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Abstract

In this paper we propose a novel and effective approximation method for finding the value

function for general utility maximization with closed convex control constraints and partial

information. Using the separation principle and the weak duality relation, we transform the

stochastic maximum principle of the fully-observable dual control problem into an equivalent

error minimization stochastic control problem and find the tight lower and upper bounds of

the value function and its approximate value. Numerical examples show the goodness and

usefulness of the proposed method.
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1 Introduction

There has been extensive research in utility maximization for continuous-time stochastic models,

see Pham [19] for expositions. If all model parameters are known or can be observed, then one

only needs to solve the optimization problem. However, if some model parameters are not

observable, as in many financial applications, then one needs to extract the information of

unknown parameters as well as to solve the optimization problem. Thanks to the separation

principle and the filtering theory, the unobservable model may be first transformed into an

equivalent fully observable model which is then solved using the known optimization methods,

see Björk et al. [4] for an excellent introduction of the topic.

For utility maximization with incomplete market information, the traded risky asset is usu-

ally assumed to have observable volatility but unobservable growth rate, see Karatzas and Xue

[13]. To uncover the unknown growth rate, one may compute its conditional expectation (the

filter) with updated market information (the filtration generated by traded assets). It is in gen-

eral difficult to compute the filter as one needs to solve a stochastic partial differential equation
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(SPDE), but there are three important special cases where the filtering equations can be ex-

pressed in finite-dimensional closed form. These filters are consequently easily implemented in

practice and are found in a wide range of applications. They are Kalman-Bucy filter for linear

diffusion, Wonham filter for finite state Markov chain, and Bayesian filter for random variable.

Each of them has been widely studied in portfolio optimization, see, for example, Lakner [15]

and Papanicolaou [18] for the linear diffusion model, Sass and Haussmann [21] and Eksi and Ku

[7] for the continuous-time finite state Markov chain model, Ekstrom and Vaicenavicius [8] and

Bismuth et al. [3] for the random variable model. All the aforementioned papers deal with only

specific (power or logarithmic) utility without control constraints.

To solve a stochastic optimal control problem, one may use the dynamic programming prin-

ciple (DPP) to derive the HJB equation (a nonlinear partial differential equation (PDE)) for the

value function in the Markovian case, or the convex duality and the martingale representation

for the optimal terminal state and the replicating control strategy in the convex case, or the

stochastic maximum principle (SMP) to derive the fully coupled forward and backward stochas-

tic differential equation (FBSDE) for the optimal state and adjoint processes, see Fleming and

Soner [9], Karatzas and Shreve [12], and Yong and Zhou [23] for these methodologies. For utility

maximization with closed convex control constraints, one may also use the dual control approach

to solving the problem, see Li and Zheng [16], which is particularly effective when there is only

one state variable for wealth process and the control constraint set is a cone, then the dual HJB

equation is a linear PDE and the dual value function has a Feynman-Kac representation, see

Bian et al. [1].

It is considerably more difficult to solve utility maximization with partial information, even if

the filtering equation has a finite-dimensional closed form. The key reason is that the model has

at least two state variables, one for the wealth process and one for the correlated filter process.

Both the primal HJB equation and the dual HJB equation are fully nonlinear PDEs, which is

in sharp contrast with utility maximization of one state variable as in [1]. One may also view

the model having one state variable (wealth) satisfying a stochastic differential equation (SDE)

with random coefficients (filters) and use the SMP to get the fully-coupled nonlinear controlled

FBSDE with the control satisfying the Hamiltonian condition, which is again highly difficult to

solve. More discussions on portfolio optimization with partial information can be found in the

literature, for example, Fouque et al. [10] perform perturbation analysis, Brennan [5] analyzes

the effect of uncertainty about the mean return of the risky asset on investors’ optimal strategies

by comparing the myopic and “full information” allocations, Bichuch and Guasoni [2] discuss

the price-divide ratio and interest rate equilibrium over time.

In this paper, for utility maximization with general utility functions, closed convex control

constraints and partial information, instead of trying to find the value function and optimal

control exactly, a highly difficult task as discussed above, we suggest a novel and effective

computational method for finding tight lower and upper bounds of the value functions. The

idea is to transform the SMP of the equivalent fully-observable dual control problem, which is

difficult to solve as it is a system of constrained FBSDEs, into an equivalent form in forward

controlled SDEs and then further into an error minimization problem, which is relatively easy to

solve as it is a combined scalar minimization and optimal stochastic control problem. It opens

a way of finding a good approximate optimal solution, a feature not yet available for solving the

constrained FBSDE from the SMP in the literature, and, thanks to the weak duality relation,
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the tight lower and upper bounds for the value function and its approximate value.

The rest of the paper is organized as follows. In Section 2 we introduce general utility

maximization with partial information and then use the separation principle and the innovation

process to transform the problem into an equivalent fully observable problem. We also give

three examples of finite-dimensional filters. In Section 3 we review three well known methods

for solving the filtered utility maximization, including the primal and dual HJB equations,

and SMP, and illustrate these methods with an example which has a closed-form solution. In

Section 4 we propose an effective approximation method for finding the lower and upper bounds

of the value function. In Section 5 we do some numerical tests for power utility and discuss the

relevant information values. Section 6 concludes the paper. Appendix includes some equations

and formulas used in the paper.

2 Model and Equivalent Filtered Problem

In this section we introduce the market models that will be employed and the optimal choice

of investors with partial information under a closed convex constraint. As the setup in Björk

et.al [4], we consider the stochastic basis (Ω,F,F ,P) for financial markets, where the filtration

F = {Ft}0≤t≤T satisfies the usual conditions. In what follows, we consider a market consisting

of N + 1 securities, among them one is the risk-free bond account whose price is denoted by

S0(t):

dS0(t) = r(t)S0(t)dt, S0(0) = 1, t ∈ [0, T ],

and others are risky securities with prices {Sn(t)}Nn=1:

dS(t) = Diag(S(t)){µ(t)dt+ σ(t)dW (t)}, (1)

where {W (t), t ∈ [0, T ]} is a RN -valued standard Brownian motion, S(t) = (S1(t), · · · , SN (t))T ,

µ(t) = (µ1(t), · · · , µN (t))T (aT is the transpose of a) and σ(t) = (σnm(t))Nn,m=1. Denote the

filtration generated by the asset price processes S1, . . . , SN as FS . The interest rate {r(t)}
and the volatility rates σ(t) are assumed to be uniformly bounded FSt -progressively measurable

processes on Ω× [0, T ]. We also assume that there exists k ∈ R+ such that

zTσ(t)σT (t)z ≥ k|z|2,

for all (z, w, t) ∈ RN × Ω × [0, T ]. This ensures the matrices σ(t), σT (t) are invertible and

uniformly bounded by Xu and Shreve[22]. The drift processes of the return, µ(t), are assumed

to be F-adapted processes.

Remark 1 Throughout the paper different information sets are assumed to be available for

various market participants. The full information is given by the filtration F , while the observable

information is given by the filtration FS, generated by the evolution of asset price processes S

and we have FS ⊂ F . The completely observable case is obtained by assuming F = FS .

Remark 2 The assumption that r is FS-adapted (cf. [13]) implies that the interest rates can

be known by observing the stock prices only, and Fr,S = FS .
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Define a self-financing trading strategy as π = (π(t))t∈[0,T ], which is an N -dimensional FS-

progressively measurable process and πi(t) denotes the fraction of the wealth invested in the

stock i for i = 1, · · · , N at time t ∈ [0, T ]. Additionally, the set of admissible portfolio strategies

is given by

A := {π ∈ H2(0, T ;RN ) : π(t) ∈ K for t ∈ [0, T ] a.e.},

where K ⊆ RN is a closed convex set containing 0, and

H2(0, T ;RN ) ,

{
ζ : Ω× [0, T ]→ RN | ζ ∈ FS , E

[∫ T

0
|ζ(t)|2dt

]
<∞

}
.

Some examples of K are discussed in Sass [20], which shows the generality of this assumption

and some common situations are included, such as short selling prohibited, limited funds and so

on. Given any FS-measurable π ∈ A, the dynamics of the investor’s total wealth Xπ is given as

dXπ(t) = Xπ(t){[r(t) + πT (t)(µ(t)− r(t)1)]dt+ πT (t)σ(t)dW (t)}, 0 ≤ t ≤ T,
Xπ(0) = x,

(2)

where x > 0 and 1 ∈ RN has all unit entries. A pair (Xπ, π) is said to be admissible if FS-

measurable π ∈ A and Xπ satisfies (2). The utility function U : (0,∞) → R considered here is

continuous, increasing, concave and U(0) = 0.

Define the value of the expected utility maximization problem as

V (x) , sup
π∈A

E[U(Xπ(T ))]. (3)

We assume that −∞ < V < +∞ to avoid trivialities and as the available information is only the

securities’ dynamics, we actually are facing a stochastic control problem with partial information.

Any π∗ ∈ A satisfying E[U(Xπ∗(T ))] = V is called the optimal control, and the corresponding

X∗ = Xπ∗ is called the optimal state process.

The above partially observable problem can be reduced to an equivalent problem under full

information, as in [4]. Here we define the innovation process V̂ = (V̂ (t))t∈[0,T ] as

V̂ (t) =

∫ t

0
σ−1(u)(µ(u)− µ̂(u))du+W (t), (4)

where µ̂(t) = E[µ(t)|FSt ] is the filter for µ(t). The following result holds:

Theorem 1 (Fujisaki et al.[11]) Assume that (σ−1(t))t∈[0,T ] is uniformly bounded and

E
[∫ T

0 ‖σ
−1(t)µ(t)‖2dt

]
<∞. Then V̂ is a FS-Brownian motion under P.

From the definition of V̂ in (4) we have the following representatives:

dS(t) = Diag(S(t)){µ̂(t)dt+ σ(t)dV̂ (t)}.

The corresponding wealth process would be

dXπ(t) = Xπ(t)
{

[r(t) + πT (t)(µ̂(t)− r(t)1)]dt+ πT (t)σ(t)dV̂ (t)
}
. (5)

Under this transformation, the original partially observed problem has been transformed to a

related problem as in the full information. After solving the reformulated completely observed
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problem, the partially observable case would be discussed by embedding the filtering equations

for unobservable processes. As discussed in [4], for general hidden Markov models, the infinite

dimensional state space problem of the Kolmogorov backward equation would make it impossible

to give explicit solutions of optimal control. We next give three examples of special but important

filters, they are the Kalman-Bucy filter, the Wonham filter and the Bayesian filter.

Example 1 Linear stochastic differential equation

Suppose that µ(t) = H(t) in (1), where H satisfies the following SDE:

dH(t) = −λ(H(t)− H̄)dt+ σH(ρdW (t) +
√

1− ρ2dWH(t)), (6)

where H̄ ∈ RN and λ, σH ∈ RN×N are constant vector and matrices, ρ ∈ [−1, 1], WH is an

N -dimensional Brownian motion independent of W , and the initial condition H(0) of process

H is independent of W,WH . By Liptser and Shiryayev [17], let the conditional density of H(t)

given FS be Gaussian, then Ĥ(t) = E[H(t)|FSt ], called the Kalman-Bucy filter, satisfies the

following SDE:

dĤ(t) = −λ(Ĥ(t)− H̄)dt+ Σ̂T
R(t)dV̂ (t), (7)

where Σ̂R(t) := σ−1(t)Σ(t) + ρσTH , Σ(t) := Var(H(t)|FSt ) = E[(H(t)− Ĥ(t))(H(t)− Ĥ(t))T |FSt ]

and

dΣ(t)

dt
= σHσ

T
H − λΣ(t)− Σ(t)λT − Σ̂T

R(t)Σ̂R(t), (8)

subject to Ĥ(0) = E[H(0)],Σ(0) = Var(H(0)). Under specific cases, Ĥ(t) can be solved explicitly

in terms of Σ(t), see Appendix A ([15]). Note that the above process H is not necessarily mean-

revering. If λ is a diagonal matrix with positive diagonal entries, then H is an N -dimensional

mean-reverting Ornstein-Uhlenbeck (OU) process ([15]).

Example 2 Continuous time finite state Markov chain process

Suppose that µ(t) = MH(t) in (1), where H(t) is a stationary, irreducible, continuous time

Markov chain, independent of W , with state space {e1, . . . , ed}, ek is the kth unit vector in Rd,
and generating matrix Q = (qij) ∈ Rd×d, matrix M ∈ RN×d with column k representing the drift

when H(t) = ek. By [20], Ĥ(t) = E[H(t)|FSt ], called the Wonham filter, satisfies the following

SDE:

dĤ(t) = QT Ĥ(t)dt+ (Diag(Ĥ(t))− Ĥ(t)Ĥ(t)T )(σ(t)−1µ)TdV̂ (t), (9)

subject to Ĥ(0) = E[H(0)], see Appendix B for details.

Example 3 Unobservable random variable

Suppose that µ(t) = B in (1), where B is an unobservable random vector with distribution

m, independent of W , and E[B2] <∞. The prior law m represents the subjective beliefs of the

investor about the likelihood of the different values that B might take. The volatility matrix σ

is assumed to be constant. The knowledge of B is updated with new observable information. By

[6], µ̂(t) := E[B|FSt ], called the Bayesian filter, satisfies the following SDE:

dµ̂(t) = ψ(t, µ̂(t))dV̂ (t),
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where ψ is a matrix-valued function determined by m. In particular, if B ∼ N(b0,Σ0), a multi-

variate normal distribution with mean b0 and covariance matrix Σ0, then ψ(t, b) is independent

of b and given by ψ(t, b) = (Σ−10 + Σ−1t)−1(σ−1)T , where Σ = σσT , and the filtered process µ̂ is

a Gaussian process measurable with respect to FS, see [6] for details.

Using the innovation process V̂ in (4), we can transform a partially observed problem into

a fully observed problem (3) with the wealth process X satisfying the SDE (5), where µ̂(t) is

a filtered drift process. We assume from now on that µ̂(t) = µ(Ĥ(t)) for some deterministic

function µ and Ĥ satisfies the following SDE:

dĤ(t) = µ̂Ĥ(t, Ĥ(t))dt+ σ̂Ĥ(t, Ĥ(t))dV̂ (t). (10)

For the Kalman and Bayesian filters, we have µ(h) = h and for the Wonham filter, we have

µ(h) = Mh with d = N . The corresponding value function is defined by, for 0 ≤ t ≤ T ,

J(t, x, h) = sup
π∈A

Et,x,h[U(Xπ(T ))], (11)

where Et,x,h[·] = E[·|Xπ(t) = x, Ĥ(t) = h], the conditional expectation operator at time t.

Since Ĥ(t) = E[H(t)|FSt ], h is the conditional expectation value of H(t), not the value of H(t)

which is Ft measurable but not FSt measurable, in other words, H(t) is a constant given Ft
(full informaton) but a random variable given FSt (partial information). Such a distinction is

important when we discuss the information value of H(t) and that of Ĥ(t), see Section 5.3.

3 Optimality Conditions

To solve the filtered utility maximization problem (11), we may use one of the following three

methods: stochastic control, convex duality and stochastic maximum principle. We next give a

brief discussion of these methods.

3.1 HJB equation

After filtering, the stochastic control approach applies, and the value function satisfies the

following HJB equation

Jt + sup
π∈K

(
x(r(t) + πT (µ(h)− r(t)1))Jx +

1

2
x2πTσ(t)σT (t)πJxx + µ̂T

Ĥ
(t, h)Jh

+xπTσ(t)σ̂T
Ĥ

(t, h)Jxh +
1

2
Tr[σ̂Ĥ(t, h)σ̂T

Ĥ
(t, h)Jhh]

)
= 0, (12)

with the terminal condition J(T, x, h) = U(x). Equation (12) is a nonlinear PDE with control

constraint, which is in general difficult to solve, even numerically. There is one important special

case in which the nonlinear PDE (12) can be simplified into a semilinear PDE, and the solution

may have a representation in terms of the solution of a BSDE. For the case U(x) = (1/β)xβ, 0 <

β < 1, we have an ansatz solution form J(t, x, h) = U(x)f(t, h), substituting into (12), we have

−ft − µ̂TĤ(t, h)fh −
1

2
Tr[σ̂Ĥ(t, h)σ̂T

Ĥ
(t, h)fhh]− F (t, h, f, σ̂T

Ĥ
(t, h)fh) = 0,
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with f(T, h) = 1, where

F (t, h, y, z) = sup
π∈K

(
β(r(t) + πT (µ(h)− r(t)1))y +

1

2
β(β − 1)πTσ(t)σT (t)πy + βπTσ(t)z

)
.

Example 4 Suppose the utility function U(x) = (1/β)xβ (power utility) with K = RN and Ĥ

satisfies SDE (7) , then we have an ansatz for J :

J(t, x, h) =
1

β
xβ exp

(
hTA(t)h+BT (t)h+ C(t)

)
, (13)

and the optimal control π∗ is given by

π∗(t) = −(σ−1(t))T

β − 1
[σ−1(t)(h− r(t)1) + Σ̂R(t)(2A(t)h+B(t))], (14)

where A(t) is a N × N symmetric matrix, B(t) a RN vector, C(t) a scalar, and the detailed

ODEs for A,B,C are given in Appendix C. Since Ĥ(t) = h, π∗(t) depends on the conditional

expectation value of H(t), given FSt , but not the value of H(t) itself.

3.2 Dual HJB equation

Define the dual function of U as

Ũ(y) , sup
x>0

(U(x)− xy), y ≥ 0.

We have that Ũ is a continuous, decreasing and convex function on (0,∞). The dual process is

given by, for 0 ≤ t ≤ T ,

dY (y,v)(t) = −Y (y,v)(t)
{

[r(t) + δK(v(t))]dt+ (σ−1(t)(µ(Ĥ(t))− r(t)1 + v(t)))TdV̂ (t)
}
,

Y (y,v)(0) = y,

where Ĥ satisfies SDE (10), δK is the support function of the set −K, defined by δK(z) ,
supπ∈K{−πT z}, z ∈ RN , and v is the dual control process defined in the set

D ,

{
v : Ω× [0, T ]→ RN |v ∈ FS and

∫ T

0
[δK(v(t)) + |v(t)|2]dt <∞ a.s.

}
.

The dual problem is the following:

Ṽ (t, x, h) , inf
(y,v)∈(0,∞)×D

(
xy + Et,y,h

[
Ũ(Y (y,v)(T ))

])
. (15)

Any (y∗, v∗) ∈ (0,∞)×D satisfying xy∗+Et,y,h[Ũ(Y (y∗,v∗)(T ))] = Ṽ (t, x, h) is called the optimal

dual control and the corresponding Y (y∗,v∗) the optimal dual process. Fix y, the dual value

function is defined by

J̃(t, y, h) , inf
v∈D

Et,y,h

[
Ũ(Y (y,v)(T ))

]
.
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Suppose K is a closed convex cone, which gives δK(v) = 0 for v ∈ K̃ and ∞ otherwise, where

K̃ = {v : vᵀπ ≥ 0, ∀π ∈ K} is the positive polar cone of K. The dual value function J̃ satisfies

the following dual HJB equation:

inf
v∈K̃

(
J̃t − r(t)yJ̃y +

1

2
y2[σ−1(t)(µ(h)− r(t)1 + v(t))]T [σ−1(t)(µ(h)− r(t)1 + v(t))]J̃yy

+ µ̂T
Ĥ

(t, h)J̃h − y[σ−1(t)(µ(h)− r(t)1 + v(t))]T σ̂T
Ĥ

(t, h)J̃yh +
1

2
Tr[σ̂Ĥ(t, h)σ̂T

Ĥ
(t, h)J̃hh]

)
= 0,

and J̃(T, y, h) = Ũ(y). After giving optimal dual control y, v by (15) and strong duality, the

primal value function J(t, x, h) and the primal optimal control can be derived using the dual

value function. This is also a nonlinear PDE with control constraint, which is also impossible

to give explicit solutions. Instead we focus on the following specific case.

Example 5 Assume the same setting as Example 4. Then K̃ = {0}, which gives the dual

control v(t) = 0 and the dual value function J̃(t, y, h) = Et,y,h[Ũ(Y (y,0)(T ))]. We have an ansatz

for J̃ :

J̃(t, y, h) =
1− β
β

y
β
β−1 exp

(
hT Â(t)h+ B̂T (t)h+ Ĉ(t)

)
, (16)

where Â(t) is a N ×N symmetric matrix, B̂(t) a RN vector, Ĉ(t) a scalar, and Â, B̂, Ĉ satisfy

some ODEs, see Appendix D for these equations. Solving (15), we have

Ṽ (t, x, h) =
1

β
xβ exp

(
(1− β)[hT Â(t)h+ B̂T (t)h+ Ĉ(t)]

)
, (17)

with the minimum point y∗(t, x, h) = xβ−1 exp
(

(1− β)[hT Â(t)h+ B̂T (t)h+ Ĉ(t)]
)

. From the

primal-dual relation J(t, x, h) = Ṽ (t, x, h), combining (13) and (17), we have (1 − β)Â(t) =

A(t), (1− β)B̂(t) = B(t) and (1− β)Ĉ(t) = C(t). The optimal control is given by

π∗(t) = −(σ−1(t))T

β − 1
[σ−1(t)(µ(h)− r(t)1) + Σ̂R(t)(1− β)(2Â(t)h+ B̂(t))],

which is exactly (14).

3.3 Stochastic maximum principle

For constrained utility maximization, one may also use the SMP to solve it. There is extensive

literature on this. Here we only cite the results from [16] and the reader can find more references

and discussions there. [16] gives the necessary and sufficient optimality conditions for both

primal and dual problems in terms of constrained controlled FBSDEs and characterizes their

dynamic relations of the optimal control, the state process, and the adjoint process. Under some

regularity and integrablility assumptions on utility function and stochastic processes, we have

the following result.
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Theorem 2 ([16],Theorems 3.9 and 3.10) Let (ỹ, ṽ) ∈ (0,∞) × D. Then (ỹ, ṽ) is optimal for

the dual problem if and only if the solution (Y (ỹ,ṽ), P̂ , Q̂) of FBSDE

dY (ỹ,ṽ)(t) = −Y (ỹ,ṽ)(t)
{

[r(t) + δK(ṽ(t))]dt+ [σ−1(t)(µ(Ĥ(t))− r(t)1 + ṽ(t))]TdV̂ (t)
}
,

dP̂ (t) = {[r(t)P̂ (t) + Q̂T (t)σ−1(t)(µ(Ĥ(t))− r(t)1]}dt+ Q̂T (t)dV̂ (t),

dĤ(t) = µ̂Ĥ(t, Ĥ(t))dt+ σ̂Ĥ(t, Ĥ(t))dV̂ (t),

Y (ỹ,ṽ)(0) = ỹ, P̂ (T ) = −Ũ ′(Y (ỹ,ṽ)(T )), Ĥ(0) = h0,

(18)

satisfies the following conditions

P̂ (0) = x0,

P̂−1(t)[σT (t)]−1Q̂(t) ∈ K,
P̂ (t)δK(ṽ(t)) + Q̂T (t)σ−1(t)ṽ(t) = 0, ∀t ∈ [0, T ]P− a.s.

(19)

The optimal control for the primal problem with initial wealth x0 is given by

π̂(t) ,
[σT (t)]−1Q̂(t)

P̂ (t)
, t ∈ [0, T ].

We give an example to illustrate its use.

Example 6 Assume the same setting as Example 4, then ṽ(t) = 0. Solving the BSDE in (18),

we have

P̂ (t) =
φ(t)

Y (t)
, Q̂(t) = P̂ (t)θ̂(t) +

ϕ(t)

Y (t)
,

where φ(t) = Et,y,h[−Y ŷ(T )Ũ ′(Y ŷ(T ))] = Et,y,h[Y (T )
β
β−1 ], θ̂(t) := σ−1(t)[µ(Ĥ(t)) − r(t)1] and

φ(t) = φ(T )−
∫ T
t ϕT (s)dV̂ (s). By Theorem 3.10 of [16], the optimal strategy is given by

π∗(t) =
[σT (t)]−1Q̂(t)

P̂ (t)
= [σT (t)]−1

(
θ̂(t) +

ϕ(t)

φ(t)

)
. (20)

Since φ(t) = β
1−β J̃(t, y, h) and J̃ has an ansatz (16), using Itô’s formula and the Feynman-Kac

formula, we have

dJ̃(t) = J̃(t)

{
β

1− β
θ̂T (t) + [2hT ÂT (t) + B̂T (t)]Σ̂T

R(t)

}
dV̂ (t),

which indicates that ϕ(t) = φ(t)
{

β
1−β θ̂(t) + Σ̂R(t)[2Â(t)h+ B̂(t)]

}
. Substituting into (20), we

get

π∗(t) = [σT (t)]−1
(

1

1− β
θ̂(t) + Σ̂R(t)[2Â(t)h+ B̂(t)]

)
.

We have recovered the optimal control. In general, it is difficult to give ϕ(t) as this is from the

martingale representation theorem.
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4 Effective Approximation Method

For general utilities with closed convex constraint case, one can write the HJB equation but it
is not possible to find an ansatz solution even for power utility due to control constraint. For
the same reason one cannot apply the martingale representation theorem to construct a control
(replicating portfolio which may be negative) and therefore the standard martingale method
cannot be used to solve the problem. The primal and dual value functions satisfy the following
weak duality relation:

E[U(Xπ(T ))] ≤ sup
π∈A

E[U(Xπ(T ))] ≤ inf
y>0,v∈D

(E[Ũ(Y (y,v)(T ))] + x0y) ≤ E[Ũ(Y (y,v)(T ))] + x0y.

The inequalities show that the dual formulation gives an upper bound for the primal value

function. Instead of focusing on the exact controls, we explore the tight lower and upper bounds

of the value function for general cases. We show it is possible to achieve this with the dual

FBSDE. Assume (y, v) is a feasible dual control. By Theorem (2), (y, v) is an optimal dual control

if and only if (Y (y,v), P̂ , Q̂) satisfying (18) and (19). Denote by π(t) := P̂−1(t)[σT (t)]−1Q̂(t),

(19) can be rewritten as
P̂ (0) = x0,

π(t) ∈ K,
δK(v(t)) + πT (t)v(t) = 0, ∀t ∈ [0, T ]P− a.s.

The dual FBSDE system (18) and (19) is equivalent to, also noting (10) for Ĥ,
dY (t) = −Y (t)[r(t) + δK(v(t))]dt− Y (t)[σ−1(t)(µ(Ĥ(t))− r(t)1 + v(t))]TdV̂ (t),

dP̂ (t) = P̂ (t)[r(t) + πT (t)(µ(Ĥ(t))− r(t)1)]dt+ P̂ (t)πT (t)σ(t)dV̂ (t),

dĤ(t) = µ̂Ĥ(t, Ĥ(t))dt+ σ̂Ĥ(t, Ĥ(t))dV̂ (t),

Y (0) = 1, P̂ (0) = x0, Ĥ(0) = h0, π(t) ∈ K,

(21)

and

E

[
w|P̂ (T ) + Ũ ′(yY (T ))|2 + (1− w)

∫ T

0
[δK(v(t)) + π(t)v(t)]dt

]
= 0,

where w ∈ (0, 1) is a given constant. Here we have used the fact that δK is the support function

of −K, so δK(v(t)) + π(t)v(t) ≥ 0 for all π(t) ∈ K.

Consider the following optimal control problem:

min
y,π,v

E

[
w|P̂ (T ) + Ũ ′(yY (T ))|2 + (1− w)

∫ T

0
[δK(v(t)) + π(t)v(t)]dt

]
subject to (21). (22)

Note that (21) is a forward controlled SDE system with state variables Y, P̂ , Ĥ and control

variables π, v, and (22) is a standard control problem with an additional decision variable y > 0.

If we can manage to find (y, π, v) that makes the objective function zero, then we have solved

(18) and (19). The key advantage of (22) over the dual FBSDE system (18) and (19) is that

(22) is an optimal control problem and the known optimization techniques can be used to solve

it, which is in sharp contrast to the dual FBSDE system (18) and (19) that is a pure equation

system and difficult to find its solution.

In general, we may only be able to find (y, π, v) that makes the objective function close to

zero, but not exactly zero, then (y, π, v) is not a solution to the dual FBSDE system (18) and

10



(19), that is, not the optimal solution to the dual problem. However, (y, π, v) and (Y, P̂ ) still

provide useful information about the value function, that is, we can get the lower and upper

bounds as

LB := E[U(P̂ (T ))], UB := x0y + E[Ũ(Y (T ))]. (23)

If the difference of LB and UB is small, we may approximate the value function J in (11) by a

simple average (LB + UB)/2 with π a good approximate feasible control corresponding to the

lower bound. This shows the usefulness of solving the control problem (22), that is, one may

find a good approximate solution with (22), which is essentially impossible if one tries to achieve

the same with the dual FBSDE system (18) and (19).

To find the approximate optimal solution of (22), we may proceed as follows: Divide the

interval [0, T ] into n subintervals with grid points ti = ih, i = 0, 1, . . . , n, and step size h = T/n.

On each interval [ti, ti+1), i = 0, 1, . . . , n − 1, choose constant controls πi and vi that are Fti
measurable. Discretize (21) to get a discrete time controlled system with Yi denoting Y (ti), etc.

Yi+1 = Yi − Yi[ri + δK(vi)]h− Yi[σ−1i (µ(Ĥi)− ri1 + vi)]
T (V̂i+1 − V̂i),

P̂i+1 = P̂i + P̂i[ri + πTi (µ(Ĥi)− ri1)]h+ P̂iπ
T
i σi(V̂i+1 − V̂i),

Ĥi+1 = Ĥi + µ̂Ĥ(ti, Ĥi)h+ σ̂Ĥ(ti, Ĥi)(V̂i+1 − V̂i),
Y0 = 1, P̂0 = x0, Ĥ0 = h0, πi ∈ K, i = 0, . . . , n− 1,

(24)

where V̂i+1 − V̂i, i = 0, 1, . . . , n − 1, are independent N(0, h) random variables. The discrete

version of problem (22) is given by

min
y,(πi,vi)

n−1
i=0

E

[
w|P̂n + Ũ ′(yYn)|2 + (1− w)h

n−1∑
i=0

[δK(vi) + πivi]

]
subject to (24). (25)

The lower bound is given by LB = E[U(P̂n)] and the upper bound by UB = x0y + E[Ũ(Yn)].

With the specific information of the structure of the model, we can then try to solve the discrete

time optimal control problem (25) as shown in the numerical examples in the next section.

Remark 3 if the control constraint set K is a closed convex cone, then δK(v) = 0 for v ∈ K̃
and ∞ otherwise. (24) becomes

Yi+1 = Yi − Yirih− Yi[σ−1i (µ(Ĥi)− ri1 + vi)]
T (V̂i+1 − V̂i),

P̂i+1 = P̂i + P̂i[ri + πTi (µ(Ĥi)− ri1)]h+ P̂iπ
T
i σi(V̂i+1 − V̂i),

Ĥi+1 = Ĥi + µ̂Ĥ(ti, Ĥi)h+ σ̂Ĥ(ti, Ĥi)(V̂i+1 − V̂i),
Y0 = 1, P̂0 = x0, Ĥ0 = h0, πi ∈ K, vi ∈ K̃, i = 0, . . . , n− 1,

(26)

and (25) becomes

min
y,(πi,vi)

n−1
i=0

E

[
w|P̂n + Ũ ′(yYn)|2 + (1− w)h

n−1∑
i=0

[πivi]

]
subject to (26). (27)

In particular, if K is the whole space, then K̃ = {0} and vi = 0 for all i.
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5 Numerical Examples

In this section we use the above method to compute the lower and upper bounds under Kalman

filtering case. For simplicity, we assume the market has riskless asset and one risky asset and

r, σ are constants, and utility function is power utility U(x) = (1/β)xβ with 0 < β < 1. We

consider two cases: one is K = R and the other K = R+, the former gives K̃ = {0} and the

latter K̃ = R+. We need to solve the discrete time control problem (27).

5.1 Unconstrained case

The optimal value at time 0 is given by (13), that is,

J(0, x0, h0) = U(x0) exp
(
A(0)h20 +B(0)h0 + C(0)

)
, (28)

where X(0) = x0 and Ĥ(0) = E[H(0)|FS0 ] = E[H(0)] = h0. (28) provides benchmark values

for testing the efficiency of the lower and upper bounds computed with (23) and (27). Since

K = R and πi is FSti measurable and Ĥi is exogenous, we have vi = 0 for all i and we consider

controls πi in the following form: πi = ai + biĤi which incorporates the OU process Ĥ in

controls, where ai, bi are constants to be determined, and denote by a = (a0, . . . , an−1)
T ∈ Rn

and b = (b0, . . . , bn−1)
T ∈ Rn. We can now write out the discrete version of (21), together with

SDE for Ĥ: for i = 0, 1, . . . , n− 1,

Yi+1 = Yi − rYih− σ−1(Ĥi − r)Yi(V̂i+1 − V̂i),
P̂i+1 = P̂i + rP̂ih+ (Ĥi − r)πiP̂ih+ σπiP̂i(V̂i+1 − V̂i),
Ĥi+1 = Ĥi + λ(H̄ − Ĥi)h+ σ−1(Σ(ti) + ρσσH)(V̂i+1 − V̂i),
Y0 = 1, P̂0 = x0, Ĥ0 = h0,Σ(0) = σ0,

πi = (ai + biĤi).

(29)

The discrete version of problem (29) is given by

min
y,a,b

f(y, a, b) := E
[
|P̂n + Ũ ′(yYn)|2

]
subject to (29).

We still need to compute the expectation to get function f , which can be achieved by taking the

sample average. Specifically, for fixed y, a, b, generate n independent standard normal random

variables Zi+1, i = 0, . . . , n−1, and compute Yi+1, P̂i+1, Ĥi+1 by replacing V̂i+1−V̂i with
√
hZi+1,

which generates a sample path of Y, P̂ , Ĥ. We can repeat this procedure M times and take the

average of M copies of |P̂n + Ũ ′(yYn)|2, which gives an approximate value for f(y, a, b). The

problem now is to find (y, a, b), with a total of 2n+ 1 variables, such that the objective function

f(y, a, b) is minimized. This is a finite dimensional nonlinear minimization problem.

For numerical results, we try two forms for control π, one is πi = a + bĤi with a, b being

constants (Form I), the other is πi = ai+bĤi with ai, b being constants (Form II). For illustration,

the parameters are given as r = 0.05, σ = 0.8, β = 0.5, x0 = 10, h0 = 0.1, H̄ = 0.1, σH = 0.5, λ =

1, ρ = 0, σ0 = 0.2, h = 0.1, T = 1 and the time step here is N = T/h = 10. Since H(0) is a normal

random variable with mean h0 and variance σ0, by varying these parameters, we can compute

the corresponding benchmark values in (28) and the lower and upper bounds. Tables 1 and 2

list these results and their comparisons. The shorthand notations BC, LB, UB and OB denote

benchmark values, lower bounds, upper bounds and objective function values, respectively, and
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MV =(LB+UB)/2 is the approximate optimal value, rel-diff-1(%) = (UB-LB)/LB × 100 the

relative error of lower and upper bounds, and rel-diff-2(%) = |(MV-BC)/BC| × 100 the relative

error of approximate optimal value and benchmark value. The corresponding A(t), B(t) and

C(t) are given by using equations in Appendix C and the fourth-order Runge-Kutta method

with N = 10. Tables 1 and 2 show that the considered two formulas for controls give good

approximate values MV with relative errors less than one percent compared with the benchmark

values, although relative errors between LB and UB are slightly bigger in comparison, which is

expected in estimating bounds. Tables 1 and 2 also show that the optimal values are similar for

different combinations of h0 and σ0, two parameters for the initial distribution of H(0), which

indicates the optimal value is less sensitive to the initial estimate of these parameters. The

results show that by using dual method, we can always give a range for the value function and

generate tight lower and upper bounds. Additionally, the estimated controls for both primal

and dual problems can be derived clearly. Moreover, the results show that the mean values are

quite close to the benchmark results for most cases.

Table 1: Results by Varying h0(Full Space)

h0 BC Form LB UB rel-diff-1(%) OB MV rel-diff-2(%)

0.05 6.5521
I 6.4806 6.5570 1.1786 0.0017 6.5188 0.5086

II 6.4826 6.5619 1.2238 0.0016 6.5222 0.4558

0.1 6.5645
I 6.4832 6.5733 1.3885 0.0018 6.5282 0.5518

II 6.4671 6.5731 1.6384 0.0022 6.5201 0.6754

0.2 6.6300
I 6.4775 6.6527 2.7051 0.0031 6.5651 0.9796

II 6.4812 6.6572 2.7155 0.0030 6.5692 0.9178

Table 2: Results by Varying σ0(Full Space)

σ0 BC Form LB UB rel-diff-1(%) OB MV rel-diff-2(%)

0.1 6.5353
I 6.4847 6.5357 0.0787 0.0010 6.5102 0.3843

II 6.4719 6.5441 1.1150 0.0016 6.5080 0.4182

0.2 6.5645
I 6.4832 6.5733 1.3885 0.0018 6.5282 0.5518

II 6.4671 6.5731 1.6384 0.0022 6.5201 0.6754

0.3 6.6050
I 6.4702 6.6584 2.9083 0.0032 6.5643 0.6155

II 6.4739 6.6535 2.7739 0.0031 6.5637 0.6249

5.2 Constrained Case

Since K = R+, there is no closed form solution. From K̃ = R+, we let πi = (ai + biĤi)
+, vi =

(ãi + b̃iĤi)
+, where x+ = max(x, 0). In the numerical tests, we in particular discuss two forms:

πi = (a+ bĤi)
+, vi = (ã+ b̃Ĥi)

+ with a, b, ã, b̃ being constants (Form I), πi = (ai + bĤi)
+, vi =

(ãi + b̃Ĥi)
+ with ai, ãi, b, b̃ being constants (Form II). Here we use the same parameter settings

as in the unconstrained case.
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By solving the above minimization problem (27), the optimal results of two forms are given

below (w = 0.5). In Form I, the optimal parameters are a = 0.04682, b = −0.1281, ã =

−0.0019, b̃ = −0.1958, and y = 0.3172. In Form II, the optimal parameters are b = −0.1060, b̃ =

−0.0572, y = 0.3196 and the estimation of a(t), ã(t) is given in Table 3. Under one sample path

of Ĥ, the controls π, v estimated by two forms are given in Table 3. The lower and upper bounds

for primal value function obtains accordingly. The parameter w is added to control the weight

put on different objectives, to show the sensitivity of the results with it, the results are listed in

Table 4. In the following tables, the shorthand notations LB, UB and OB denote lower bound,

upper bound and estimated values of the corresponding objective functions respectively,and rel-

diff(%) = (UB-LB)/LB × 100. The results illustrate that when w = 0.9, the relative difference

and the value of the objective function are the best among all the choices.

Table 3: Optimal a(t), ã(t), π and v
t 0 1 2 3 4 5 6 7 8 9

a(t) 0.1993 -0.0680 0.0411 -0.4163 -0.0878 -0.0252 0.2233 -0.1088 -0.0948 -0.0340

ã(t) 0.0106 -0.1196 -0.0383 0.0753 0.0329 0.0883 -0.0458 -0.1517 -0.0036 0.0334

π(II) 0.1887 0.0000 0.0344 0.0000 0.0000 0.0000 0.2044 0.0000 0.0000 0.0000

v(II) 0.0049 0.0000 0.0000 0.0673 0.0226 0.0776 0.0000 0.0000 0.0000 0.0247

π(I) 0.0340 0.0406 0.0387 0.0289 0.0238 0.0228 0.0.0240 0.0175 0.0140 0.0273

v(I) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

In the considered OU case, we suppose some known assumptions for initial state of hidden

sequence Ĥ, whose first and second moments(h0, σ0) are given in advance. Tables 5 and 6

give the results by varying the initial assumptions. These tables show that the method always

generate good bounds for different assumptions of the initial sates. More specifically, under

almost all cases, Form I would give better estimations. Additionally, as σ0 get bigger, that is,

we are less confident in the assumption, in this circumstance the bounds would be wider.

Table 4: Results by Varying w(SMP)

w Form LB UB rel-diff(%) OB MV

0.1
I 6.4843 6.5623 1.2020 0.0015 6.5233

II 6.4841 6.5923 1.6678 0.0019 6.5382

0.5
I 6.4843 6.5635 1.2215 0.0017 6.5239

II 6.4871 6.5703 1.2817 0.0017 6.5287

0.9
I 6.4850 6.5719 1.3412 0.0002 6.5284

II 6.4881 6.5707 1.2739 0.0002 6.5294

Remark 4 For simplicity, in the above numerical cases, we only focus on the 1-dimensional

cases, that is only one risky asset considered. Our method can be easily generalized to d-

dimensional problems with polynomial growth of computation. In our numerical examples, if the

constraint set K = Rd (d > 1), then the corresponding considered controls are π(t) = a+ bĤ(t)

for some a ∈ Rd, b ∈ Rd×d, the total number of parameters to be determined is d + d2. If the

constraint set K = Rd+, similarly we may choose π(t) = (a+ bĤ(t))+, the number of parameters
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Table 5: Results by Varying h0

h0 Form LB UB rel-diff-1(%) OB MV

0.05
I 6.4843 6.5522 1.0480 0.0015 6.5182

II 6.4835 6.5611 1.1972 0.0026 6.5223

0.1
I 6.4843 6.5635 1.2215 0.0017 6.5239

II 6.4871 6.5703 1.2817 0.0017 6.5287

0.2
I 6.4843 6.6716 2.8892 0.0030 6.5779

II 6.4969 6.6688 2.6462 0.0028 6.5829

Table 6: Results by Varying σ0

σ0 Form LB UB rel-diff(%) OB MV

0.1
I 6.4843 6.5335 0.7594 0.0010 6.5089

II 6.4874 6.5443 0.8769 0.0024 6.5159

0.2
I 6.4843 6.5635 1.2215 0.0017 6.5239

II 6.4871 6.5703 1.2817 0.0017 6.5287

0.3
I 6.4843 6.6329 2.2902 0.0027 6.5585

II 6.4899 6.6738 2.8337 0.0030 6.5818

is d+ d2, not 2d. Even we use piecewise constant controls with n subintervals, then the number

of parameters is n(d + d2). Therefore, in our setting, the number of parameters would grow

polynomially with respect to the number of traded assets and subintervals, not exponentially. For

example, if we set d = 2, then the considered format for the control would be(
π1(t)

π2(t)

)
=

[(
a1
a2

)
+

(
b1 b2
b3 b4

)(
Ĥ1(t)

Ĥ2(t)

)]+
.

For fixed parameters ai, bj, controls π(t) are determined once Ĥ(t) are known. In other words,

there is no exponential explosion 2d as we do not need to check possible combinations of π1(t)

and π2(t) being positive or zero, they are determined naturally by ai, bj , Ĥ(t) and ai, bj can be

found by a continuous variable minimization in a finite dimension space. We emphasize that

π(t) = (a+ bĤ(t))+ when K = Rd+ is a feasible control, but NOT an optimal control for problem

(27), which is in general difficult to find. There are many ways of choosing feasible controls, for

example, we may also set π(t) = (a+ bĤ(t) + Ĥ(t)T cĤ(t))+, where Ĥ(t)T cĤ(t) ∈ Rd with the

ith component given by Ĥ(t)T ciĤ(t) and ci ∈ Rd×d for i = 1, . . . , d, and then determine a, b, c

by solving a minimization problem with d+d2 +d3 variables. The numerical examples for d = 1

show that the choice of control π(t) = (a+bĤ(t))+ provides a good compromise in the sense that

it is easy to compute while gives tight lower and upper bounds. These control forms still provide

lower and upper bounds for d > 1, but other forms may exist to give tighter bounds. It is still

an open question on the best parametric form of feasible controls for lower and upper bounds in

multidimensional case.

Remark 5 The dual FBSDE method is applicable for general constrained optimal portfolio se-

lection problems, including general utilities and other filtering cases of hidden processes. The
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CIR case given in [18] can be discussed similarly.

5.3 Information value of learning

We may call the problem (3) subject to (5) the utility maximization with learning, in which

the admissible control π is FS measurable. If µ and W can be observed and the admissible

control π is F measurable, we may call the corresponding problem (3) subject to (2) the utility

maximization with full information. In other words, we focus on the following cases: (P1) we

can fully observe H process and use it to find the value function and optimal control, (P2) we

cannot observe H process and use the Kalman-Bucy filter to learn the process H. Intuitively

the investors with full information would gain more than those with partial information, as the

full information investors master the market better. To gain some insight into the magnitude

of the effect of information sets, we assume U(x) = (1/β)xβ with 0 < β < 1 and N = 1,K = R.

For the full information case (P1), the value function is given by

Jf (t, x, h) = sup
π∈A

E[U(Xπ(T ))|Xπ(t) = x, H(t) = h] = U(x) exp(Af (t)h2 +Bf (t)h+ Cf (t)),

(30)

where Af , Bf , Cf satisfy some ODEs, see Appendix E. Both H(t) and Jf (t, x, h) are Ft mea-

surable but not FSt measurable. On the other hand, for the partial information case (P2), both

Ĥ(t)) and the value function J(t, x, Ĥ(t)), see (13) and Appendix C, are FSt measurable. We

cannot directly compare Jf (t, x,H(t)) and J(t, x, Ĥ(t)) as the former is a random variable in

FSt while the latter a constant in FSt . However, we can compute the conditional expectation of

Jf (t, x,H(t)) given FSt and then compare its value with J(t, x, Ĥ(t)). The difference of the two,

E[Jf (t, x,H(t))|FSt , X(t) = x]− J(t, x, Ĥ(t)), (31)

is the so called information premium or the loss in utility due to partial information. Papani-

colaou [18, Proposition 3.15] shows that the information premium is always nonnegative. This

is from the average value point of view, if we draw samples of Jf (t, x,H(t)) and J(t, x, Ĥ(t)),

they do not necessarily have that relationship. We next illustrate numerically the point with

the optimal value at time 0 and draw some sample paths.

The full information value function at time 0 is given by Jf (0, x0, H(0)), where H(0) is an

observed value under the full information setting and is a sample from the normal distribution

with mean h0 and variance σ0. For the no information with learning case (P2), the value function

at time 0 is given by J(0, x0, h0).

Table 7 lists the numerical results of information values at time 0, where the column E[Jf ]

denotes E[Jf (0, x,H(0))], which is calculated as

U(x) exp
(
Af (0)h20 +Bf (0)h0 + Cf (0)

)
E[exp(f(Z))]

and f(Z) = A(0)σ0z
2 + (2Af (0)h0 +Bf (0))

√
σ0Z with Z being a standard normal random vari-

able. The expectation E[exp(f(Z))] can be easily computed with simulation. The parameters

are chosen as those in Section 5.1 with r = 0.05, σ = 0.8, β = 0.5, x0 = 10, H̄ = 0.1, σH =

0.5, λ = 1, h = 0.01, T = 1. By varying h0, the initial state, from 0.1 to 0.9 with state step

0.2, the results of E[Jf (0, x,H(0))] for full information case (E[Jf ](P1)) and J(0, x, h0) for
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partial information case (J(P2)) are shown in Table 7. We give four comparing results under

ρ = 0, ρ = 0.5 and σ0 = 0.2, σ0 = 0.4 separately.

It is observed that the value of investors with full information is greater than those with

partial information, which verifies the comparing relation (31) numerically. Figure 1 to 4 plot

the sample paths of H and G. In Figures (1) and (3), H is simulated using (6) and Ĥ is

simulated using (7). In figures (2) and (4), Gf (t) = Af (t)H2(t) + Bf (t)H(t) + Cf (t), Gp(t) =

A(t)Ĥ2(t) + B(t)Ĥ(t) + C(t) and ∆(t) = Gf (t) − Gp(t). The results indicate that although

E[Gf (t,H(t))|FSt ] ≥ Gp(t), Gf (t,H(t)) could be less than Gp(t) at some times depending on

sample paths. We have used the step size 0.01 and the number of time steps 100 over the time

interval [0, 1].

Table 7: Value function at time 0 by varying h0

h0

ρ = 0 ρ = 0.5

σ0 = 0.2 σ0 = 0.4 σ0 = 0.2 σ0 = 0.4

E[Jf ](P1) J(P2) E[Jf ](P1) J(P2) E[Jf ](P1) J(P2) E[Jf ](P1) J(P2)

0.1 7.2713 6.5736 8.0024 6.6953 7.4809 6.8526 9.9818 7.1398

0.3 7.9136 6.7655 8.5481 6.9296 7.6644 7.1307 8.5811 7.5150

0.5 7.9501 7.1977 8.2730 7.4621 9.6625 7.7655 10.3860 8.3877

0.7 8.9269 7.9159 9.9465 8.3604 8.8783 8.8509 11.1425 9.9270

0.9 10.7348 8.9993 10.0218 9.7457 12.5392 10.5577 13.1037 12.4582

Figure 1: Drift Processes with ρ = 0 Figure 2: G-processes with ρ = 0

Figure 3: Drift Processes with ρ = 0.5 Figure 4: G-processes with ρ = 0.5
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6 Conclusions

In this paper we propose a novel and effective approximation method to find the value function

for general utility maximization with closed convex control constraints and uncertain drift coef-

ficients of the stock. Using separation principle and the dual FBSDE, we transform the utility

maximization with partial information into an equivalent, fully observable, error minimization

stochastic control problem and, using the weak duality relation, find the tight lower and upper

bounds of the value function. The numerical results indicate that our proposed method can

provide good approximation. There remain many open questions, for example, convergence and

error analysis of discrete-time stochastic optimization problem (24) and (25) to its continuous-

time counterpart (21) and (22), theoretical estimation of the difference between the lower and

upper bounds (23), the best parametric form of feasible controls for lower and upper bounds in

multidimensional case. We leave these and other questions for future research.

Acknowledgments. The authors are very grateful to two anonymous reviewers whose con-

structive comments and suggestions have helped to improve the paper of the previous two

versions.

A The specific case of (8)

Under the case N = 1, the Riccati equation (8) has an explicit solution with σ, σH being

constants. The equation becomes

dΣ(t)

dt
= −Σ2(t)

σ2
− 2(λσ + ρσH)

Σ(t)

σ
+ σ2H(1− ρ2),

with Σ(0) = σ0, which has the solution:

Σ(t) =
√
Gσ

G1 exp
(
2
√
G
σ t
)

+G2

G1 exp
(
2
√
G
σ t
)
−G2

− (λσ + ρσH)σ,

where G = (λσ + ρσH)2 + σ2H(1 − ρ2), G1 =
√
Gσ + (λσ + ρσH)σ + σ0, and G2 = −

√
Gσ +

(λσ + ρσH)σ + σ0.

B Derivation of Ĥ in (9)

To derive finite-dimensional filters and smoothers, define the reference measure P̄ as

dP̄
dP
|Ft = Λ(t) = exp

{
−
∫ t

0
(σ(s)−1µH(s))TdW (s)− 1

2

∫ t

0
|σ(s)−1µH(s)|2ds

}
,

and

dΛ(t) = −Λ(t)(σ(t)−1µH(t))TdW (t), Λ(0) = 1.

By Girsanov’s theorem,

W̄ (t) := W (t) +

∫ t

0
σ(s)−1µH(s)ds
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is a P̄-Brownian motion.

To determine the filter Ĥ(t) = E[H(t)|FSt ], we first introduce the unnormalized filter ξ(t)

and the conditional density ζ(t) as follows

ξ(t) = Ē[Λ(T )−1H(t)|FSt ], ζ(t) = Ē[Λ(T )−1|FSt ].

Then the unnormalized filter ξ is given by

ξ(t) = E[H(0)] +

∫ t

0
QT ξ(s)ds+

∫ t

0
Diag(ξ(s))(σ(s)−1µ)TdW̄ (s).

Furthermore,

ζ(t) = 1 +

∫ t

0
(σ(s)−1µξ(s))TdW̄ (s).

. By Bayes’ formula

Ĥ(t) = E[H(t)|FSt ] =
Ē[Λ(T )−1H(t)|FSt ]

Ē[Λ(T )−1|FSt ]
= ξ(t)ζ(t)−1.

By the product rule:

dĤ(t) = QT Ĥ(t)dt+ (Diag(Ĥ(t))− Ĥ(t)Ĥ(t)T )(σ(t)−1µ)TdV̂ (t),

where V̂ (t) is the innovation process given in (4).

C Equations for A,B,C in (13)

The functions A(t), B(t) and C(t) satisfy the following equations on the interval [0, T ]:

A′(t)− β

2(β − 1)
(σ−1(t))Tσ−1(t)− β

β − 1
A(t)Σ̂T

R(t)σ−1(t)− β

β − 1
(σT (t))−1Σ̂R(t)A(t)

− 2

β − 1
A(t)Σ̂T

R(t)Σ̂R(t)A(t)− 2A(t)λ = 0,

with the terminal condition A(T ) = 0. This is a Riccati-type ODE.

B′(t) +
2β

β − 1
A(t)Σ̂T

R(t)σ−1(t)r(t)1 +
β

β − 1
(σ−1(t))Tσ−1(t)r(t)1 + 2A(t)λH̄ − λTB(t)

− β

β − 1
(σT (t))−1Σ̂R(t)B(t)− 2

β − 1
A(t)Σ̂T

R(t)Σ̂R(t)B(t) = 0,

with the terminal condition B(T ) = 0. This is a linear ODE once A is known and can be easily

solved.

C ′(t) + βr(t) +
β

β − 1
1T r(t)(σT (t))−1Σ̂R(t)B(t)− β

2(β − 1)
1T r(t)(σ−1(t))Tσ−1(t)r(t)1

+BT (t)λH̄ − 1

2(β − 1)
BT (t)Σ̂T

R(t)Σ̂R(t)B(t) + Tr
{

Σ̂T
R(t)Σ̂R(t)A(t)

}
= 0,
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with the terminal condition C(T ) = 0. This is a linear ODE once A,B are known and can be

easily solved.

The above equations depend on Σ(t) of (8) and Σ̂R(t), we have to solve them numerically. For

this purpose, we solve Σ(t) first and then substitute into the equations to derive the numerical

results.

In our numerical example, under the parameter setting r = 0.05, σ = 0.8, β = 0.5, x0 =

10, h0 = 0.1, H̄ = 0.1, σH = 0.5, λ = 1, ρ = 0, σ0 = 0.2, h = 0.1, T = 1 and the time step

N = T/h = 10, the fourth order Runge-Kutta method is used to solve A,B,C and the results

are given in Table 8.

Table 8: Results of A,B,C using Runge-Kutta method

t A(t) B(t) C(t)

0 0.4113 -0.0240 0.0355

0.1 0.3872 -0.0244 0.0308

0.2 0.3621 -0.0245 0.0265

0.3 0.3349 -0.0243 0.0225

0.4 0.3048 -0.0237 0.0188

0.5 0.2706 -0.0224 0.0152

0.6 0.2315 -0.0204 0.0118

0.7 0.1863 -0.0174 0.0086

0.8 0.1337 -0.0132 0.0056

0.9 0.0721 -0.0075 0.0027

1 0 0 0

If we set the initial variance of the Kalman filter to be its equilibrium value, that is, σ0 =√
Gσ− (λσ+ρσH)σ, then Σ(t) = σ0 and Σ̂R(t) =

√
G−λσ for all t ≥ 0, in this case, the Riccati

for A(t) is solvable with a closed form formula. The analytical results of A(t) and the estimated

results from the fourth order Runge-Kutta method are given in Table 9. Similar results can

be obtained for B(t). Table 9 shows that their numerical results are the same to the first four

decimal places.

D Equations for Â, B̂, Ĉ in (16)

The functions Â(t), B̂(t) and Ĉ(t) satisfy the following equations on the interval [0, T ]:

Â′(t)− 2Â(t)λ+
β

2(1− β)2
(σ−1(t))Tσ−1(t) +

2β

1− β
(σT (t))−1Σ̂R(t)Â(t)

+2Â(t)Σ̂T
R(t)Σ̂R(t)Â(t) = 0,

with the terminal condition Â(T ) = 0. This is a Riccati-type ODE.

B̂′(t)− β

(1− β)2
(σ−1(t))Tσ−1(t)r(t)1 + 2Â(t)λH̄ − λT B̂(t) +

β

1− β
(σT (t))−1Σ̂R(t)B̂(t)

− 2β

1− β
Â(t)Σ̂TR(t)σ−1(t)r(t)1 + 2Â(t)Σ̂TR(t)Σ̂R(t)B̂(t) = 0,
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Table 9: Results of analytical A(t) and estimated A(t)

t A(t) RK A(t)

0 0.38751004 0.38750909

0.1 0.37044856 0.37044755

0.2 0.35046545 0.35046439

0.3 0.32705266 0.32705158

0.4 0.29961097 0.29960988

0.5 0.26743248 0.26743141

0.6 0.2296795 0.22967848

0.7 0.18535867 0.18535777

0.8 0.13328928 0.13328857

0.9 0.07206401 0.07206359

1 0 0

with the terminal condition B̂(T ) = 0. This is a linear ODE once Â is known.

Ĉ ′(t) +
β

1− β
r(t) +

β

2(1− β)2
r2(t)1T (σ−1(t))Tσ−1(t)1 + B̂T (t)λH̄

− β

1− β
r(t)1T (σT (t))−1Σ̂R(t)B̂(t) + Tr{Σ̂TR(t)Σ̂R(t)Â(t)}+

1

2
B̂T (t)Σ̂TR(t)Σ̂R(t)B̂(t) = 0,

with the terminal condition Ĉ(T ) = 0. This is a linear ODE once Â, B̂ are known.

E Equations for Af , Bf , Cf in (30)

The HJB equation for V has the form:

Jft + λ(H̄ − h)Jfh +
1

2
σ2
HJ

f
hh + sup

π

(
x(r + π(h− r))Jfx +

1

2
(πσx)2Jfxx + πxρσσHJ

f
xh

)
= 0

with the terminal condition Jf (T, x, h) = (1/β)xβ . Assume the ansatz

Jf (t, x, h) = U(x)g(t, h) = U(x) exp(Af (t)h2 +Bf (t)h+ Cf (t)).

Substituting V into the HJB equation, canceling the common factor U(x), using the optimal control

π∗ = − (h−r)g+ρσσHgh
σ2(β−1)g , and setting the coefficients of power of h to be zero, we have the equations for

Af , Bf , Cf :

Af
′
(t)− 2λAf (t) + 2σ2

HA
f (t)2 − β

2σ2(β − 1)
− 2βρσHA

f (t)

σ(β − 1)
− 2βρ2σ2

HA
f (t)2

(β − 1)
= 0,

Bf
′
(t)− λBf (t) + 2λH̄Af (t) + 2σ2

HB
f (t)Af (t) +

rβ

σ2(β − 1)
− βρσHB

f (t)

σ(β − 1)
+

2βρσHrA
f (t)

σ(β − 1)

− 2βρ2σ2
HB

f (t)Af (t)

(β − 1)
= 0,

Cf
′
(t) + λH̄Bf (t) + σ2

HA
f (t) +

1

2
σ2
HB

f (t)2 + βr − r2β

2σ2(β − 1)
+
βρrσHB

f (t)

σ(β − 1)
− βρ2σ2

H

2(β − 1)
Bf (t)2 = 0,

with the terminal condition Af (T ) = Bf (T ) = Cf (T ) = 0. The solutions of Af , Bf and Cf can be given

similarly as in [14].
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