),s<t

(Li(s+)−Li(s)).

By Itô’s formula for semi-martingales and the optional sampling theorem,

e−βτ∗ψ(X̄1(τ
∗), X̄2(τ

∗))−ψ(x1, x2)

=
∫ τ∗

0
e−βsdψ(X̄1(s), X̄2(s))−β

∫ τ∗

0
e−βsψ(X̄1(s), X̄2(s))ds

=
∫ τ∗

0
e−βsL(ψ)(X̄1(s−), X̄2(s−))ds

+
∫ τ∗

0
e−βs[ψx1(X̄1(s−), X̄2(s−))σ1dW1 +ψx2(X̄1(s−), X̄2(s−))σ2dW2]

+
∫ τ∗

0
e−βs[ψx1(X̄1(s−), X̄2(s−))−ψx2(X̄1(s−), X̄2(s−))]dCC

21(s)

+
∫ τ∗

0
e−βs[ψx2(X̄1(s−), X̄2(s−))−ψx1(X̄1(s−), X̄2(s−))]dCC

12(s)
+
∑

X̄1(s−)̸=X̄1(s),X̄2(s−)̸=X̄2(s),s≤τ∗ e
−βs[ψ(X̄1(s), X̄2(s))−ψ(X̄1(s−), X̄2(s−))]

−
∫ τ∗

0
e−βs[ψx1(X̄1(s−), X̄2(s−))dLC

1 (s)+ψx2(X̄1(s−), X̄2(s−))dLC
2 (s)]

+
∑

L1(s+) ̸=L1(s),s<τ∗ e
−βs[ψ(X̄1(s+), X̄2(s))−ψ(X̄1(s), X̄2(s))]

+
∑

L2(s+) ̸=L2(s),s<τ∗ e
−βs[ψ(X̄1(s+), X̄2(s+))−ψ(X̄1(s+), X̄2(s))].

(3)
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Define

M(t) :=

∫ t

0

e−βs[ψx1(X̄1(s−), X̄2(s−))σ1dW1 +ψx2(X̄1(s−), X̄2(s−))σ2dW2], (4)

which is a martingale. Since X1(s+)−X1(s) =−(L1(s+)−L1(s)), we can write

−
∫ τ∗

0
e−βsψx1(X̄1(s−), X̄2(s−))dLC

1 (s)
+
∑

L1(s+) ̸=L1(s),s<τ∗ e
−βs[ψ(X̄1(s+), X̄2(s))−ψ(X̄1(s), X̄2(s))]

= −
∫ τ∗

0
e−βsψx1(X̄1(s−), X̄2(s−))dLC

1 (s)

−
∑

L1(s+) ̸=L1(s),s<τ∗ e
−βs

∫ L1(s+)−L1(s)

0
ψx1(X̄1(s)−α, X̄2(s))dα

= −
∫ τ∗

0
ae−βsdL1(s)+

∫ τ∗

0
e−βs(a−ψx1(X̄1(s−), X̄2(s−)))dLC

1 (s)

+
∑

L1(s+) ̸=L1(s),s<τ∗ e
−βs

∫ L1(s+)−L1(s)

0
(a−ψx1(X̄1(s)−α, X̄2(s)))dα.

(5)

Similarly,

−
∫ τ∗

0
e−βsψx2(X̄1(s−), X̄2(s−))dLC

2 (s)
+
∑

L2(s+) ̸=L2(s),s<τ∗ e
−βs[ψ(X̄1(s+), X̄2(s+))−ψ(X̄1(s+), X̄2(s))]

= −
∫ τ∗

0
e−βsψx2(X̄1(s−), X̄2(s−))dLC

2 (s)

−
∑

L2(s+) ̸=L2(s),s<τ∗ e
−βs

∫ L2(s+)−L2(s)

0
ψx2(X̄1(s+), X̄2(s)−α)dα

= −
∫ τ∗

0
(1− a)e−βsdL2(s)+

∫ τ∗

0
e−βs((1− a)−ψx2(X̄1(s−), X̄2(s−)))dLC

2 (s)

+
∑

L2(s+) ̸=L2(s),s<τ∗ e
−βs

∫ L2(s+)−L2(s)

0
((1− a)−ψx2(X̄1(s+), X̄2(s)−α))dα.

(6)

Combining the equalities above, the result follows. �
Define the following function f on R2

+:

f(x1, x2) =

{
aC(eθ1(x1+x2) − e−θ2(x1+x2)), x1 +x2 <m,
a[C(eθ1m − e−θ2m)+x1 +x2 −m], x1 +x2 ≥m,

(7)

where θ1, θ2,C,m are some positive constants to be determined. We require L(f) = 0 when x1+x2 <
m, which leads to {

µ1θ1 +µ2θ1 +
1
2
σ2
1θ

2
1 +

1
2
σ2
2θ

2
1 −β = 0,

µ1θ2 +µ2θ2 +
1
2
σ2
1(−θ22)+ 1

2
σ2
2(−θ22)+β = 0,

(8)

that is θ1,−θ2 are the roots of the equation(
1

2
σ2
1 +

1

2
σ2
2

)
θ2 +(µ1 +µ2)θ−β = 0, (9)

where θ2 > θ1 > 0. We require f be twice continuously differentiable in R2
+, which leads to

∂f
∂x1

∣∣∣
x1+x2=m

= a, ∂f
∂x2

∣∣∣
x1+x2=m

= a,

∂2f

∂x21

∣∣∣
x1+x2=m

= 0, ∂2f

∂x22

∣∣∣
x1+x2=m

= 0, ∂2f
∂x1∂x2

∣∣∣
x1+x2=m

= 0.
(10)

Coefficients C,m are determined by{
C(θ1e

θ1m + θ2e
−θ2m) = 1,

θ21e
θ1m − θ22e

−θ2m = 0,
(11)

which gives

m=
2(lnθ2 − lnθ1)

θ1 + θ2
,C =

1

θ1eθ1m + θ2e−θ2m
. (12)
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Figure 1. Optimal Strategy

Proposition 2. The function f defined in (7), with coefficients given in (9) and (12) is twice
continuously differentiable and has bounded first derivatives and is a solution to the HJB equation
(1).

Proof. Apparently, ∂f
∂x1

− ∂f
∂x2

= 0 and a− ∂f
∂x1

= 0, (1−a)− ∂f
∂x2

≤ 0, when x1+x2 ≥m. It remains
to show that {

a− ∂f
∂x1

≤ 0, (1− a)− ∂f
∂x2

≤ 0, x1 +x2 <m,

L(f)≤ 0, x1 +x2 ≥m.

• When x1 + x2 < m, we have ∂3f

∂x31
= aC(θ31e

θ1(x1+x2) + θ32e
−θ2(x1+x2)) > 0. The derivative ∂2f

∂x21

is increasing and ∂2f

∂x21

∣∣∣
x1+x2=m

= 0, so ∂2f

∂x21
≤ 0. The derivative ∂f

∂x1
is decreasing and a− ∂f

∂x1
≤ 0.

Similarly, (1− a)− ∂f
∂x2

≤ a− ∂f
∂x2

≤ 0.
• When x1 + x2 ≥ m, we distinguish between x2 ≤ m and x2 > m. If x2 ≤ m, L(f)(x1, x2) =

µ1a+µ2a−βf(x1, x2)≤ µ1a+µ2a−βf(m−x2, x2) =L(f)(m−x2, x2) = 0. If x2 >m, L(f)(x1, x2) =
µ1a+µ2a−βf(x1, x2)≤ µ1a+µ2a−βf(0,m) =L(f)(0,m) = 0.

�
We divide the domain R2

+ into three parts (see Figure 1).
• A= {(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 +x2 ≤m}.
• B = {(x1, x2) : x1 > 0, x2 ∈ [0,m], x1 +x2 >m}.
• C = {(x1, x2) : x1 ≥ 0, x2 >m}.
Denote by (L∗,C∗) a dividend and transferring strategy with initial surplus level (x1, x2). Assume

(L∗,C∗) is given by the following series of decisions (See Figure 2-4).
1. If (x1, x2)∈C, Business Two transfers an amount x2 −m to Business One and we go to 2.
2. If (x1, x2) ∈B, Business One pays directly an amount x1 + x2 −m as dividend and we go to

3.
3. If (x1, x2) ∈ A, Business One pays the accumulated amount maxs≤t{X̄1(s) + X̄2(s)−m} up

to time t until the surplus processes hit (0,0).
Remark 2. If (x1, x2)∈A, line One only pays dividends when X̄1+ X̄2 hits {x1+x2 =m} and

the process (X̄1, X̄2) remains in area A.

Theorem 1. The strategy (L∗,C∗) gives the optimal strategy and the function f gives the
optimal value function.
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Figure 2. Optimal Strategy when initial value in area C

Figure 3. Optimal Strategy when initial value in area B

Proof. We first show that for any (x1, x2)∈R2
+ and any admissible control (L,C),

f(x1, x2)≥ VL,C(x1, x2).

Let X̄1, X̄2 be the controlled surplus process with L and C. Then, X̄1(s) ̸= X̄1(s−), X̄2(s) ̸= X̄2(s−)
only when money are transferred between the two businesses, Hence

X̄1(s)− X̄1(s−) = X̄2(s−)− X̄2(s),

and
f(X̄1(s), X̄2(s)) = f(X̄1(s−), X̄2(s−)).

By Proposition 1 with stopping time τ ∧ t and Proposition 2,

e−β(τ∧t)f(X̄1(τ ∧ t), X̄2(τ ∧ t))− f(x1, x2)

≤ −
∫ τ∧t

0
ae−βsdL1(s)−

∫ τ∧t

0
(1− a)e−βsdL2(s)+M(τ ∧ t) (13)
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Figure 4. Optimal Strategy when initial value in area A

where M is a zero-expectation martingale. Hence,

f(x1, x2)≥E

[∫ τ∧t

0

ae−βsdL1(s)+

∫ τ∧t

0

(1− a)e−βsdL2(s)

]
. (14)

By the Monotone Convergence Theorem,

f(x1, x2)≥E

[∫ τ

0

ae−βsdL1(s)+

∫ τ

0

(1− a)e−βsdL2(s)

]
= VL,C(x1, x2). (15)

Let X̄∗
1 , X̄

∗
2 be the controlled surplus process with L∗ and C∗. For (x1, x2) ∈A, by Propositions

1 and 2, L(f) = 0, and L∗
2 = 0, L∗

1(s+)−L∗
1(s) = 0, and

e−β(τ∧t)f(X̄∗
1 (τ ∧ t), X̄∗

2 (τ ∧ t))− f(x1, x2)

= M(τ ∧ t)−
∫ τ∧t

0
ae−βsdL∗

1(s))

+
∫ τ∧t

0
(a− fx1(X̄

∗
1 (s−), X̄∗

2 (s−)))e−βsdL∗C
1 (s),

(16)

where ∫ τ∧t

0
(a− fx1(X̄

∗
1 (s−), X̄∗

2 (s−)))e−βsdL∗C
1 (s)

=
∫ τ∧t

0
(a− fx1(X̄

∗
1 (s), X̄

∗
2 (s)))e

−βsdL∗C
1 (s)

=
∫ τ∧t

0
(a− fx1(X̄

∗
1 (s), X̄

∗
2 (s)))e

−βs1{X̄∗
1 (s)+X̄∗

2 (s)=m}dL
∗C
1 (s)

= 0.

Since (X̄∗
1 (τ), X̄

∗
2 (τ)) = (0,0), we have

f(x1, x2)

= E[e−β(τ∧t)f(X̄∗
1 (τ ∧ t), X̄∗

2 (τ ∧ t))]+E[
∫ τ∧t

0
ae−βsdL∗

1(s))]

= E[e−βtf(X̄∗
1 (t), X̄

∗
2 (t))1{t<τ}] +E[

∫ τ∧t

0
ae−βsdL∗

1(s))].
(17)

Letting t tend to +∞, and using the Bounded Convergence Theorem and the Monotone Con-
vergence Theorem, we have

f(x1, x2) = VL∗,C∗(x1, x2).

For (x1, x2)∈B and (x1, x2)∈C, the equality holds trivially. �
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Remark 3. Comparing with the optimal strategy in one dimension, we claim without proof
that the optimal strategy for the collaborating business lines is to let line One always pay dividends
when the sum of the two surpluses reaches or excesses the threshold m. In the proposed optimal
strategy (L∗,C∗), when the sum of the two surpluses excesses the threshold m (Figure 2, 3), the
surplus is transferred to line One (Figure 2) and dividends are always paid by line One (Figure 2,
3). When the sum of the two surpluses reaches m, the excess is always paid by line One (Figure 4).
Since there is no transactions costs, the transfer of surplus from line Two to Line One can happen
freely at any time. Another optimal strategy is to keep the surplus in line Two at zero at any
time point by continuously transferring money to and from line One. This solution corresponds to
merging the two lines into line One and solving the problem as a one-dimensional problem.

4. Transaction Costs In this section, proportional transaction costs are considered when
cash flows between the two businesses, i.e., the controlled surplus processes are given by

X̄1(t) = X1(t)+C21(t)− kC12(t)−L1(t),
X̄2(t) = X2(t)+C12(t)− kC21(t)−L2(t),

where k > 1. The intuition is that whenever one business line is supported by the other business
line with 1 unit, it costs the supporting line k > 1 units. Upon the money transfer, k− 1 units are
lost by friction.

Remark 4. As V is the optimal value function, we conclude some facts without proof.

V (x1 +∆x,x2)−V (x1, x2)≥ a∆x, ∆x≥ 0,
V (x1, x2 +∆x)−V (x1, x2)≥ (1− a)∆x, ∆x≥ 0,
V (x1 +∆x,x2 − k∆x)−V (x1, x2)≤ 0, ∆x≥ 0,
V (x1 − k∆x,x2 +∆x)−V (x1, x2)≤ 0, ∆x≥ 0.

The corresponding HJB equation becomes

0 = max
(
L(V )(x1, x2), a− ∂V

∂x1
(x1, x2), (1− a)− ∂V

∂x2
(x1, x2),

∂V
∂x1

(x1, x2)− k ∂V
∂x2

(x1, x2),
∂V
∂x2

(x1, x2)− k ∂V
∂x1

(x1, x2)
)
,

0 = V (0,0).

(18)

If we take k = 1, the model reduces to the special case without transaction costs discussed in
Section 2.

Using a similar argument as in Proposition 1 and the Mean Value Theorem in two variables, we
obtain the following result.

Proposition 3. Let X̄1, X̄2 be the controlled surplus processes with control (L,C) and initial
values x1, x2. For any twice continuously differentiable function ψ on R2

+ and a finite stopping time
τ ∗ ≤ τ , if one of the following two conditions holds, (1) X̄1, X̄2 are bounded; (2) ψ has bounded
first derivatives, we have

e−βτ∗ψ(X̄1(τ
∗), X̄2(τ

∗))−ψ(x1, x2)

=
∫ τ∗

0
e−βsL(ψ)(X̄1(s−), X̄2(s−))ds+M(τ ∗)

+
∫ τ∗

0
e−βs[ψx1(X̄1(s−), X̄2(s−))− kψx2(X̄1(s−), X̄2(s−))]dCC

21(s)

+
∫ τ∗

0
e−βs[ψx2(X̄1(s−), X̄2(s−))− kψx1(X̄1(s−), X̄2(s−))]dCC

12(s)
+
∑

X̄1(s−)̸=X̄1(s),X̄2(s−)̸=X̄2(s),s≤τ∗ e
−βs[ψ(X̄1(s), X̄2(s))−ψ(X̄1(s−), X̄2(s−))]

−
∫ τ∗

0
ae−βsdL1(s)−

∫ τ∗

0
(1− a)e−βsdL2(s)

+
∫ τ∗

0
(a−ψx1(X̄1(s−), X̄2(s−)))e−βsdLC

1 (s)

+
∑

L1(s+) ̸=L1(s),s<τ∗
∫ L1(s+)−L1(s)

0
(a−ψx1(X̄1(s)−α, X̄2(s)))e

−βsdα

+
∫ τ∗

0
((1− a)−ψx2(X̄1(s−), X̄2(s−)))e−βsdLC

2 (s)

+
∑

L2(s+) ̸=L2(s),s<τ∗
∫ L2(s+)−L2(s)

0
((1− a)−ψx2(X̄1(s+), X̄2(s)−α))e−βsdα,

(19)
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where M is a martingale and LC
i ,C

C
ij are the continuous parts of Li,Cij.

If X̄1(s)> X̄1(s−),

ψ(X̄1(s), X̄2(s))−ψ(X̄1(s−), X̄2(s−)) = (ψx1(ξ)− kψx2(ξ))(X̄1(s)− X̄1(s−)),

where ξ = (1− ι)(X̄1(s−), X̄2(s−))+ ι(X̄1(s), X̄2(s)) and ι∈ [0,1].
If X̄1(s)< X̄1(s−),

ψ(X̄1(s), X̄2(s))−ψ(X̄1(s−), X̄2(s−)) = (ψx2(ζ)− kψx1(ζ))(X̄2(s)− X̄2(s−)),

where ζ = (1−ϑ)(X̄1(s−), X̄2(s−))+ϑ(X̄1(s), X̄2(s)) and ϑ∈ [0,1].

We next describe some properties of the optimal value function.

Proposition 4. The optimal value function V is locally bounded and continuous in R2
+.

Proof. For k = 1, we have proved that V is locally bounded in R2
+. Hence when k ≥ 1, V is

locally bounded trivially. Apparently, V is increasing both in x1 and x2.
For h1, h2 ∈ [0,min(x1/2, x2/2)), consider the following strategy (L,C) and let (X̄1, X̄2) be the

controlled surplus process associated with (L,C). With initial surplus (x1, x2), pay no dividends
until τ̄ := inf{t≥ 0 : X̄1(t)≥ x1+h1 and X̄2(t)≥ x2+h2}. At τ̄ , pay (X̄1(t)−(x1+h1))

+ to Business
One and (X̄2(t)− (x2 +h2))

+ to Business Two. Then

V (x1, x2)≥E(1{τ̄<τ}e
−βτ̄∧τ )V (x1 +h1, x2 +h2).

Hence,

0≤ V (x1 +h1, x2 +h2)−V (x1, x2)≤
(

1

E(1{τ̄<τ}e−βτ̄∧τ )
− 1

)
V (x1, x2).

As V (x1, x2) is locally bounded, when h1, h2 → 0, τ̄ ∧ τ → 0 and 1{τ̄<τ} → 1,

V (x1 +h1, x2 +h2)−V (x1, x2)→ 0.

For h1, h2 ∈ (−min(x1/2, x2/2),0], consider the following strategy (L
′
,C

′
) and let (X̄

′
1, X̄

′
2) be

the controlled surplus process associated with (L
′
,C

′
). With initial surplus (x1 +h1, x2 +h2), pay

no dividends until τ̂ := inf{t≥ 0 : X̄
′
1(t)≥ x1 and X̄

′
2(t)≥ x2}. At τ̂ , pay (X̄

′
1(t)−x1)

+ to Business
One and (X̄

′
2(t)−x2)

+ to Business Two. Then

V (x1 +h1, x2 +h2)≥E(1{τ̂<τ}e
−βτ̂∧τ )V (x1, x2).

Hence,

0≤ V (x1, x2)−V (x1 +h1, x2 +h2) ≤
(

1
E(1{τ̂<τ}e−βτ̂∧τ )

− 1
)
V (x1 +h1, x2 +h2)

≤
(

1
E(1{τ̂<τ}e−βτ̂∧τ )

− 1
)
V (x1, x2).

As V (x1, x2) is locally bounded, when h1, h2 → 0, τ̂ ∧ τ → 0 and 1{τ̂<τ} → 1,

V (x1, x2)−V (x1 +h1, x2 +h2)→ 0.

For h1 > 0, h2 < 0,

V (x1, x2 +h2)≤ V (x1 +h1, x2 +h2)≤ V (x1 +h1, x2).

When h1, h2 → 0,
V (x1 +h1, x2 +h2)→ V (x1, x2).

A similar argument can be applied to the case h1 < 0, h2 > 0.
To conclude, V is continuous in R2

+. �
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Definition 1. A continuous function ū(u
¯
) :R2

+ →R is a viscosity supersolution (subsolution)
of (18) at (x1, x2)∈R2

+ if any twice continuously differentiable function φ :R2
+ →R with φ(x1, x2) =

ū(x1, x2) (u
¯
(x1, x2)) such that ū−φ (u

¯
−φ) reaches the minimum (maximum) at (x1, x2) satisfies

max
(
L(φ)(x1, x2), a− ∂φ

∂x1
(x1, x2), (1− a)− ∂φ

∂x2
(x1, x2),

∂φ
∂x1

(x1, x2)− k ∂φ
∂x2

(x1, x2),
∂φ
∂x2

(x1, x2)− k ∂φ
∂x1

(x1, x2)
)
≤ 0(≥ 0).

Proposition 5. The optimal value function V is a viscosity supersolution of (18).

Proof. Let φ be a test function. Assume (x1, x2) is the minimum point of V − φ satisfying
V (x1, x2) =φ(x1, x2). For any fixed l1, l2,∆x1,∆x2 > 0 and B1 >x1,B2 >x2, consider the following
strategy (L,C) and let (X̄1, X̄2) be the controlled surplus process associated with (L,C). With
initial surplus level (x1, x2), line One keeps paying dividends at rate l1 and transferring money
to line Two at rate ∆x1 until time τ̄ , where τ̄ := inf{t ≥ 0 : X̄1(t) = 0 or X̄2(t) = 0 or X̄1(t) ≥
B1 or X̄1(t)≥B2}. Similarly, line Two keeps paying dividends at rate l2 and transferring money
to line One at rate ∆x2 until time τ̄ . Then,

φ(x1, x2) = V (x1, x2) ≥ Ex1,x2

(
a
∫ τ̄∧t

0
e−βsl1ds+(1− a)

∫ τ̄∧t

0
e−βsl2ds

)
+Ex1,x2

(
e−βτ̄∧tV (X̄1(τ̄ ∧ t), X̄2(τ̄ ∧ t))

)
≥ Ex1,x2

(
a
∫ τ̄∧t

0
e−βsl1ds+(1− a)

∫ τ̄∧t

0
e−βsl2ds

)
+Ex1,x2

(
e−βτ̄∧tφ(X̄1(τ̄ ∧ t), X̄2(τ̄ ∧ t))

)
.

(20)

By Itô’s formula and the optional sampling theorem and temporarily denote by φ(s) =
φ(X̄1(s), X̄2(s)), we have

Ex1,x2

(
e−βτ̄∧tφ(X̄1(τ̄ ∧ t), X̄2(τ̄ ∧ t))

)
−φ(x1, x2)

= Ex1,x2

(∫ τ̄∧t

0
e−βsL(φ)(s)ds

)
+Ex1,x2

(∫ τ̄∧t

0
e−βs[φx1(s)(−l1 +∆x2 − k∆x1)+φx2(s)(−l2 +∆x1 − k∆x2)]ds

)
.

(21)

By substituting (21) into (20), cancelling out the term φ(x1, x2) and collecting the other terms, we
have

0≥ lim
t↓0

Ex1,x2(
∫ τ̄∧t

0
e−βsL(φ)(s)ds)
t

+lim
t↓0

Ex1,x2(
∫ τ̄∧t

0
e−βs[(a−φx1(s))l1 +(φx1(s)− kφx2(s))∆x2]ds)

t

+lim
t↓0

Ex1,x2(
∫ τ̄∧t

0
e−βs[(1− a−φx2(s))l2 +(φx2(s)− kφx1(s))∆x1]ds)

t
or

0≥ L(φ)(x1, x2)+ l1(a−φx1)(x1, x2)+ l2(1− a−φx2(x1, x2))
+∆x2(φx1 − kφx2)(x1, x2)+∆x1(φx2 − kφx1)(x1, x2)

By letting l1 = l2 = ∆x1 = ∆x2 = 0, we have 0 ≥ L(φ)(x1, x2). Similarly, by letting l1 → ∞, l2 =
∆x1 =∆x2 = 0 and ∆x1 →∞, l2 = l1 =∆x2 = 0 and l2 →∞, l1 =∆x1 =∆x2 = 0 and ∆x2 →∞, l2 =
l1 =∆x1 = 0, the result follows. �

To prove V is a viscosity subsolution, we first prove a lemma that contains the main ingredients
in the proof of Proposition 6. The proof of Lemma 1 is deferred to Appendix.

Lemma 1. If the optimal value function V is not a viscosity subsolution of (18) at (x1, x2) ∈
R2

+, then there exist ϵ > 0, h ∈ (0,min(x1/2, x2/2)) and twice continuously differentiable functions
ψ,ϕ :R2

+ →R such that
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1. ψx1 ≥ a,ψx2 ≥ 1− a for (x, y)∈ [0, x1 +h]× [0, x2 +h],
2. ψx1 − kψx2 ≤ 0,ψx2 − kψx1 ≤ 0,L(ψ)≤−ϵβ for (x,y)∈ [x1 −h,x1 +h]× [x2 −h,x2 +h],
3. V ≤ψ− ϵ for (x, y)∈ [0, x1 +x2 +2h]× [0, x1 +x2 +2h] \ (x1 −h,x1 +h)× (x2 −h,x2 +h),
4. V (x1, x2) =ψ(x1, x2), and
5. ϕx1 − kϕx2 ≤ 0 for (x, y) ∈ (x1 − h,x1 + x2 + 2h] × [0, x2 + h), ϕx2 − kϕx1 ≤ 0 for (x, y) ∈

[0, x1 +h]× (x2 −h,x1 +x2 +2h).
6. ϕx1 ≥ a,ϕx2 ≥ 1− a,L(ϕ)≤−ϵβ for (x, y)∈ [x1 −h,x1 +h]× [x2 −h,x2 +h],
7. V ≤ ϕ− ϵ for (x, y)∈ [0, x1 +x2 +2h]× [0, x1 +x2 +2h] \ (x1 −h,x1 +h)× (x2 −h,x2 +h),
8. V (x1, x2) = ϕ(x1, x2).

Proposition 6. The optimal value function V is a viscosity subsolution of (18).

Proof. We prove by contradiction. Assume that V is not a viscosity subsolution at (x1, x2)∈R2
+.

let (X̄1, X̄2) be the controlled surplus process associated with any control (L,C). Define τ̄ := inf{t >
0 : (X̄1(t), X̄2(t)) /∈ (x1−h,x1+h)× (x2−h,x2+h)}. Since (0,0) /∈ (x1−h,x1+h)× (x2−h,x2+h)
and τ = inf{t≥ 0 : X̄1(t) = 0 and X̄2(t) = 0}, we have τ ≥ τ̄ .

• If (X̄1(τ̄), X̄2(τ̄)) /∈ (x1 − h,x1 + h)× (x2 − h,x2 + h), then (X̄1(τ̄), X̄2(τ̄)) ∈ (x1 − h,x1 + x2 +
2h]× [0, x2 + h) \ (x1 − h,x1 + h)× (x2 − h,x2 + h) if X̄1(τ̄)− X̄1(τ̄−) > 0 and (X̄1(τ̄), X̄2(τ̄)) ∈
[0, x1 + h)× (x2 − h,x1 + x2 + 2h] \ (x1 − h,x1 + h)× (x2 − h,x2 + h) if X̄2(τ̄)− X̄2(τ̄−) > 0 and
(X̄1(t), X̄2(t))∈ (x1 −h,x1 +h)× (x2 −h,x2 +h) for t∈ [0, τ̄). By Proposition 3 and Lemma 1,

e−βτ̄ϕ(X̄1(τ̄), X̄2(τ̄)−ϕ(x1, x2)

≤
∫ τ̄

0
e−βsL(ϕ)ds− a

∫ τ̄

0
e−βsdL1(s)− (1− a)

∫ τ̄

0
e−βsdL2(s)+M(τ̄)

≤
∫ τ̄

0
e−βs(−ϵβ)ds− a

∫ τ̄

0
e−βsdL1(s)− (1− a)

∫ τ̄

0
e−βsdL2(s)+M(τ̄),

(22)

where M is a zero-expectation martingale.
• If (X̄1(τ̄), X̄2(τ̄)) ∈ (x1 − h,x1 + h)× (x2 − h,x2 + h), then (X̄1(τ̄+), X̄2(τ̄+)) ∈ [0, x1 + h]×

[0, x2 +h] \ (x1 −h,x1 +h)× (x2 −h,x2 +h) and (X̄1(t), X̄2(t)) ∈ (x1 −h,x1 +h)× (x2 −h,x2 +h)
for t∈ [0, τ̄ ]. By Proposition 3 and Lemma 1,

e−βτ̄ψ(X̄1(τ̄), X̄2(τ̄))−ψ(x1, x2)

≤
∫ τ̄

0
e−βsL(ψ)ds− a

∫ τ̄

0
e−βsdL1(s)− (1− a)

∫ τ̄

0
e−βsdL2(s)+M(τ̄),

and
e−βτ̄ψ(X̄1(τ̄+), X̄2(τ̄+))−ψ(x1, x2)

≤
∫ τ̄

0
e−βsL(ψ)ds− a

∫ τ̄+

0
e−βsdL1(s)− (1− a)

∫ τ̄+

0
e−βsdL2(s)+M(τ̄)

≤
∫ τ̄

0
e−βs(−ϵβ)ds− a

∫ τ̄+

0
e−βsdL1(s)− (1− a)

∫ τ̄+

0
e−βsdL2(s)+M(τ̄).

(23)

Further, ϕ(x1, x2) =ψ(x1, x2) = V (x1, x2).

V (x1, x2)
= supL,C Ex1,x2(a

∫ τ

0
e−βsdL1(s)+ (1− a)

∫ τ

0
e−βsdL2(s))

= supL,C Ex1,x2


1(X̄1(τ̄),X̄2(τ̄))/∈(x1−h,x1+h)×(x2−h,x2+h)

×(e−βτ̄V (X̄1(τ̄), X̄2(τ̄))+ a
∫ τ̄

0
e−βsdL1(s)+ (1− a)

∫ τ̄

0
e−βsdL2(s))

+1(X̄1(τ̄),X̄2(τ̄))∈(x1−h,x1+h)×(x2−h,x2+h)

×(e−βτ̄V (X̄1(τ̄+), X̄2(τ̄+))+ a
∫ τ̄+

0
e−βsdL1(s)+ (1− a)

∫ τ̄+

0
e−βsdL2(s))


≤ supL,C Ex1,x2


1(X̄1(τ̄),X̄2(τ̄))/∈(x1−h,x1+h)×(x2−h,x2+h)

×(e−βτ̄ϕ(X̄1(τ̄), X̄2(τ̄))− ϵ)+ a
∫ τ̄

0
e−βsdL1(s)+ (1− a)

∫ τ̄

0
e−βsdL2(s))

+1(X̄1(τ̄),X̄2(τ̄))∈(x1−h,x1+h)×(x2−h,x2+h)

×(e−βτ̄ψ(X̄1(τ̄+), X̄2(τ̄+))− ϵ)+ a
∫ τ̄+

0
e−βsdL1(s)+ (1− a)

∫ τ̄+

0
e−βsdL2(s))


≤ V (x1, x2)+Ex1,x2(−ϵe−βτ̄ − ϵβ

∫ τ̄

0
e−βsds)

= V (x1, x2)− ϵ.
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The second equality above is due to dynamic programming, the first inequality is due to conditions
3 and 7 in Lemma 1. and the second inequality is due to inequalities (22) and (23). We come to a
contradiction. �

We summarize the results in Propositions 4, 5 and 6 into the following theorem.

Theorem 2. The optimal value function V is a continuous viscosity solution of (18).

To understand uniqueness of the viscosity solution, we adopt the technique used in Song and
Zhu (2014) by constructing an auxiliary viscosity super- and subsolution to a variational inequality.
The following lemma gives the construction method, where its proof is similar to that in Song and
Zhu (2014).

Lemma 2. Let

ū′(x1, x2) = e−λ(x1+x2)ū(x1, x2),u
¯

′(x1, x2) = e−λ(x1+x2)u
¯
(x1, x2), (24)

for any (x1, x2) ∈R2
+, where λ > 0. Then ū (u

¯
) is a viscosity supersolution (subsolution) of HJB

equation (18) if and only if ū′ (u
¯

′) is a viscosity supersolution (subsolution) of

0 =max{ Hλ(x, V,DV ,D
2
V ), a− eλ(x1+x2)(λV + ∂V

∂x1
),1− a− eλ(x1+x2)(λV + ∂V

∂x2
),

λ(1− k)V + ∂V
∂x1

− k ∂V
∂x2

, λ(1− k)V + ∂V
∂x2

− k ∂V
∂x1

} (25)

where x= (x1, x2)
T and

Hλ(x, p, q,A) =
1
2
tr((σ2

1, σ
2
2)A)+ (µ1 +λσ2

1, µ2 +λσ2
2) · q

+(µ1λ+µ2λ+
1
2
λ2σ2

1 +
1
2
λ2σ2

2 −β)p,
(26)

for (x, p, q,A)∈R2
+×R×R2×S2, where Sn denotes the set of n×n symmetric matrices with real

entries.

Proposition 7. Let ū, u
¯

be respectively viscosity super- and subsolution to the HJB equation
(18) and satisfy

|ū(x1, x2)|+ |u
¯
(x1, x2)| ≤ κ(1+ |x|p), (27)

for any x = (x1, x2)
T ∈ R2

+, where κ and p be positive constants. If subsolution u
¯

is less than or
equal to supersolution ū at the boundary of R2

+, then we have

ū(x1, x2)≥ u
¯
(x1, x2)

for any x∈R2
+.

We call a function u(x1, x2),x= (x1, x2)
T ∈R2

+ satisfies the natural growth condition if

|u(x1, x2)| ≤ κ(1+ |x|p), (28)

where κ and p be positive constants. To prove Proposition 7, one need to make use of the concept
superjets and subjets and verify the comparison principle, we refer the readers to Grandall, Ishii
and Lions(1992) and Pham(2000) for technical details.

Proof. Suppose by contrary that

L := sup
x∈R2

+

[u
¯
(x1, x2)− ū(x1, x2)]> 0.

Define ū′, u
¯
′ as in (24), where λ is a positive constant to be determined later. According to (28),

we have
lim

x1,x2→+∞
|ū′(x1, x2)|+ |u

¯
′(x1, x2)|= 0
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Due to continuity of ū′ and u
¯
′, there exists a b > 0, such that

L̃ := sup
x∈R2

+

[u
¯
′(x1, x2)− ū′(x1, x2)] = max

x∈[0,b]2
[u
¯
′(x1, x2)− ū′(x1, x2)]> 0.

Fix a ε∈ (0,1). Set

ωε(x,y) = u
¯
′(x)− ū′(y)− 1

ε
|x−y|2,

where x,y ∈ [0, b]2. Assume that ωε achieves its maximum at (xε,yε). As ε→ 0, there exists a
x̂∈ [0, b]2 such that xε,yε → x̂. For any x∈ [0,b],

u
¯
′(xε)− ū′(yε)≥ ωε(xε,yε)≥ ωε(x,x),

hence u
¯
′(x̂)− ū′(x̂) = L̃. Note that L̃ > 0 and u

¯
′ ≤ ū′ at the boundary of R2

+, we have x̂ is in the
interior of R2

+ and therefore (xε,yε) is in the interior of R2
+ if ε is sufficiently small. Also, since

ωε(xε,yε)≥ ωε(x̂, x̂),

we have

u
¯
′(xε)− ū′(yε)−u

¯
′(x̂)+ ū′(x̂)≥ 1

ε
|xε −yε|2.

It follows that

lim
ε→0

1

ε
|xε −yε|2 = 0,

and therefore as ε→ 0
yiε = xiε + o(

√
ε), i= 1,2. (29)

The function x 7→ u
¯
′(x)− ϕ1(x), x ∈ [0, b]2 achieves its maximum at xε, where ϕ1(x) = ū′(yϵ) +

1
ε
|x− yε|2. As u

¯
′ is a viscosity subsolution to (25) and by Ishii’s Lemma, we know that for some

M ∈ S2, (Dϕ1
(xε),M)∈ P̄2,+u

¯
′(xε)(the second-order ”superjet” of u

¯
′ at xε), where

Dϕ1
(x) =−2

ε
(yε −x),

and

0≤max{ Hλ(xε,u
¯
′(xε),Dϕ1

(xε),M), a− eλ(x1ε+x2ε)(λu
¯
′(xε)− 2

ε
(y1ε −x1ε),

1− a− eλ(x1ε+x2ε)(λu
¯
′(xε)− 2

ε
(y2ε −x2ε), λ(1− k)u

¯
′(xε)− 2

ε
((y1ε − ky2ε)− (x1ε − kx2ε)),

λ(1− k)u
¯
′(xε)− 2

ε
((y2ε − ky1ε)− (x2ε − kx1ε)) } .

Therefore, either
Hλ(xε,u

¯
′(xε),Dϕ1

(xε),M)≥ 0, (30)

or

max{ a− eλ(x1ε+x2ε)(λu
¯
′(xε)− 2

ε
(y1ε −x1ε),1− a− eλ(x1ε+x2ε)(λu

¯
′(xε)− 2

ε
(y2ε −x2ε),

λ(1− k)u
¯
′(xε)− 2

ε
((y1ε − ky2ε)− (x1ε − kx2ε)), λ(1− k)u

¯
′(xε)− 2

ε
((y2ε − ky1ε)− (x2ε − kx1ε)) } ≥ 0,

(31)
holds.

On the other hand, the function y 7→ ū′(y)−ϕ2(y), y ∈ [0, b]2 achieves its minimum at yε, where
ϕ2(y) = u

¯
′(xϵ)− 1

ε
|y − xε|2. As ū′ is a viscosity supersolution to (25) and by Ishii’s Lemma, we

know that for some N ∈ S2, such that (Dϕ2
(yε),N) ∈ P̄2,−ū′(yε)(the second-order ”subjet” of ū′

at xε), where

Dϕ2
(y) =−2

ε
(y−xε),
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and

0≥max{ Hλ(yε, ū
′(yε),Dϕ2

(yε),N), a− eλ(y1ε+y2ε)(λū′(yε)− 2
ε
(y1ε −x1ε),

1− a− eλ(y1ε+y2ε)(λū′(xε)− 2
ε
(y2ε −x2ε), λ(1− k)ū′(yε)− 2

ε
((y1ε − ky2ε)− (x1ε − kx2ε)),

λ(1− k)ū′(yε)− 2
ε
((y2ε − ky1ε)− (x2ε − kx1ε)) } .

(32)
Case I: if (31) is true, combining (32), we have

0≤max{ eλ(y1ε+y2ε)(λū′(yε)− 2
ε
(y1ε −x1ε))− eλ(x1ε+x2ε)(λu

¯
′(xε)− 2

ε
(y1ε −x1ε)),

eλ(y1ε+y2ε)(λū′(yε)− 2
ε
(y2ε −x2ε))− eλ(x1ε+x2ε)(λu

¯
′(xε)− 2

ε
(y2ε −x2ε)),

λ(1− k)(u
¯
′(xε)− ū′(yε)) } .

As k > 1, we have either
u
¯
′(xε)− ū′(yε)≤ 0, (33)

or

max{ eλ(y1ε+y2ε)(λū′(yε)− 2
ε
(y1ε −x1ε))− eλ(x1ε+x2ε)(λu

¯
′(xε)− 2

ε
(y1ε −x1ε)),

eλ(y1ε+y2ε)(λū′(yε)− 2
ε
(y2ε −x2ε))− eλ(x1ε+x2ε)(λu

¯
′(xε)− 2

ε
(y2ε −x2ε)) } ≥ 0.

(34)

(34) is equivalent to

λ(u
¯
(xε)− ū(yε))

≤ max{ 2
ε
(eλ(x1ε+x2ε) − eλ(y1ε+y2ε))(y1ε −x1ε),

2
ε
(eλ(x1ε+x2ε) − eλ(y1ε+y2ε))(y2ε −x2ε)) }

(35)

Let ε→ 0, due to (29), (35) becomes

λ(u
¯
(x̂)− ū(x̂))≤ 0,

and (33) becomes
u
¯
′(x̂)− ū′(x̂)≤ 0.

Therefore, in both cases (33) and (34) we have

L̃=u
¯
′(x̂)− ū′(x̂)≤ 0.

Case I is impossible.
Case II: if (30) is true, combining (32), we have

Hλ(xε,u
¯
′(xε),Dϕ1

(xε),M)−Hλ(yε,u
¯
′(yε),Dϕ2

(yε),N)≥ 0,

which is equivalent to

1

2
tr((σ2

1, σ
2
2)(M −N))+ (µ1λ+µ2λ+

1

2
λ2σ2

1 +
1

2
λ2σ2

2 −β)(u
¯
′(xε)− ū′(yε))≥ 0.

We choose λ to be sufficiently close to 0 such that

µ1λ+µ2λ+
1

2
λ2σ2

1 +
1

2
λ2σ2

2 −β < 0.

By virtue of Ishii’s lemma,

lim
ε→0

1

2
tr((σ2

1, σ
2
2)(M −N)) = 0.

Therefore, let ε→ 0, we have
L̃=u

¯
′(x̂)− ū′(y)≤ 0.

Case II is impossible. This contradicts to the assumption that L= supx∈R2
+
[u
¯
(x1, x2)− ū(x1, x2)]>

0. To summarize, for any x∈R2
+, u¯

(x1, x2)− ū(x1, x2)≤ 0. �
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Remark 5. There is no uniqueness of the viscosity solution of HJB equation (18) if the bound-
ary condition is not given. We can illustrate this with functions f in (7) and fsym in (36). It is easy
to verify that f satisfies (18) and is twice continuously differentiable, and therefore is a viscosity
solution. fsym is the optimal value function for a symmetric case (see Proposition 11) and therefore
is a viscosity solution of (18) (see Theorem 2). It is obvious that f and fsym are different even
though they are both viscosity solutions of (18) and satisfy some polynomial growth conditions.
The reason for this non-uniqueness is that f and fsym have different values at the boundary of R2

+.
In fact, even for no-transaction cost case (k= 1), we have infinitely many smooth solutions of HJB
equation (18) by replacing coefficient a in f with any c greater than or equal to a. Since there is
no priori boundary condition for the optimal value function, we cannot imply a feasible viscosity
solution of (18) is the optimal value function using Proposition 7.

The following proposition characterizes the viscosity solution to the HJB equation (18) and the
optimal control. Define a family of continuous functions {u :R2

+ →R} as C̃2
a.e, if each u satisfies

• u(0,0) = 0,
• u has bounded and continuous first derivatives a.e.,
• ∂u

∂x1
, ∂u

∂x2
are non-increasing in x1 and x2 respectively a.e.,

• u has bounded and continuous second derivatives a.e.

Proposition 8. For any control (L,C) and initial value (x1, x2)∈R2
+, the corresponding value

function VL,C(x1, x2) is bounded above by any viscosity supersolution ū∈ C̃2
a.e.

Proof. Let ū ∈ C̃2
a.e be a viscosity supersolution of (18). Suppose ū is twice differentiable at

(x1, x2)∈R2
+. Then ū can be approximated at (x, y) near (x1, x2) as follows:

ū(x, y) = ū(x1, x2)+ ūx1(x1, x2)(x−x1)+ ūx2(x1, x2)(y−x2)
+ 1

2
ūx1x1(x1, x2)(x−x1)

2 + 1
2
ūx2x2(x1, x2)(y−x2)

2

+ 1
2
ūx1x2(x1, x2)(x−x1)(y−x2)+

1
2
ūx2x1(x1, x2)(x−x1)(y−x2)

+o((x−x1)
2 +(y−x2)

2).

Define, when (x−x1)
2 +(y−x2)

2 is sufficiently small,

φn(x, y) = ū(x1, x2)+ ūx1(x1, x2)(x−x1)+ ūx2(x1, x2)(y−x2)
+ 1

2
(ūx1x1(x1, x2)− 1

n
)(x−x1)

2 + 1
2
(ūx2x2(x1, x2)− 1

n
)(y−x2)

2

+ 1
2
ūx1x2(x1, x2)(x−x1)(y−x2)+

1
2
ūx2x1(x1, x2)(x−x1)(y−x2).

Hence ū(x1, x2) = φn(x1, x2) and ū− φn ≥ 0 in a neighborhood of (x1, x2). As ū is continuous in
R2

+, we can extend φn to R2
+ such that φn is twice continuously differentiable and ū−φn reaches

its minimum at (x1, x2) in R2
+. Therefore, φn is a test function of ū in (x1, x2). We have

L(φn)(x1, x2)≤ 0,
a− ∂φn

∂x1
(x1, x2)≤ 0, (1− a)− ∂φn

∂x2
(x1, x2)≤ 0,

∂φn

∂x1
(x1, x2)− k ∂φn

∂x2
(x1, x2)≤ 0, ∂φn

∂x2
(x1, x2)− k ∂φn

∂x1
(x1, x2)≤ 0,

Let n→∞,
L(ū)(x1, x2)≤ 0,
a− ∂ū

∂x1
(x1, x2)≤ 0, (1− a)− ∂ū

∂x2
(x1, x2)≤ 0,

∂ū
∂x1

(x1, x2)− k ∂ū
∂x2

(x1, x2)≤ 0, ∂ū
∂x2

(x1, x2)− k ∂ū
∂x1

(x1, x2)≤ 0.

Since ū is twice differentiable a.e. in R2
+, we have

L(ū)(x,y)≤ 0,
a− ∂ū

∂x1
(x, y)≤ 0, (1− a)− ∂ū

∂x2
(x, y)≤ 0,

∂ū
∂x1

(x, y)− k ∂ū
∂x2

(x, y)≤ 0, ∂ū
∂x2

(x,y)− k ∂ū
∂x1

(x, y)≤ 0,
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a.e. in R2
+. Let ϕ(x, y) be a non-negative continuously differentiable function with support in

(0,1)× (0,1) such that
∫ 1

0

∫ 1

0
ϕ(x, y)dxdy= 1. We define ūn :R2

+ →R as the convolution:

ūn(x, y) =

∫ ∞

−∞

∫ ∞

−∞
ū(x+ s, y+ t)n2ϕ(ns,nt)dsdt.

Then by standard technique,
• ūn is twice continuously differentiable in R2

+.
• ūn → ū in a compact set in R2

+ and

∂ūn
∂x1

→ ∂ū
∂x1

, ∂ūn
∂x2

→ ∂ū
∂x2

, ∂ū2
n

∂2x1
→ ∂ū2

∂2x1
, ∂ū2

n
∂2x2

→ ∂ū2

∂2x2
,

a.e. in R2
+.

We also claim the following inequalities.
•

L(ūn)(x, y)≤ 0,
a− ∂ūn

∂x1
(x, y)≤ 0, (1− a)− ∂ūn

∂x2
(x, y)≤ 0,

∂ūn
∂x1

(x, y)− k ∂ūn
∂x2

(x, y)≤ 0, ∂ūn
∂x2

(x, y)− k ∂ūn
∂x1

(x, y)≤ 0,

in R2
+.

For any ∆x, due to the absolute continuity of ū , we have

ūn(x+∆x, y)− ūn(x, y)

=
∫∞
−∞

∫∞
−∞

(∫ ∆x

0
∂ū
∂x1

(x+ ξ+ s, y+ t)dξ
)
n2ϕ(ns,nt)dsdt.

Then by the almost everywhere continuity of ∂ū
∂x1

,

∂ūn

∂x1

(x, y) =

∫ ∞

−∞

∫ ∞

−∞

∂ū

∂x1

(x+ s, y+ t)n2ϕ(ns,nt)dsdt.

By a similar argument,

∂ūn

∂x2

(x, y) =

∫ ∞

−∞

∫ ∞

−∞

∂ū

∂x2

(x+ s, y+ t)n2ϕ(ns,nt)dsdt.

Therefore, we can have

a− ∂ūn
∂x1

(x, y)≤ 0, (1− a)− ∂ūn
∂x2

(x, y)≤ 0,
∂ūn
∂x1

(x, y)− k ∂ūn
∂x2

(x, y)≤ 0, ∂ūn
∂x2

(x, y)− k ∂ūn
∂x1

(x, y)≤ 0,

in R2
+. For any ∆x> 0, as ∂ū

∂x1
is decreasing,

∂ūn
∂x1

(x+∆x,y)− ∂ūn
∂x1

(x, y)

≤
∫∞
−∞

∫∞
−∞

(∫ ∆x

0
∂2ū
∂x21

(x+ ξ+ s, y+ t)dξ
)
n2ϕ(ns,nt)dsdt.

By the almost everywhere continuity of ∂2ū
∂x21

,

∂2ūn

∂x2
1

(x, y)≤
∫ ∞

−∞

∫ ∞

−∞

∂2ū

∂x2
1

(x+ s, y+ t)n2ϕ(ns,nt)dsdt.

Similarly,
∂2ūn

∂x2
2

(x, y)≤
∫ ∞

−∞

∫ ∞

−∞

∂2ū

∂x2
2

(x+ s, y+ t)n2ϕ(ns,nt)dsdt.
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Therefore, we can have
L(ūn)(x, y)≤L(ū)(x,y)≤ 0

in R2
+. For any control (L,C), let (X̄1, X̄2) denote the corresponding controlled process. By Propo-

sition 3,
ūn(X̄1(t∧ τ), X̄2(t∧ τ))e−β(t∧τ) − ūn(x1, x2)

≤ M(t∧ τ)− a
∫ t∧τ

0
e−βsdL1(s)− (1− a)

∫ t∧τ

0
e−βsdL2(s),

where M is a zero-expectation martingale. Therefore,

ūn(x1, x2)≥Ex1,x2

(
a

∫ t∧τ

0

e−βsdL1(s)+ (1− a)

∫ t∧τ

0

e−βsdL2(s)

)
.

By the Monotone Convergence Theorem, when t→∞,

ū(x1, x2) = lim
n→∞

ūn(x1, x2)≥ VL,C(x1, x2).

�
Theorem 3. Consider a family of admissible strategies {(L,C)∈ πx1,x2 : (x1, x2)∈R2

+}. If the
function VL,C is a viscosity supersolution of (18) and VL,C ∈ C̃2

a.e, then VL,C is the optimal value
function.

5. The Symmetric Case In this section, we consider the symmetric surplus processes with
transaction costs, i.e., µ1 = µ2 = µ,σ1 = σ2 = σ,a= 1− a= 1/2. Let

fsym(x1, x2)

=



aC(eθ1(x1+kx2) − e−θ2(x1+kx2)), (x1, x2)∈A1,
aC(eθ1(x2+kx1) − e−θ2(x2+kx1)), (x1, x2)∈B1,
a[C(eθ1m − e−θ2m)+x1 + kx2 −m], (x1, x2)∈A2,
a[C(eθ1m − e−θ2m)+x2 + kx1 −m], (x1, x2)∈B2,
a[C(eθ1m − e−θ2m)+x2 +x1 − 2m

1+k
], (x1, x2)∈C,

(36)

where area Ai,Bi, i= 1,2,C are given in Figure 5, θ1,−θ2 are roots of the equation(
1

2
(1+ k2)σ2

)
θ2 +(1+ k)µθ−β = 0, (37)

with θ2 > θ1 > 0 and

m=
2(lnθ2 − lnθ1)

θ1 + θ2
,C =

1

θ1eθ1m + θ2e−θ2m
. (38)

A similar argument as in Proposition 2 yields the following result.

Proposition 9. Function fsym is continuous in R2
+ and differentiable and solves the HJB

equation (18) in each of the areas A1

∪
A2, B1

∪
B2 and C.

In what follows, we present a stationary strategy (L∗,C∗) with initial surpluses (x1, x2)∈R+
2 .

1. If (x1, x2)∈C, line Two pays dividend x2 − m
k+1

and line One pays dividend x1 − m
k+1

and we
go to 4.

2. If (x1, x2)∈A2, line One pays directly an amount x1 + kx2 −m as dividend and we go to 4.
3. If (x1, x2)∈B2, line Two pays directly an amount x2 + kx1 −m as dividend and we go to 5.
4. If (x1, x2) ∈A1, line One pays the accumulated amount maxs≤t{X̄1(s) + kX̄2(s)−m} up to

time t until the surplus process escapes from A1 , money is transferred from line One to line Two
automatically when X̄2 hits zero, and we go to 5 or the process hits (0,0).
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Figure 5. Symmetric Case

5. If (x1, x2) ∈B1, line Two pays the accumulated amount maxs≤t{X̄2(s) + kX̄1(s)−m} up to
time t until the surplus process escapes from B1 , money is transferred from line Two to line One
automatically when X̄1 hits zero, and we go to 4 or the process hits (0,0).

Proposition 10. The strategy (L∗,C∗) gives the value function fsym.

Proof. Let X̄1, X̄2 be the controlled surplus process with L∗ and C∗. For (x1, x2) ∈ A1, then
(X̄1(t), X̄2(t))∈A1

∪
B1 for any t≥ 0. Define τ0 = 0 and

τi := inf{τ ≥ t > τi−1 | (X̄1(t), X̄2(t))∈ {x1 = x2}}

Note that {τi} is an increasing sequence, τi ≤ τ for any i and τ ∈ {τi}. Hence, τi → τ .
Since X̄1, X̄2 are continuous stochastic processes, τi, i= 1,2, . . . are stopping times. By Proposi-

tion 9 and a similar argument as in Proposition 3, for i= 1,2, . . . , we have

e−βτi+1∧τ∧tfsym(X̄1(τi+1 ∧ τ ∧ t), X̄2(τi+1 ∧ τ ∧ t))
−e−βτi∧τ∧tfsym(X̄1(τi ∧ τ ∧ t), X̄2(τi ∧ τ ∧ t))

= −
∫ τi+1∧τ∧t

τi∧τ∧t
ae−βsdL∗

1(s)−
∫ τi+1∧τ∧t

τi∧τ∧t
(1− a)e−βsdL∗

2(s)+M(τi+1 ∧ τ ∧ t)−M(τi ∧ τ ∧ t)

where M is zero-expectation martingale. Therefore, for i= 1,2, . . . ,

e−βτi∧τ∧tfsym(X̄1(τi ∧ τ ∧ t), X̄2(τi ∧ τ ∧ t))− fsym(x1, x2)

= −
∫ τi∧τ∧t

0
ae−βsdL∗

1(s)−
∫ τi∧τ∧t

0
(1− a)e−βsdL∗

2(s)+M(τi ∧ τ ∧ t).

and
fsym(x1, x2)

= E(
∫ τi∧τ∧t

0
ae−βsdL∗

1(s)+
∫ τi∧τ∧t

0
(1− a)e−βsdL∗

2(s))
+E(e−βτi∧τ∧tfsym(X̄1(τi ∧ τ ∧ t), X̄2(τi ∧ τ ∧ t))).
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Letting i→∞ and t→∞, τi → τ ,

fsym(x1, x2) = VL∗,C∗(x1, x2).

�
We verify that fsym gives the optimal value function in the following proposition.

Proposition 11. The strategy (L∗,C∗) is the optimal strategy and the function fsym gives the
optimal value function in the symmetric case.

Proof. One can easily check that fsym ∈ C̃2
a.e. From Proposition 9, fsym is a viscosity supersolution

of the HJB equation (18) in each of the areas A1 ∪A2, B1 ∪B2 and C. Note that at any (x1, x2)
belongs to the segment A1 ∪A2

∩
B1 ∪B2 or A1 ∪A2

∩
C or B1 ∪B2

∩
C, fsym is continuous but

not differentiable and the following two inequalities hold.

lim
δx↗0

fsym(x1 + δx,x2)− fsym(x1, x2)

δx
> lim

δx↘0

fsym(x1 + δx,x2)− fsym(x1, x2)

δx
(39)

lim
δx↗0

fsym(x1, x2 + δx)− fsym(x1, x2)

δx
> lim

δx↘0

fsym(x1, x2 + δx)− fsym(x1, x2)

δx
(40)

Assume that φ is a test function at (x1, x2). We have φ(x1, x2) = fsym(x1, x2) and φ(x, y) <
fsym(x,y) for (x, y) ̸= (x1, x2).

limδx↗0
φ(x1,x2+δx)−φ(x1,x2)

δx
≥ limδx↗0

fsym(x1,x2+δx)−fsym(x1,x2)

δx

> limδx↘0
fsym(x1,x2+δx)−fsym(x1,x2)

δx
≥ limδx↘0

φ(x1,x2+δx)−φ(x1,x2)

δx

This means φ is not differentiable at (x1, x2), which contradicts φ is a test function. Hence such a
test function does not exists. Function fsym is a viscosity supersolution at points in the segment
A1 ∪A2

∩
B1 ∪B2 and A1 ∪A2

∩
C and B1 ∪B2

∩
C. To summarize, fsym is a viscosity supersolu-

tion in R2
+. This completes the proof. �

Remark 6. In the symmetric case, when (x1, x2) ∈ A2(B2), the optimal strategy (L∗,C∗) is
Line One(Two) pays dividend directly until the surplus level hitting the line A1 ∩A2(B1 ∩B2).
Note that at the boundary x2 = 0(x1 = 0), Line One(Two) transfers money to Line Two(One)
to support its surplus being non-negative with proportional transaction cost. The contribution to
the dividends depends only on the level x1 + kx2(x2 + kx1). Hence the optimal dividend strategy
depends on the lines x1 + kx2 =m(x2 + kx1 =m).

To find the optimal value function and the optimal control can be rather difficult due to the
complication of the HJB equation (18) for general parameters even with a= 1−a= 1/2. We leave
further discussion to next section.

6. Conclusions and Further Discussion In this paper, we consider the optimal dividend
payment strategy for an insurance company, having two collaborating business lines, where their
surplus processes are modeled by diffusion processes and the dividends paid by different business
lines are weighted differently. We find the optimal dividend strategy when money is transferred
between two business lines without transaction costs. We show the optimal value function is a
continuous viscosity solution to the corresponding HJB equation when money is transferred with
transaction costs. We also prove a verification theorem. Finally, we find the optimal solution to the
problem with transaction costs in the symmetric case.

In the case of proportional transaction costs with general parameters, we cannot get the explicit
solution. Motivated by the symmetric case, we propose a family of stationary curve strategies
depending on (xo

1, x
o
2, g(x2), h(x1)), with initial surpluses (x1, x2)∈R+

2 , where g,h are functions of
x2 and x1 respectively with 0≤ x2 ≤ xo

2,0≤ x1 ≤ xo
1. The curve strategies are presented as follows

(see Figure 6).
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Figure 6. Curve Strategies

1. If (x1, x2)∈C, line Two pays dividend x2−xo
2 and line One pays dividend x1−xo

2 and we go
to 4.

2. If (x1, x2)∈A2, line One pays directly an amount x1 − g(x2) as dividend and we go to 4.
3. If (x1, x2)∈B2, line Two pays directly an amount x2 −h(x1) as dividend and we go to 5.
4. If (x1, x2)∈A1, line One pays the accumulated amount maxs≤t{X̄1(s)−g(X̄2(s))} up to time

t until the surplus process escapes from A1 , money is transferred from line One to line Two
automatically when X̄2 hits zero, and we go to 5 or the process hits (0,0).

5. If (x1, x2) ∈ B1, line Two pays the accumulated amount maxs≤t{X̄2(s) − h(X̄1(s))} up to
time t until the surplus process escapes from B1 , money is transferred from line Two to line One
automatically when X̄1 hits zero, and we go to 4 or the process hits (0,0).

As a natural analogue of barrier strategies in two-dimensional context, we suggest for future
research to search the optimal control among the family of curve strategies.

For further research, it is also interesting to study the case with the non-homogeneous propor-
tional transaction costs. In this case, the controlled surplus processes are given by

X̄1(t) = X1(t)+C21(t)− k1C12(t)−L1(t),
X̄2(t) = X2(t)+C12(t)− k2C21(t)−L2(t),

where k1, k2 > 1. The corresponding HJB equation becomes

0 = max
(
L(V )(x1, x2), a− ∂V

∂x1
(x1, x2), (1− a)− ∂V

∂x2
(x1, x2),

∂V
∂x1

(x1, x2)− k1
∂V
∂x2

(x1, x2),
∂V
∂x2

(x1, x2)− k2
∂V
∂x1

(x1, x2)
)
,

0 = V (0,0).

(41)

A similar argument gives

Proposition 12. The optimal value function function V with non-homogeneous proportional
transaction cost is a continuous viscosity solution of the HJB equation (41). If we can find an
admissible strategy (L,C)∈ πx1,x2 , (x1, x2)∈R2

+ and VL,C is a viscosity solution of (41) and satisfies
the natural growth condition (28), then VL,C is the optimal value function.
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Appendix. Proof of Lemma 1

If the optimal value function V is not a viscosity subsolution at (x1, x2)∈R2
+, there exist η > 0

and a continuously differentiable function φ :R2
+ →R such that

• φ(x1, x2) = V (x1, x2),
• V (x, y)≤φ(x,y) in R2

+,
• max{L(φ),φx1 − kφx2 ,φx2 − kφx1 , a−φx1 ,1− a−φx2}<−2ηβ at point (x1, x2).

Define φ̄(x, y) =φ(x, y)+ (x−x1)
4 +(y−x2)

4. φ̄ is continuously differentiable in R2
+ and

• φ̄(x1, x2) = V (x1, x2),
• φ̄(x, y)≥ V (x,y)+ (x−x1)

4 +(y−x2)
4 in R2

+,
• max{L(φ̄), φ̄x1 − kφ̄x2 , φ̄x2 − kφ̄x1 , a− φ̄x1 ,1− a− φ̄x2}<−2ηβ at point (x1, x2).

We can find h∈ (0,min(x1/2, x2/2)) such that

max{L(φ̄), φ̄x1 − kφ̄x2 , φ̄x2 − kφ̄x1 , a− φ̄x1 ,1− a− φ̄x2}<−ηβ, (42)

for (x,y)∈ [x1 − 2h,x1 +2h]× [x2 − 2h,x2 +2h].

Let G(s, t) = 1
2πσ2 e

− s2+t2

2σ2 be the Gaussian kernel. We define the convolution vn :R2
+ →R:

vn =

∫ ∞

−∞

∫ ∞

−∞
(V̄ (x− s, y− t)+h4)n2G(ns,nt)dsdt,

where V̄ is the extension of V to R2:

V̄ (x, y) =


V (x, y), (x, y)∈R2

+,
V (x,0)+ ay, x > 0, y < 0,
V (0, y)+ ax, x < 0, y > 0,
ax+ ay, otherwise.

By standard techniques, vn is a smooth function and converges to V +h4 uniformly in a compact
set. Thus we can find n0 large enough such that

V +2h4 ≥ vn0
≥ V +h4/2,

for (x,y)∈ [0, x1 +x2 +2h]× [0, x1 +x2 +2h]. By Remark 4,

vn(x+ δx, y)− vn(x,y)

δx

=

∫ ∞

−∞

∫ ∞

−∞

V̄ (x+ δx− s, y− t)− V̄ (x− s, y− t)

δx
n2G(ns,nt)dsdt

≥ a,

(vn0
)x1 ≥ a for (x, y) ∈ R2. Similarly, (vn0

)x2 ≥ 1 − a for (x, y) ∈ R2. Let χ be a continuously
differentiable function satisfying 0≤ χ≤ 1 and

• χ(x,y) = 1 for (x, y)∈ [x1 −h,x1 +h]× [x2 −h,x2 +h],
• χ(x,y) = 0 for (x, y) /∈ (x1 − 2h,x1 +2h)× (x2 − 2h,x2 +2h),
• χx1 , χx2 ≥ 0 for (x, y)∈ [x1 − 2h,x1 +h]× [x2 − 2h,x2 +h].

Define
ψ(x, y) = χ(x, y)φ̄(x, y)+ (1−χ(x,y))vn0

(x,y)

and take ϵ∈ (0,min(η,h4/2)). We now verify that ψ satisfies condition 1-4 in Lemma 1.
Apparently, ψ(x1, x2) = φ̄(x1, x2) = V (x1, x2) and condition (4) holds. For (x,y) ∈ [x1 − h,x1 +

h]× [x2 − h,x2 + h], ψ(x, y) = φ̄(x, y), hence condition (2) holds by (42). For (x,y) ∈ [0, x1 + x2 +
2h]× [0, x1 +x2 +2h] \ (x1 −h,x1 +h)× (x2 −h,x2 +h),

φ̄(x, y)≥ V (x, y)+ (x−x1)
4 +(y−x2)

4 ≥ V (x, y)+ 2h4 ≥ V (x, y)+ ϵ
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and
vn0

(x, y)≥ V (x, y)+h4/2≥ V (x, y)+ ϵ,

hence, ψ(x, y)≥ V (x,y)+ ϵ and condition (3) holds. For (x, y)∈ (x1 −h,x1 +h)× (x2 −h,x2 +h),

ψ= φ̄ and ψx1 = φ̄x1 ≥ a,ψx2 = φ̄x2 ≥ 1− a.

For (x,y)∈ [0, x1 +h]× [0, x2 +h] \ (x1 −h,x1 +h)× (x2 −h,x2 +h),

φ̄≥ V +2h4 ≥ vn0
,

and
ψx1 = χx1(φ̄− vn0

)+χφ̄x1 +(1−χ)(vn0
)x1 ≥ a.

Combining above, for (x, y) ∈ [0, x1 + h]× [0, x2 + h], ψx1 ≥ a. Similarly, for (x,y) ∈ [0, x1 + h]×
[0, x2 +h], ψx2 ≥ 1− a. Therefore, condition (1) holds.

If we replace V̄ by Ṽ :

Ṽ (x, y) =


V (x, y), (x, y)∈R2

+,
V (x+ y,0), x > 0, y < 0,
V (0, x+ y), x < 0, y > 0,
ax+ ay, otherwise.

We can also find n0 large enough such that

V +2h4 ≥ vn0
≥ V +h4/2,

for (x,y)∈ [0, x1 +x2 +2h]× [0, x1 +x2 +2h]. By Remark 4,

vn(x+ δx, y− kδx)− vn(x,y)
=

∫∞
−∞

∫∞
−∞(V̄ (x+ δx− s, y− kδx− t)− V̄ (x− s, y− t))n2G(ns,nt)dsdt

≤ 0,

(vn0
)x1 −k(vn0

)x2 ≤ 0 for (x, y)∈R2. Similarly, (vn0
)x2 −k(vn0

)x1 ≤ 0 for (x, y)∈R2. Replace χ by
θ with θ being a continuously differentiable function and satisfying 0≤ θ≤ 1 and

• θ(x, y) = 1 for (x, y)∈ [x1 −h,x1 +h]× [x2 −h,x2 +h],
• θ(x, y) = 0 for (x, y) /∈ (x1 − 2h,x1 +2h)× (x2 − 2h,x2 +2h),
• θx1 − kθx2 ≤ 0 for (x, y) ∈ [x1 − h,x1 + 2h]× [x2 − 2h,x2 + h], θx2 − kθx1 ≤ 0 for (x,y) ∈ [x1 −

2h,x1 +h]× [x2 −h,x2 +2h].
Define ϕ(x, y) = θ(x, y)φ̄(x, y) + (1− θ(x, y))vn0

(x, y). With ϵ ∈ (0,min(η,h4/2)), the result for ϕ
follows by a similar argument as with ψ.
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