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Abstract

We prove versions of various standard inequalities in which the
dependence of the constant on the metric is explicit.

1 Technical results

Definition. Let (M, g) be a smooth Riemannian n-manifold and let = €
M. Given @ > 1, k € N, and p > n, the (Q, k, p)-harmonic radius at z,
ra(Q, k,p)(z), is the supremum of reals r such that, on the geodesic ball
By (r) of center x and radius r, there is a harmonic co-ordinate chart such
that if g;; are the components of g in these co-ordinates, then

1. Q’léij < gij < Q0;; as bilinear forms;

2. 3 <ip<n PP 95915l e < Q - 1.

The (Q, k, p)-harmonic radius of M is
TH(Q? kvp)(M) = mlélja TH(Qa k;7p)($)

Theorem 1.1 ([HH97], Theorem 11). Letn € N, Q@ > 1, p > n, i > 0.
Suppose (M, g) is a Riemannian n-manifold with injrad(M, g) > i.

1. Let A € R. There exists C = C(n,Q,p,i,\), such that if

Ric > Ag,
then the harmonic radius 7 (Q,1,p)(M) is > C.

2. Let k > 2, and let (C(j))o<j<k—2 be positive constants. There exists
C =0C(n,Q,p,% (C(j))o<j<k—2), such that if for each 0 < j < k — 2
we have

[V Ric| < C(j),

then the harmonic radius rg(Q, k,p)(M) is > C.



Lemma 1.2 ([Heb96], Lemma 1.6). Letn € N, let A € R, and letr > p > 0.
Let (M, g) be a complete Riemannian n-manifold with Ric > Ag. Then there
exist N = N(n, A, p,r), and an (at most) countable set (x;) of points in M,
such that

1. the family (B(z;,p)) covers M;

2. each point in M is contained in at most N (n, A, p,r) balls of the family
(B(zi;r)).

Let U C R™ be an open set, g a Riemannian metric on u, V its Levi-
Civita connection, and I' the Christoffel symbols of g on the co-ordinate
patch U. We write D for the (Euclidean) derivative on U.

In the following we denote by S a multilinear map

S T (R™) x TE(R™) x ... x TPr(R™) — TP(R™),

composed of sums of traces (so a —b = > a; — > b;). It is to be under-
stood that the particular map S, and the a;’s, b;’s, a and b determining its
domain and range, may vary from use to use and from line to line, but are
independent of the choice of g, and of the choice of A (in (1)) or of u (in

(2))-

Lemma 1.3. 1. Let k € N. For all covariant tensors A : U — TF(R"),

VA= DA+ S(T,A).

2. Let m € N. For all functions u : U — R,

(V)™u = D™y + > S(DUT, ... D¥T, D*u).
k=1 r=1 a1>-->ar>0,
a1+-+ar=m—k—r

Proof. 1. For any covariant tensor A,

(VA)(0;,0i,, .. 05) = 0 (A(Diy, ... 03,)— > _T% Ay, ... Oas ... 0y,

2. For m = 0,1 these are the identities

u=u, Vu=du.



Thenceforth we proceed by induction. Suppose this is known for some
m. Then

(V)" = V(D™u)+ 3 v (S(D‘”F, ...D%T, Dku)) ,
k=1 r=1 a1 >-->ar>0,
ai1+-+ar=m—k—r
and we may calculate
V(D™u) = D™+ ST, D™u),
'
\V (S(D‘“F, ...DT, Dku)) = Y S(D“r,...D%*!,... DT, D*u)
i=1
+S(D“T, ... DT, DF+1y)
+S(D™MT, ... D¥T, T, D*u).

The result follows.

2 Sobolev estimates

Theorem 2.1 (Sobolev estimate, Gilbarg-Trudinger [GT01] 7.10 & 7.25).
For each n, p # n, and bounded domain V with C' boundary, there exists
C = C(n,p,V), such that for all functions u € WHP(V), we have

1. ifp<n,

lull 22 v < Cllullyyrey
2. if p>n,
sup [u| < Cllul[wir,y
\%
Lemma 2.2 (Local Sobolev estimate). Let n, m, i, A be given.

1. Let g < p < n be given. Then there exists r = r(n,p,q,m,i,\) < i and
C = C(n,p,q,m,i,7),

2. Let p > n be given. Then there exists r = r(n,p,m,i,\) < i and
C = C’(”?p? m? 1:7 >\)?

such that for each

e complete Riemannian n-manifold (M, g) with injectivity radius at least
1 and Ric > \g



e pointx € M
e smooth covariant m-tensor A on B(z,r),

we have
1. (ifp<n)

4] CIIVAIL , oy + AL

gB(M) p,9,B(z,7) p,9,B )]'

2. (ifp>n)

p
<Bs(up)‘A|g> <C[HVAHPQBOH +HAHP9» )] '

Proof. If p > n, let q := %(n + p). Then, either way, let

Pq
p—q

)

and choose r to be less than i and less than the C(n,Q = 1,s,i,\) of
Theorem 1.1 (1), so that the harmonic radius rg(Q := 1,1, s) is greater
than 7. We therefore have uniform bounds in terms of n, i, A, p, and (if
p< 7’L) q on the co-ordinate norms ||g||s ,B(z,r) Hg 1”5 ,B(z,r)> ||F||s ,B(z,r)"
Write B for B(z,r) throughout. Let u be a function on B, with u €
WL (B) 0 LP(B).
By our bounds on the components of the tensor g, the metrics g and

Geucl are comparable, so the norms || - ||, 4,8 and || - ||p,p are comparable,

the norms || - |[ e, . p and || - [ ne p are comparable, and the pointwise
n—q 1 n7q7

tensor norms | - |, and | - | are comparable. It therefore it suffices to prove

the inequalities with the latter norms.
Applying the Sobolev inequality Theorem 2.1 co-ordinatewise and com-
bining, we have C = C(n,m, q), such that

1. (ifp<n)

14114 < C [IDAIZ 5 + 11411 5] -

an

2. (ifp>n)
q
(s%p |A!> < C[IIDAl 5 +1141125] .



By Lemma 1.3 (1) and the power means inequalities,
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[IDAI 5 +114155]" < 207 [IDAIE 5 +11AIE 5]
< 287 [(IVAllg 5 + ST, A)llg,)" + [AIE 5]
< 1[2 L(IVAIL 5+ 1IST AN ) + AN,

By Holder’s inequality, for C' = C'(n, m),

IVAllgs < Cl[1]s8lIVAllp5
1S@ Allgs < ClITs,5llAllp,5
1Allgs < Clls5llAllp,5

The terms other than A, VA in these right-hand sides are controlled by

construction. The result follows.
O

Proposition 2.3 (Sobolev inequalities). Let n, m, i, \ be given.
1. Let ¢ < p < n be given. Then there exists C = C(n,p,q,m,i,\),
2. Let p > n be given. Then there exists C' = C(n,p,m,i, A),

such that for each

e complete Riemannian n-manifold (M, g) with injectivity radius at least
1 and Ric > Ag

e smooth function u on M,

we have

1. (ifp<n)
||uHWm,nn—_qq’g S C||uHWm+17P,g‘
2. (ifp>n)
||UHC’",g < C||u”W7n+1,p7g.

Proof. Choose r and C from the local Sobolev estimate Lemma 2.2.

By Lemma 1.2, there exist N = N(n, A,r,r) and an (at most) countable
set (z4) of points in M, such that each point in M is contained in at least one
and at most N balls of the family (B(z4,7)). Let xo be the characteristic
function of B(xq, ).



By Minkowski’s inequality (that is, the triangle inequality), we have,

Py < 1Y Xal APl 22

p(n—q)

(0%
S lIxal AP o
«
= YA,
@ n

IN

By the local Sobolev inequality Lemma 2.2,

Al g, <C [ 9P+ [ 1ap]

So, since each point is in at most N of the B,’s,
Ml < ¢ [ [ 1vars [ lap)
o L/B. Ba

n—q
NC U vAP +/ !Ap} .
M M
Similarly, if p > n, by the local Sobolev inequality Lemma 2.2,
P P
<sup |A]g> = max (sup ]A|g>
M @ \ B,
C max [/ VAP +/ \A|p]
« BO( «@
c [/ VAP +/ \A\p] .
M M

Now, applying these inequalities simultaneously to the covariant tensors
A = V'u, for each 0 < i < m, and summing, we obtain, as required,

IN

IN

IN

1. (ifp<mn)

ng

m . ng m ‘ p(n—q)
ZHVZUHE < C ZHVZUHqu
i=0 n=a =0 n=ad

nq

m+1 A p(n—q)
o(Siwu)”
=0

IN



2. (ifp>n)

1

m ) m ) P\ p
sup |[Vlul, < C <sup V'u )
v, < 03 (vt
m41 1/p
< c(ZHvzqug) .
=0

3 Elliptic estimates

Theorem 3.1 (LP estimates, Gilbarg-Trudinger [GT01] 9.11, modified).
For each n, p, m, U, V. cCc U, X\, A, p: R™ — RT increasing, there exists
C=C(n,p,UV,\ A, 1), such that if

Lu = aij(‘?iaju +b'Ou
satisfies
o Forallz € U and € € R*, a¥(x)&€; > Mg
o {10 |lm,c0; [16*][m,00 < A;
e Forallx,y € U, a¥(z) —a(y) < u(lx — yl|)

then for all functions u € W"P(U) N LP(U),

loc

lullmtzpv < CULtlmpv + [lullpvr)-

Lemma 3.2 (Local elliptic estimate). Let n, p, m, i, A be given. Then
there exists r = r(n,p,m,i, A) < i and C = C(n,p,m,i,A), such that for
each

e complete Riemannian n-manifold (M, g) with injectivity radius at least
i and ||Ric||cm 4 < A,

e pointx € M,

e smooth function u on B(x,r),



we have

m-+2 m
ZH( )Z ||prx?“/2) (Z”( 9u|pr(fv7”)>+||u||prx7")]
i=0 1=0

Proof. Let ¢ > n be arbitrary. Choose r to be < i and less than or equal
to the C(n,Q :=1,¢q,1, (A)o<i<m) of Theorem 1.1 (2), so that the harmonic
radius rg(Q := 1,m + 2,q) is at least r. By the Sobolev estimate Theo-
rem 2.1 (2), we therefore have uniform bounds in terms of n, m, i, A on
HgHoo B(z,r) Hg 1HOOB (z,r) HD( )Hoo,B(x,r)v HFHmeB(x,r)'

For shorthand we erte By for B(z,7/2) and By for B(x,r). Let u be a
function on Bs, with u € WmCJFQ’p(Bg) N LP(By).

Since (by our bounds on the components of the tensor g) the metrics g
and geye are comparable, the norms || - ||, 4.8, and || - ||,,B, are comparable
and the norms || - ||p4.8, and || - ||p,B, are comparable. It therefore suffices
to prove the inequality with the latter norms.

By Lemma 1.3 (2),

m—+2 m—+2

m
YoV ully s < C (ZHDTHW;&) Yo D%l 5,
1=0 =0 1=0

m—2 m
ZIID Ayl sc(z uDzrnm;Bz) S V) Al
=0 =0

(where if m — 2 < 0 the second inequality is simply an identity).
Also, applying the LP estimate of Theorem 3.1 with the operator

Lu=Aju= gijalﬁju +g jfk Ok

shows: there exists C' = C(n,p,m, 7, ||g|lm,00,B2 119~ lm.00,B2: [T |Im,00,B,)
such that

m—+2 s P
Z 1Dl p, < (ZHD’A qu32> + [ullp,B,
S 2p 10 (Z”D Agqu ;Bo + Hu||pB2) ‘
=0
Combining these three inequalities gives the result. O



Proposition 3.3 (L? estimate). Let n, p, m, i, A be given. Then there
exists C = C(n,p,m,i,A), such that if (M,g) is a complete Riemannian
n-manifold with injectivity radius at least i, ||Ric||cm ¢ < A, and uw a smooth
function on M, then

HuHWm‘*‘va,g < C[”AQUHW’W’,g + [|u p,g]-

Proof. Choose r and C (dependent on n,p,m,i, A) as in the local elliptic
estimate Lemma 3.2.

By Lemma 1.2 (setting p = %’I“), there exists N = N(n, A, %T,T) and an
(at most) countable set (z,) of points in M, such that

1. the family (B(zq, 7)) covers M;
2. each point in M is contained in at most N balls of the family (B(z;,7)).

So, by the local elliptic estimate Lemma 3.2,

m-+2
H“Hg\/m“*’,g < ZZH(V)ZUHZ;Q,B(%,N@

=0 «

< C) (Z ”(Vmg“@;gﬂ(xa,m) + ”“”ﬁ;g,B(wa,r)]
a =0

< NCO[|Agulyms 4 + [[ullh ]

< 2NCH|AgUHWm7P7g + HUHp,g]p-

4 Moser’s Harnack inequality

Theorem 4.1 (Harnack inequality, Gilbarg-Trudinger [GTO01] 8.21). For
each n, r, X\, A, there exists C = C(n,r,\,\), such that if the operator L
on WY2(Byy)),

Lu = 9;(a” 9ju) + cu,

satisfies
o Forallz €U and & € R", 'l (z)&&; > A¢|?;

o [[a"]oo, [lelloo < A



then for all functions u € WYH2(By,) with u > 0 and Lu =0,

supu < Ci]gf U.

o T

Proposition 4.2 (Harnack inequality). Let n, ¢, A, B, D be given. Then
there exists C = C(n,i, A\, B, D), such that for each

e compact Riemannian n-manifold (M, g) with injectivity radius at least
1, Ricci curvature Ric > \g, and diameter at most D,

e smooth function u on M with u > 0 and |Agu| < Blul

we have

supu < C'inf u.
M M

Proof. Let p > n be arbitrary; choose 4r to be < ¢ and less than or equal
to the C'(n,@ := 1,p,i, \) of Theorem 1.1 (1), so that the harmonic radius
ra(Q :=1,1,p) is at least 4r. By the Sobolev estimate Theorem 2.1 (2), we
therefore have uniform bounds in terms of n, ¢, A on, for each x € M, the

co-ordinate norms Hg‘ |oo,B(ac,4r)7 Hg_l | ’oo,B(zAr)'
Define a measurable function ¢ on M by,

(@) 0, if u(x) =0
ax) = Agu)(z .
—7\/E£( gv)(2) if u(x) # 0.

This function satisfies the bound ||c||oe < \/ﬁHgHZ%(I B < o0 By

construction \/|g|Agu+cu = 0. Applying the Harnack estimate of Theorem
4.1 with the operator

Lu = (/9|Ag + c)u = 9;(v/|9lg” 9ju) + cu,
we deduce that for C = C(n, i, \, B), for each = € M,

sup v < C inf wu.
B(z,r) B(z,r)

Applying Lemma 1.2 with (p,r) = (r, D), we obtain an integer N =
N(n,\,r,D) such that M may be covered by a set of at most N radius-r
balls. Let (Ba)aea be such a covering.

10



For any two balls B,, Bg in the set, there exists a sequence ag :=
a,aq,...oq = 3, with [ < || -1, such that each pair B,,, B, , of adjacent
balls in the sequence intersects. Thus, for each 0 <7 <[ —1,

inf u < inf  u< sup wu.
Bo;NBa, Bo; 4

g

Therefore, by induction,

supu < CNinf u.
Ba Bs

Since this holds for all a, € A, and (Bg)aen cover M, we conclude

supu < CVinfu.
M M
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