Explicit constants for Riemannian inequalities

Heather Macbeth

November 6, 2012

Abstract

We prove versions of various standard inequalities in which the dependence of the constant on the metric is explicit.

1 Technical results

Definition. Let (M, g) be a smooth Riemannian *n*-manifold and let $x \in M$. Given Q > 1, $k \in \mathbb{N}$, and p > n, the (Q, k, p)-harmonic radius at x, $r_H(Q, k, p)(x)$, is the supremum of reals r such that, on the geodesic ball $B_x(r)$ of center x and radius r, there is a harmonic co-ordinate chart such that if g_{ij} are the components of g in these co-ordinates, then

1. $Q^{-1}\delta_{ij} \leq g_{ij} \leq Q\delta_{ij}$ as bilinear forms;

2.
$$\sum_{1 \le |\beta| \le k} r^{|\beta| - n/p} ||\partial_{\beta}g_{ij}||_{L^p} \le Q - 1.$$

The (Q, k, p)-harmonic radius of M is

$$r_H(Q,k,p)(M) := \inf_{x \in M} r_H(Q,k,p)(x).$$

Theorem 1.1 ([HH97], Theorem 11). Let $n \in \mathbb{N}$, Q > 1, p > n, i > 0. Suppose (M, g) is a Riemannian n-manifold with $injrad(M, g) \ge i$.

1. Let $\lambda \in \mathbb{R}$. There exists $C = C(n, Q, p, i, \lambda)$, such that if

$$Ric \geq \lambda g,$$

then the harmonic radius $r_H(Q, 1, p)(M)$ is $\geq C$.

2. Let $k \ge 2$, and let $(C(j))_{0 \le j \le k-2}$ be positive constants. There exists $C = C(n, Q, p, i, (C(j))_{0 \le j \le k-2})$, such that if for each $0 \le j \le k-2$ we have

$$|\nabla^{j} Ric| \leq C(j)$$

then the harmonic radius $r_H(Q, k, p)(M)$ is $\geq C$.

Lemma 1.2 ([Heb96], Lemma 1.6). Let $n \in \mathbb{N}$, let $\lambda \in \mathbb{R}$, and let $r \geq \rho > 0$. Let (M, g) be a complete Riemannian n-manifold with $Ric \geq \lambda g$. Then there exist $N = N(n, \lambda, \rho, r)$, and an (at most) countable set (x_i) of points in M, such that

- 1. the family $(B(x_i, \rho))$ covers M;
- 2. each point in M is contained in at most $N(n, \lambda, \rho, r)$ balls of the family $(B(x_i, r))$.

Let $U \subseteq \mathbb{R}^n$ be an open set, g a Riemannian metric on u, ∇ its Levi-Civita connection, and Γ the Christoffel symbols of g on the co-ordinate patch U. We write D for the (Euclidean) derivative on U.

In the following we denote by S a multilinear map

$$S: T_{b_1}^{a_1}(\mathbb{R}^n) \times T_{b_2}^{a_2}(\mathbb{R}^n) \times \ldots \times T_{b_r}^{a_r}(\mathbb{R}^n) \to T_b^a(\mathbb{R}^n),$$

composed of sums of traces (so $a - b = \sum a_i - \sum b_i$). It is to be understood that the particular map S, and the a_i 's, b_i 's, a and b determining its domain and range, may vary from use to use and from line to line, but are independent of the choice of g, and of the choice of A (in (1)) or of u (in (2)).

Lemma 1.3. 1. Let $k \in \mathbb{N}$. For all covariant tensors $A : U \to T^k(\mathbb{R}^n)$,

$$\nabla A = DA + S(\Gamma, A)$$

2. Let $m \in \mathbb{N}$. For all functions $u: U \to \mathbb{R}$,

$$(\nabla)^m u = D^m u + \sum_{k=1}^{m-1} \sum_{r=1}^{m-k} \sum_{\substack{a_1 \ge \dots \ge a_r \ge 0, \\ a_1 + \dots + a_r = m-k-r}} S(D^{a_1}\Gamma, \dots D^{a_r}\Gamma, D^k u).$$

Proof. 1. For any covariant tensor A,

$$(\nabla A)(\partial_j, \partial_{i_1}, \dots, \partial_{i_k}) = \partial_j \left(A(\partial_{i_1}, \dots, \partial_{i_k}) \right) - \sum_r \Gamma^a_{ji_r} A(\partial_{i_1}, \dots, \partial_a, \dots, \partial_{i_k})$$

2. For m = 0, 1 these are the identities

$$u = u, \quad \nabla u = du.$$

Then ceforth we proceed by induction. Suppose this is known for some m. Then

$$(\nabla)^{m+1}u = \nabla(D^m u) + \sum_{k=1}^{m-1} \sum_{r=1}^{m-k} \sum_{\substack{a_1 \ge \dots \ge a_r \ge 0, \\ a_1 + \dots + a_r = m-k-r}} \nabla\left(S(D^{a_1}\Gamma, \dots D^{a_r}\Gamma, D^k u)\right),$$

and we may calculate

$$\nabla(D^{m}u) = D^{m+1}u + S(\Gamma, D^{m}u),$$

$$\nabla\left(S(D^{a_{1}}\Gamma, \dots D^{a_{r}}\Gamma, D^{k}u)\right) = \sum_{i=1}^{r} S(D^{a_{1}}\Gamma, \dots D^{a_{i}+1}, \dots D^{a_{r}}\Gamma, D^{k}u)$$

$$+S(D^{a_{1}}\Gamma, \dots D^{a_{r}}\Gamma, D^{k+1}u)$$

$$+S(D^{a_{1}}\Gamma, \dots D^{a_{r}}\Gamma, \Gamma, D^{k}u).$$

The result follows.

2 Sobolev estimates

Theorem 2.1 (Sobolev estimate, Gilbarg-Trudinger [GT01] 7.10 & 7.25). For each $n, p \neq n$, and bounded domain V with C^1 boundary, there exists C = C(n, p, V), such that for all functions $u \in W^{1,p}(V)$, we have

1. if p < n, $||u||_{\frac{np}{n-p},V} \le C||u||_{\mathcal{W}^{1,p};V}$. 2. if p > n, $\sup_{V} |u| \le C||u||_{\mathcal{W}^{1,p};V}$

Lemma 2.2 (Local Sobolev estimate). Let n, m, i, λ be given.

- 1. Let $q be given. Then there exists <math>r = r(n, p, q, m, i, \lambda) < i$ and $C = C(n, p, q, m, i, \lambda)$,
- 2. Let p > n be given. Then there exists $r = r(n, p, m, i, \lambda) < i$ and $C = C(n, p, m, i, \lambda)$,

such that for each

• complete Riemannian n-manifold (M, g) with injectivity radius at least i and $Ric \ge \lambda g$

• point $x \in M$

• smooth covariant m-tensor A on B(x, r),

we have

1.
$$(if \ p < n)$$

 $||A||_{\frac{nq}{n-q},g,B(x,r)}^p \le C\left[||\nabla A||_{p,g,B(x,r)}^p + ||A||_{p,g,B(x,r)}^p\right].$

2. (if p > n)

$$\left(\sup_{B(x,r)} |A|_{g}\right)^{p} \leq C \left[||\nabla A||_{p,g,B(x,r)}^{p} + ||A||_{p,g,B(x,r)}^{p} \right].$$

Proof. If p > n, let $q := \frac{1}{2}(n+p)$. Then, either way, let

$$s = \frac{pq}{p-q},$$

and choose r to be less than i and less than the $C(n, Q := 1, s, i, \lambda)$ of Theorem 1.1 (1), so that the harmonic radius $r_H(Q := 1, 1, s)$ is greater than r. We therefore have uniform bounds in terms of n, i, λ , p, and (if p < n) q on the co-ordinate norms $||g||_{s,B(x,r)}, ||g^{-1}||_{s,B(x,r)}, ||\Gamma||_{s,B(x,r)}$.

Write B for B(x,r) throughout. Let u be a function on B, with $u \in \mathcal{W}_{loc}^{m+1,p}(B) \cap L^p(B)$.

By our bounds on the components of the tensor g, the metrics g and g_{eucl} are comparable, so the norms $|| \cdot ||_{p,g,B}$ and $|| \cdot ||_{p,B}$ are comparable, the norms $|| \cdot ||_{\frac{nq}{n-q}p,g,B}$ and $|| \cdot ||_{\frac{nq}{n-q},B}$ are comparable, and the pointwise tensor norms $| \cdot |_g$ and $| \cdot |$ are comparable. It therefore it suffices to prove the inequalities with the latter norms.

Applying the Sobolev inequality Theorem 2.1 co-ordinatewise and combining, we have C = C(n, m, q), such that

1. (if p < n)

$$||A||_{\frac{nq}{n-q},B}^q \le C\left[||DA||_{q,B}^q + ||A||_{q,B}^q\right].$$

2. (if p > n)

$$\left(\sup_{B} |A|\right)^{q} \leq C\left[||DA||_{q,B}^{q} + ||A||_{q,B}^{q}\right].$$

By Lemma 1.3 (1) and the power means inequalities,

$$\begin{bmatrix} ||DA||_{q,B}^{q} + ||A||_{q,B}^{q} \end{bmatrix}^{\frac{p}{q}} \leq 2^{\frac{p}{q}-1} \begin{bmatrix} ||DA||_{q,B}^{p} + ||A||_{q,B}^{p} \end{bmatrix} \\ \leq 2^{\frac{p}{q}-1} \begin{bmatrix} (||\nabla A||_{q,B} + ||S(\Gamma,A)||_{q,B})^{p} + ||A||_{q,B}^{p} \end{bmatrix} \\ \leq 2^{\frac{p}{q}-1} \begin{bmatrix} 2^{p-1} \left(||\nabla A||_{q,B}^{p} + ||S(\Gamma,A)||_{q,B}^{p} \right) + ||A||_{q,B}^{p} \end{bmatrix}.$$

By Hölder's inequality, for C = C(n, m),

$$\begin{aligned} ||\nabla A||_{q,B} &\leq C||1||_{s,B}||\nabla A||_{p,B} \\ ||S(\Gamma, A)||_{q,B} &\leq C||\Gamma||_{s,B}||A||_{p,B} \\ ||A||_{q,B} &\leq C||1||_{s,B}||A||_{p,B} \end{aligned}$$

The terms other than A, ∇A in these right-hand sides are controlled by construction. The result follows.

Proposition 2.3 (Sobolev inequalities). Let n, m, i, λ be given.

- 1. Let $q be given. Then there exists <math>C = C(n, p, q, m, i, \lambda)$,
- 2. Let p > n be given. Then there exists $C = C(n, p, m, i, \lambda)$,

such that for each

- complete Riemannian n-manifold (M, g) with injectivity radius at least i and $Ric \geq \lambda g$
- smooth function u on M,

 $we\ have$

1. (if p < n) $||u||_{\mathcal{W}^{m,\frac{nq}{n-q}},g} \leq C||u||_{\mathcal{W}^{m+1,p},g}.$ 2. (if p > n)

$$||u||_{\mathcal{C}^m,g} \le C||u||_{\mathcal{W}^{m+1,p},g}.$$

Proof. Choose r and C from the local Sobolev estimate Lemma 2.2.

By Lemma 1.2, there exist N = N(n, A, r, r) and an (at most) countable set (x_{α}) of points in M, such that each point in M is contained in at least one and at most N balls of the family $(B(x_{\alpha}, r))$. Let χ_{α} be the characteristic function of $B(x_{\alpha}, r)$. By Minkowski's inequality (that is, the triangle inequality), we have,

$$||A||_{\frac{nq}{n-q}} \leq ||\sum_{\alpha} \chi_{\alpha}|A|^{p}||_{\frac{nq}{p(n-q)}}$$
$$\leq \sum_{\alpha} ||\chi_{\alpha}|A|^{p}||_{\frac{nq}{p(n-q)}}$$
$$= \sum_{\alpha} ||A||_{\frac{nq}{n-q},B_{\alpha}}^{p}$$

By the local Sobolev inequality Lemma 2.2,

$$||A||_{\frac{nq}{n-q},B_{\alpha}}^{p} \leq C \left[\int_{B_{\alpha}} |\nabla A|^{p} + \int_{B_{\alpha}} |A|^{p} \right]$$

So, since each point is in at most N of the B_{α} 's,

$$\begin{aligned} ||A||_{\frac{nq}{n-q}}^p &\leq C \sum_{\alpha} \left[\int_{B_{\alpha}} |\nabla A|^p + \int_{B_{\alpha}} |A|^p \right] \\ &\leq NC \left[\int_M |\nabla A|^p + \int_M |A|^p \right]. \end{aligned}$$

Similarly, if p > n, by the local Sobolev inequality Lemma 2.2,

$$\begin{pmatrix} \sup_{M} |A|_{g} \end{pmatrix}^{p} = \max_{\alpha} \left(\sup_{B_{\alpha}} |A|_{g} \right)^{p}$$

$$\leq C \max_{\alpha} \left[\int_{B_{\alpha}} |\nabla A|^{p} + \int_{B_{\alpha}} |A|^{p} \right]$$

$$\leq C \left[\int_{M} |\nabla A|^{p} + \int_{M} |A|^{p} \right].$$

Now, applying these inequalities simultaneously to the covariant tensors $A = \nabla^i u$, for each $0 \le i \le m$, and summing, we obtain, as required,

1. (if p < n)

$$\sum_{i=0}^{m} ||\nabla^{i}u||_{\frac{nq}{n-q},g}^{\frac{nq}{n-q}} \leq C \left(\sum_{i=0}^{m} ||\nabla^{i}u||_{\frac{nq}{n-q},g}^{p} \right)^{\frac{nq}{p(n-q)}} \leq C \left(\sum_{i=0}^{m+1} ||\nabla^{i}u||_{p,g}^{p} \right)^{\frac{nq}{p(n-q)}}.$$

$$\sum_{i=0}^{m} \sup_{M} |\nabla^{i}u|_{g} \leq C \left(\sum_{i=0}^{m} \left(\sup_{M} |\nabla^{i}u|_{g}\right)^{p}\right)^{\frac{1}{p}}$$
$$\leq C \left(\sum_{i=0}^{m+1} ||\nabla^{i}u||_{p,g}^{p}\right)^{1/p}.$$

3 Elliptic estimates

2. (if p > n)

Theorem 3.1 (L^p estimates, Gilbarg-Trudinger [GT01] 9.11, modified). For each $n, p, m, U, V \subset U, \lambda, \Lambda, \mu : \mathbb{R}^+ \to \mathbb{R}^+$ increasing, there exists $C = C(n, p, U, V, \lambda, \Lambda, \mu)$, such that if

$$Lu := a^{ij}\partial_i\partial_j u + b^i\partial_i u$$

satisfies

- For all $x \in U$ and $\xi \in \mathbb{R}^n$, $a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$;
- $||a^{ij}||_{m,\infty}, ||b^i||_{m,\infty} \leq \Lambda;$
- For all $x, y \in U$, $a^{ij}(x) a^{ij}(y) \le \mu(|x y|)$

then for all functions $u \in \mathcal{W}_{loc}^{m+2,p}(U) \cap L^p(U)$,

$$||u||_{m+2,p;V} \le C(||Lu||_{m,p;U} + ||u||_{p;U}).$$

Lemma 3.2 (Local elliptic estimate). Let n, p, m, i, A be given. Then there exists r = r(n, p, m, i, A) < i and C = C(n, p, m, i, A), such that for each

- complete Riemannian n-manifold (M, g) with injectivity radius at least i and ||Ric||_{C^m,g} ≤ A,
- point $x \in M$,
- smooth function u on B(x, r),

we have

$$\sum_{i=0}^{m+2} ||(\nabla)^{i}u||_{p;g,B(x,r/2)}^{p} \leq C \left[\left(\sum_{i=0}^{m} ||(\nabla)^{i}\Delta_{g}u||_{p;g,B(x,r)}^{p} \right) + ||u||_{p;g,B(x,r)}^{p} \right]$$

Proof. Let q > n be arbitrary. Choose r to be < i and less than or equal to the $C(n, Q := 1, q, i, (A)_{0 \le i \le m})$ of Theorem 1.1 (2), so that the harmonic radius $r_H(Q := 1, m + 2, q)$ is at least r. By the Sobolev estimate Theorem 2.1 (2), we therefore have uniform bounds in terms of n, m, i, A on $||g||_{\infty,B(x,r)}, ||g^{-1}||_{\infty,B(x,r)}, ||D(g^{-1})||_{\infty,B(x,r)}, ||\Gamma||_{m,\infty,B(x,r)}.$

 $\begin{aligned} ||g||_{\infty,B(x,r)}, ||g^{-1}||_{\infty,B(x,r)}, ||D(g^{-1})||_{\infty,B(x,r)}, ||\Gamma||_{m,\infty,B(x,r)}. \\ \text{For shorthand we write } B_1 \text{ for } B(x,r/2) \text{ and } B_2 \text{ for } B(x,r). \text{ Let } u \text{ be a function on } B_2, \text{ with } u \in \mathcal{W}_{loc}^{m+2,p}(B_2) \cap L^p(B_2). \end{aligned}$

Since (by our bounds on the components of the tensor g) the metrics g and g_{eucl} are comparable, the norms $|| \cdot ||_{p,g,B_1}$ and $|| \cdot ||_{p,B_1}$ are comparable and the norms $|| \cdot ||_{p,g,B_2}$ and $|| \cdot ||_{p,B_2}$ are comparable. It therefore suffices to prove the inequality with the latter norms.

By Lemma 1.3 (2),

$$\sum_{i=0}^{m+2} ||(\nabla)^{i}u||_{p;B_{1}}^{p} \leq C\left(\sum_{i=0}^{m} ||D^{i}\Gamma||_{\infty;B_{1}}\right) \sum_{i=0}^{m+2} ||D^{i}u||_{p;B_{1}}^{p}$$
$$\sum_{i=0}^{m} ||D^{i}\Delta_{g}u||_{p;B_{2}}^{p} \leq C\left(\sum_{i=0}^{m-2} ||D^{i}\Gamma||_{\infty;B_{2}}\right) \sum_{i=0}^{m} ||(\nabla)^{i}\Delta_{g}u||_{p;B_{2}}^{p}$$

(where if m - 2 < 0 the second inequality is simply an identity).

Also, applying the L^p estimate of Theorem 3.1 with the operator

$$Lu = \Delta_g u = g^{ij} \partial_i \partial_j u + g^{ij} \Gamma^k_{ij} \partial_k u$$

shows: there exists $C = C(n, p, m, r, ||g||_{m,\infty,B_2}, ||g^{-1}||_{m,\infty,B_2}, ||\Gamma||_{m,\infty,B_2})$ such that

$$\sum_{i=0}^{m+2} ||D^{i}u||_{p;B_{1}}^{p} \leq C \left[\left(\sum_{i=0}^{m} ||D^{i}\Delta_{g}u||_{p;B_{2}}^{p} \right)^{\frac{1}{p}} + ||u||_{p,B_{2}} \right]^{p} \\ \leq 2^{p-1} C \left(\sum_{i=0}^{m} ||D^{i}\Delta_{g}u||_{p;B_{2}}^{p} + ||u||_{p,B_{2}}^{p} \right).$$

Combining these three inequalities gives the result.

Proposition 3.3 (L^p estimate). Let n, p, m, i, A be given. Then there exists C = C(n, p, m, i, A), such that if (M, g) is a complete Riemannian n-manifold with injectivity radius at least $i, ||Ric||_{\mathcal{C}^m,g} \leq A$, and u a smooth function on M, then

$$||u||_{\mathcal{W}^{m+2,p},g} \le C[||\Delta_g u||_{\mathcal{W}^{m,p},g} + ||u||_{p,g}].$$

Proof. Choose r and C (dependent on n, p, m, i, A) as in the local elliptic estimate Lemma 3.2.

By Lemma 1.2 (setting $\rho = \frac{1}{2}r$), there exists $N = N(n, A, \frac{1}{2}r, r)$ and an (at most) countable set (x_{α}) of points in M, such that

1. the family $(B(x_{\alpha}, \frac{1}{2}r))$ covers M;

2. each point in M is contained in at most N balls of the family $(B(x_i, r))$.

So, by the local elliptic estimate Lemma 3.2,

$$\begin{aligned} ||u||_{\mathcal{W}^{m+2,p},g}^{p} &\leq \sum_{i=0}^{m+2} \sum_{\alpha} ||(\nabla)^{i}u||_{p;g,B(x_{\alpha},r/2)}^{p} \\ &\leq C \sum_{\alpha} \left[\left(\sum_{i=0}^{m} ||(\nabla)^{i}\Delta_{g}u||_{p;g,B(x_{\alpha},r)}^{p} \right) + ||u||_{p;g,B(x_{\alpha},r)}^{p} \right] \\ &\leq NC[||\Delta_{g}u||_{\mathcal{W}^{m,p},g}^{p} + ||u||_{p,g}^{p}] \\ &\leq 2NC[||\Delta_{g}u||_{\mathcal{W}^{m,p},g}^{p} + ||u||_{p,g}^{p}]. \end{aligned}$$

4 Moser's Harnack inequality

Theorem 4.1 (Harnack inequality, Gilbarg-Trudinger [GT01] 8.21). For each n, r, λ , Λ , there exists $C = C(n, r, \lambda, \Lambda)$, such that if the operator L on $\mathcal{W}^{1,2}(B_{4r})$),

$$Lu := \partial_i (a^{ij} \partial_j u) + cu,$$

satisfies

- For all $x \in U$ and $\xi \in \mathbb{R}^n$, $a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$;
- $||a^{ij}||_{\infty}, ||c||_{\infty} \leq \Lambda;$

then for all functions $u \in \mathcal{W}^{1,2}(B_{4r})$ with $u \ge 0$ and Lu = 0,

$$\sup_{B_r} u \le C \inf_{B_r} u.$$

Proposition 4.2 (Harnack inequality). Let n, i, λ , B, D be given. Then there exists $C = C(n, i, \lambda, B, D)$, such that for each

- compact Riemannian n-manifold (M, g) with injectivity radius at least *i*, Ricci curvature Ric $\geq \lambda g$, and diameter at most D,
- smooth function u on M with $u \ge 0$ and $|\Delta_q u| \le B|u|$

we have

$$\sup_{M} u \le C \inf_{M} u.$$

Proof. Let p > n be arbitrary; choose 4r to be < i and less than or equal to the $C(n, Q := 1, p, i, \lambda)$ of Theorem 1.1 (1), so that the harmonic radius $r_H(Q := 1, 1, p)$ is at least 4r. By the Sobolev estimate Theorem 2.1 (2), we therefore have uniform bounds in terms of n, i, λ on, for each $x \in M$, the co-ordinate norms $||g||_{\infty,B(x,4r)}, ||g^{-1}||_{\infty,B(x,4r)}$.

Define a measurable function c on M by,

$$c(x) = \begin{cases} 0, & \text{if } u(x) = 0\\ -\frac{\sqrt{|g|}(\Delta_g u)(x)}{u(x)}, & \text{if } u(x) \neq 0. \end{cases}$$

This function satisfies the bound $||c||_{\infty} \leq \sqrt{n!} ||g||_{\infty,B(x,4r)}^{n/2} B < \infty$. By construction $\sqrt{|g|}\Delta_g u + cu = 0$. Applying the Harnack estimate of Theorem 4.1 with the operator

$$Lu = (\sqrt{|g|}\Delta_g + c)u = \partial_i(\sqrt{|g|}g^{ij}\partial_j u) + cu,$$

we deduce that for $C = C(n, i, \lambda, B)$, for each $x \in M$,

$$\sup_{B(x,r)} u \le C \inf_{B(x,r)} u.$$

Applying Lemma 1.2 with $(\rho, r) = (r, D)$, we obtain an integer $N = N(n, \lambda, r, D)$ such that M may be covered by a set of at most N radius-r balls. Let $(B_{\alpha})_{\alpha \in \mathfrak{A}}$ be such a covering.

For any two balls B_{α} , B_{β} in the set, there exists a sequence $\alpha_0 := \alpha, \alpha_1, \ldots, \alpha_l := \beta$, with $l \leq |\mathfrak{A}| - 1$, such that each pair $B_{\alpha_i}, B_{\alpha_{i+1}}$ of adjacent balls in the sequence intersects. Thus, for each $0 \leq i \leq l - 1$,

$$\inf_{B_{\alpha_i}} u \le \inf_{B_{\alpha_i} \cap B_{\alpha_{i+1}}} u \le \sup_{B_{\alpha_{i+1}}} u.$$

Therefore, by induction,

$$\sup_{B_{\alpha}} u \le C^N \inf_{B_{\beta}} u$$

Since this holds for all $\alpha, \beta \in \mathfrak{A}$, and $(B_{\alpha})_{\alpha \in \mathfrak{A}}$ cover M, we conclude

$$\sup_{M} u \le C^N \inf_{M} u$$

References

- [GT01] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
- [Heb96] Emmanuel Hebey. Sobolev spaces on Riemannian manifolds, volume 1635 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996.
- [HH97] E. Hebey and M. Herzlich. Harmonic coordinates, harmonic radius and convergence of Riemannian manifolds. *Rend. Mat. Appl.* (7), 17(4):569– 605 (1998), 1997.