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Abstract

In this paper we propose a novel and effective approximation method for finding the value
function for general utility maximization with closed convex control constraints and partial
information. Using the separation principle and the weak duality relation, we transform the
stochastic maximum principle of the fully-observable dual control problem into an equivalent
error minimization stochastic control problem and find the tight lower and upper bounds of
the value function and its approximate value. Numerical examples show the goodness and
usefulness of the proposed method.
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1 Introduction

There has been extensive research in utility maximization for continuous-time stochastic models,
see Pham [19] for expositions. If all model parameters are known or can be observed, then one
only needs to solve the optimization problem. However, if some model parameters are not
observable, as in many financial applications, then one needs to extract the information of
unknown parameters as well as to solve the optimization problem. Thanks to the separation
principle and the filtering theory, the unobservable model may be first transformed into an
equivalent fully observable model which is then solved using the known optimization methods,
see Bjork et al. [4] for an excellent introduction of the topic.

For utility maximization with incomplete market information, the traded risky asset is usu-
ally assumed to have observable volatility but unobservable growth rate, see Karatzas and Xue
[13]. To uncover the unknown growth rate, one may compute its conditional expectation (the
filter) with updated market information (the filtration generated by traded assets). It is in gen-
eral difficult to compute the filter as one needs to solve a stochastic partial differential equation
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(SPDE), but there are three important special cases where the filtering equations can be ex-
pressed in finite-dimensional closed form. These filters are consequently easily implemented in
practice and are found in a wide range of applications. They are Kalman-Bucy filter for linear
diffusion, Wonham filter for finite state Markov chain, and Bayesian filter for random variable.
Each of them has been widely studied in portfolio optimization, see, for example, Lakner [15]
and Papanicolaou [18] for the linear diffusion model, Sass and Haussmann [21] and Eksi and Ku
[7] for the continuous-time finite state Markov chain model, Ekstrom and Vaicenavicius [8] and
Bismuth et al. [3] for the random variable model. All the aforementioned papers deal with only
specific (power or logarithmic) utility without control constraints.

To solve a stochastic optimal control problem, one may use the dynamic programming prin-
ciple (DPP) to derive the HJB equation (a nonlinear partial differential equation (PDE)) for the
value function in the Markovian case, or the convex duality and the martingale representation
for the optimal terminal state and the replicating control strategy in the convex case, or the
stochastic maximum principle (SMP) to derive the fully coupled forward and backward stochas-
tic differential equation (FBSDE) for the optimal state and adjoint processes, see Fleming and
Soner [9], Karatzas and Shreve [12], and Yong and Zhou [23] for these methodologies. For utility
maximization with closed convex control constraints, one may also use the dual control approach
to solving the problem, see Li and Zheng [16], which is particularly effective when there is only
one state variable for wealth process and the control constraint set is a cone, then the dual HJB
equation is a linear PDE and the dual value function has a Feynman-Kac representation, see
Bian et al. [1].

It is considerably more difficult to solve utility maximization with partial information, even if
the filtering equation has a finite-dimensional closed form. The key reason is that the model has
at least two state variables, one for the wealth process and one for the correlated filter process.
Both the primal HJB equation and the dual HJB equation are fully nonlinear PDESs, which is
in sharp contrast with utility maximization of one state variable as in [1]. One may also view
the model having one state variable (wealth) satisfying a stochastic differential equation (SDE)
with random coefficients (filters) and use the SMP to get the fully-coupled nonlinear controlled
FBSDE with the control satisfying the Hamiltonian condition, which is again highly difficult to
solve. More discussions on portfolio optimization with partial information can be found in the
literature, for example, Fouque et al. [10] perform perturbation analysis, Brennan [5] analyzes
the effect of uncertainty about the mean return of the risky asset on investors’ optimal strategies
by comparing the myopic and “full information” allocations, Bichuch and Guasoni [2] discuss
the price-divide ratio and interest rate equilibrium over time.

In this paper, for utility maximization with general utility functions, closed convex control
constraints and partial information, instead of trying to find the value function and optimal
control exactly, a highly difficult task as discussed above, we suggest a novel and effective
computational method for finding tight lower and upper bounds of the value functions. The
idea is to transform the SMP of the equivalent fully-observable dual control problem, which is
difficult to solve as it is a system of constrained FBSDEs, into an equivalent form in forward
controlled SDEs and then further into an error minimization problem, which is relatively easy to
solve as it is a combined scalar minimization and optimal stochastic control problem. It opens
a way of finding a good approximate optimal solution, a feature not yet available for solving the
constrained FBSDE from the SMP in the literature, and, thanks to the weak duality relation,



the tight lower and upper bounds for the value function and its approximate value.

The rest of the paper is organized as follows. In Section 2 we introduce general utility
maximization with partial information and then use the separation principle and the innovation
process to transform the problem into an equivalent fully observable problem. We also give
three examples of finite-dimensional filters. In Section 3 we review three well known methods
for solving the filtered utility maximization, including the primal and dual HJB equations,
and SMP, and illustrate these methods with an example which has a closed-form solution. In
Section 4 we propose an effective approximation method for finding the lower and upper bounds
of the value function. In Section 5 we do some numerical tests for power utility and discuss the
relevant information values. Section 6 concludes the paper. Appendix includes some equations
and formulas used in the paper.

2 Model and Equivalent Filtered Problem

In this section we introduce the market models that will be employed and the optimal choice
of investors with partial information under a closed convex constraint. As the setup in Bjork
et.al [4], we consider the stochastic basis (2, F, F,P) for financial markets, where the filtration
F = {Ft}o<t<r satisfies the usual conditions. In what follows, we consider a market consisting
of N + 1 securities, among them one is the risk-free bond account whose price is denoted by
So(t):

dSo(t) = r(t)So(t)dt, So(0)=1,t¢€ [0,T],

and others are risky securities with prices {S,(t)})\_;:

dS(t) = Diag(S(t){u(t)dt + o()dW (1)}, (1)

where {W (t),t € [0,T]} is a RY-valued standard Brownian motion, S(¢) = (S1(t),--- ,Sn ()7,
pu(t) = (pa(t),-,pn()T  (a is the transpose of a) and o(t) = (crnm(t))fxm:l. Denote the
filtration generated by the asset price processes Si,...,Sy as F°. The interest rate {r(t)}
and the volatility rates o(t) are assumed to be uniformly bounded ]-'ts -progressively measurable

processes on {2 x [0,T]. We also assume that there exists ¥ € R* such that
dot)ol (t)z > k|z|?,

for all (z,w,t) € RN x Q x [0,7]. This ensures the matrices o(t),o” () are invertible and
uniformly bounded by Xu and Shreve[22]. The drift processes of the return, u(t), are assumed
to be F-adapted processes.

Remark 1 Throughout the paper different information sets are assumed to be available for
various market participants. The full information is given by the filtration F, while the observable
information is given by the filtration F°, generated by the evolution of asset price processes S
and we have F¥ C F. The completely observable case is obtained by assuming F = F°.

Remark 2 The assumption that r is F°-adapted (cf. [13]) implies that the interest rates can
be known by observing the stock prices only, and F™° = FS.



Define a self-financing trading strategy as m = (7());e[o,7), Which is an N-dimensional FS-
progressively measurable process and m;(t) denotes the fraction of the wealth invested in the
stock i for i =1,--- , N at time ¢ € [0,7]. Additionally, the set of admissible portfolio strategies
is given by

A:={r e H*(0,T;RY) : n(t) € K for t € [0,T)] a.e.},

where K C R¥ is a closed convex set containing 0, and
T
H2(0,T;RN) & {g Qx[0,T] =R | ¢e FSE [/ ]((t)\th] < oo}.
0

Some examples of K are discussed in Sass [20], which shows the generality of this assumption
and some common situations are included, such as short selling prohibited, limited funds and so
on. Given any F®-measurable m € A, the dynamics of the investor’s total wealth X7 is given as

dX™(t) = XT(t){[rt) + 7T ) (u(t) — r@®)1)]dt + 7L (t)o(t)dW (t)},0 <t < T,

X7(0) = z, (2)

where z > 0 and 1 € RY has all unit entries. A pair (X™, ) is said to be admissible if F°-
measurable m € A and X7 satisfies (2). The utility function U : (0,00) — R considered here is
continuous, increasing, concave and U(0) = 0.

Define the value of the expected utility maximization problem as

V(z) = sup EUX™(T))]. (3)

We assume that —oo < V' < 400 to avoid trivialities and as the available information is only the
securities’ dynamics, we actually are facing a stochastic control problem with partial information.
Any 7* € A satisfying E[U(X™ (T))] = V is called the optimal control, and the corresponding
X* = X" is called the optimal state process.

The above partially observable problem can be reduced to an equivalent problem under full

A

information, as in [4]. Here we define the innovation process V = (V(t))te[oﬂ as

V(t) = /0 o™ (u)(u(u) — i(u))du + W (2), (4)

where i(t) = E[u(t)|F?] is the filter for u(t). The following result holds:

Theorem 1 (Fujisaki et al.[11]) Assume that (07 (t))iejo.) is uniformly bounded and
E [fOT Hafl(t)u(t)Hth] < 00. Then'V is a F5-Brownian motion under P.

From the definition of V in (4) we have the following representatives:
dS(t) = Diag(S(t)){a(t)dt + o(t)dV (t)}.
The corresponding wealth process would be
dX™(t) = X" (t) {[r(t) + 7l () (a(t) — r(t)1)]dt + TrT(t)U(t)dV(t)} . (5)

Under this transformation, the original partially observed problem has been transformed to a
related problem as in the full information. After solving the reformulated completely observed



problem, the partially observable case would be discussed by embedding the filtering equations
for unobservable processes. As discussed in [4], for general hidden Markov models, the infinite
dimensional state space problem of the Kolmogorov backward equation would make it impossible
to give explicit solutions of optimal control. We next give three examples of special but important
filters, they are the Kalman-Bucy filter, the Wonham filter and the Bayesian filter.

Example 1 Linear stochastic differential equation
Suppose that p(t) = H(t) in (1), where H satisfies the following SDE:

dH(t) = ~NH(t) — H)dt + o (pdW (£) + /1 — p2dWi(t)), (6)

where H € RY and \,og € RV*N are constant vector and matrices, p € [—1,1], Wy is an
N -dimensional Brownian motion independent of W, and the initial condition H(0) of process
H is independent of W, Wy. By Liptser and Shiryayev [17], let the conditional density of H(t)
given FS be Gaussian, then H(t) = E[H(t)|F?], called the Kalman-Bucy filter, satisfies the
following SDE:

dH(t) = =\(H(t) — H)dt + SE(8)dv (1), (7)

where Sg(t) == o~ (t)2(t) + poly, B(t) := Var(H(t)|FF) = E[(H(t) — Ht))(H(t) — H®)"|F7)
and
dx(t)

7 opof — AS(t) — SN = SH()XR(), (8)

subject to H(0) = E[H(0)], 2(0) = Var(H(0)). Under specific cases, H(t) can be solved explicitly
in terms of 3(t), see Appendiz A ([15]). Note that the above process H is not necessarily mean-
revering. If X is a diagonal matriz with positive diagonal entries, then H is an N-dimensional
mean-reverting Ornstein-Uhlenbeck (OU) process ([15]).

Example 2 Continuous time finite state Markov chain process

Suppose that p(t) = MH(t) in (1), where H(t) is a stationary, irreducible, continuous time
Markov chain, independent of W, with state space {ey, ..., eq}, ey is the kth unit vector in R?,
and generating matriz QQ = (¢;;) € R matriz M € RN*4 with column k representing the drift
when H(t) = e. By [20], H(t) = E[H(t)|F7), called the Wonham filter, satisfies the following
SDE:

dH(t) = QTH(t)dt+ (Diag(H(t)) — H(OH()")(o(t)"'w) v (1), (9)
subject to H(0) = E[H(0)], see Appendiz B for details.

Example 3 Unobservable random variable

Suppose that (t) = B in (1), where B is an unobservable random vector with distribution
m, independent of W, and E[B?] < co. The prior law m represents the subjective beliefs of the
investor about the likelihood of the different values that B might take. The volatility matrix o
is assumed to be constant. The knowledge of B is updated with new observable information. By
[6], i(t) :== E[B|F?], called the Bayesian filter, satisfies the following SDE:



where 1 is a matriz-valued function determined by m. In particular, if B ~ N (bg, X¢), a multi-
variate normal distribution with mean by and covariance matriz Xg, then 1(t,b) is independent
of b and given by ¥(t,b) = (Eal + X717 o™, where ¥ = oo, and the filtered process fi is
a Gaussian process measurable with respect to F°, see [6] for details.

Using the innovation process V in (4), we can transform a partially observed problem into
a fully observed problem (3) with the wealth process X satisfying the SDE (5), where fi(t) is

a filtered drift process. We assume from now on that fi(t) = p(H(t)) for some deterministic
function p and H satisfies the following SDE:

dH(t) = fig(t, H(t))dt + G5 (t, H(t))dV (1) (10)

For the Kalman and Bayesian filters, we have pu(h) = h and for the Wonham filter, we have
w(h) = Mh with d = N. The corresponding value function is defined by, for 0 <t < T,

J(t, 2, h) = sup B o o[U(X™(T))], (11)
TeA
where E;, 4[] = E[|X™(t) = z, H(t) = h], the conditional expectation operator at time t.

Since H(t) = E[H(t)|F7], h is the conditional expectation value of H(t), not the value of H(t)
which is F; measurable but not F;° measurable, in other words, H(t) is a constant given F;
(full informaton) but a random variable given F;° (partial information). Such a distinction is
important when we discuss the information value of H(¢) and that of H(t), see Section 5.3.

3 Optimality Conditions

To solve the filtered utility maximization problem (11), we may use one of the following three
methods: stochastic control, convex duality and stochastic maximum principle. We next give a
brief discussion of these methods.

3.1 HJB equation

After filtering, the stochastic control approach applies, and the value function satisfies the
following HJB equation

Ji + sup <x(r(t) + 7l (u(h) — r(t)1))J, + %x%rTa(t)aT(t)me + A% (t,h)Jy

1
+arl o ()6 (t, h) Jon + 5Tl (¢, )67 (t, h)th]> =0, (12)

with the terminal condition J(7T,x,h) = U(x). Equation (12) is a nonlinear PDE with control
constraint, which is in general difficult to solve, even numerically. There is one important special
case in which the nonlinear PDE (12) can be simplified into a semilinear PDE, and the solution
may have a representation in terms of the solution of a BSDE. For the case U(x) = (1/8)z",0 <
B < 1, we have an ansatz solution form J(¢,z,h) = U(z)f(t, h), substituting into (12), we have

o= W) o — S Trlo (6 WO (6B fin] — F(t, B £ 61, h) ) = 0.



with f(T,h) = 1, where

it ) = sup (B0 + 77 () — 0y + 5600~ D000 (my-+ e 0(0):).

Example 4 Suppose the utility function U(z) = (1/8)2? (power utility) with K = RN and H
satisfies SDE (7) , then we have an ansatz for J:

1
J(t,x,h) = Bxﬁ exp (RTA(t)h + BT (t)h + C(t)), (13)
and the optimal control ™ is given by

P i ) K PR 3
)= =5 [0 () (h —r(t) 1) + Xr()(2A()h + B(1))], (14)

where A(t) is a N x N symmetric matriz, B(t) a RN wvector, C(t) a scalar, and the detailed
ODEs for A, B,C are given in Appendix C. Since ﬁ(t) = h, m*(t) depends on the conditional
expectation value of H(t), given F;, but not the value of H(t) itself.

3.2 Dual HJB equation

Define the dual function of U as

Uly) = sup(U (@) — ), y 2 0.

We have that U is a continuous, decreasing and convex function on (0, c0). The dual process is
given by, for 0 <t < T,

ay 59 (1) =~y ) (1) { (1) + e (o(1))]dt + (o= () (u(EL(D)) — (1)1 +0(0))TdV (1)}

Y (0) =y,
where H satisfies SDE (10), 6x is the support function of the set —K, defined by dx(z) =
SUP, ¢ K{—ﬂ'TZ}, z € RN, and v is the dual control process defined in the set

T
D= {v Q% [0,T] = RY|v € F¥ and / [0k (v(t)) + [v(t)|]dt < oo a.s.} .
0

The dual problem is the following:

V(t,z,h) 2  inf E [UY(W)T] . 15
(o) 2 b (B 00000 ) (15)
Any (y*,v*) € (0,00) x D satisfying 2y*+ Ey , n[U(Y W V)(T))] = V (¢, x, h) is called the optimal
dual control and the corresponding Y #"*") the optimal dual process. Fix y, the dual value
function is defined by
J(ty.h) 2 inf Eyyn [U(wiv) (T))] .
ve



Suppose K is a closed convex cone, which gives dx(v) = 0 for v € K and oo otherwise, where
K ={v:v"r >0, Vr € K} is the positive polar cone of K. The dual value function J satisfies
the following dual HJB equation:

int (o= (09, + 5Pl ) = O+ 0O o (O )1 + ()L

A1 )T~y (Ou(h) — (1 + o) (1 ) Tyn + STrle (1, m)6h h)fhhl) =0,

and J(T,y,h) = U(y). After giving optimal dual control y,v by (15) and strong duality, the
primal value function J(t,z,h) and the primal optimal control can be derived using the dual
value function. This is also a nonlinear PDE with control constraint, which is also impossible
to give explicit solutions. Instead we focus on the following specific case.

Example 5 Assume the same setting as Example 4. Then K = {0}, which gives the dual
control v(t) = 0 and the dual value function J(t,y, h) = E;, »[U(Y @O(T))]. We have an ansatz
for J:

J(tyh) = jﬁ

where A(t) is a N x N symmetric matriz, B(t) a RN vector, C(t) a scalar, and A, B,C satisfy
some ODEs, see Appendix D for these equations. Solving (15), we have

YT exp (hTA(t)h + BT (DR + C’(t)) : (16)

V(t,x, h) = ;xﬁ exp ((1 — B)[WTA(t)h + BT (t)h + é(t)]) , (17)

with the minimum point y*(t,z,h) = L exp ((1 — B)[WTA(t)h + BT (t)h + C’(t)]) From the
primal-dual relation J(t,z,h) ,x,h), combining (13) and (17), we have (1 — B)A(t) =
(t) =

A(t),(1—B)B(t) = B(t) and (1 — C(t). The optimal control is given by

Vit
B)

* __(Ufl(t))T —1 _ 3 _ i
Tt = — gy o @) — () 1) + 2r(®)(1 - B)2AMA + B@))],

which is exactly (14).

3.3 Stochastic maximum principle

For constrained utility maximization, one may also use the SMP to solve it. There is extensive
literature on this. Here we only cite the results from [16] and the reader can find more references
and discussions there. [16] gives the necessary and sufficient optimality conditions for both
primal and dual problems in terms of constrained controlled FBSDEs and characterizes their
dynamic relations of the optimal control, the state process, and the adjoint process. Under some
regularity and integrablility assumptions on utility function and stochastic processes, we have
the following result.



Theorem 2 ([16],Theorems 3.9 and 3.10) Let (g,7) € (0,00) x D. Then (y,0) is optimal for
the dual problem if and only if the solution (Y (99 P Q) of FBSDE

) = <Y 630) {[r0) + (o)t + o D) (01 + SOV 0]}
4B() = {I ()P()+Q e OG0 — o+ 00, (15)
gt H(t))dt +

p 0) = Zo,
Jf"l(t ()7 Q() € (19)
P(t)ox (5(t) + QT (t)o 1(7:)@(15) =0, Vtel0,T]P—a.s.

The optimal control for the primal problem with initial wealth xqo is given by

7(t) & Wt € [0,7).
P(t)

We give an example to illustrate its use.

Example 6 Assume the same setting as Example 4, then ©(t) = 0. Solving the BSDE in (18),

we have
(0 =y Q0 = P00 + 2.
where ¢(t) = Epyn[-YI(T)U'(Y(T))] = Byl (T)77], 8(t) := o~ () [u(H () — r(t)1] and
o(t) = o(T) — fT T (5)dV (s). By Theorem 8.10 of [16], the optimal strategy is given by
B0 (5 ell)
v = TS~ ) (0 + 53 ). (20

Since ¢(t) = 173 J(t y,h) and J has an ansatz (16), using Ito’s formula and the Feynman-Kac
formula, we hav

J iéT(t) + [2nT AT (t) + BT(t)]ig(t)} dv (t),

dJ(t) = J(t) { 3

which indicates that p(t) = ¢(t) {ié(t) + Sr(H[2A(t)h + B(t)]} Substituting into (20), we
get

We have recovered the optimal control. In general, it is difficult to give o(t) as this is from the
martingale representation theorem.



4 Effective Approximation Method

For general utilities with closed convex constraint case, one can write the HJB equation but it
is not possible to find an ansatz solution even for power utility due to control constraint. For
the same reason one cannot apply the martingale representation theorem to construct a control
(replicating portfolio which may be negative) and therefore the standard martingale method
cannot be used to solve the problem. The primal and dual value functions satisfy the following
weak duality relation:

BU(X™(T)] < sup U (D)] < | int_ (B0 O)(T)] + 20y) < BO( (T + a0
The inequalities show that the dual formulation gives an upper bound for the primal value
function. Instead of focusing on the exact controls, we explore the tight lower and upper bounds
of the value function for general cases. We show it is possible to achieve this with the dual
FBSDE. Assume (y, v) is a feasible dual control. By Theorem (2), (y, v) is an optimal dual control
if and only if (Y®?), P, Q) satistying (18) and (19). Denote by m(t) :== P~1(t)[oc”(t)]"1Q(t),
(19) can be rewritten as
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and .
E [w!P(T) + U (yY () + (1 —w) /D [0k (v(t)) + 7r('J‘)v(t)]dlf} =0,

where w € (0, 1) is a given constant. Here we have used the fact that dx is the support function
of —K, so dx(v(t)) + m(t)v(t) > 0 for all 7(t) € K.
Consider the following optimal control problem:

T
%HUE {w\P(T) + U (yY(T))>+ (1 — w)/ [0k (v(t)) + F(t)’l)(t)]dt] subject to (21).  (22)
oy 0
Note that (21) is a forward controlled SDE system with state variables Y,P,Ifj' and control
variables 7, v, and (22) is a standard control problem with an additional decision variable y > 0.
If we can manage to find (y, 7, v) that makes the objective function zero, then we have solved
(18) and (19). The key advantage of (22) over the dual FBSDE system (18) and (19) is that
(22) is an optimal control problem and the known optimization techniques can be used to solve
it, which is in sharp contrast to the dual FBSDE system (18) and (19) that is a pure equation
system and difficult to find its solution.

In general, we may only be able to find (y,,v) that makes the objective function close to
zero, but not exactly zero, then (y,m,v) is not a solution to the dual FBSDE system (18) and

10



(19), that is, not the optimal solution to the dual problem. However, (y,7,v) and (Y, ]5) still
provide useful information about the value function, that is, we can get the lower and upper
bounds as

LB := E[U(P(T))], UB := zoy + E[U(Y (T))]. (23)

If the difference of LB and UB is small, we may approximate the value function J in (11) by a
simple average (LB 4 UB)/2 with 7 a good approximate feasible control corresponding to the
lower bound. This shows the usefulness of solving the control problem (22), that is, one may
find a good approximate solution with (22), which is essentially impossible if one tries to achieve
the same with the dual FBSDE system (18) and (19).

To find the approximate optimal solution of (22), we may proceed as follows: Divide the
interval [0, 7] into n subintervals with grid points t; = ¢h, i = 0, 1,...,n, and step size h = T'/n.
On each interval [t;,ti+1), @ = 0,1,...,n — 1, choose constant controls m; and v; that are F,
measurable. Discretize (21) to get a discrete time controlled system with Y; denoting Y'(¢;), etc.

YVier = Y5 = ¥ilrs (w0l = Yioy  (u(H) ~ rid + 0] (Ve = Vo),

PH—l P +P[T1+7T (:U(H)_Tz )]h+P7T Uz(VH—l V)
Hz+1 H +NH(tzaH)h+o'H(tuH)(V;+l V)7

Yo=1, Po—l‘(), Hy=hg,m e K,o=0,...,n—1,

(24)

where ‘Z:_l,_l —V;,i=0,1,...,n — 1, are independent N (0,h) random variables. The discrete
version of problem (22) is given by

n—1
min B |w|B, + U'(yY,) > + (1 —w)h Z[(SK(W) + mv;]| subject to (24). (25)

-1
Y,(Ti,vi) g i=0

The lower bound is given by LB = E[U(P,)] and the upper bound by UB = zoy + E[U(Y,)].
With the specific information of the structure of the model, we can then try to solve the discrete
time optimal control problem (25) as shown in the numerical examples in the next section.

Remark 3 if the control constraint set K is a closed convex cone, then d0x(v) =0 for v € K
and oo otherwise. (24) becomes

YHI Y, —Yirih — Y[ ( (H)_Tzl‘i‘vl)] (VHl_Vi)a
PZ+1 P, —i—P[r,—i—ﬂ (M(H)—'FZ )]h+P7r O'Z(‘/H_l—‘/;‘),

N 26
Hi\y = H; +,uH(tZ,H)h+0H(tl,H)(VZ+1 V), (26)
Yb—lPo—.%o,Ho—h(],ﬂ‘ZEK’UzEKZ—O n—1,
and (25) becomes
_ n—1
min  E |w| By + U (yYo)]> + (1 — w)h Y _[mwi] | subject to (26). (27)
Y, (mi50i) 1 i—0

In particular, if K is the whole space, then K = {0} and v; =0 for all i.
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5 Numerical Examples

In this section we use the above method to compute the lower and upper bounds under Kalman
filtering case. For simplicity, we assume the market has riskless asset and one risky asset and
r,o are constants, and utility function is power utility U(z) = (1/8)z® with 0 < < 1. We
consider two cases: one is K = R and the other K = R*, the former gives K = {0} and the
latter K = R*. We need to solve the discrete time control problem (27).

5.1 Unconstrained case

The optimal value at time 0 is given by (13), that is,
J(0, 20, ho) = Ul(xo) exp (A(0)h3 + B(0)ho + C(0)) , (28)

where X (0) = ¢ and H(0) = E[H(0)|F§] = E[H(0)] = ho. (28) provides benchmark values
for testing the efficiency of the lower and upper bounds computed with (23) and (27). Since
K =R and 7; is ]-}f measurable and ﬁz is exogenous, we have v; = 0 for all ¢ and we consider
controls m; in the following form: m; = a; + biﬁi which incorporates the OU process H in
controls, where a;, b; are constants to be determined, and denote by a = (ao, ... ,anfl)T e R"”
and b= (bg,...,b,—1)T € R". We can now write out the discrete version of (21), together with
SDE for H: fort=0,1,...,n—1,

Y;H Y, —rY;h — o~ YH; — r)Yi(Vigr — Vi),

PZ+1 P, +rPh+ ( r)m]%h + Uﬂipi(f/iﬂ - Vz)7

Hiy = H; + \(H - Hi)h + o N (S() + poon) (Vi — Vi), (29)
Yy =1, Py = z0, Ho = ho, £(0) = 0y,

™ = (CLi —+ bzﬁl)

The discrete version of problem (29) is given by

Zr/ngréf(y,a, b) :=F []Pn + U'(yYn)|2] subject to (29).
We still need to compute the expectation to get function f, which can be achieved by taking the
sample average. Specifically, for fixed y, a, b, generate n independent standard normal random
variables Z;1+1,4=0,...,n—1, and compute Yit1, PZ+1, i+1 by replacing V;H —V with fZHl,
which generates a sample path of Y, P7 H. We can repeat this procedure M times and take the
average of M copies of ]15” +U (yYy)|?, which gives an approximate value for f(y,a,b). The
problem now is to find (y, a,b), with a total of 2n + 1 variables, such that the objective function
f(y,a,b) is minimized. This is a finite dimensional nonlinear minimization problem.

For numerical results, we try two forms for control =, one is m; = a + bH; with a,b being
constants (Form I), the other is m; = a;+bH; with a;, b being constants (Form II). For illustration,
the parameters are given as 7 = 0.05,0 = 0.8,3 = 0.5, 29 = 10,hg = 0.1, H = 0.1,05 = 0.5, =
1,p=0,00 =0.2,h = 0.1,T = 1 and the time step here is N = T'/h = 10. Since H(0) is a normal
random variable with mean hy and variance og, by varying these parameters, we can compute
the corresponding benchmark values in (28) and the lower and upper bounds. Tables 1 and 2
list these results and their comparisons. The shorthand notations BC, LB, UB and OB denote
benchmark values, lower bounds, upper bounds and objective function values, respectively, and
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MV =(LB+4UB)/2 is the approximate optimal value, rel-diff-1(%) = (UB-LB)/LB x 100 the
relative error of lower and upper bounds, and rel-diff-2(%) = |(MV-BC)/BC| x 100 the relative
error of approximate optimal value and benchmark value. The corresponding A(t), B(t) and
C(t) are given by using equations in Appendix C and the fourth-order Runge-Kutta method
with N = 10. Tables 1 and 2 show that the considered two formulas for controls give good
approximate values MV with relative errors less than one percent compared with the benchmark
values, although relative errors between LB and UB are slightly bigger in comparison, which is
expected in estimating bounds. Tables 1 and 2 also show that the optimal values are similar for
different combinations of hg and og, two parameters for the initial distribution of H(0), which
indicates the optimal value is less sensitive to the initial estimate of these parameters. The
results show that by using dual method, we can always give a range for the value function and
generate tight lower and upper bounds. Additionally, the estimated controls for both primal
and dual problems can be derived clearly. Moreover, the results show that the mean values are
quite close to the benchmark results for most cases.

Table 1: Results by Varying ho(Full Space)

ho BC | Form | LB UB | rel-diff-1(%) OB MV | rel-diff-2(%)
0.05 | 6.5521 I 6.4806 | 6.5570 1.1786 0.0017 | 6.5188 0.5086

II 6.4826 | 6.5619 1.2238 0.0016 | 6.5222 0.4558
01 | 65645 I 6.4832 | 6.5733 1.3885 0.0018 | 6.5282 0.5518

II 6.4671 | 6.5731 1.6384 0.0022 | 6.5201 0.6754
0.2 | 6.6300 I 6.4775 | 6.6527 2.7051 0.0031 | 6.5651 0.9796

II 6.4812 | 6.6572 2.7155 0.0030 | 6.5692 0.9178

Table 2: Results by Varying oo (Full Space)

00 BC | Form | LB UB | rel-diff-1(%) OB MV | rel-diff-2(%)
01 | 65353 I 6.4847 | 6.5357 0.0787 0.0010 | 6.5102 0.3843
II 6.4719 | 6.5441 1.1150 0.0016 | 6.5080 0.4182
0.2 | 6.5645 I 6.4832 | 6.5733 1.3885 0.0018 | 6.5282 0.5518
II 6.4671 | 6.5731 1.6384 0.0022 | 6.5201 0.6754
0.3 | 6.6050 I 6.4702 | 6.6584 2.9083 0.0032 | 6.5643 0.6155
II 6.4739 | 6.6535 2.7739 0.0031 | 6.5637 0.6249

5.2 Constrained Case

Since K = R*, there is no closed form solution. From K = R, we let m; = (a; + biﬁi)Jr, v =
(a; 4 biH;)t, where 2+ = max(z,0). In the numerical tests, we in particular discuss two forms:
7 = (a+ bH;) ", v; = (@ + bH;)T with a,b,d, b being constants (Form 1), m; = (a; + bH;)t, v; =
(a; + I;ﬁl)"’ with a;, a;, b, b being constants (Form II). Here we use the same parameter settings

as in the unconstrained case.
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By solving the above minimization problem (27), the optimal results of two forms are given
below (w = 0.5). In Form I, the optimal parameters are a = 0.04682,b0 = —0.1281,a =
—0.0019,5 = —0.1958, and y = 0.3172. In Form II, the optimal parameters are b = —0.1060,5 =
—0.0572,y = 0.3196 and the estimation of a(t), a(t) is given in Table 3. Under one sample path
of H , the controls 7, v estimated by two forms are given in Table 3. The lower and upper bounds
for primal value function obtains accordingly. The parameter w is added to control the weight
put on different objectives, to show the sensitivity of the results with it, the results are listed in
Table 4. In the following tables, the shorthand notations LB, UB and OB denote lower bound,
upper bound and estimated values of the corresponding objective functions respectively,and rel-
diff(%) = (UB-LB)/LB x 100. The results illustrate that when w = 0.9, the relative difference
and the value of the objective function are the best among all the choices.

Table 3: Optimal a(t), a(t), = and v
t 0 1 2 3 4 5 6 7 8 9

a(t) | 0.1993 | -0.0680 | 0.0411 | -0.4163 | -0.0878 | -0.0252 | 0.2233 | -0.1088 | -0.0948 | -0.0340
a(t) | 0.0106 | -0.1196 | -0.0383 | 0.0753 | 0.0329 | 0.0883 | -0.0458 | -0.1517 | -0.0036 | 0.0334
x(II) | 0.1887 | 0.0000 | 0.0344 | 0.0000 | 0.0000 | 0.0000 0.2044 0.0000 | 0.0000 | 0.0000

(
v(II) | 0.0049 | 0.0000 | 0.0000 | 0.0673 | 0.0226 | 0.0776 0.0000 0.0000 | 0.0000 | 0.0247
I) | 0.0340 | 0.0406 | 0.0387 | 0.0289 | 0.0238 | 0.0228 | 0.0.0240 | 0.0175 | 0.0140 | 0.0273
) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 0.0000

In the considered OU case, we suppose some known assumptions for initial state of hidden
sequence H, whose first and second moments(hg, 0p) are given in advance. Tables 5 and 6
give the results by varying the initial assumptions. These tables show that the method always
generate good bounds for different assumptions of the initial sates. More specifically, under
almost all cases, Form I would give better estimations. Additionally, as oy get bigger, that is,
we are less confident in the assumption, in this circumstance the bounds would be wider.

Table 4: Results by Varying w(SMP)

w | Form | LB UB | rel-diff(%) | OB MV
01 I 6.4843 | 6.5623 1.2020 0.0015 | 6.5233
II 6.4841 | 6.5923 1.6678 0.0019 | 6.5382
05 I 6.4843 | 6.5635 1.2215 0.0017 | 6.5239
II 6.4871 | 6.5703 1.2817 0.0017 | 6.5287
09 I 6.4850 | 6.5719 1.3412 0.0002 | 6.5284
II 6.4881 | 6.5707 1.2739 0.0002 | 6.5294

Remark 4 For simplicity, in the above numerical cases, we only focus on the 1-dimensional
cases, that is only one risky asset considered. Our method can be easily generalized to d-
dimensional problems with polynomial growth of computation. In our numerical examples, if the
constraint set K =R% (d > 1), then the corresponding considered controls are 7(t) = a + bH (t)
for some a € R, b € R4, the total number of parameters to be determined is d 4+ d>. If the
constraint set K = ]Ri, similarly we may choose w(t) = (a+ bfAI(t))Jr, the number of parameters
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Table 5: Results by Varying hg

ho | Form | LB UB | rel-diff-1(%) OB MV
0.05 I 6.4843 | 6.5522 1.0480 0.0015 | 6.5182
II 6.4835 | 6.5611 1.1972 0.0026 | 6.5223
01 I 6.4843 | 6.5635 1.2215 0.0017 | 6.5239
II 6.4871 | 6.5703 1.2817 0.0017 | 6.5287
0.9 I 6.4843 | 6.6716 2.8892 0.0030 | 6.5779
II 6.4969 | 6.6688 2.6462 0.0028 | 6.5829

Table 6: Results by Varying o

oo | Form | LB UB | rel-diff(%) OB MV
01 I 6.4843 | 6.5335 0.7594 0.0010 | 6.5089
II 6.4874 | 6.5443 0.8769 0.0024 | 6.5159
0.2 I 6.4843 | 6.5635 1.2215 0.0017 | 6.5239
II 6.4871 | 6.5703 1.2817 0.0017 | 6.5287
03 I 6.4843 | 6.6329 2.2902 0.0027 | 6.5585
11 6.4899 | 6.6738 2.8337 0.0030 | 6.5818

is d+ d?, not 2%. Even we use piecewise constant controls with n subintervals, then the number
of parameters is n(d + d*). Therefore, in our setting, the number of parameters would grow
polynomially with respect to the number of traded assets and subintervals, not exponentially. For
example, if we set d = 2, then the considered format for the control would be

T (t) _ aq + b1 b2 fill(t) *
9 (t) a9 b3 b4 H2 (t) ’

For fized parameters a;,b;, controls w(t) are determined once H(t) are known. In other words,
there is no exponential explosion 2¢ as we do not need to check possible combinations of m(t)
and mo(t) being positive or zero, they are determined naturally by ai,bj,ﬁ(t) and a;,b; can be
found by a continuous variable minimization in o finite dimension space. We emphasize that
7(t) = (a+bH(t))" when K = R% is a feasible control, but NOT an optimal control for problem
(27), which is in general difficult to find. There are many ways of choosing feasible controls, for
example, we may also set w(t) = (a+ bH(t) + H(t)TcH(t))t, where H(t)TcH(t) € R with the
ith component given by fI(t)TcilfI(t) and ¢; € R4 fori=1,...,d, and then determine a,b,c
by solving a minimization problem with d+ d? 4+ d* variables. The numerical examples for d = 1
show that the choice of control w(t) = (a+bH(t)) provides a good compromise in the sense that
it 1s easy to compute while gives tight lower and upper bounds. These control forms still provide
lower and upper bounds for d > 1, but other forms may exist to give tighter bounds. It is still
an open question on the best parametric form of feasible controls for lower and upper bounds in
multidimensional case.

Remark 5 The dual FBSDE method is applicable for general constrained optimal portfolio se-
lection problems, including general utilities and other filtering cases of hidden processes. The
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CIR case given in [18] can be discussed similarly.

5.3 Information value of learning

We may call the problem (3) subject to (5) the utility maximization with learning, in which
the admissible control 7 is F° measurable. If y and W can be observed and the admissible
control m is F measurable, we may call the corresponding problem (3) subject to (2) the utility
maximization with full information. In other words, we focus on the following cases: (P1) we
can fully observe H process and use it to find the value function and optimal control, (P2) we
cannot observe H process and use the Kalman-Bucy filter to learn the process H. Intuitively
the investors with full information would gain more than those with partial information, as the
full information investors master the market better. To gain some insight into the magnitude
of the effect of information sets, we assume U(x) = (1/8)z” with0 < 3 <1l and N =1, K =R.
For the full information case (P1), the value function is given by

JI(t,x, h) = sup E[U(X™(T))|X™(t) = z, H(t) = h] = U(z) exp(Al (t)h? + B (t)h + C/ (1)),

TeA

(30)
where Af, Bf, Cf satisfy some ODEs, see Appendix E. Both H(t) and J7(t,z,h) are F; mea-
surable but not F;” measurable. On the other hand, for the partial information case (P2), both
H(t)) and the value function J(t,z, H(t)), see (13) and Appendix C, are F measurable. We
cannot directly compare Jf (¢, 2, H(t)) and J(t,z, H(t)) as the former is a random variable in
.7-"59 while the latter a constant in .7-",;'3 . However, we can compute the conditional expectation of
JI(t, 2, H(t)) given S and then compare its value with J (¢, z, H(t)). The difference of the two,

E[J(t,z, HO))|FS, X (t) = ] — J(t,z, H(t)), (31)

is the so called information premium or the loss in utility due to partial information. Papani-
colaou [18, Proposition 3.15] shows that the information premium is always nonnegative. This
is from the average value point of view, if we draw samples of Jf(t,z, H(t)) and J (¢, z, I:I(t)),
they do not necessarily have that relationship. We next illustrate numerically the point with
the optimal value at time 0 and draw some sample paths.

The full information value function at time 0 is given by J/ (0, zq, H(0)), where H(0) is an
observed value under the full information setting and is a sample from the normal distribution
with mean hg and variance o¢. For the no information with learning case (P2), the value function
at time 0 is given by J(0, 2o, ho).

Table 7 lists the numerical results of information values at time 0, where the column E[J7]
denotes E[J/(0,z, H(0))], which is calculated as

Ulx) exp (A7 ()8 + B (0)ho + €7 (0) ) Elexp(f(2))]

and f(Z) = A(0)o¢z%+ (2A7(0)ho + B/ (0))/50Z with Z being a standard normal random vari-
able. The expectation Eexp(f(Z))] can be easily computed with simulation. The parameters
are chosen as those in Section 5.1 with r = 0.05,0 = 0.8,8 = 0.5,z = 10,H = 0.1,05 =
0.5,A = 1,h = 0.01,7 = 1. By varying hg, the initial state, from 0.1 to 0.9 with state step
0.2, the results of E[J/(0,z, H(0))] for full information case (E[J/](P1)) and J(0,z,hq) for
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partial information case (J(P2)) are shown in Table 7. We give four comparing results under
p=0,p=0.5 and o9 = 0.2,09 = 0.4 separately.

It is observed that the value of investors with full information is greater than those with
partial information, which verifies the comparing relation (31) numerically. Figure 1 to 4 plot
the sample paths of H and G. In Figures (1) and (3), H is simulated using (6) and H is
simulated using (7). In figures (2) and (4), G¥(t) = Af()H?(t) + Bf (H)H(t) + C/(t), GP(t) =
A(t)H?(t) + B(t)H(t) + C(t) and A(t) = GT(t) — GP(t). The results indicate that although
E[GT(t, H(t))|F’] > GP(t), GI(t, H(t)) could be less than GP(t) at some times depending on
sample paths. We have used the step size 0.01 and the number of time steps 100 over the time
interval [0, 1].

Table 7: Value function at time 0 by varying hg

p=0 p=0.5

ho op = 0.2 gp = 0.4 o) = 0.2 agpg = 0.4

E[JT|(P1) [ J(P2) | E[JF](P1) | J(P2) | E[JT|(P1) | J(P2) | E[JT](P1) | J(P2)
0.1 7.2713 |6.5736 | 8.0024 | 6.6953 | 7.4809 6.8526 9.9818 7.1398
0.3 | 7.9136 |6.7655 | 8.5481 | 6.9296 | 7.6644 7.1307 8.5811 7.5150
0.5 | 7.9501 | 7.1977 | 82730 | 7.4621 | 9.6625 7.7655 | 10.3860 | 8.3877
0.7 89269 | 79159 | 99465 | 8.3604 | 8.8783 8.8509 | 11.1425 | 9.9270
0.9 | 10.7348 | 8.9993 | 10.0218 | 9.7457 | 12.5392 | 10.5577 | 13.1037 | 12.4582
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Figure 3: Drift Processes with p = 0.5
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6 Conclusions

In this paper we propose a novel and effective approximation method to find the value function
for general utility maximization with closed convex control constraints and uncertain drift coef-
ficients of the stock. Using separation principle and the dual FBSDE, we transform the utility
maximization with partial information into an equivalent, fully observable, error minimization
stochastic control problem and, using the weak duality relation, find the tight lower and upper
bounds of the value function. The numerical results indicate that our proposed method can
provide good approximation. There remain many open questions, for example, convergence and
error analysis of discrete-time stochastic optimization problem (24) and (25) to its continuous-
time counterpart (21) and (22), theoretical estimation of the difference between the lower and
upper bounds (23), the best parametric form of feasible controls for lower and upper bounds in
multidimensional case. We leave these and other questions for future research.

Acknowledgments. The authors are very grateful to two anonymous reviewers whose con-
structive comments and suggestions have helped to improve the paper of the previous two
versions.

A The specific case of (8)

Under the case N = 1, the Riccati equation (8) has an explicit solution with 0,0y being
constants. The equation becomes

2
d%zit) . Zagt) “ 20\ + por)

with 3(0) = ¢, which has the solution:

%(t)

a

+0-1211(1 - p2)7

% (t) = VGo

G exp (@t) + Go
g — (Ao + pon) o,

2

G1 exp (%t) — G2
where G = (Ao + pog)? + 04(1 — p?), G1 = VGo + (Ao + poy) o + 00, and Gy = —/Go +
(Ao + pog) o + oo.

B Derivation of H in (9)

To derive finite-dimensional filters and smoothers, define the reference measure P as
dP ! —1 T L[ -1 2

—lm =Al) =expq— [ (o(s) pH(s)) dW(s) — 5 [ lo(s)” puH(s)["ds ¢,

dP 0 2 Jo

and

dA(t) = —A() (o) T pH®)TdW (t), A(0) = 1.

By Girsanov’s theorem,
t
W(t) .= WI(t) —i—/ o(s) ' uH (s)ds
0
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is a P-Brownian motion.
To determine the filter H(t) = E[H(t)|F?], we first introduce the unnormalized filter &(t)
and the conditional density ((t) as follows

) = EIND)TTHWO|F], (1) = EINT) R

Then the unnormalized filter £ is given by

&(t)IE[H(O)H/O QT£(8)d8+/O Diag(&(s)) (o ()" )" dW (s).

Furthermore,

_ EIAMT) T H)|F]

GG I

By the product rule:
dH(t) = QTH(t)dt+ (Diag(H(t)) — H(t)H()")(o(t) " ) dV (¢),

where V(t) is the innovation process given in (4).

C Equations for A, B,C in (13)

The functions A(t), B(t) and C(t) satisfy the following equations on the interval [0, T:
g ~1 T, —1 B ST (1) —1 g
" A _

_ ﬁ2_1 A SEOSR()A(L) — 2A(H)A =0,

with the terminal condition A(7") = 0. This is a Riccati-type ODE.

B
51

T ) EROB() - 5 AWSHOEROB() =0,

A'(t) -

(o ()" SR(A()

B'(t) + ——AO)SE®) o~ t)r(t)1 + (e * ) o (t)r(t)1 + 2A()NH — AT B(t)

with the terminal condition B(7") = 0. This is a linear ODE once A is known and can be easily
solved.

C'(0) + 6r(0) + 57107 (1) E(B() -
1

2(8-1)

8
261

BT (SRS B() + Tr {SROSRA®D | =0,

+ BT (t)\H —

19



with the terminal condition C(T") = 0. This is a linear ODE once A, B are known and can be
easily solved.

The above equations depend on X(¢) of (8) and S z(¢), we have to solve them numerically. For
this purpose, we solve X(t) first and then substitute into the equations to derive the numerical
results.

In our numerical example, under the parameter setting » = 0.05,0 = 0.8,8 = 0.5,z9 =
10,hg = 0.1,H = 0.1,04 = 0.5,A = 1,p = 0,00 = 0.2,h = 0.1,7 = 1 and the time step
N = T/h = 10, the fourth order Runge-Kutta method is used to solve A, B, C and the results
are given in Table 8.

Table 8: Results of A, B, C using Runge-Kutta method

t | A®t) | B | C@
0 | 0.4113 | -0.0240 | 0.0355
0.1 | 0.3872 | -0.0244 | 0.0308
0.2 | 0.3621 | -0.0245 | 0.0265
0.3 | 0.3349 | -0.0243 | 0.0225
0.4 | 0.3048 | -0.0237 | 0.0188
0.5 | 0.2706 | -0.0224 | 0.0152
0.6 | 0.2315 | -0.0204 | 0.0118
0.7 | 0.1863 | -0.0174 | 0.0086
0.8 | 0.1337 | -0.0132 | 0.0056
0.9 | 0.0721 | -0.0075 | 0.0027
1| o 0 0

If we set the initial variance of the Kalman filter to be its equilibrium value, that is, og =
VGo — (Ao + pog)o, then B(t) = 0g and g(t) = VG — Ao for all t > 0, in this case, the Riccati
for A(t) is solvable with a closed form formula. The analytical results of A(t) and the estimated
results from the fourth order Runge-Kutta method are given in Table 9. Similar results can
be obtained for B(t). Table 9 shows that their numerical results are the same to the first four
decimal places.

A

D Equations for A, B, C in (16)

The functions A(t), B(t) and C(t) satisfy the following equations on the interval [0, T':

A(0) = 2407 + 5755 O 070 + 12507 (0) 7 Salt) A

+2A(6) SR () ER(HA() = 0,

with the terminal condition A(T) = 0. This is a Riccati-type ODE.

“_ﬂﬁ)g(ﬂl(t))Tal(t)r(t)l +2AMNE — ATB(t) +

- ﬁfi(t)i?ﬁ(t)o_l(t)r(t)l +2A()SR(OER(H)B() =0,

B(t) - (0" () ' Sr()B(®)

1-p
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Table 9: Results of analytical A(t) and estimated A(t)

t

A(t)

RK A(t)

0

0.38751004

0.38750909

0.1

0.37044856

0.37044755

0.2

0.35046545

0.35046439

0.3

0.32705266

0.32705158

0.4

0.29961097

0.29960988

0.5

0.26743248

0.26743141

0.6

0.2296795

0.22967848

0.7

0.18535867

0.18535777

0.8

0.13328928

0.13328857

0.9

0.07206401

0.07206359

1

0

0

with the terminal condition B (T) = 0. This is a linear ODE once A is known.

B B
1-p 2(1-p)?

()17 (0T (1) T ER(O)B(t) + Tr{SROSr( A1)} + %BT(t)iﬁ(t)iR(t)B(t) =0,

C'(t) +

B
1-p
with the terminal condition C (T') = 0. This is a linear ODE once A, B are known.

P21 (01 (1)) oL (8)1 + BT (H)AH

r(t) +

E Equations for A/, B/, C/ in (30)
The HJB equation for V has the form:
JI +\H — h)J,{ + %O’?{J}{h + sup <x(r +w(h—7)JI + %(TFUI)QJJ{,E + WIpJJHJ£h> =0

with the terminal condition J/ (7T, z,h) = (1/8)z”. Assume the ansatz
JI(t,x, h) = U(x)g(t,h) = U(x) exp(AL (t)h* + BT (t)h + C7(t)).

Substituting V' into the HJB equation, canceling the common factor U(x), using the optimal control
* (h—r)g+poougn

L (S and setting the coefficients of power of h to be zero, we have the equations for
Af Bf Cf:
2Bpog AT (t)  2Bpc% AT (t)?
AT () — 20 AT (1) + 202 AT ()2 — b — — H =0,
v O+ 200 = 56—~ 03— 1) B-1)
_ Bf(t)  2BpogrAf(t)
B (t) = ABY (t) + 2AH A () + 205 B () AF (1) 4 —0— _ Peos
_28p%0yBIAT(1) _
(B—1) ’
2 f 2 2
Y o f 2 Af 1 5 pine 3 3 ﬁpraHB(t)_BpoH Fin2 _
CT (t)+ AHB/'(t) + 07 A (t)+2UHB (t) + pr 202(5*1)4_ c(G=1) 2(571)3 (t)* =0,

with the terminal condition Af(T") = Bf(T) = Cf(T) = 0. The solutions of Af, B/ and C/ can be given
similarly as in [14].
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