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1 Introduction

There has been extensive research in mean field game (MFG) since its introduction by Lasry and Lions

(2007) and Huang et al. (2006) as a limit of symmetric non-zero sum non-cooperative N -player dynamic

games when the number of players tends to infinite, see Carmona and Delarue (2013) and Guéant et al.

(2011) for excellent introduction to MFG. The main research focus nowadays is in two areas. One is to

study the existence and uniqueness of MFG equilibrium with the partial differential equation (PDE)

system that characterizes the equilibrium value function and mean field state, see Lasry and Lions

(2007). The other is to analyze the convergence from the stochastic differential game among large

but finite number of players to the MFG limit when the number of players tends to infinity and the

numerical approximation for MFG, see Achdou et al. (2012) and Achdou and Capuzzo-Dolcetta (2010)

The MFG theory has been applied to many modelling problems in economics, politics, social welfare

and other areas, see for example Guéant (2009) and Lasry et al. (2008).

In this paper we focus on MFG with finite time horizon and continuous time state dynamic of

each agent taking values in a finite set under fully symmetric payoff and complete information.Gomes

et al. (2013) first study finite state MFG and prove the existence and uniqueness of Nash equilibrium

with the coupled forward and backward ordinary differential equation (FBODE) system and show the

convergence of N -player game’s Nash equilibrium to that of the limiting MFG when N tends to infinite

and time horizon is small. ? analyze the MFG with a probabilistic approach. Carmona and Wang

(2018) tackle both the mean field of states and that of controls and prove the existence of equilibrium

with backward stochastic differential equation and the uniqueness of equilibrium when the Hamiltonian

does not depend on mean field controls.Carmona and Wang (2016) analyze finite state MFG between one

major player and infinite number of minor players. Cardaliaguet et al. (2015) make the breakthrough

in convergence analysis for a diffusion model with common noise and characterize the equilibrium with

the master equation and its regular solution. Cecchin and Pelino (2019) apply the master equation

to obtain the convergence of feedback Nash equilibrium in the finite state space, which extends the

convergence result in Gomes et al. (2013) without requiring the time horizon being sufficiently small.

Despite the progress in existence, uniqueness and convergence for Nash equilibrium of the finite state

MFG, there is still a considerable obstacle to approximate the N -player game with a simpler MFG.

One main difficulty is that the Nash equilibrium of finite state MFG is characterized by a FBODE

system with both the initial and terminal conditions, which in generally has no analytical solution

and is difficult to solve numerically. One commonly used method for solving FBODE is the shooting

method but it tends to work better when the dimension is low and the boundary condition is simple.

The shooting method fails to work in our case. Gomes and Saude (2017) propose a numerical scheme

to solve finite state MFG under some monotone conditions that do not hold in many applications.

There has been active research in recent years on using the deep neural network (DNN) to solve

PDEs and ODEs with different boundary conditions, see e.g. Lagaris et al. (1998), Malek and Beidokhti

(2006), Lee and Kang (1990),Lagaris et al. (2000). Given that the feature of FBODE system is similar

to that of a PDE, we are motivated to use DNN to numerically solve the FBODE system in the finite

state MFG problem. Sirignano and Spiliopoulos (2018) propose DGM (deep Galerkin method) to solve

high dimensional PDEs with a mesh-free DNN and show the convergence of approximate solutions to

the true solution under some conditions, which is similar in spirit to the Galerkin method except that

the solution is approximated by a neural network instead of a linear combination of basis functions.

Carmona and Laurière (2021) provide a comprehensive literature review on deep learning method

applied on MFG. Many papers apply the DGM approach to numerically solve high dimensional PDEs

derived from different types of MFG (see e.g. Han et al. (2018), Ruthotto et al. (2020)), while others

apply the DNN to solve the corresponding BSDEs (see e.g. Fouque and Zhang (2020), Lauriere (2021)).

Most of these papers only provide numerical results without rigorous proof for the numerical solutions.
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There is no guarantee that the neural network approximation can converge to the true solution, and

the approximation may not be accurate enough albeit the loss function is already small as there is no

relation established between the loss function and the error between approximate and true solutions.

Li et al. (2020) and Li et al. (2021) prove the strong and uniform convergence of the DGM approach.

Parallel to this paper, Mishra and Molinaro (2021) focus on error estimation of physical informed

neural network (PINN), which is the other name of DGM. For PDEs satisfying certain conditions, they

provide the abstract framework to relate the loss function of neural network with the error between the

true solution and the approximate solution generated by neural network and prove the error bound for

several specific types of PDEs. Their assumptions on the regularity of PDEs are strong (see Assumption

2.1 in Mishra and Molinaro (2021)) and are not necessarily satisfied by the FBODE system derived

in this paper. To our best knowledge, there is no existing literature addressing the error between the

approximation and the true solution via the loss function for FBODEs derived from continuous time

finite state MFG problems. We provide the error bound estimation to fill the gap.

The main result of the paper, Theorem 2.6, states that the error between the true solution (θ, p)

of the FBODE system and the DNN approximate solution (θ̃, p̃) is linear to the square root of the

loss function in the DNN method, which provides the magnitude of the error bound for the DNN

approximation as well as the convergence result. To bridge θ and θ̃, we use the master equation for θ

in Cecchin and Pelino (2019) and prove that θ̃ satisfies a similar equation. Cecchin and Pelino (2019)

prove the equilibrium of finite players finite state game converges to that of the corresponding MFG

with the former satisfying a backward ODE while the latter a FBODE which is equivalent to a backward

PDE (master equation) and can be compared with the backward ODE system. In contrast, we want to

estimate the error between the true solution and the DNN approximation to MFG with both satisfying

FBODE systems and the one for the DNN approximation having extra error terms compared with the

one for the true solution. We leverage the master equations to connect the two FBODE systems and

do error analysis. Due to perturbation terms in the FBODE system, we need to address the issue of

negative p̃, prohibited in (Cecchin and Pelino, 2019, Theorem 6) and find a new way to bypass that

difficulty.

As an application, we apply the DNN to numerically solve an optimal market making problem with

the same framework as that of Guéant (2017), except that the terminal reward depends on the trading

volume ranking that is determined in a so-called market maker incentive program contract designed by

the exchange to encourage market maker to provide more liquidity (i.e. trading volume). El Euch et al.

(2018) discuss the market maker incentive contract and analyze how exchange should optimally decide

the commission fee schedule for market makers. The trading volume ranking related reward, commonly

seen in market incentive programs from various exchanges, is not considered in El Euch et al. (2018). In

this paper, we use a finite state MFG to model the competition between market makers in the presence

of the trading volume ranking reward and solve the Nash equilibrium using the DNN approach. The

results may help exchanges design better market incentive program by better understanding market

makers’ behavior responding to the contract.

The rest of the paper is organized as follows. In Section 2 we formulate the finite state MFG model

and state the main result of the paper, Theorem 2.6, on the error estimation of DNN approximate

solution. In Section 3 we discuss an application in the optimal market making with rank based trading

volume reward. Section 4 contains the proofs of Theorems 2.4, 2.5, 2.6 and Proposition 3.1. Section 5

concludes.

2 Model and Main Results

Define a finite state MFG in continuous time similar to the one in Cecchin and Pelino (2019). The

finite state space is Σ = {1, · · · ,K}, and the reference game player’s state is denoted by Z, which
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is a Markov chain. The player at state z can decide the switching intensities with feedback controls

λ : [0, T ]× Σ→ (R+)K from Σ to (R+)K . The dynamic for the player is given by

dZt =
∑
z∈Σ

dN z
t ,

where N z
t is a Poisson process with controlled intensity λz(t, Zt).

If there are some states that state z can not access, then we can simply set the corresponding

components in the intensity vector to be zero. The probability measure on mean field of states is a

function p : [0, T ]→ P (Σ), where

P (Σ) = {(p1, · · · , pK) :
K∑
z=1

pz = 1, pz ≥ 0}.

Start at time t ∈ [0, T ], given any probability measure p on the mean field of state, game player with

controlled state process Zt that start at state z wants to optimize

θz(t) := sup
λ∈A

Et[
∫ T

t
F (Zt, λ(t, Zt))dt+G(ZT , p(T ))], (2.1)

where Et[·] is the conditional expectation given the initial state Zt = z at time t, F the running

payoff, G the terminal payoff, and A the admissible control set containing all measurable functions

λ : [0, T ]×Σ→ (R+)K . We assume for any z ∈ Σ, F (z, λ) is an upper bounded function which does not

depend on λz, the zth component of λ. Define θ : [0, T ]→ RK by θ(t) = (θ1(t), · · · , θK(t)). According

to Cecchin and Pelino (2019), the equilibrium value function θ and the mean field probability p satisfy

the following FBODE system:

dθz(t)

dt
= −H(z,∆zθ(t)), θz(T ) = G(z, p(T )),

dpz(t)

dt
=
∑
y

py(t)λ
∗
z(y,∆

yθ(t)), pz(t0) = pz,0,
(2.2)

where ∆z is the difference operator, defined as

∆zθ(t) := (θ1(t)− θz(t), · · · , θK(t)− θz(t))

and H : Σ× RK → R is the Hamiltonian function, defined for any µ ∈ RK satisfying µz = 0 as

H(z, µ) := sup
λ∈(R+)K

{λ · µ+ F (z, λ)}

and λ∗(z, µ) = (λ∗1(z, µ), · · · , λ∗K(z, µ)) is the optimizer of H(z, µ) except for λ∗z(z, µ), which can be any

value since in the proof of our main result we always let µz = [∆zθ(t)]z = θz(t)− θz(t) = 0 and F (z, λ)

is independent to λz. For notation convenience, we define

λ∗z(z, µ) := −
∑
y 6=z

λ∗y(z, µ). (2.3)

The backward equation in (2.2) comes from the optimization problem (2.1) given p and the forward

equations comes from the consistent condition for probability measure p on mean field of states when

everyone follows the equilibrium strategy. According to (Gomes et al., 2013, Propostition 1), if H is

differentiable and λ∗(z, µ) is positive except the zth element, for y 6= z, we have

λ∗y(z, µ) = [DµH(z, µ)]y,
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where λ∗y(z, µ) is the intensity from state z to state y, and [DµH(z, µ)]y the yth component of the

gradient DµH(z, µ). In the proofs of main results, we always have µz = 0 when we use H(z, µ),

DµH(z, µ) or D2
µµH(z, µ), the Hessian matrix. For proof simplicity, with a little abuse of notation, we

follow Cecchin and Pelino (2019) to define artificially that

[DµH(z, µ)]z = λ∗z(z, µ).

Then we can conclude that

λ∗(z, µ) = DµH(z, µ),

and the feedback control λ(t, z) = λ∗(z,∆zθ(t)) under the equilibrium.

We next assume H, G and λ∗ satisfy following assumptions.

Assumption 2.1. Assume that, under (2.3), H(z, µ) has a unique optimizer λ∗(z, µ) for every µ. H

is C2 in µ on bounded set, H, DµH and D2
µµH are locally Lipschitz in µ, the second derivatives is

bounded away from 0 on bounded set, i.e. there exists a constant C such that for any µ in that bounded

set satisfying µz = 0, we have

C−1‖µ‖2 ≤ µ ·D2
µµH(z, µ) · µ ≤ C‖µ‖2. (2.4)

Moreover, assume that G is differentiable, and there exists a constant C such that when p is bounded,

its directional derivative in any vector w satisfies

|∂G
∂w

(z, p+ ∆p)− ∂G

∂w
(z, p)| ≤ C‖∆p‖‖w‖ (2.5)

and that G is decreasing in p, i.e. for all p, p̄ ∈ RK ,∑
z∈Σ

(G(z, p)−G(z, p̄))(pz − p̄z) ≤ 0. (2.6)

Remark 2.2. H satisfies H(z, µ) ≥ H(z, µ̄) for any z ∈ Σ if two vectors µ = (µ1, · · · , µK) and

µ̄ = (µ̄1, · · · , µ̄K) satisfy

µi ≥ µ̄i, i ∈ Σ, i 6= z,

Then from Gomes et al. (2013, Proposition 2), solution to (2.2) has a prior bound CGH as long as

H satisfies Remark 2.2 and G is bounded for all p(T ) in compact set [0, 1]K . CGH is defined as,

‖θ‖ ≤ CGH := max
z∈Σ,p∈[0,1]K

{G(z, p)}+ 2 max
z∈Σ

H(z, 0)T, (2.7)

where the norm ‖·‖ is the∞ norm. G is bounded because it is continuous and defined on a compact set.

For given H and G, as θ satisfies ODE system (2.2), and both H is Lipschitz continuous in Assumption

2.1, dθz(t)
dt is also bounded. Similarly, as DµH and dθz(t)

dt are bounded, we can further see that d2θz(t)
dt2

is

bounded. From similar argument on p and λ∗, dpz(t)
dt and d2pz(t)

dt2
are also bounded. It means for given

H and G, there exists constants CθGH and CpGH , such that

‖dθz(t)
dt
‖ ≤ CθGH , ‖d

2θz(t)

dt2
‖ ≤ CθGH ,

‖dpz(t)
dt
‖ ≤ CpGH , ‖d

2pz(t)

dt2
‖ ≤ CpGH .

(2.8)

We summarize Cecchin and Pelino (2019, Theorem 1), (Gomes et al., 2013, Theorem 2), and state

the following theorem without proof.

Theorem 2.3. Under Assumption 2.1, ODE system (2.2) has a unique solution (θ, p) for any initial

value p(t0) ∈ P (Σ) and the MFG has a unique Nash equilibrium point.
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We assume in the rest of the paper that Assumption 2.1 holds, which guarantees the existence,

uniqueness and convergence of the finite state MFG. However, to find the equilibrium, we need to solve

(2.2), which generally does not have analytical solution. As (2.2) is a FBODE system, we can not solve

it numerically by simple discretization. We apply the deep neural network approach in Sirignano and

Spiliopoulos (2018) to numerically solve (2.2).

Define two sets of neural network functions as

Θn(ν1, ν) := {θ̃ : [0, T ]→ RK ; θ̃(t) = (ν1(

n∑
i=1

β1,iν(αit+ ci))), · · · , ν1(

n∑
i=1

βK,iν(αit+ ci)))},

Pn(ν2, ν) := {p̃ : [0, T ]→ RK−1; p̃(t) = (ν2(
2n∑

i=n+1

β1,iν(αit+ ci))), · · · , ν2(
2n∑

i=n+1

βK−1,iν(αit+ ci)))},

where ν : R → R is the triple continuously differentiable activation function, and two strictly in-

creasing triple continuously differentiable activation functions ν1, ν2 : R → R have twice continuously

differentiable inverse functions ν−1
1 and ν−1

2 . They satisfy

sup |ν1| = CGH + e, inf ν2 = −e, sup ν2 = 1 + e, (2.9)

where e is any constant that is small.

In the numerical tests of this paper, we use hyperbolic tangent functions tanh for activation func-

tions, in particular, ν1(x) = a tanhx + b for some constants a, b and ν2(x) = (tanhx + 1)/2. We

approximate the solution (θ, p) to (2.2) numerically by (θ̃(N), p̃(N)) which satisfies

(θ̃
(N)
1 , · · · , θ̃(N)

K ) ∈ ΘN (ν1, ν), (p̃
(N)
1 , · · · , p̃(N)

K−1) ∈ PN (ν2, ν), p̃
(N)
K = 1−

∑
i 6=K

p̃
(N)
i . (2.10)

By considering both the differential operators and boundary conditions in (2.2), we define the loss

function Ψ for any approximate solution (θ̃, p̃) as

Ψ(θ̃, p̃) :=
∑
z∈Σ

{
∫ T

t0

(
dθ̃z(t)

dt
+H(z,∆z θ̃(t)))2dt

+

∫ T

t0

(
dp̃z(t)

dt
−
∑
y

p̃y(t)λ
∗
z(y,∆

y θ̃(t)))2dt+

∫ T

t0

(
∑
z

(p̃z(t))
−)2dt

+ (p̃z(t0)− p̃z,0)2 + (θ̃z(T )−G(z, p̃(T )))2

+
∑
z∈Σ

(Bθ − max
t∈[0,T ]

|d
2θ̃z(t)

dt2
|)− +

∑
z∈Σ

(Bp − max
t∈[0,T ]

|d
2p̃z(t)

dt2
|)−}.

(2.11)

where (p̃K(t))− := −p̃K(t)1{pK(t)≤0} and Bθ, Bp can be any constants that satisfy

Bθ > CθGH ≥ max
t∈[0,T ]

|d
2θz(t)

dt2
|,

Bp > CpGH ≥ max
t∈[0,T ]

|d
2pz(t)

dt2
|.

where constants CθGH and CpGH are from (2.8). Then it follows

∑
z∈Σ

(Bθ − max
t∈[0,T ]

|d
2θz(t)

dt2
|)− +

∑
z∈Σ

(Bp − max
t∈[0,T ]

|d
2pz(t)

dt2
|)− = 0.

Both the integral term and maximum term in (2.11) can be calculated via Monte Carlo simulation.

Practically, we use similar approach as in Sirignano and Spiliopoulos (2018) to calculate these two to

6



increase the robustness of training. Given N , the structure of the neural network has been determined.

We train the network by finding the optimal values of {βj,i}2K−1,2n
i,j=1 , {αi}2ni=1 and {ci}2ni=1 that determine

(θ̃(N), p̃(N)) such that they minimize Ψ. For the true solution (θ, p), Ψ(θ, p) = 0. Since (θ, p) exists and

is unique, Ψ has unique minimal point Ψ(θ, p) = 0. We provide the convergence result Theorem 2.4

similar to the Theorem 7.1 in Sirignano and Spiliopoulos (2018).

Theorem 2.4. There exists a sequence of (θ̃(N), p̃(N)) defined in (2.10) such that

lim
N→+∞

Ψ(θ̃(N), p̃(N)) = 0.

Proof. See Section 4.

When the Loss function Ψ is smaller than certain value, because of the uniform bounds on the first

and second derivatives of the approximation function, the maximum error on the time interval is also

smaller than certain value.

Theorem 2.5. There exists constant ε0, such that for any ε < ε0, if Ψ < ε then there exists constant

C such that for all t ∈ [t0, T ] and z ∈ Σ, we have

‖dθ̃z(t)
dt

+H(z,∆z θ̃(t))‖ < Cε
1
3 , ‖θ̃z(T )−G(z, p̃(T ))‖ < Cε

1
2 ,

‖dp̃z(t)
dt

−
∑
y

p̃y(t)λ
∗
z(y,∆

y θ̃(t))‖ < Cε
1
3 , ‖p̃z(t0)− pz,0‖ < Cε

1
2 ,

(2.12)

where ‖ · ‖ is the infinity norm.

Proof. See Section 4.

Note that the constant C in Theorem 2.5 depends on the FBODE system and the bound of its true

solution, but is independent of the DNN structure. Theorem 2.5 is an algorithm independent result.

We now state our main result on the error estimation for numerical solution to the finite state mean

field game.

Theorem 2.6. For every t ∈ [t0, T ] and z ∈ Σ, assume θ̃(t) and p̃(t) satisfy:

dθ̃z(t)

dt
= −H(z,∆z θ̃(t)) + ε1(t, z), θ̃z(T ) = G(z, p̃(T )) + ε3(z),

dp̃z(t)

dt
=
∑
y

p̃y(t)λ
∗
z(y,∆

y θ̃(t)) + ε2(t, z), p̃z(t0) = pz,0 + ε4(z),
(2.13)

where p0 ∈ P (Σ), p̃K(t) = 1 −
∑

z 6=K p̃z(t) and p̃z(t) ∈ [0, 1] for z < K. Then there exists uniform

constant B and N0, such that when N > N0 and

2∑
i=1

|εi(t, z)|+
4∑
i=3

|εi(z)|+ (p̃K(t))− ≤ 1

N
, ∀(t, z) ∈ [t0, T ]× Σ,

we have for all t ∈ [t0, T ] and z ∈ Σ,

|θz(t)− θ̃z(t)|+ |pz(t)− p̃z(t)| ≤
B

N
.

Proof. See Section 4.

Note that the constant B depends on the FBODE system and the bound of its true solution, but is

independent of the DNN structure, which implies that Theorem 2.6 is an algorithm independent result.

Combining Theorems 2.4 and 2.6, we immediately have the following result.
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Theorem 2.7. The sequence (θ̃(N), p̃(N)) defined in (2.10) converges uniformly to the true solution

(θ, p) of the FBODE (2.2), that is, for t ∈ [0, T ],

lim
N→+∞

θ̃(N)(t) = θ(t), lim
N→+∞

p̃(N)(t) = p(t).

Remark 2.8. Although we only prove the convergence and error estimation results for a two-layer

neural network structure characterized by Θn(ν1, ν) and Pn(ν2, ν), the idea and the proof can be easily

adapted to more sophisticated neural network models (more layers, LSTM, etc) as they share similar

structures.

3 Application: Optimal Market Making with Rank Based Reward

The model setting is similar to Guéant (2017), except that exchange provides incentive reward for market

making. The terminal payoffs of market makers depend on their trading volumes and rankings in the

market. The optimization problems of different market makers are coupled. It is in general difficult

to solve a finite players game due to high dimensionality, but MFG provides a good approximation,

see ?Cecchin and Pelino (2019); Gomes et al. (2013). We therefore use MFG as a proxy to solve the

optimal market marking problem.

Consider a continuum family of market makers Ωmm who keep quoting bid/ask limit orders. Select

one of them as a reference market maker. Assume asset price St follows a Brownian motion with initial

value S,

dSt = σdWt,

where Wt is a standard Brownian adapted to the natural filtration {FWt }t∈R+ and σ the volatility of the

stock. Assume δat and δbt are ask/bid spreads, which are controls determined by the reference market

maker. Denote by Na
t and N b

t the jump processes for buy/sell market order arrivals to the reference

market maker, with intensities Λ(δat ) and Λ(δbt ) respectively. Assume Λ : R→ R has continuous inverse

function, and is decreasing, continuously differentiable satisfying:

∂2Λ

∂δ2
(δ)Λ(δ) < 2(

∂Λ

∂δ
(δ))2. (3.1)

The reference market maker has state variables (Xt, qt, vt) in which Xt is cash account, qt inventory,

vt accumulated trading volume, with initial value (x, q, v). We assume qt can only take values in a finite

set Q = {−Q, · · · , Q} and vt can only take values in a finite set V := {0, · · · , vmax} and any trading

volume above vmax is not counted in the reward calculation. Denote by Ib := 1q+1∈Q and Ia := 1q−1∈Q
the indicators of market maker’s buying and selling capabilities.

The dynamic of Xt is given by

dXt = (St + δat )Ia(qt)dN
a
t − (St − δbt )Ib(qt)dN b

t ,

that of qt by

dqt = Ib(qt)dN
b
t − Ia(qt)dNa

t ,

and that of vt by

dvt = (Ib(qt)dN
b
t + Ia(qt)dN

a
t )1{vt<vmax}.

Denote by p(t, qt, vt) the probability measure on the mean field of discrete states (qt, vt) for all

market makers. The reference market maker wants to solve the following optimization problem:

sup
δa,δb

E0[XT + qTST − l(|qT |) +R(vT )− 1

2
γσ2

∫ T

0
q2
t dt], (3.2)
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where XT + qTST is the cash value at time T , l(|qT |) the terminal inventory holding penalty with l an

increasing convex function on R+ with l(0) = 0, γσ2
∫ T

0 q2
t dt the accumulated running inventory holding

penalty with γ a positive constant representing the risk adverse level, and R(vT ) the cash reward given

by the exchange as incentive for market markers to increase trading volume vT . We consider the rank

based trading volume reward, defined by

R(vT ) := R(1−
vmax∑
j=vT

Q∑
i=−Q

p(T, i, j)), (3.3)

where 1−
∑vmax

j=vT

∑Q
i=−Q p(T, i, j) is the percentage of market makers that the reference market maker

exceeds in trading volumes and R a positive constant representing the maximum reward set by the

exchange.

Using the martingale property, (3.2) can be reduced to x + qS + θ(0, q, v), where θ is the value

function defined by

θ(t, q, v) := sup
δa,δb

Et[
∫ T

t
[δasΛ(δas ) + δbsΛ(δbs)−

1

2
γσ2q2

s ]ds− l(|qT |) +R(1−
vmax∑
j=vT

Q∑
i=−Q

p(T, i, j))]

and Et[·] is the conditional expectation given qt = q, vt = v.

We assume market maker takes closed loop feedback control, i.e when market maker has state (q, v),

δat = δa(t, q, v), δbt = δb(t, q, v).

Since the only relevant states are qt and vt that both take values in finite sets, the problem can be

reduced to a continuous time finite state MFG discussed in Cecchin and Pelino (2019) by reformulating

some notations as follows. Define K := (2Q+ 1)(vmax + 1) and Σ := {1, · · · ,K}. There is a one to one

mapping Z : Q×V→ Σ: for every (q, v) ∈ Q×V, there exists z ∈ Σ such that

z = Z(q, v)

and for every z ∈ Σ, there exists (q, v) ∈ Q×V such that

(q, v) = Z−1(z) := (Z−1
1 (z), Z−1

2 (z)).

The state (q, v) is then reformulated by state z. The value function θ and probability measure on mean

field of state p are reformulated as θ, p : [0, T ]→ RK , where

θ(t) := (θ1(t), · · · , θK(t)), θz(t) = θ(t, Z−1
1 (z), Z−1

2 (z))

p(t) := (p1(t), · · · , pK(t)), pz(t) = p(t, Z−1
1 (z), Z−1

2 (z)).

Define λ as

λ(t, z) := (λ1(t, z), · · · , λK(t, z)),

where λ satisfy
λβa(z)(t, z) := λ(δat ) > 0; λβb(z)(t, z) := λ(δbt ) > 0;

λz(t, z) := −
∑
y 6=z

λy(t, z); λy(t, z) := 0 y 6= βa(z), βb(z), z. (3.4)

βa(z) and βb(z) are defined as the two accessible states from state z,

βa(z) =


Z(Z−1

1 (z)− 1, Z−1
2 (z) + 1) Z−1

1 (z) > −Q,Z−1
2 (z) < vmax

Z(Z−1
1 (z)− 1, vmax) Z−1

1 (z) > −Q,Z−1
2 (z) = vmax

z Z−1
1 (z) = −Q

βb(z) =


Z(Z−1

1 (z) + 1, Z−1
2 (z) + 1) Z−1

1 (z) < Q,Z−1
2 (z) < vmax

Z(Z−1
1 (z) + 1, vmax) Z−1

1 (z) < Q,Z−1
2 (z) = vmax

z Z−1
1 (z) = Q

9



Define F and G as

F (t, z, λ(t, z)) := Λ−1(λβa(z)(t, z))λβa(z)(t, z) + Λ−1(λβb(z)(t, z))λβb(z)(t, z)−
1

2
γσ2Z−1

1 (z)2

G(z, p) := −l(|Z−1
1 (z)|) +R(1−

vmax∑
j=v

Q∑
i=−Q

pZ(i,j)).
(3.5)

The optimal market making problem is now reduced to a continuous time finite state MFG discussed

in section 2 of this paper. Denote the game as GR. We have the following result.

Proposition 3.1. GR satisfies Assumption 2.1.

Proof. See Section 4.

According to Cecchin and Pelino (2019), the Nash equilibrium of MFG GR and that of finite players

game exist and are unique, and the game with N players converges to the limiting MFG case in the

order O( 1
N ). We can numerically solve the FBODE system corresponding to the finite state MFG in

(3.5) and find the equilibrium value function and probability of mean field by the DNN technique.

We next do some numerical tests. We use a LSTM (long short term memory) neural network

to approximate the solution (θ, p). Denote the function constructed by LSTM neural network as

(θ̃(t, β), p̃(t, β)), where β is the parameters set for neural network, designed by the following steps:

Layer 0 is the input t ∈ [0, T ] and layer k with output hk is designed as follows:

fk = σg(Wf t+ Ufhk−1 + bf )

ik = σg(Wit+ Uihk−1 + bi)

ok = σg(Wot+ Uohk−1 + bo)

c̃t = σc(Wct+ Uchk−1 + bc)

ck = fk ◦ ck−1 + ik ◦ c̃k
hk = ok ◦ σh(ck)

with the initial values c0 = h0 = 0, where the operator ◦ is the element-wise product, functions σ

some scaled tanh activation functions (hence satisfying all assumptions in our main results), t ∈ [0, T ]

input to the LSTM network, fk ∈ Rh forget gate’s activation vector, ik ∈ Rh input/update gate’s

activation vector, ok ∈ Rh output gate’s activation vector, hk ∈ Rh hidden state vector, c̃k ∈ Rh cell

input activation vector, ck ∈ Rh cell state vector, W ∈ Rh×1, U ∈ Rh×h, b ∈ Rh weight matrices and

bias vector parameters which need to be learned during training, and h the number of hidden units.

LTSM network is an advanced version of a traditional neural network and provides more accurate

approximation for complicated functions. For our model, this specific structure performs better than

that of traditional neural network.

We use a LSTM network with 3 layers and 32 nodes per layer. The network is trained by stochastic

gradient approach with mesh-free randomly sampling points in [0, T ]. This randomness adds to the ro-

bustness of the network. The detailed training procedure is similar to that in Sirignano and Spiliopoulos

(2018).

The market order arrival intensity function is given by Λ(δ) := Ae−kδ and the liquidity penalty

function l(q) := aq2. We assume all market makers start at 0 inventory and 0 trading volume. The

benchmark data used are S = 20, hourly volatility σ = 0.01, γ = 1, T = 10 hours, capacity Q = 1,

vmax = 10, k = 2, a = 2, A = 0.5, and R = 2.

There are two typical schemes of trading volume rewards in most of exchanges’ incentive programs.

One is the rank based trading volume reward as in (3.3), the other is the linear trading volume reward,

defined by

RL(vT ) := R
vT
vmax

. (3.6)

10



Since RL(vT ) is independent of the mean field of state, the FBODE system for the value function and

the probability of mean field of state is decoupled and can be solved numerically with a standard Euler

scheme. We next do numerical tests and compare the value functions, optimal bid/ask spreads and

probability distributions of trading volumes under three different trading volume reward schemes: 1.

no trading volume reward (R = 0, benchmark case), 2. linear trading volume reward (R in (3.6)),

and 3. rank based trading volume reward (R in (3.3)). The rank based reward introduces competition

between market makers whereas the linear reward does not. The training result is satisfactory and the

average loss is less than 0.003.

Figure 1: θ(t, 0, v) Path for two schemes Figure 2: θ(t, 1, v) Path for two schemes

Figures 1 and 2 show the value functions θ(t, q, v) for fixed q = 0, 1 and varied v with the ’Benchmark’

representing no trading volume reward, ‘v = 0 lin’ path the linear reward and initial trading volume

v = 0, and ‘v = 0’ the rank based reward, etc. It is clear that the introduction of market incentive R

increases the value functions for market makers, and the higher the initial trading volume v, the higher

the value function θ. Even for market makers with initial trading volume v = 0, the value functions are

still higher than the benchmark one as they benefit from their potential market incentive gains, which

explains the convergence of the curves for v = 0 to the benchmark one as t tends to T . The value

functions for linear and rank awards are largely the same.

4 Proofs

4.1 Proof of Theorem 2.4

Proof. According to Theorem 2.3, there exists unique solution (θ, p) to ODE system (2.2), which is also

the unique minimal point for Ψ such that

Ψ(θ, p) = 0.

We use (ν−1
i )′ to denote the first order derivative of ν−1

i for i = 1, 2. From (2.7) we know θ is bounded

by CGH . Hence d
dtθz(t) is also bounded uniformly for t and z. Moreover, p(t) ∈ P (Σ) for any t ∈ [0, T ]

and hence is also bounded. From the assumption on ν1, ν2, we know

θz(t) < sup ‖ν1‖,
inf ν2 < pz(t) < sup ν2.

It means θz’s image is bounded and a strict subset of ν−1
1 ’s domain. Similar for pz and ν−1

2 . Combining

with the continuously differentialability of ν−1
1 and ν−1

2 , we know ν−1
1 (θz(t)), (ν−1

1 )′(θz(t)), ν
−1
2 (pz(t))

and (ν−1
2 )′(pz(t)) are bounded by some constant C uniformly for t and z. (νi)

′ and (νi)
′′ are Lipschitz
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continuous on [−2C, 2C] with coefficient L for i = 1, 2. Define CN (ν) := {ζ : [0, T ] → R; ζ(t) =∑N
i=1 βiν(αit + ci)}. According to the proof of Theorem 7.1 in Sirignano and Spiliopoulos (2018), for

any 0 < ε < C, there exists N > 0 and yz ∈ CN (ν) such that

‖yz(t)− ν−1
1 (θz(t))‖+ ‖ d

dt
yz(t)−

d

dt
ν−1

1 (θz(t))‖+ ‖ d
2

dt2
yz(t)−

d2

dt2
ν−1

1 (θz(t))‖ ≤ ε. (4.1)

Hence we have

‖ν1(yz(t))− θz(t)‖ ≤ C‖yz(t)− ν−1
1 (θz(t))‖ ≤ Cε.

On the other hand,

d

dt
ν1(yz(t))−

d

dt
θz(t) =

d

dt
ν1(yz(t))−

d

dt
ν1(ν−1

1 (θz(t)))

= (ν1)′(yz(t))
d

dt
yz(t)− (ν1)′(ν−1

1 (θz(t)))
d

dt
ν−1

1 (θz(t))

= (ν1)′(yz(t))[
d

dt
yz(t)−

d

dt
ν−1

1 (θz(t))]

+
d

dt
ν−1

1 (θz(t))[(ν1)′(yz(t))− (ν1)′(ν−1
1 (θz(t)))].

As yz(t) ∈ [−2C, 2C], there exists constant C1 such that (ν1)′(yz(t)) is bounded by it uniformly. More-

over, we have

‖ d
dt
ν−1

1 (θz(t))‖ ≤ ‖(ν−1
1 )′(θz(t))‖‖

d

dt
θz(t)‖ ≤ C2.

Hence we have

‖ d
dt
ν1(yz(t))−

d

dt
θz(t)‖ ≤ ‖

d

dt
yz(t)−

d

dt
ν−1

1 (θz(t))‖‖ν ′1(yz(t))‖

+ ‖ν ′1(yz(t))− ν ′1(ν−1
1 (θz(t)))‖‖(ν−1

1 )′(θz(t))‖‖
d

dt
θz(t)‖

≤ C1‖
d

dt
yz(t)−

d

dt
ν−1

1 (θz(t))‖

+ C2L‖yz(t)− ν−1
1 (θz(t))‖ ≤ (C1 + C2L)ε.

The first inequality above comes from the boundness and Lipshitz continuity of ν ′1, as well as the

boundness of (ν−1
1 )′(θz(t)). Moreover, for second order derivatives, we have

‖ d
2

dt2
ν−1

1 (θz(t))‖ = ‖(ν−1
1 )′′(θz(t))

d

dt
θz(t) + (ν−1

1 )′(θz(t))(
d

dt
θz(t))

2‖.

As θz(t) and d
dtθz(t) are bounded and (ν−1

1 ) is twice continuously differentiable, d2

dt2
ν−1

1 (θz(t)) is bounded.

To estimate the difference of second order derivatives between approximation function and true function,

we have
d2

dt2
ν1(yz(t))−

d2

dt2
θz(t) = (

d

dt
yz(t))

2ν ′′1 (yz(t)) + ν ′1(yz(t))
d2

dt2
yz(t)

− (
d

dt
ν−1

1 (θz(t)))
2ν ′′1 (ν−1

1 (θz(t)))− ν ′1(ν−1
1 (θz(t)))

d2

dt2
ν−1

1 (θz(t)).

Define

a := ‖( d
dt
yz(t))

2 − (
d

dt
ν−1

1 (θz(t)))
2‖‖ν ′′1 (yz(t))‖

b := ‖ν ′′1 (yz(t))− ν ′′1 (ν−1
1 (θz(t)))‖‖(

d

dt
ν−1

1 (θz(t)))
2‖

c := ‖ d
2

dt2
yz(t)−

d2

dt2
ν−1

1 (θz(t))‖‖ν ′1(yz(t))‖

d := ‖ν ′1(yz(t))− ν ′1(ν−1
1 (θz(t)))‖‖

d2

dt2
ν−1

1 (θz(t))‖,
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and we have

‖ d
2

dt2
ν1(yz(t))−

d2

dt2
θz(t)‖ ≤ a+ b+ c+ d.

As yz(t) and d
dtν
−1
1 (θz(t)) are bounded from previous proof, and ν1 is triple continuously diferentiable

function by definition, ν ′′1 (yz(t)), ν
′
1(yz(t)), ( ddtν

−1
1 (θz(t)))

2 and d2

dt2
ν−1

1 (θz(t)) are also bounded. More-

over, ‖ ddtyz(t)‖ ≤ ‖
d
dtν
−1
1 (θz(t))‖ + ε, hence bounded. According to the Lipschitz continuity of ν ′1 and

ν ′′1 , as well as (4.1), we know there exists constants C2, such that

‖ d
2

dt2
ν1(yz(t))−

d2

dt2
θz(t)‖ ≤ a+ b+ c+ d ≤ C2ε.

By making transformation on ε in above proof, we know for any 0 < ε < C, there exists N > 0 and

yz ∈ CN (ν) such that

‖ν1(yz(t))− θz(t)‖+ ‖ d
dt
ν1(yz(t))−

d

dt
θz(t)‖+ ‖ d

2

dt2
ν1(yz(t))−

d2

dt2
θz(t)‖ ≤ ε.

Hence we know there exists N > 0 and yz ∈ CN (ν) such that

‖ d
2

dt2
ν1(yz(t))‖ ≤ ε+ ‖ d

2

dt2
θz(t)‖ ≤ ε+ CθGH < Bθ.

Similarly, we know ‖ ddtν2(yz(t))‖ ≤ CpGH < Bp. Then we get

(Bθ − max
t∈[0,T ]

|dθ̃z(t)
dt
|)− = (Bp − max

t∈[0,T ]
|dp̃z(t)
dt
|)− = 0

If we define
Θ̂N (ν1, ν) := {ζ : [0, T ]→ RK ; ζ(t) =

(ν1(
N∑
i=1

β1,iν(α1,it+ c1,i))), · · · , ν1(
n∑
i=1

βK,iν(αK,it+ cK,i)))}

Then from proof above we know for any 0 < ε < C, there exists N > 0 and θ̃(N) ∈ Θ̂N (ν1, ν) such that

‖θ̃(N)
z (t)− θz(t)‖+ ‖ d

dt
θ̃(N)
z (t)− d

dt
θz(t)‖ ≤ ε.

On the other hand, notice that any function fN ∈ Θ̂N (ν1, ν), there should exists fKN ∈ ΘKN (ν1, ν) such

that fKN = fN , by letting some βj,i = 0. It means Θ̂N (ν1, ν) ⊂ ΘKN (ν1, ν), and θ̃(N) ∈ ΘKN (ν1, ν).

For p and Pn(ν2, ν), we can have similar argument. Hence we conclude that for any 0 < ε < C, there

exists N > 0 and θ̃(N) ∈ ΘN (ν1, ν), p̃(N) ∈ PN (ν2, ν) such that

‖θ̃(N)
z (t)− θz(t)‖+ ‖ d

dt
θ̃(N)
z (t)− d

dt
θz(t)‖ ≤ ε

‖p̃(N)
z (t)− pz(t)‖+ ‖ d

dt
p̃(N)
z (t)− d

dt
pz(t)‖ ≤ ε.

Then similar to the proof for Theorem 7.1 in Sirignano and Spiliopoulos (2018), we know there exists

a uniform constant M which only depends on boundedness of θ, λ∗ and Lipshcitz coefficient of λ∗ and

H, such that

Ψ(θ̃(N), p̃(N)) ≤Mε.

It concludes the proof.

13



4.2 Proof of Theorem 2.5

Proof. Since for different t0, the following proof is the same, we assume t0 = 0 for the ease of notation.

We first focus on proving the first inequality in (2.12). Define

e(t, z) :=
dθ̃z(t)

dt
+H(z,∆z θ̃(t)).

As Ψ < ε, from the definition of Ψ we know d2θz(t)
dt2

is uniform bounded on [0, T ]. Furthermore, H is

Lipshitz continuous, and θ has bounded first order derivative to t. Hence e(t, z) is a Lipschitz continuous

function on [0, T ]. Denote its Lipschitz coefficient as L. There exists t̂ ∈ [0, T ] such that

|e(t̂, z)| = sup
t∈[0,T ]

|e(t, z)|.

For any ∆t such that
|e(t̂, z)|

16L
< ∆t <

|e(t̂, z)|
2L

. (4.2)

From Lipschitz continuity of e, we have

||e(t̂±∆t, z)| − |e(t̂, z)|| ≤ |e(t̂±∆t, z)− e(t̂, z)| ≤ L∆t.

It means

|e(t̂, z)| − L∆t ≤ |e(t̂±∆t, z)| ≤ |e(t̂, z)|+ L∆t.

From (4.2), we know L∆t ≤ |e(t̂,z)|2 , therefore,

|e(t̂, z)| − L∆t ≥ 1

2
|e(t̂, z)| ≥ 0.

Combining the above two inequalities, we know for any t ∈ [t̂−∆t, t̂+ ∆t],

e2(t, z) ≥ (|e(t̂, z)| − L∆t)2 >
1

4
|e(t̂, z)|2.

We can have the following estimation. Without loss of generality, we can assume T − t̂ ≥ T
2 (otherwise

we can use the other side [t̂−∆t, t̂] as the limit of integration on the second inequality in the following),

Ψ ≥
∫ t̂+∆t

t̂
e2(t, z)dt ≥ min(∆t(|e(t̂, z)| − L∆t)2, (T − t̂)(|e(t̂, z)| − L∆t)2)

> min(
|e(t̂, z)|3

64L
,
|e(t̂, z)|2

8
T ),

which implies that for any t ∈ [0, T ],

|e(t, z)| < max(4L
1
3 Ψ

1
3 ,

2
√

2T

T
Ψ

1
2 ).

There exists Ψ0 such that for all Ψ < Ψ0, 4L
1
3 Ψ

1
3 ≥ 2

√
2T
T Ψ

1
2 . Hence there exists constant C such that

|e(t, z)| < 4L
1
3 Ψ

1
3 < Cε

1
3 .

Using the similar arguments, the third inequality in (2.12) can be proved. The second and fourth

inequalities are trivial.
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4.3 Proof of Theorem 2.6

The general structure of the proof is similar to those in Cecchin and Pelino (2019) with one key

difference: in Cecchin and Pelino (2019), p satisfies a non-perturbed Kolmogorov forward equation and

has initial value in P (Σ) with nonnegative components, whereas p̃ satisfies a perturbed Kolmogorov

forward equation (2.13) and its initial value is not necessarily in P (Σ) and may be negative, which

makes some prior estimations in Cecchin and Pelino (2019) not applicable for our case. We need to

provide extra modifications by adding and subtracting an extra term M1 such that p̃(t) + M1 is non-

negative, and need to modify every step in the proof to estimate the extra terms introduced by M1.

For the completeness, we give the whole proof.

Note that the solution pair (θ̃, p̃) to (2.13) is determined only by initial time t0 and initial value

p̃(t0). We first prove that θ̃ is well defined (Proposition 4.5), continuous at p̃(t0) (Proposition 4.2), and

continuously differentiable at p̃(t0) (Theorem 4.7) by discussing the linearized system (4.11), we then

prove that θ̃ satisfies a PDE similar to the master equation in Cecchin and Pelino (2019) (Theorem

4.8) and that the master equation on some discrete grids of P (Σ) can be approximated by a backward

ODE with extra error terms (Proposition 4.9), and we finally estimate the difference between θ and θ̃

by comparing the two backward ODE systems and conclude the proof.

Denote by ‖x‖ := max1≤z≤K |xz|, the norm of x in RK and ‖f‖ := maxt∈[0,T ] max1≤z≤K |fz(t)|,
the norm of f in C0([0, T ];RK). Due to the introduction of perturbation terms in ODE system (2.13),

the existence and uniqueness of its solution can no longer be guaranteed for every initial value p̃(t0).

However, under certain conditions on (2.13), we can have the existence and prior bound estimation of

solution to (2.13).

Proposition 4.1. Given constant M > 0, define Ip,M := [−M, 1 +M ]K and

CG(M) := max
z∈Σ,p∈Ip,M

|G(z, p)|+ ‖ε3‖+ 2‖ε1‖T + 2 max
z∈Σ

H(z, 0)T,

AG(M) := [−2CG(M), 2CG(M)]K , Λ(M) := max
y,z∈Σ,µ∈AG(M)

|λ∗y(z, µ)|.

If functions εi, i = 2, 4 satisfy

‖ε2‖+ ‖ε4‖ <
1

N0
, (4.3)

where 1
N0

:= 1
3Me−Λ(M)T . Then for any initial time t0 ∈ [0, T ] and p̃(t0) ∈ B̄(P (Σ), 1

N0
), ODE system

(2.13) has solution (θ̃, p̃), where

B̄(P (Σ),
1

N0
) = {p̃ ∈ RK , s.t min

p∈P (Σ)
‖p̃− p‖ ≤ 1

N0
}.

Moreover, (θ̃, p̃) satisfy following on [t0, T ] uniformly for any initial time t0 ∈ [0, T ] and initial value

p̃(t0).

θ̃z(t) ∈ [−CG(M), CG(M)], p̃z(t) ∈ [−M, 1 +M ].

Proof. Given a prior p̄ such that p̄(t) ∈ [−M, 1 + M ]K for all t ∈ [t0, T ], Lipschitz continuous with

Lipschitz coefficient bounded by L(M), where

‖dp̃
dt
‖ ≤ L(M) = K(2M + 1)Λ(M) +

1

N0
,

and starts with the same p̄(t0) = p̃(t0) ∈ B̄(P (Σ), 1
N0

), with which we solve the backward ODE in

(2.13):

dθ̃z(t)

dt
= −H(z,∆z θ̃(t)) + ε1(t, z), θ̃z(T ) = G(z, p̄(T )) + ε3(z).
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We know function θ̃(t) is bounded by constant CG(M) following a similar proof as (Gomes et al., 2013,

Proposition 2). Note that CG(M) is monotonically non-decreasing w.r.t M , hence Λ(M) is also non-

decreasing w.r.t M . Since p̄(t0) ∈ B̄(P (Σ), 1
N0

), there exists p0 ∈ P (Σ) such that p̄(t0)− p0 = ε4 where

‖ε4‖ ≤ 1
N0

. Consider two functions p̃ and p satisfying

dp̃z(t)

dt
=
∑
y

p̃y(t)λ
∗
z(y,∆

y θ̃(t)) + ε2(t, z), p̃z(t0) = pz,0 + ε4(z),

dpz(t)

dt
=
∑
y

py(t)λ
∗
z(y,∆

y θ̃(t)), pz(t0) = pz,0

Integrating both side and subtracting p̃ and p, we get

‖p̃(t)− p(t)‖ ≤ Λ(M)

∫ t

t0

‖p̃(s)− p(s)‖ds+ ‖ε2‖+ ‖ε4‖.

By Gronwall inequality, we have

‖p̃(t)− p(t)‖ ≤ (‖ε2‖+ ‖ε4‖)eΛ(M)T < M.

As p is the solution to a Kolmogorov equation, p(t) ∈ P (Σ). Hence the solution p̃(t) ∈ [−M, 1 +M ]K

for all t ∈ [t0, T ], and p̃ is also Lipshitz continuous with Lipshitz coefficient bounded by L(M), as

‖dp̃dt ‖ ≤ L(M).

Let F([t0, T ]) be the set of Lipshitz continuous functions defined on [t0, T ], with Lipshitz coefficient

bounded by L(M), taking values in [−M, 1+M ]K and starting at the same initial value p̃(t0) at t0. We

can define mapping ξ : F([t0, T ]) → F([t0, T ]) in the following way: given p̃ ∈ F([t0, T ]), let θ̃ be the

solution of terminal value problem in (2.13). Then θ̃(t) is bounded by CG(M). Let ξ(p̃) be the solution

to the initial value problem in (2.13). ξ(p̃) ∈ F([t0, T ]) from the above argument. Following the proof

of (Gomes et al., 2013, Proposition 4), F([t0, T ]) is a set of uniformly bounded and equicontinuous

functions. Thus, by Arzela-Ascoli theorem, it is a relatively compact set. It is also clear that it is a

convex set. Hence, by Brouwer fixed point Theorem, we know there exists fixed point for ξ, which

proves the existence of solution to (2.13).

We next prove that under certain condition, (θ̃, p̃) is unique and continuous w.r.t initial condition.

Proposition 4.2. There exist positive constants N0 and C, such that if we have condition (4.3),

then for any t0 ∈ [0, T ] and initial condition p̃(t0) ∈ B̄(P (Σ), 1
N0

), the solution to (2.13) is unique.

Moreover, let (θ̃, p̃) and (θ̂, p̂) be two solutions to ODE system (2.13) with different initial conditions

p̃(t0), p̂(t0) ∈ B̄(P (Σ), 1
N0

), then

‖θ̃ − θ̂‖+ ‖p̃− p̂‖ ≤ C‖p̃(t0)− p̂(t0)‖ (4.4)

Proof. Start with any M and the corresponding N0 defined in Proposition 4.1. Then both θ̃ and θ̂

uniform bounded by CG(M). Let’s first assume p̃z(t), p̂z(t) ≥ −M1 uniformly, and we will decide later

the value for M1 and prove the condition for it. Similarly to the proof for (Cecchin and Pelino, 2019,

Proposition 5), we first try to obtain estimation on LHS of (4.7) given later. Define φ := θ̃ − θ̂ and

π := p̃− p̂. Then the couple (φ, π) solves

dφz(t)

dt
= −H(z,∆z θ̃(t)) +H(z,∆z θ̂(t)), φz(T ) = G(z, p̃(T ))−G(z, p̂(T )),

dπz(t)

dt
=
∑
y

{p̃y(t)λ∗z(y,∆y θ̃(t))− p̂y(t)λ∗z(y,∆y θ̂(t))}, πz(t0) = p̃z(t0)− p̂z(t0),
(4.5)
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Integrating d
dt

∑
z∈Σ φz(t)πz(t) over the interval [t0, T ], using the product rule and (4.5), also noting

that
∑

z λ
∗
z(y,∆

y θ̃(t))φy(t) = 0, after some simple calculus, we have

∑
z∈Σ

φz(t0)πz(t0) =

∫ T

t0

∑
z∈Σ

[H(z,∆z θ̃(t))−H(z,∆z θ̂(t))−∆zφ(t) · λ∗(z,∆z θ̃(t))](p̃z(t) +M1)dt

+

∫ T

t0

∑
z∈Σ

[H(z,∆z θ̂(t))−H(z,∆z θ̃(t)) + ∆zφ(t) · λ∗(z,∆z θ̂(t))](p̂z(t) +M1)dt+
∑
z∈Σ

φz(T )πz(T )

+M1

∫ T

t0

∑
z∈Σ

∆zφ(t) · [λ∗(z,∆z θ̃(t))− λ∗(z,∆z θ̂(t))]dt.

(4.6)

As λ∗(z, µ) = DµH(z, µ), by Taylor theorem, there exists point a on the line between ∆z θ̃(t) and ∆z θ̂(t)

such that

H(z,∆z θ̃(t))−H(z,∆z θ̂(t))−∆zφ(t) · λ∗(z,∆z θ̃(t)) = −∆zφ(t) ·D2
µµH(z, a) ·∆zφ(t).

Then from assumption (2.4), and do above similar on another way round, we have following estimations:

H(z,∆z θ̃(t))−H(z,∆z θ̂(t))−∆zφ(t) · λ∗(z,∆z θ̃(t)) ≤ −C−1‖∆zφ(t)‖2.

Similarly, we have

H(z,∆z θ̂(t))−H(z,∆z θ̃(t)) + ∆zφ(t) · λ∗(z,∆z θ̂(t)) ≤ −C−1‖∆zφ(t)‖2.

Since
∑

z∈Σ φz(T )πz(T ) ≤ 0 by (2.6), p̃z(t), p̂z(t) > −M1 by the choice of M1, using (4.6) and the

inequalities above, we have

φ(t0) · π(t0) + C−1

∫ T

t0

∑
z∈Σ

‖∆zφ(t)‖2(p̃z(t) + p̂z(t) + 2M1)dt

≤ M1

∫ T

t0

∑
z∈Σ

∆zφ(t) · [λ∗(z,∆z θ̃(t))− λ∗(z,∆z θ̂(t))]dt.

By Lipschitz continuity of λ∗, there exists C such that

|
∫ T

t0

∑
z∈Σ

‖∆zφ(t)‖2(p̃z(t) + p̂z(t) + 2M1)dt| ≤ C(‖π(t0)‖‖φ‖+M1‖φ‖2). (4.7)

Note that unlike the proof for (Cecchin and Pelino, 2019, Proposition 5), both p̃z and p̂z can be

negative in our setting. If they were nonnegative, then we could choose M1 = 0, the same technique in

(Cecchin and Pelino, 2019, Proposition 5) would work. In the case here, we have to introduce M1 that

requires us to do many more prior estimations.

We next derive the bound for π. Integrating the second equation in (4.5) over [t0, t], we have

πz(t) = πz(t0) +

∫ t

t0

∑
y

{p̃y(s)λ∗z(y,∆y θ̃(s))− p̂y(s)λ∗z(y,∆y θ̂(s))}ds.

As λ∗ is both bounded and Lipschiz continuous, there exists C such that

max
z∈Σ
|πz(t)| ≤ max

z∈Σ
|πz(t0)|+ C

∫ t

t0

max
z∈Σ
|πz(s)|ds+ C

∫ t

t0

∑
z∈Σ

‖∆zφ(s)‖|p̃z(s)|ds

≤ max
z∈Σ
|πz(t0)|+ C

∫ t

t0

max
z∈Σ
|πz(s)|ds+ C

∫ t

t0

∑
z∈Σ

‖∆zφ(s)‖(p̃z(s) +M1)ds+M1C

∫ t

t0

∑
z∈Σ

‖∆zφ(s)‖ds,
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where the second line holds because p̃z(s) +M1 > 0. Moreover, we have∫ t

t0

∑
z∈Σ

‖∆zφ(s)‖(p̃z(s) +M1)ds ≤

√√√√∫ t

t0

∑
z∈Σ

‖∆zφ(s)‖2(p̃z(s) +M1)ds

√√√√∫ t

t0

∑
z∈Σ

(p̃z(s) +M1)ds

Applying Gronwall inequality, as p̃z(s) ∈ [−M, 1 +M ], there exists C such that

‖π‖ ≤ C‖π(t0)‖+ C

√√√√∫ T

t0

∑
z∈Σ

‖∆zφ(t)‖2(p̃z(t) +M1)dt+M1C‖φ‖

≤ C‖π(t0)‖+ C
√
‖π(t0)‖‖φ‖+M1‖φ‖2 + CM1‖φ‖

≤ C‖π(t0)‖+ C‖π(t0)‖
1
2 ‖φ‖

1
2 + C(M1 +

√
M1)‖φ‖,

(4.8)

where C also only depends on M in Proposition 4.1.

We next derive the bound for φ. Integrating the first equation in (4.5) over [t0, t], from the Lipschitz

continuity of G, H, there exists C such that

max
z∈Σ

φz(t) ≤ C max
z∈Σ
|πz(T )|+ C

∫ T

t
max
z∈Σ
|φz(s)|ds.

Applying Gronwall inequality, there exists constant C such that

‖φ‖ ≤ C‖π‖ (4.9)

By combining (4.8) and (4.9), using AB ≤ εA2 + 1
εB

2 for A,B > 0, there exists C such that

‖π‖ ≤ C‖π(t0)‖+ [
1

4
+ C2(M1 +

√
M1)]‖π‖.

As C only depend on the boundedness and Lipschitz coefficient of H, G, λ∗ and the bound of D2
µµH,

θ̃, θ̂, which depend on the M in Proposition 4.1. We only need to select M1 such that

C2(M1 +
√
M1) <

1

4
,

and we can have (4.4). Then it remains to decide the new N0 such that we have p̃z(t), p̂(t) > −M1

uniformly as we assumed. From Proposition 4.1, N1 := 3eΛ(M1)

M1
and we can simply define our new N0

as maxN0, N1. On the other hand, the uniqueness of solution comes directly from (4.4).

According to Proposition 4.1 and 4.2, take any t ∈ [t0, T ] and p̄0 ∈ B̄(P (Σ), 1
N0

) as the initial

value for ODE system (2.13), there exists an unique solution (θ̄(s), p̄(s)) on [t, T ]. Note that θ̄(s)

might not equal θ̃(s) stated as the solution to (2.13) in Theorem 2.6, since θ̄ depends on the values of

initial time t and initial condition p̄0 chosen above. And we can define a function Ũ on t ∈ [t0, T ] and

p̃0 ∈ B̄(P (Σ), 1
N0

) by the corresponding θ̄(t) explained above.

Ũ(t, z, p̃0) := θ̄(t, z). (4.10)

According to Proposition 4.1 and 4.2, Ũ is well defined and continuous w.r.t p̃0. Moreover, for (θ̃, p̃),

the solution to (2.13) in Theorem 2.6 on [t0, T ], which is the approximated solution we got from DNN

and want to estimate error on, we have for all t ∈ [t0, T ] that:

Ũ(t, z, p̃(t)) := θ̃(t, z).

It suggests Ũ has all information of θ̃. If we can compare Ũ with the U defined similar in Cecchin and

Pelino (2019) corresponding to the true solution to (2.2), we can estimate the error of θ̃. To compare Ũ

with the U , we need to prove that Ũ also satisfy the master equation similar to U in Cecchin and Pelino

(2019). To achieve this goal, we are to prove the continuously differentiability of Ũ in the following

steps. We first define the derivative of Ũ w.r.t vector p̃0 in a similar way to in Cecchin and Pelino

(2019), Define operator Dy
p as following.
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Definition 4.3. Define operator of a function U : RK → R as DyU : RK → RK for y ∈ Σ.

[DyU(p)]z := lim
s→0

U(p+ s(δz − δy))− U(p)

s
,

where DyU(p) = ([DyU(p)]1, · · · , [DyU(p)]K), and δz ∈ RK such that all elements are 0 except the z

element is 1.

By noticing that µ =
∑

z 6=1 µz(δz−δ1)+(
∑K

z=1 µz)δ1, if Ũ is differentiable, we have following lemma

from the linearity of directional derivative.

Lemma 4.4. Define the derivative of function U(p) along the direction µ ∈ RK as a map ∂
∂µU : RK →

R,
∂

∂µ
U(p) := lim

s→0

U(p+ sµ)− U(p)

s
.

It satisfies

∂

∂µ
U(p) = D1U(p) · µ+

∂

∂δ1
U(p)(

K∑
z=1

µz),

where ∂
∂δ1

is in fact the first component of the gradient of Ũ , and DU(p) := D1U(p) for notation

simplicity. When
∑K

z=1 µz = 0, for any y ∈ Σ, we have

DyU(p) · µ = DU(p) · µ =
∂

∂µ
U(p).

In order to characterize the directional derivative of Ũ w.r.t p̃0, given θ̃ and p̃, let’s define a linear

system of ODE for (u, ρ) similar to (Cecchin and Pelino, 2019, Equation (80)), which will be used quite

a few times in the following.

duz(t)

dt
= −λ∗(z,∆z θ̃(t)) ·∆zu(t)− b(t, z)

dρz(t)

dt
=
∑
y

ρy(t)λ
∗
z(y,∆

y θ̃(t)) +
∑
y

p̃y(t)Dµλ
∗
z(y,∆

y θ̃(t)) ·∆yu(t) + c(t, z)

uz(T ) =
∂G

∂ρ(T )
(z, p̃(T )) + uT,z = ∇G(z, p̃(T )) · ρ(T ) + uT,z

ρz(t0) = ρz,0.

(4.11)

Similar to (Cecchin and Pelino, 2019, Equation (80)), Dµλ
∗
z(y,∆

y θ̃(t)) is the gradient of λ∗z w.r.t its

second variable in RK . The unknowns are u and ρ, while b, c, uT , ρ0 are given measurable functions, with

c satisfying
∑K

z=1 c(t, z) = 0. In fact, (4.11) is generalization of (Cecchin and Pelino, 2019, Equation

(80)). In (4.11), it is a general directional derivatives of any direction in the terminal condition of uz(T ),

while in (Cecchin and Pelino, 2019, Equation (80)), it is directional derivatives of specific directions.

We first prove in following Proposition 4.5 that the linear system (4.11) has a unique solution, which

is linear bounded by its initial and boundary conditions.

Proposition 4.5. There exist positive constants N0 and C, such that if we have (4.3) and p̃(t0) ∈
B̄(P (Σ), 1

N0
), then for any measurable function b, c and vector uT , the linear system (4.11) has a

unique solution (u, ρ). Moreover it satisfies

‖u‖+ ‖ρ‖ ≤ C[‖uT ‖+ ‖ρ0‖+ ‖b‖+ ‖c‖]. (4.12)
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Proof. We only discuss the case when t0 = 0, as it can be extended to any t0 ∈ [0, T ] by the same

argument.

We first let N0 bigger than the one in Proposition 4.2. And similar to the proof for Proposition 4.2, to

cope with the potential negativeness, we first assume p̃z(t) ≥ −M1 uniformly and M1 ≤M , and we will

decide later the value for M1 small enough and find the N0 such that it holds. As
∑

z∈Σ λ
∗
z(y,∆

y θ̃(t)) =

0, we have
∑

z,y∈Σ p̃y(t)Dµλ
∗
z(y,∆

y θ̃(t)) ·∆yu(t) = 0, and
∑

z∈Σ
dρz(t)
dt = 0. Hence for any t ∈ [0, T ], we

have
η :=

∑
z∈Σ

ρz(t) =
∑
z∈Σ

ρz,0. (4.13)

Define set Pη(Σ) as

Pη(Σ) := {p ∈ RK , s.t
K∑
z=1

pz = η}.

We define map ξ from C0([0, T ];Pη(Σ)) to itself as following: for a fixed ρ ∈ C0([0, T ];Pη(Σ)), we

consider the solution u = u(ρ) to the backward ODE for u in (4.11), and define ξ(ρ) to be the solution

to the forward ODE for ρ in (4.11) with u = u(ρ). From (4.13), ξ(ρ) is well defined as ξ(ρ)(t) ∈ Pη(Σ)

for any t.

Similar to the proof for (Cecchin and Pelino, 2019, Proposition 6), the solution to (4.11) is the

fixed point of mapping ξ, and we prove its existence by Schaefer’s Fixed Point Theorem, which asserts

that a continuous and compact mapping ξ of a Banach space X into itself has fixed point if the set

{ρ ∈ X : ρ = ωξ(ρ), ω ∈ [0, 1]} is bounded. Firstly, ξ is continuous as the system (4.11) is linear

in u and ρ. C0([0, T ];Pη(Σ)) is a convex subset of Banach space C0([0, T ];RK). Moreover, from the

linearity and bounded coefficients of system (4.11), ξ maps any bounded set of C0([0, T ];Pη(Σ)) into

set of bounded and Lipshitz continuous functions with uniform Lipshitz coefficient in C1([0, T ];Pη(Σ)),

which by ArzelaAscoli theorem, is relatively compact. By compact map definition, ξ is a compact

map. Hence to apply Schaefer’s Fixed Point Theorem, it remains to prove that the set {ρ : ρ = ωξ(ρ)}
is uniform bounded for ∀ω ∈ [0, 1]. We can restrict to ω > 0 since otherwise ρ = 0. Fix a ρ such

that ρ = ωξ(ρ), which means the couple (u(ρ), ξ(ρ)) solves (for notation simplicity we neglect their

dependency on ρ)

duz(t)

dt
= −λ∗(z,∆z θ̃(t)) ·∆zu(t)− b(t, z)

dξz(t)

dt
=
∑
y

ξy(t)λ
∗
z(y,∆

y θ̃(t)) +
∑
y

p̃y(t)Dµλ
∗
z(y,∆

y θ̃(t)) ·∆yu(t) + c(t, z)

uz(T ) = ∇G(z, p̃(T )) · ωξ(T ) + uT,z

ξz(t0) = ρz,0.

(4.14)

We need to prove the solution (u, ξ) if existed, are bounded uniformly for any ω ∈ (0, 1]. For notation

simplicity, we omit the dependence of λ∗ on the second variable. From (4.14),∑
z∈Σ

d

dt
(uz(t)ξz(t)) = −

∑
z,y∈Σ

ξz(t)λ
∗
y(z)(uy(t)− uz(t)) +

∑
z,y∈Σ

ξy(t)λ
∗
z(y)uz(t)

+
∑
z,y∈Σ

uz(t)p̃y(t)Dµλ
∗
z(y) ·∆yu(t) +

∑
z∈Σ

c(t, z)uz(t)−
∑
z∈Σ

ξz(t)b(t, z).

The first line is 0 by exchanging z and y in the second double sum and using (2.3). Integrating over
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[0, T ] and using the expression of uz(T ) we have

∑
z∈Σ

ξz(T )[∇G(z, p̃(T )) · ωξ(T ) + uT,z]− u(0) · ρ0 =

∫ T

0

∑
z∈Σ

c(t, z)uz(t)dt−
∫ T

0

∑
z∈Σ

ξz(t)b(t, z)dt

+

∫ T

0

∑
z,y∈Σ

p̃y(t)Dµλ
∗
z(y) ·∆yu(t)(uz(t)− uy(t))dt

Reorganize the terms and we get∫ T

0

∑
z,y∈Σ

p̃y(t)Dµλ
∗
z(y) ·∆yu(t)(uz(t)− uy(t))dt− ω

∑
z∈Σ

ξz(T )∇G(z, p̃(T )) · ξ(T )

=

∫ T

0

∑
z∈Σ

ξz(t)b(t, z)dt−
∫ T

0

∑
z∈Σ

c(t, z)uz(t)dt+
∑
z∈Σ

ξz(T )uT,z − u(0) · ρ0.

From assumption on G in (2.6) and definition of directional derivative, we have

− ω
∑
z∈Σ

ξz(T )∇G(z, p̃(T )) · ξ(T ) = −ω
∑
z∈Σ

ξz(T )
∂G

∂ξ(T )
(z, p̃(T )) ≥ 0.

Moreover, as λ∗(y) = DµH(y) (we also neglect the dependence of H on the second variable),∫ T

0

∑
z,y∈Σ

p̃y(t)Dµλ
∗
z(y) ·∆yu(t)(uz(t)− uy(t))dt =

∫ T

0

∑
y∈Σ

p̃y(t)∆
yu(t) ·D2

µµH(y) ·∆yu(t)dt.

Since p̃ and p̂ can be negative, the same step in (Cecchin and Pelino, 2019, Proposition 6) to obtain

estimation on RHS of above is not applicable. However, as p̃y(t) +M1 ≥ 0 for all y ∈ Σ, from (2.4), we

can rewrite the RHS of the equation and get following estimation instead.∫ T

0

∑
y∈Σ

p̃y(t)∆
yu(t) ·D2

µµH(y) ·∆yu(t)dt =

∫ T

0

∑
y∈Σ

(p̃y(t) +M1)∆yu(t) ·D2
µµH(y) ·∆yu(t)dt−

M1

∫ T

0

∑
y∈Σ

∆yu(t) ·D2
µµH(y) ·∆yu(t)dt ≥ C−1

∫ T

0

∑
z∈Σ

(p̃y(t) +M1)‖∆zu(t)‖2dt−M1C

∫ T

0

∑
z∈Σ

‖∆zu(t)‖2dt.

So there exists constant C and C1 (C1 only depends on the dimension of u) such that∫ T

0

∑
z∈Σ

(p̃z(t) +M1)‖∆zu(t)‖2dt ≤ C(

∫ T

0
|c(t) · u(t)|dt+

∫ T

0
|ξ(t) · b(t)|dt

+ ‖ξ(T )‖‖uT ‖+ ‖u(0)‖‖ρ0‖+M1C1‖u‖2),

(4.15)

where b(t) := (b(t, 1), · · · , b(t,K)), and c(t) is defined similarly. As λ∗ and Dµλ
∗ is bounded by constant

C, from ODE for ξ in (4.14) we have

|ξz(t)| ≤ |ρ0,z|+ C

∫ t

0

∑
y∈Σ

|ξy(s)|ds+ C

∫ t

0
[
∑
y∈Σ

(p̃y(s) +M1)‖∆yu(s)‖+ |c(s, z)|]ds

+ CM1

∫ t

0

∑
y∈Σ

‖∆yu(s)‖ds.

So that by Gronwall’s inequality, there exists constant C such that

‖ξ‖ ≤ C(‖ρ0‖+ ‖c‖) + C

∫ T

0

∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖dt+ CM1

∫ T

0

∑
y∈Σ

‖∆yu(t)‖dt,
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where there exists C such that
∑

y∈Σ(p̃y(t) +M1) ≤ C2 and∫ T

0

∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖dt =

∫ T

0

∑
y∈Σ

√
p̃y(t) +M1

√
p̃y(t) +M1‖∆yu(t)‖dt

≤
∫ T

0

√∑
y∈Σ

(p̃y(t) +M1)

√∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖2dt ≤ C
∫ T

0

√∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖2dt

≤ C

√√√√∫ T

0

∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖2dt.

From (4.15), there exist different constants C at each line such that

‖ξ‖ ≤ C(‖ρ0‖+ ‖c‖) + C

∫ T

0

∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖dt+ CM1

∫ T

0

∑
y∈Σ

‖∆yu(t)‖dt

≤ C(‖ρ0‖+ ‖c‖) + C(M1 +
√
M1)‖u‖+ C(‖c‖

1
2 ‖u‖

1
2 + ‖ξ‖

1
2 ‖b‖

1
2 + ‖ξ(T )‖

1
2 ‖uT ‖

1
2 + ‖u(0)‖

1
2 ‖ρ0‖

1
2 ),

Moreover, using Gronwall inequality on the backward ODE in (4.14) for function u, there exists C such

that

‖u‖ ≤ C[‖uT ‖+ ‖ξ(T )‖+ ‖b‖].

Then there exists C such that

‖ξ‖ ≤ C(‖ρ0‖+ ‖c‖) + C(M1 +
√
M1)(‖uT ‖+ ‖ξ(T )‖+ ‖b‖) + C‖c‖

1
2 (‖uT ‖+ ‖ξ(T )‖+ ‖b‖)

1
2

+ C(‖ξ‖
1
2 ‖b‖

1
2 + ‖ξ(T )‖

1
2 ‖uT ‖

1
2 + (‖uT ‖

1
2 + ‖ξ(T )‖

1
2 + ‖b‖

1
2 )‖ρ0‖

1
2 )

As ‖ξ(T )‖ ≤ ‖ξ‖, using the inequality AB ≤ εA2 + 1
4εB

2 for A,B ≥ 0, there exists C such that

‖ξ‖ ≤ C(‖c‖+ ‖b‖+ ‖ρ0‖+ ‖uT ‖) + (C(M1 +
√
M1) +

1

4
)‖ξ‖.

Note that the constant C only depends on the boundedness of θ̃, which depends on M in Proposition

4.1. If

C(M1 +
√
M1) ≤ 1

4
.

Then we have

‖ξ‖ ≤ 2C(‖c‖+ ‖b‖+ ‖ρ0‖+ ‖uT ‖),

Hence the solution pair (u, ξ) are bounded for all ω ∈ [0, 1], which means ρ = ωξ(ρ) are also uniform

bounded, and hence proves the existence of solution to (4.11). Meanwhile, let ω = 1 leads to the

uniform bound estimation for solution (u, ρ) to (4.11), and the uniqueness of it comes directly from

(4.12). If N0 >
3eΛ(M1)

M1
, from Proposition 4.1, we have p̃y(t) > −M1 uniformly, which concludes our

proof. Hence we can just update our N0 set before to satisfy the inequality.

Then we can prove the differentiablity of Ũ w.r.t p̃0 in Proposition 4.6.

Proposition 4.6. Let (θ̃, p̃) and (θ̂, p̂) be the solutions to ODE system (2.13) respectively starting

from (t0, p̃(t0)) and (t0, p̂(t0)), and (v, ζ) be the solution to (4.11) starting from ρ0 := p̂(t0) − p̃(t0).

There exist positive constants N0 and C, such that if we have (4.3), then for any t0 ∈ [0, T ] and

p̃(t0), p̂(t0) ∈ B̄(P (Σ), 1
N0

), we have

‖θ̂ − θ̃ − v‖+ ‖p̂− p̃− ζ‖ ≤ C‖p̂(t0)− p̃(t0)‖2.
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Proof. Without loss of generality, we assume t0 = 0. Similar to the proof of (Cecchin and Pelino, 2019,

Theorem 7), we can use results from Proposition 4.5 to prove our conclusion. Define N0 as the one in

Proposition 4.5. Then p̃y(t), p̂y(t) > −M1 uniformly on (t, y) ∈ [0, T ] × Σ. Define linearized system

with w := p̂(0)− p̃(0):

dvz(t)

dt
= −λ∗(z,∆z θ̃(t)) ·∆zv(t)

dζz(t)

dt
=
∑
y

ζy(t)λ
∗
z(y,∆

y θ̃(t)) +
∑
y

p̃y(t)Dµλ
∗
z(y,∆

y θ̃(t)) ·∆yv(t)

vz(T ) =
∂G

∂ζ(T )
(z, p̃(T )) = D1G(z, p̃(T )) · ζ(T ) +

∂G

δ1
(z, p̃(T ))

K∑
z=1

wz

ζz(0) = wz.

(4.16)

From condition in Theorem 2.6, the sum of every component of p̃ equals 1 for all t ∈ [0, T ]. Hence we

know
∑

z∈Σ ε2(t, z) = 0, and define

S(p̂, p̃) :=
∑
z∈Σ

(p̂z(0)− p̃z(0)) =
∑
z∈Σ

(p̂z(T )− p̃z(T ))

We know there exists C such that |S(p̂, p̃)| ≤ C‖p̂(T ) − p̃(T )‖. Set u := θ̂ − θ̃ − v and ρ := p̂ − p̃ − ζ,

they solve (4.11), where

b(t, z) := H(z,∆z θ̂(t))−H(z,∆z θ̃(t))− λ∗(z,∆z θ̃(t)) · (∆z θ̂(t)−∆z θ̃(t))

c(t, z) :=
∑
y

p̂y(t)[λ
∗
z(y,∆

y θ̂(t))− λ∗z(y,∆y θ̃(t))]−
∑
y

p̃y(t)Dµλ
∗
z(y,∆

y θ̃(t)) · (∆y θ̂(t)−∆y θ̃(t)))

uT,z := G(z, p̂(T ))−G(z, p̃(T ))−D1G(z, p̃(T ))(p̂(T )− p̃(T ))− ∂G

δ1
(z, p̃(T ))S(p̂, p̃).

From (2.3),
∑

z∈Σ c(t, z) = 0. The existence and uniqueness of solution to (4.16) is guaranteed by

Proposition 4.5. We can simplify b and c as

b(t, z) =

∫ 1

0
[DµH(z,∆z θ̃(t) + s(∆z θ̂(t)−∆z θ̃(t)))−DµH(z,∆z θ̃(t))] · (∆z θ̂(t)−∆z θ̃(t))ds

c(t, z) =
∑
y

p̂y(t)

∫ 1

0
[Dµλ

∗
z(y,∆

y θ̃(t) + s(θ̂(t)−∆y θ̃(t)))−Dµλ
∗
z(y,∆

y θ̃(t))] · (∆z θ̂(t)−∆z θ̃(t))ds

+
∑
y

(p̂y(t)− p̃y(t))Dµλ
∗
z(y,∆

y θ̃(t)) · (∆y θ̂(t)−∆y θ̃(t))).

Moreover, since

G(z, p̂(T ))−G(z, p̃(T )) =

∫ 1

0

∂G

∂(p̂(T )− p̃(T ))
(z, p̃(T ) + s(p̂(T )− p̃(T )))ds

=

∫ 1

0
D1G(z, p̃(T ) + s(p̂(T )− p̃(T ))) · ((p̂(T )− p̃(T ))))ds

+

∫ 1

0

∂G

∂δ1
(z, p̃(T ) + s(p̂(T )− p̃(T )))S(p̂, p̃)ds

we have

uT,z =

∫ 1

0
(D1G(z, p̃(T ) + s(p̂(T )− p̃(T )))−D1G(z, p̃(T ))) · ((p̂(T )− p̃(T ))))ds

+

∫ 1

0
(
∂G

∂δ1
(z, p̃(T ) + s(p̂(T )− p̃(T )))− ∂G

δ1
(z, p̃(T )))S(p̂, p̃)ds
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From Proposition 4.1, θ̃, p̃, θ̂ and p̂ are bounded. From the Assumption 2.1, namely the Lipschitz

continuity of DµH, Dµλ
∗, ∂G

δ1
and D1G in their second variable, there exists constant C such that

‖b‖ ≤ C‖θ̃ − θ̂‖2

‖uT,z‖ ≤ C‖p̃(T )− p̂(T )‖2

‖c‖ ≤ C(‖θ̃ − θ̂‖2 + ‖θ̃ − θ̂‖ · ‖p̃− p̂‖).

Applying Proposition 4.5 and then Proposition 4.2, we have there exists C such that

‖u‖+ ‖ρ‖ ≤ C‖p̂(0)− p̃(0)‖2,

which concludes the proof.

As (4.16) is a linear system. v and ζ in (4.16) can be viewed as a linear map of w. Hence Proposition

4.6 suggests that Ũ is differntiable w.r.t p̃0 and the directional derivative ∂
∂w Ũ(t, z, p̃) is the solution to

ODE system (4.16), with θ̃z(t) = Ũ(t, z, p̃(t)).

Theorem 4.7. There exist positive constants N0 and C, such that if we have (4.3), Ũ is differntiable on

B(P (Σ), 1
N0

), and for any vector w, ∂
∂w Ũ(t, z, p̃(t)) exists and is Lipschitz continuous w.r.t p̃, uniformly

in t, z. ∂
∂w Ũ(t, z, p̃(t)) is also continuous w.r.t t.

Proof. Define N0 as the one in Proposition 4.5. Let (θ̃, p̃) and (θ̂, p̂) be two solutions to (2.13), with

initial conditions p̃(t0), p̂(t0) ∈ B(P (Σ), 1
N0

). Let also (ṽ, ζ̃) and (v̂, ζ̂) characterize ∂
∂w Ũ(t0, z, p̃(t0)) and

∂
∂w Ũ(t0, z, p̂(t0)) respectively. Then (ṽ, ζ̃) satisfies following.

dṽz(t)

dt
= −λ∗(z,∆z θ̃(t)) ·∆z ṽ(t)

dζ̃z(t)

dt
=
∑
y

ζ̃y(t)λ
∗
z(y,∆

y θ̃(t)) +
∑
y

p̃y(t)Dµλ
∗
z(y,∆

y θ̃(t)) ·∆yṽ(t)

ṽz(T ) =
∂G

∂ζ̃(T )
(z, p̃(T ))

ζ̃z(t0) = wz.

(4.17)

From Proposition 4.5, we know the uniform bound of both ṽ and ζ̃ depend linearly on norm of w.

Similar is for (v̂, ζ̂), except for replacing (θ̃, p̃) by (θ̂, p̂). Set u := ṽ − v̂, ρ := ζ̃ − ζ̂. They solve the

linear system (4.11) with ρ(t0) = 0 and

b(t, z) := (λ∗(z,∆z θ̃(t))− λ∗(z,∆z θ̂(t))) ·∆z v̂(t)

c(t, z) :=
∑
y∈Σ

ζ̂y(t)(λ
∗
z(y,∆

y θ̃(t))− λ∗z(y,∆y θ̂(t)))

+
∑
y∈Σ

[p̃y(t)Dµλ
∗
z(y,∆

y θ̃(t))− p̂y(t)Dµλ
∗
z(y,∆

y θ̂(t))] ·∆z v̂(t)

uT,z :=
∂G

∂ζ̂(T )
(z, p̃(T ))− ∂G

∂ζ̂(T )
(z, p̂(T ))

Using the Lipschitz continuity of λ∗, Dµλ
∗ and directional derivatives of G, applying the bounds (4.12)

to v̂ and ζ̂, and the estimation on ‖θ̃ − θ̂‖, ‖p̃− p̂‖ from Proposition 4.2, there exists C such that

‖b‖ ≤ C‖θ̃ − θ̂‖‖v̂‖ ≤ C‖p̃(t0)− p̂(t0)‖‖w‖

‖c‖ ≤ C‖θ̃ − θ̂‖‖ζ̂‖+ C‖θ̃ − θ̂‖‖v̂‖+ C‖p̃− p̂‖‖v̂‖
≤ C‖p̃(t0)− p̂(t0)‖‖w‖

‖uT ‖ ≤ C‖p̃− p̂‖‖ζ̂‖ ≤ C‖p̃(t0)− p̂(t0)‖‖w‖
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From Proposition 4.5, we have

‖u‖ ≤ C(‖b‖+ ‖c‖+ ‖uT ‖) ≤ C‖p̃(t0)− p̂(t0)‖‖w‖.

From Proposition 4.6, we have

ṽz(t0) =
∂Ũ

∂w
(t0, z, p̃(t0)), v̂z(t0) =

∂Ũ

∂w
(t0, z, p̂(t0)).

Therefore, ∂Ũ
∂w is Lipschitz continuous, uniform w.r.t t and z.

On the other hand, for another initial time t1 > t0, we first compare ∂
∂w Ũ(t0, z, p̃(t0)) and ∂

∂w Ũ(t1, z, p̃(t1)),

where (t1, p̃(t1)) is on the path (t, p̃(t)) start from t0 to T . They are both characterized by system like

(4.17), though we need to replace t0 with t1 for ∂
∂w Ũ(t1, z, p̃(t1)). Let (ṽ, ζ̃) satisfy (4.17). Then we

know

ṽ(t0) =
∂

∂w
Ũ(t0, z, p̃(t0)), ṽ(t1) =

∂

∂ζ̃(t1)
Ũ(t1, z, p̃(t1)).

∂
∂ζ̃(t1)

Ũ(t1, z, p̃(t1)) is also characterized by (4.17), except that t0 and initial value need to be replaced

by t1 and ζ̃(t1). It means ∂
∂ζ̃(t1)

Ũ(t1, z, p̃(t1)) − ∂
∂w Ũ(t1, z, p̃(t1)) can also be characterized by (4.17)

except that t0 and initial value need to be replaced by t1 and ζ̃(t1)−w. From Proposition 4.5, we have

there exists constant C such that

| ∂

∂ζ̃(t1)
Ũ(t1, z, p̃(t1))− ∂

∂w
Ũ(t1, z, p̃(t1))| ≤ C|ζ̃z(t1)− wz|.

As λ∗, Dµλ
∗ and the directional derivative of G are Lipschitz continuous and uniform bounded, as well

as that both ṽ and ζ̃ are uniformly bounded, we know hence both dṽz(t)
dt and dζ̃z(t)

dt are also uniformly

bounded by some constant C. We have

‖ζ̃(t1)− w‖ = ‖ζ̃(t1)− ζ̃(t0)‖ ≤ C|t1 − t0|,

| ∂
∂w

Ũ(t0, z, p̃(t0))− ∂

∂ζ̃(t1)
Ũ(t1, z, p̃(t1))| = |ṽz(t0)− ṽz(t1)| ≤ C|t1 − t0|.

Combine above, we know there exists constant C such that

| ∂
∂w

Ũ(t0, z, p̃(t0))− ∂

∂w
Ũ(t1, z, p̃(t1))| ≤ C|t1 − t0|.

Then by the continuity of ∂
∂w Ũ w.r.t its third argument, as well as the continuity of p̃, we can also

conclude that ∂
∂w Ũ is continuous w.r.t t, its first argument.

From Proposition 4.6 and Theorem 4.7, Ũ is C1 on compact set B̄(P (Σ), 1
N0

). Hence both DŨ and

the directional derivative of Ũ along any direction are well-defined, bounded, and Lipschitz continuous,

uniformly for t ∈ [0, T ]. Theorem 4.7 also suggests that the directional derivative of Ũ along any

direction is continuous w.r.t t. Thanks to these properties, we can use similar idea of the proof for

existence of solution to the master equation in (Cecchin and Pelino, 2019, Section 5.3.1), to show that

Ũ also satisfies the master equation with some extra error terms.

Theorem 4.8. Let (θ̃, p̃) be the solution to ODE system (2.13). Define Ũ as (4.10). There exist positive

constants N0 and C, such that if we have condition (4.3) in Theorem 2.6, then Ũ satisfies following

master equation along the path (t, p̃(t)) on [t0, T ], as long as p̃(t) ∈ B(P (Σ), 1
N0

).

∂Ũ(t, z, p̃(t))

∂t
+H(z,∆zŨ) +

∑
y∈Σ

p̃y(t)λ
∗(y,∆yŨ) ·DŨ(t, z, p̃(t)) = ε(t, z)

Ũ(T, z, p̃(T )) = G(z, p̃(T )) + ε3(z),

(4.18)
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where ∆zŨ := (Ũ(t, 1, p̃(t))− Ũ(t, z, p̃(t)), · · · , Ũ(t,K, p̃(t))− Ũ(t, z, p̃(t))) and ‖ε‖ < C+1
N , where N >

N0 and C comes from the uniform bound coefficient in Proposition 4.2.

Proof. From condition in Theorem 2.6, p̃(t) ∈ B(P (Σ), 1
N0

) for every t ∈ [t0, T ] where B(P (Σ), 1
N0

)

being the open neighbourhood of P (Σ). Hence from Proposition 4.1, 4.2 and Theorem 4.7, Ũ , DŨ and
∂
∂δ1
Ũ are well-defined on (t, p̃(t)). Take t as initial time and p̃(t) as initial value, there exists an unique

solution to (2.13), and we can always choose h small enough such that this solution taking value on

t+ h, i.e p̃(t+ h) ∈ B(P (Σ), 1
N0

). Note that as
∑

z∈Σ ε2(t, z) = 0 for all t ∈ [t0, T ], we have∑
z∈Σ

p̃z(t) =
∑
z∈Σ

p̃z(t+ h).

Let’s first compute limit of following when h tends to 0.

Ũ(t+ h, z, p̃(t))− Ũ(t, z, p̃(t))

h
=

Ũ(t+ h, z, p̃(t))− Ũ(t+ h, z, p̃(t+ h))

h
+
Ũ(t+ h, z, p̃(t+ h))− Ũ(t, z, p̃(t))

h

(4.19)

For the first term in (4.19), we first define

W (s) := Ũ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t))).

By definition, we derive the derivative of W as

W ′(s) =
∂

∂(p̃(t+ h)− p̃(t))
Ũ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t)))

Then the first term in (4.19) can be reformulated as

Ũ(t+ h, z, p̃(t))− Ũ(t+ h, z, p̃(t+ h))

h
=
W (0)−W (1)

h
= −1

h

∫ 1

0
W ′(s)ds.

From Lemma 4.4 and c(h) =
∑K

z=1(p̃z(t+ h)− p̃z(t)) = 0. We know

W ′(s) = DŨ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t))) · (p̃(t+ h)− p̃(t))

Substitute above to the first term in (4.19), we get

Ũ(t+ h, z, p̃(t))− Ũ(t+ h, z, p̃(t+ h))

h

= −1

h

∫ 1

0
DŨ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t))) · (p̃(t+ h)− p̃(t))ds

= −1

h

∫ 1

0
Ũ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t)))ds ·

∫ t+h

t
(
∑
y

p̃y(u)λ∗(y,∆y θ̃(u)) + ε2(u))du,

where ε2(t) := (ε2(t, 1), · · · , ε2(t, z)). From Theorem 4.7, we know for any y ∈ Σ,

lim
h→0

[DŨ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t)))]y = [DŨ(t, z, p̃(t))]y.

As DŨ is uniform bounded, we have following with dominated convergence theorem:

lim
h→0

∫ 1

0
DŨ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t)))ds = DŨ(t, z, p̃(t)).
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On the other hand, dividing h and letting h→ 0, we have following:

lim
h→0

∫ t+h
t (

∑
y p̃y(u)λ∗(y,∆y θ̃(u)) + ε2(u))du

h
=
∑
y

p̃y(t)λ
∗(y,∆y θ̃(t)) + ε2(t)

=
∑
y

p̃y(t)λ
∗(y,∆yŨ) + ε2(t).

The last equation comes from Definition of Ũ , which suggests ∆yŨ = ∆y θ̃(t).

For the second term in (4.19), from definition of Ũ , we know

Ũ(t+ h, z, p̃(t+ h))− Ũ(t, z, p̃) =
dθ̃z(t)

dt
h+ o(h).

and hence

lim
h→0

Ũ(t+ h, z, p̃(t+ h))− Ũ(t, z, p̃(t))

h
=
dθ̃z(t)

dt
= −H(z,∆zŨ) + ε1(t, z).

Combining both the results from first and second term in (4.19), taking h→ 0, we have

∂Ũ(t, z, p̃(t))

∂t
= −H(z,∆zŨ)−DŨ(t, z, p̃(t)) · (

∑
y∈Σ

p̃y(t)λ
∗(y,∆yŨ) + ε2(t)) + ε1(t, z),

As ‖DŨ(t, z, p̃(t))‖ ≤ C uniformly and ‖ε2(t)‖ ≤ 1
N , we know

|DŨ(t, z, p̃(t)) · ε2(t)| ≤ C

N

Hence defining ε(t, z) := ε1(t, z)−DŨ(t, z, p̃(t)) · ε2(t) concludes the proof.

Then the DNN approximation (θ̃, p̃) is characterized by (4.18), while the true solution (θ, p) of the

MFG is characterized by similar one, except ε and ε3 are 0. Although the two master equations are

now backward PDE, it is still difficult to directly compare their solutions. Hence we would like to

approximate the two PDEs by two ODE systems on some discrete grids of P (Σ).

Define PN (Σ) = {(n1
N , · · · ,

nK
N ),

∑K
z=0 nz = N,nz ∈ Z+}. Then PN (Σ) is a discrete grid of P (Σ).

For any pN ∈ PN (Σ), define operators:

αN,i,j(pN ) :=

{
pN + 1

N (δj − δi) pNi > 0, pNj < 1

pN else

∆N,yŨ(t, z, pN ) := (Ũ(t, z, αN,y,1(pN ))− Ũ(t, z, pN ), · · · , Ũ(t, z, αN,y,K(pN ))− Ũ(t, z, pN ))

∆N,z,zŨ(t, z, pN ) := (Ũ(t, 1, αN,z,1(pN ))− Ũ(t, z, pN ), · · · , Ũ(t,K, αN,z,K(pN ))− Ũ(t, z, pN )).

(4.20)

With the discrete grid and discrete operators defined above, we next show in Proposition 4.9 that

the master equation can be approximate by a backward ODE system.

Proposition 4.9. There exists N0 such that for N > N0, every pN ∈ PN (Σ) and z ∈ Σ, Ũ solves

∂Ũ

∂t
(t, z, pN ) = ε̃N (t, z, pN )−H(z,∆N,z,zŨ(t, z, pN ))

−
∑
y∈Σ

(pNy −
1y=z

N
)λ∗(y,∆N,y,yŨ(t, y, pN )) ·∆N,yŨ(t, z, pN )

Ũ(T, z, pN ) = G(z, pN ) + ε3(z),

(4.21)

where ε̃N ∈ C0([0, T ]× Σ× PN (Σ)), ‖ε̃N‖ ≤ C
N .
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Proof. From Theorem 4.8, there exists constant N0, such that when N > N0 and (4.3), Ũ satisfies

(4.18) when taking value on point (t, z, pN ).

∂Ũ(t, z, pN )

∂t
= −H(z,∆zŨ)−

∑
y∈Σ

pNy λ
∗(y,∆yŨ) ·DŨ(t, z, pN ) + ε(t, z).

It looks similar to (4.21), except for the discrete operator ∆N,y and the differential operator Dy. Hence

we next compare the two operators similar to (Cecchin and Pelino, 2019, Proposition 3). We first

discuss the first component δ1 − δy of ∆N,yŨ(t, z, pN ) defined in (4.20),

Ũ(t, z, pN +
1

N
(δ1 − δy))− Ũ(t, z, pN ) =

∫ 1
N

0
[DyŨ(t, z, pN + s(δ1 − δy))]1ds

= [DyŨ(t, z, pN )]1 +

∫ 1
N

0
([DyŨ(t, z, pN + s(δ1 − δy))]1 − [DyŨ(t, z, pN )]1)ds

= [DyŨ(t, z, pN )]1 +O(
1

N2
).

where the last equality is derived by the Lipschitz continuity in pN ∈ P (Σ) of DyŨ . As above can be

applied to every component in ∆N,yŨ(t, z, pN ), we conclude that there exists N0 such that for N > N0,

∆N,yŨ(t, z, pN ) = DyŨ(t, z, pN ) + εN,y(t, z, pN ),

where εN,y ∈ C0([0, T ]× Σ× PN (Σ);RK), ‖εN,y‖ ≤ C
N2 .

Hence we have

∂Ũ

∂t
(t, z, pN ) = −

∑
y∈Σ

(pNy −
1y=z

N
)λ∗(y,∆N,y,yŨ(t, y, pN )) ·∆N,yŨ(t, z, pN )

−H(z,∆N,z,zŨ(t, z, pN )) +
4∑
i=1

ei(t, z),

where
e1(t, z) := H(z,∆N,z,zŨ(t, z, pN ))−H(z,∆zŨ)

e2(t, z) :=
∑
y∈Σ

pNy ∆N,yŨ(t, z, pN ) · (λ∗(y,∆N,y,yŨ(t, y, pN ))− λ∗(y,∆yŨ))

e3(t, z) :=
∑
y∈Σ

pNy (∆N,yŨ(t, z, pN )−DŨ(t, z, pN )) · λ∗(y,∆yŨ)

e4(t, z) := −1y=z

N
λ∗(y,∆N,y,yŨ(t, y, pN )) ·∆N,yŨ(t, z, pN ) + ε(t, z).

From the Lipschitz continuity of H and λ∗, as well as that Ũ is bounded, there exists constant C such

that
|e1(t, z)| ≤ C‖∆N,z,zŨ(t, z, pN )−∆zŨ‖
|e2(t, z)| ≤ C max

z∈Σ
‖∆N,z,zŨ(t, z, pN )−∆zŨ‖.

From Proposition 4.2, we know there exists constant C such that

|e1(t, z)|+ |e2(t, z)| ≤ C

2N
.

From Lemma 4.4 and
∑

z∈Σ λ
∗
z(y,∆

yŨ) = 0 for every y ∈ Σ, we have

DyŨ(t, z, pN )) · λ∗(y,∆yŨ) = DŨ(t, z, pN )) · λ∗(y,∆yŨ).
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It follows that

e3(t, z) =
∑
y∈Σ

pNy (∆N,yŨ(t, z, pN )−DyŨ(t, z, pN )) · λ∗(y,∆yŨ).

From the boundedness of λ∗ and ε, there is constant C such that

|e3(t, z)| ≤
∑
y∈Σ

pNy (
∑
i∈Σ

C

N2
) ≤ C

4N

|e4(t, z)| ≤ C

4N
.

We can conclude the proof by defining

ε̃N (t, z, pN ) :=
4∑
i=1

ei(t, z) <
C

N
.

Finally we can proceed to the proof of our main result. The main idea of the proof is to characterize

both the DNN approximation (θ̃, p̃) and the true solution (θ, p) by their corresponding master equations,

which are further approximated by two backward ODE systems on certain discrete grid points. Then

the error of the two can be directly estimated on these grid points using Gronwall inequality. As both

(θ̃, p̃) and (θ, p) are uniformly Lipschitz continuous with respect to their initial conditions, the error

between the grid points can also be estimated.

Completion of proof of Theorem 2.6. Since ODE system (2.2) admits a solution to any initial

value p0 ∈ P (Σ), we can define

U(t, z, p) := θ(t, z).

From Cecchin and Pelino (2019), U satisfy the master equation for any p ∈ P (Σ):

∂U(t, z, p)

∂t
+H(z,∆zU) +

∑
y∈Σ

pyDŨ(t, z, p) · λ∗(y,∆yU) = 0,

U(T, z, p) = G(z, p).

Similar to the proof of Proposition 4.9, we know U(t, z, pN ) satisfy ODE:

∂U

∂t
(t, z, pN ) = εN (t, z, pN )−H(z,∆N,z,zU(t, z, pN ))

−
∑
y∈Σ

(pNy −
1y=z

N
)λ∗(y,∆N,y,yU(t, y, pN )) ·∆N,yU(t, z, pN ),

U(T, z, pN ) = G(z, pN ),

(4.22)

where εN ∈ C0([0, T ]×Σ×PN (Σ)), ‖εN‖ ≤ C
N . From (4.21) and (4.22), there exists N0 such that when

N > N0 and (4.3) holds, we have

Ũ(t, z, pN )− U(t, z, pN ) = ε3(z) + e+A+
∑
y∈Σ

(pNy −
1y=z

N
)(By + Cy),

e :=

∫ T

t
(ε̃N (s, z, pN )− εN (s, z, pN ))ds,

A :=

∫ T

t
(H(z,∆N,z,zŨ(s, z, pN ))−H(z,∆N,z,zU(s, z, pN )))ds,

By :=

∫ T

t
[λ∗(y,∆N,y,yŨ(s, y, pN ))− λ∗(y,∆N,y,yU(s, y, pN ))] ·∆N,yŨ(s, z, pN )ds,

Cy :=

∫ T

t
λ∗(y,∆N,y,yU(s, y, pN )) · [∆N,yŨ(s, z, pN )−∆N,yU(s, z, pN )]ds.
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From Proposition 4.1, both U and Ũ are bounded. Hence H and λ∗ are Lipschitz continuous w.r.t their

second variable. Define

d(t) := max
z∈Σ,pN∈PN (Σ)

|Ũ(t, z, pN )− U(t, z, pN )|.

There exists a constant C such that

|A|+ |By|+ |Cy| ≤ C
∫ T

t
d(s)ds.

As pN ∈ PN (Σ), there exists constant C such that

d(t) ≤ max
z∈Σ,pN∈PN (Σ)

{
∫ T

t
|ε̃N (s, z, pN )− εN (s, z, pN )|ds+ ε3(z)}+ C

∫ T

t
d(s)ds ≤ C

N
+ C

∫ T

t
d(s)ds.

By applying Gronwall inequality, there is constant C such that for every t ∈ [0, T ], z ∈ Σ and pN ∈
PN (Σ) we have

|Ũ(t, z, pN )− U(t, z, pN )| ≤ C

N
. (4.23)

For N > 2N0 where N0 is defined in Proposition 4.9 above, if p̃ ∈ B(P (Σ), 1
N ), there is p ∈ P (Σ)

such that p̃ = p+ ε4 and ε4 <
1
N . And there exists pN ∈ PN (Σ) such that

‖p− pN‖ < 1

N

‖p̃− pN‖ ≤ ‖p̃− p‖+ ‖p− pN‖ < 2

N
<

1

N0
.

From Proposition 4.1, Ũ(t, z, p̃) is well defined, and from Proposition 4.2, there exists constant C

independent of N and p, such that for every t ∈ [0, T ] and z ∈ Σ,

|U(t, z, p)− U(t, z, pN )| ≤ C

N
, |Ũ(t, z, p̃)− Ũ(t, z, pN )| ≤ 2C

N
.

Combining the above inequalities with (4.23), we have |Ũ(t, z, p̃)−U(t, z, p)| ≤ C
N for some constant C

independent to N and p, which is equivalent to

‖θ̃ − θ‖ ≤ C

N
.

By using the uniform boundedness and Lipschitz continuity of λ∗, we can prove p and p̃ are Lipschitz

continuous w.r.t θ and θ̃ respectively, with the help of Gronwall inequality and technique similar to

the proof of Proposition 4.2. Note also that the Lipschitz coefficient only depends on the the uniform

bound and Lipschitz continuous coefficient of λ∗, which again only depend on the preliminary M given

in Proposition 4.1. Hence we know there exists a uniform constant C independent on N such that

‖p̃− p‖ ≤ C

N
.

This concludes the proof.

4.4 Proof of Proposition 3.1

Proof. The proof is divided to several steps to prove the conditions for H and G respectively.

Step 1: proof of λ∗ for Assumption 2.1.
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Let’s first write out the Hamilton operator H for Gc,R. Define A as the admissible control set for

all λ that satisfy (3.4). Define δa := Λ−1(λβa(z)(t, z)) and δb := Λ−1(λβb(z)(t, z)), then we have

H(z, µ) = sup
λ∈A
{g(Λ−1(λβa(z)(t, z)), µβa(z)) + g(Λ−1(λβb(z)(t, z)), µβb(z))−

1

2
γσ2Z−1

1 (z)2}

= sup
δa∈R
{g(δa, µβa(z))}+ sup

δb∈R
{g(δb, µβb(z))} −

1

2
γσ2Z−1

1 (z)2,

where g(δ, µ) := Λ(δ)(δ−c+µ). From (3.1) and according to the proof of Lemma 3.1 in Guéant (2017),

ζ(µ) := supδ{g(δ, µ)} is increasing w.r.t µ. Moreover, the optimal δ∗ exists and is unique, which is a

continuously differentiable function of µ.

Step 2: proof of H satisfying Assumption 2.1.

We only need to prove that the second order derivative ζ ′′(µ) is positive. From the proof of Lemma

3.1 in Guéant (2017), ζ is C2, ζ ′(µ) = Λ(δ∗), and δ∗ is strictly decreasing w.r.t µ. Hence Λ(δ∗) is strictly

increasing w.r.t µ, which implies ζ ′′(µ) > 0. Then there exists constant C such that ζ ′′(µ) > C when µ

is bounded.

Step 3: proof of G satisfying Assumption 2.1.

From (3.5), the differentiablity and (2.5) of G are trivial. We then only need to prove (2.6). Note

that ∑
z∈Σ

(G(z, pz)−G(z, p̄z))(pz − p̄z) =

vmax∑
v=0

Q∑
q=−Q

vmax∑
i=v

(p̄(T, i)− p(T, i))(p(T, q, v)− p̄(T, q, v))R

=

vmax∑
v=0

vmax∑
i=v

(p̄(T, i)− p(T, i))(p(T, v)− p̄(T, v))R

= −R
2

(( vmax∑
v=0

(
p(T, v)− p̄(T, v)

))2

+

vmax∑
v=0

(
p(T, v)− p̄(T, v)

)2)
,

which is nonpositive, this concludes the proof.

5 Conclusions

In this paper we have solved the finite state mean field games problem by the deep neural network

method. By transforming the fully-coupled FBODE system to the master equation, we have proved

that the error between the true solution and the approximate solution is linear to the square root of

DNN loss function. We have also applied the DNN method to solve the optimal market making problem

with terminal rank based trading volume reward which is shown to perform better in liquidity provision

and trading cost reduction than the linear trading volume reward. There remain many open questions

such as general heterogeneous interaction structure, infinite state MFG, etc. We leave these and other

questions for future research.
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