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Abstract

The goal of this paper to provide a relatively accessible and integrated introduction to the algebraic
topology of spaces with Lie group actions, in both the smooth and the holomorphic category. We present
a detailed treatment of the basic constructions in equivariant de Rham theory and Dolbeault theory. We
also discuss equivariant connections and curvature on vector bundles equipped with infinitesimal lifts, as
well as the equivariant first Chern class of line bundles with infinitesimal lifts. A novel feature of this
presentation is the definition of infinitesimal lift via differential operators on the vector bundle.

1 Introduction
Many topological and geometric theories admit equivariant analogs, which incorporate extra structure as-
sociated to the action of a Lie group on the underlying space. In addition to their intrinsic attraction, such
equivariant analogs are important technical tools in the study of objects with symmetries and the construc-
tion of quotient objects.

In this paper we give an account of the very basics of equivariant de Rham and Dolbeault cohomology
and the equivariant first Chern class, which lies at the foundation of interesting modern research in geomet-
ric invariant theory, equivariant index theory, and Hamiltonian group actions. Discussion of this material
in the available literature is hard to find all in one place, and often assumes a fair amount of background
knowledge, as well as the ability to navigate through concise notation that differs from author to author.
Here, we aim to provide a fairly unified, accessible and annotated treatment.

In section 2, we review the construction of the equivariant de Rham cohomology. Section 3 provides a
detailed account of the equivariant Dolbeault cohomology. This construction is fairly well-known ([Tel00,
section 7], [Lil03, section 5.1]), but an elementary treatment is not available at the moment to the awareness
of the author.

In section 4, we introduce the notion of an infinitesimal lift of a group action on a space to a vector
bundle over it. Vector bundles with such infinitesimal lifts are generalizations of the better-known equiv-
ariant vector bundles (see, e.g., [BGV03, section 1.5]). Here we define an infinitesimal lift to be a certain
collection of differential operators on the vector bundle. This definition is new, to the knowledge of the
author, but should coincide with the definition of infinitesimal lifts via vector fields in [MiR01], [HY76],
and [Kos70]. Then we discuss equivariant connections and curvatures on a vector bundle equipped with
such an infinitesimal lift. We also define the equivariant first Chern class of a complex line bundle with
such an infinitesimal lift, following the construction of the equivariant first Chern class in [BGV03, section
7.1]. This definition is also hard to find in the literature as presented in the infinitesimal setting, although it
is probably well-known.
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1.1 Notation and conventions
In this paper, we assume familiarity with smooth manifolds and actions of Lie groups on manifolds (as in
[Lee13]), as well as some knowledge of complex geometry, in particular complex line bundles and Kähler
manifolds (as in [CdS01] and part of [Huy05]). We will use the Einstein summation convention throughout.

Let G be a compact, connected Lie group. Denote its Lie algebra by g and the dual of the Lie algebra
by g∗. Let M be a compact, connected smooth manifold. Unless specified, we mean by p a general point in
the underlying set of M, g an element of G, and X an element of g.

Suppose that M admits a smooth G-action

ρ : G×M→M, (g, p) 7→ g · p.

This induces a G-action on the space of smooth funtions C∞(M,C) = A 0(M) via the pullback

(g · f )(p) = f (g−1 · p)

and thus an action on the graded algebra A ∗(M) of complex-valued smooth differential forms on M. Each
X ∈ g generates a vector field X ] on M, called the fundamental vector field of X , by

X ]
p :=

d
dt

∣∣∣
t=0

(exp(tX) · p).

2 Equivariant de Rham cohomology
In this section, we present a construction of the equivariant de Rham complex based on discussions in
[Lib07] and [GS13].

To start with, we want to extend the notion of a differential form to the equivariant setting. The intuitive
approach is to directly apply the definition of an G-equivariant map, which is a map that intertwines with
the action of G.

Definition 2.1. A G-equivariant differential form is a smooth polynomial α : g → A ∗(M) that is G-
equivariant, i.e., for all g ∈ G and X ∈ g

(g ·α)(X) = α(Adg ·X),

where g 7→ Adg−1 is the adjoint representation of G on g.

One advantage of this definition is that α(X) ∈A ∗(M) is a linear combination of ordinary differential
forms. However, this notation can be rather cumbersome and confusing as the theory develops.

Alternatively, we use the identification of the symmetric algebra S(g∗) with C[g]. Note that A ∗(G)⊗
S(g∗) is naturally equipped with a G-action

(g ·β )(X) = g ·β (Adg−1 ·X), ∀β ∈A ∗(M)⊗S(g∗).

One can easily check that with respect to this action, α ∈ A ∗(G)⊗ S(g∗) is G-invariant if and only if the
corresponding polynomial is G-equivariant in the sense of Definition 2.1. Hence we obtain the following
equivalent definition:

Definition 2.2. A G-equivariant differential form on M is a G-invariant element

α ∈A ∗
G(M) := (A ∗(M)⊗S(g∗))G.

In order to make A ∗
G(M) into a differential graded algebra, we need a well-defined notion of degree for

its elements and a operator that serves as the differential.
Note that A ∗(M)⊗S(g∗) is spanned by the forms ω⊗ f with ω ∈A p(M) and f ∈ Sq(g∗). Assigning

ω⊗ f the degree p+2q yields a Z-grading

A ∗
G(M) =

⊕
A k

G(M),
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where
A k

G(M) =
⊕

p+2q=k

(A p(M)⊗Sq(g∗))G.

Lemma 2.3. There exists a unique operator dG : A ∗
G(M)→ A ∗

G(M), called the equivariant differential,
such that

(dGα)(X) = d(α(X))− ιX](α(X))

for all α ∈A ∗
G(M), X ∈ k. Moreover dG : A k

G(M)→A k+1
G (M) for all k.

Proof. We define dG by linearly extending to A ∗
G(M)→A ∗

G(M) the map

dG(ω⊗ f )(X) = dω⊗ f (X)− ιX]
i
ω⊗ui f (X),

where d is the exterior derivative, ιX] the interior product with X ], ui a basis for k∗ with dual basis ξi for g,
and Xi = ui(X)ξi. Note that deg(dω⊗ f ) = (p+1)+2q and deg(ιX]

i
ω⊗ui f ) = p−1+2(q+1). On the

other hand, d commutes with pullbacks, so

g ·d(α(X)) = d(g ·α(X)) = d(α(Adg ·X)),

while ιAdg·X = g · ιX ·g−1. Hence dG preserves G-equivariance and restricts to a map A k
G(M)→A k+1

G (M)
for all k.

Proposition 2.4. The equivariant differential satisfies dG ◦dG = 0, thus making (A ∗
G(M), dG) a differential

graded algebra.

Proof. Using Cartan’s formula and the G-invariance of α , we have

(dG)
2(α)(X) =d2(α(X))− (d(ιX]α(X))+ ιX](d(α(X)))+ ιX](ιX](α(X))

=−LX](α(X))

=− d
dt

∣∣∣
t=0

(exp(tX) ·α(X))

=
d
dt

∣∣∣
t=0

α(Adexp(tX) ·X))

=
d
dt

∣∣∣
t=0

α([tX , X ]) = 0.

As a consequence, we can define the G-equivariant de Rham cohomology of M to be the cohomology
of the chain complex (A ∗

G(M); dG) and the p-th equivariant cohomology group to be the quotient

H p(A ∗
G(M)) :=

{ker dG : A p
G (M)→A p+1

G (M)}
{Im dG : A p−1

G (M)→A p
G (M)}

.

Remark 2.5. The study of equivariant cohomology combines the ordinary cohomology theory with Lie
group actions and gives rise to many profound results. To start with, a remarkable theorem of Cartan shows
that the de Rham construction coincides with the algebro-topological construction via universal bundles.
Since it is quite beyond the scope of this paper, we will not go into details here. Instead, we refer the reader
to [Lib07] for an introductory account of the subject and [AB84], [GS13] for a detailed discussion in a more
general setting.

Naturally, we would want to give an equivariant version of the Poincaré lemma, which says that a closed
differential form is locally exact. We say that α ∈A ∗

G(M) is equivariantly closed if dGα = 0, equivariantly
exact if α = dGβ for some β ∈A ∗

G(M).
It turns out that "bad" things happen at the fixed points of the G-action. For instance, if p0 is fixed by

G, then around p0 equivariantly closed 2-forms are equivariantly exact only up to some constants in the
center of g. But on the subset M−{p0 ∈M | g · p0 = p0 for some g ∈ G−{e}}, we do have the following
generalization, which is the starting point of several important localization theorems. (cf. [BGV03, section
7.2])
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Lemma 2.6 (Equivariant Poincaré lemma ). If α ∈A ∗
G(M) is equivariantly closed, then it is locally equiv-

ariantly exact away from the zero locus of the G-action.

3 Equivariant Dolbeault cohomology
Suppose that M = (M,J) is a compact complex manifold and G acts on M holomorphically. In this section,
we present an equivariant version of the Dolbeault cohomology on M following the outline given in [Lil03,
Theorem 5.1].

Recall from complex geometry that the complexification of the cotangent bundle T ∗M⊗C= T 1,0⊕T 0,1

yields a splitting of the exterior differential into d = ∂ + ∂̄ . The del and delbar operators ∂ , ∂̄ restrict to
maps ∂ : A p,q(M)→ A p+1,q(M), ∂̄ : A p,q(M)→ A p,q+1(M) on A p,q(M) = Γ(M,

∧p T 1,0⊗
∧q T 0,1).

Accordingly, a vector field X splits into its holomorphic and antiholomorphic part, i.e., X = Z + Z̄ with

Z =
1
2
(X− iJX) ∈ T 1,0, Z̄ =

1
2
(X + iJX) ∈ T 0,1.

On the other hand, we can complexify S(g∗) and write S(g∗)C := S(g∗)⊗C. Let ui be a basis of S(g∗)C
and assign each ui the bidegree (1,1). Thus we get a bigrading on the symmetric algebra S∗(g∗)C.

Assigning ω ⊗ f ∈ A p,q(M)⊗ Sr(g∗)C the bidegree (p+ r,q+ r) yields a bigrading on A ∗,∗(M)⊗
S(g∗)C, given by

(A ∗,∗(M)⊗S(g∗)C)m,n :=
⊕

p+r=m, q+r=n
A p,q(M)⊗Sr(g∗)C.

Now we define the equivariant del and delbar operators on A ∗,∗
G (M) = (A ∗,∗(M)⊗S(g∗)C)G. For X ∈ g

and tensor α = ω⊗ f ∈ (A p,q(M)⊗Sr(g∗))G, set

(∂Gα)(X) = (∂ω⊗ f − ιZ̄i
]ω⊗ui f )(X),

(∂̄Gα)(X) = (∂̄ω⊗ f − ιZi
]ω⊗ui f )(X).

Extending the above linearly to A ∗,∗
G (M) yields two operators ∂G, ∂̄G : A ∗,∗

G (M)→ A ∗,∗(M)⊗ S(g∗)C. It
is clear that dG = ∂G + ∂̄G. Next, we need to check that ∂G and ∂̄G are indeed differentials on A ∗,∗

G (M).

Lemma 3.1. For all (p,q), the equivariant del and delbar operators restrict to maps

∂G : (A ∗,∗(M)⊗S(g∗)C)m,n→ (A ∗,∗(M)⊗S(g∗)C)m+1,n,

∂̄G : (A ∗,∗(M)⊗S(g∗)C)m,n→ (A ∗,∗(M)⊗S(g∗)C)m,n+1.

Proof. Given α = ω⊗ f ∈A p,q(M)⊗Sr(g∗)C ⊂ (A ∗,∗(M)⊗S(g∗)C)p+r,q+r, the components of ∂Gα are
∂ω ⊗ f with bidegree (p+ 1,q)+ (r,r) and ιZ̄i

]ω ⊗ ui f with bidegree (p,q− 1)+ (r + 1,r + 1). Hence

∂Gα ∈ (A ∗,∗(M)⊗S(g∗)C)p+r+1,q+r and ∂G defines a map

∂G : (A ∗,∗(M)⊗S(g∗)C)p+r,q+r→ (A ∗,∗(M)⊗S(g∗)C)p+r+1,q+r

as desired. Likewise for ∂̄G.

Lemma 3.2. The del and delbar operators preserve the subspace A ∗,∗
G (M) ⊂ A ∗,∗(M)⊗ S(g∗)C and re-

strict to operators ∂G : A ∗,∗
G (M)→A ∗+1,∗

G (M) and ∂̄G : A ∗,∗
G (M)→A ∗,∗+1

G (M) on A ∗,∗
G (M).

Proof. Recall that dG preserves G-equivariance, i.e., for all α ∈ A ∗
G(M), g · (dGα(X)) = (dGα)(Adg ·X).

The splitting dG yields

g · (∂Gα)(X)︸ ︷︷ ︸
(p+1,q)

+g · (∂̄Gα)(X)︸ ︷︷ ︸
(p,q+1)

= (∂Gα)(Adg ·X)︸ ︷︷ ︸
(p+1,q)

+(∂̄Gα)(Adg ·X)︸ ︷︷ ︸
(p,q+1)

.

Comparing terms of the same degree, we deduce that

g · (∂Gα(X)) = (∂Gα)(Adg ·X), g · (∂̄Gα(X)) = (∂̄Gα)(Adg ·X),

i.e., ∂G and ∂̄G preserves G-equivariance.
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Proposition 3.3. The equivariant Dolbeault operators satisfy

∂G ◦∂G = ∂̄G ◦ ∂̄G = 0, ∂G ◦ ∂̄G + ∂̄G ◦∂G = 0.

Proof. It follows from the identity dG ◦dG = 0 that for all α ∈A p,q
G (M),

dGdGα = ∂G∂Gα︸ ︷︷ ︸
(p+2,q)

+(∂G∂̄G + ∂̄G∂G)α︸ ︷︷ ︸
(p+1,q+1)

+ ∂̄G∂̄Gα︸ ︷︷ ︸
(p,q+2)

= 0.

For degree reasons, all three terms vanish as desired.

It follows that ((A ∗,∗(M)⊗ S(g∗)C)G;∂G, ∂̄G) is a differential bigraded algebra. Hence we can define
the equivariant Dolbeault cohomology on M as in the non-equivariant case.

Proposition 3.4. If a pure form α ∈A p,q
G (M) is dG-closed, then ∂Gα = ∂̄Gα = 0.

Proof. Note that the (p+ 1,q)-component of dGα is ∂Gα and the (p,q+ 1)-component is ∂̄Gα . Since
dGα = 0, we deduce that ∂Gα = ∂̄Gα = 0.

A fundamental fact in Kähler geometry is the ∂ ∂̄ -lemma, which says that if M is a compact Kähler
manifold, then d-closed pure forms on M are locally ∂ ∂̄ -exact. (See, e.g., [Huy05, Lemma 3.12].) This is
related to the fact that compact Kähler manifolds are formal. For an equivariant analogue of this lemma to
hold, we need to impose analogous conditions on the pair M and the G-action.

Definition 3.5. A topological manifold M with a G-action is equivariantly formal if the Serre spectral
sequence of the fibration M → EG×G M → BG degenerates at the E2 term, where EG is the universal
bundle and BG the classifying space of G.

An exposition on the various terminologies involved in this definition is way beyond the scope of this
paper. We refer the interested reader to [GS13, chapter 6] for an overview. For our purpose, it suffices
to note that M is equivariantly formal if it is compact and admits an equivariant symplectic form, i.e. the
G-action is Hamiltonian with respect to this symplectic form. (cf. [GS13, note 6.9.4].)

Lemma 3.6. (∂G∂̄G-Lemma; [Lil03, Theorem 5.1]) Let M be a compact Kähler manifold with a holomor-
phic action by a compact, connected Lie group G. Suppose that M is equivariantly formal with respect to
the G-action. If a pure form α ∈A p,q

G (M) is equivariantly closed, then α is equivariantly exact if and only
if

α = i∂G∂̄Gβ

for some β ∈A p−1,q−1
G (M).

4 The equivariant first Chern class
In this section, we examine the equivariant connection and curvature on vector bundles equipped with
an infinitesimal lift of the G-action on the base manifold to the total space, which is a generalization of
equivariant vector bundles. We also extend the classical properties of the first Chern class on holomorphic
line bundles to the equivariant case. In each subsection, we briefly go over the non-equivariant constructions
before defining their equivariant analogs.

Let π : E→M be a complex vector bundle over M. A twisted differential p-form is a p-form with values
in E, or equivalently, a section of the twisted form bundle

∧p M⊗E over M. Let {si} be a trivialization of E
over U , then a section σ ∈A p(M,E) = Γ(U,A p(M)⊗E) can be written as σ = αi⊗ si with αi ∈A p(M).
Denote by A ∗(E) = A ∗(M,E) the collection of twisted differential forms.
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4.1 Lifts of an action to vector bundles
Suppose that G acts smoothly on M. An infinitesimal lift of the G action on M to E is a Lie algebra
homomorphism

Φ : g→{first order differential operators on Γ(M,E)}, X 7→ΦX

such that for all s ∈ Γ(M,E), f ∈C∞(M), we have

ΦX ( f · s) = (LX] f ) · s+ f ·ΦX (s).

Heuristically, an infinitesimal lift is a "lift" of the action of the Lie algebra g on A ∗(M) to A ∗(E).
This concept should be equivalent to the notion of infinitesimal lifts in [Kos70], [HY76], and more recently
[MiR01] defined via vector fields on the total space of E, although we won’t prove the equivalence here.

In some cases, an infinitesimal lift comes from a lift of the G-action on the base space.

Definition 4.1. A lift of the G-action on M to E is an action of G on the total space of E covering the action
on M such that the associated map ĝ : Ep→ Eg·p is linear for all p ∈M and g ∈ G.

A vector bundle E→M equipped with a lift of the G-action on M to E is called a G-equivariant vector
bundle.

A lift induces an infinitesimal lift as follows (cf. [BGV03, section 1.1]): Given a lift of the G-action on
M to E, there is an induced G-action on the space of sections A 0(E) = Γ(M,E) given by

(g · s)(p) = ĝ · s(g−1 · p), ∀s ∈ Γ(M,E), p ∈M.

This induces a g-parametrized family of first-order differential operators L E
X on Γ(M,E) given by

L E
X (s) :=

d
dt

∣∣∣
t=0

(exp(tX) · s).

One can check that for all f ∈C∞(M), s ∈ Γ(M,E),

L E
X ( f · s) = LX] f · s+ f ·L E

X (s).

Hence L E is an infinitesimal lift.

Remark 4.2. In general, an infinitesimal lift does not necessarily come from a lift of the group action on
the base manifold. On complex line bundles, conditions for an infinitesimal lift to correspond to a lift are
examined in [HY76] and [MiR01].

From here on, we fix an infinitesimal lift Φ of the G-action on M to E. We would like to define an action
of the Lie algebra g on α ∈ A ∗(E)⊗ S(g∗). However, it is difficult to give an explicit characterization
since taking the derivative of the component in S(g∗) generates more terms as the degree of the associated
polynomial grows. For our purposes, it suffices to consider two cases where the degree of the associated
polynomial is small.

Proposition 4.3. i) There exists a unique Lie algebra homomorphism

L Φ : g→{first order differential operators on A ∗(E)}

such that for all ω ∈A k(M),σ ∈ Γ(M,E), we have

L Φ
X (ω⊗σ) = LX]ω⊗σ +ω⊗ΦX (σ).

ii) There exists a unique Lie algebra homomorphism

DΦ : g→{first order differential operators on A 0(E)⊗g∗}

such that for all α ∈A 0(E)⊗g∗,Y ∈ g, we have

DΦ
X (α)(Y ) = ΦX (α(Y ))−α(adXY ).
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Note that the operator Φ induces an associated map Φ̂ : A 0(E)→A 0(E)⊗g∗ defined as follows: for
any σ ∈A 0(E), the tensor Φ̂(σ)∈A 0(E)⊗g∗ is the twisted form associated to the map X 7→ΦX (σ) from
g to A 0(E).

Lemma 4.4. The map Φ̂ commutes with the g-action as defined in Proposition 4.3, i.e., for all σ ∈ Γ(M,E)
and X ∈ g,

Φ̂(ΦX (σ)) = DΦ
X (Φ̂(σ)).

Proof. This is just unraveling the definition given above. For all Y ∈ g, we have

DΦ
X (Φ̂(σ))(Y ) = ΦX (Φ̂(σ)(Y ))− Φ̂(σ)([X ,Y ]) = ΦX (ΦY (σ))−Φ[X ,Y ](σ),

Φ̂(ΦX (σ))(Y ) = ΦY (ΦX (σ)).

Then the statement follows from the fact that DΦ is a Lie algebra homomorphism.

4.2 Connections and curvature
4.2.1 The nonequivariant case

Definition 4.5. A connection on E is an operator ∇ : A 0(E)→A 1(E) that satisfies the Leibniz rule

∇( f · s) = d f ⊗ s+ f ·∇(s)

for all s ∈A 0(E) and f ∈C∞(M). This extends uniquely to an operator d∇ : A ∗(E)→A ∗+1(E) with

d∇(α ∧σ) = dα ∧σ +(−1)p
α ∧d∇(σ)

for all σ ∈A ∗(E) and α ∈A p(M).

Definition 4.6. The curvature of ∇ is the composition F∇ = d∇ ◦d∇ : A ∗(E)→A ∗+2(E).

In particular, with respect to a local trivialization {si}, any connection ∇ can be written as ∇ = d +θ ,
where θ ∈A 1(M,End(E)) is a matrix of 1-forms. We call θ the connection form associated to {si}, noting
that θ depends on the choice of trivialization. (cf. [Huy05, remark 4.2.5]) In comparison, the curvature
F∇ = dθ +θ ∧θ is independent of the choice of trivialization.

One can see that if E = L is a line bundle, then F∇ = dθ is a closed differential two-form. This is a
special case of the second Bianchi identity, which says that d∇(F∇) = 0 for any connection ∇ on a vector
bundle E.

Remark 4.7. [BGV03, section 1.1] presents a more motivated definition of connection forms on vector
bundles (or fiber bundles in general). Here we give a (very) rough sketch of the main idea.

A tangent vector V on π : E→M is vertical if it is tangent to the fibers, i.e., V (π∗ f ) = 0 for all smooth
function f on M and X ∈ g. Heuristically, a vertical vector points to the direction along the fibers and hence
is "vertical" to M.

Denote by V E the bundle of vertical vectors and T E the tangent bundle of E. A connection one-form θ

is an element of A 1(E,V E) such that ιV θ = V for all sections V of V E. Roughly speaking, θ measures
the projection of a vector field on E along the "vertical directions". The kernel of θ , dubbed the horizontal
bundle, is isomorphic to π∗(T M). This agrees with our previous definition, as the exterior derivative d
measures the change along the "horizontal directions".

Now we are ready to examine the equivariant analog of the above notions.

4.2.2 Equivariant connections

Fix an infinitesimal lift Φ of the G-action on M to E. We would like to define an equivariant connection on
(A ∗(E)⊗ g∗)Φ. Imitating the construction of equivariant exterior derivative dG = d− ιX] , an equivariant
connection would be of the form d∇− ιX] for some connection ∇ on E. Here ιX] acts on A ∗(E) by

ιX](α⊗σ) = (ιX]α)⊗σ , ∀α ∈A ∗(M), σ ∈ Γ(M,E).

We would like such a map to preserve the space of twisted forms that are Φ-invariant, so we require ∇ to
be a Φ-invariant connection.
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Definition 4.8. A connection ∇ on a vector bundle E with an infinitesimal lift Φ of the G-action is Φ-
invariant if for all X ∈ g, σ ∈A 0(E) and smooth vector fields Y ∈ Γ(M,T M),

L Φ
X (∇Y σ) = ∇[X],Y ](σ)+∇Y (ΦX (σ)).

Therefore, we have the following construction:

Proposition 4.9. Let ∇ be a Φ-invariant connection on E. Then there exists a unique differential operator
d∇

G associated with a ∇ is a differential operator d∇
G : A ∗(E)⊗g∗→A ∗(E)⊗g∗ with the property that

(d∇
Gα)(X) := d∇(α(X))− ιX](α(X))

for all α ∈A ∗(E)⊗g∗, X ∈ g.

We call this differential operator d∇
G the Φ-equivariant connection associated to the Φ-invariant connec-

tion ∇ on E.

Lemma 4.10. The operators d∇
G : A 0(E)→A 1(E), d∇

G : A 1(E)→A 2(E)⊕A 0(E)⊗(g)∗ commute with
the g-actions constructed in Proposition 4.3. That is,

1. For all σ ∈A 0(E), X ∈ g,
d∇

G(ΦX (σ)) = L Φ
X (d∇

Gσ).

2. For all α ∈A 1(E), X ∈ g,
d∇

G(L
Φ

X (α)) = (L Φ
X ,DΦ

X )(d
∇
Gα).

Proof. The first equation is just a reformulation of Definition 4.8.
Write α = ω⊗σ with ω ∈A 1(M) and σ ∈ Γ(M,E). Then

d∇
G(L

Φ
X (α))(Y ) = d∇

G(LX]ω⊗σ +ω⊗ΦX (σ))(Y )

=dG(LX]ω)(Y )⊗σ − (LX]ω)(Y )⊗∇Y ](σ)+dG(ω)(Y )⊗ΦX (σ)−ω(Y )⊗d∇
G(ΦX (σ))(Y )

=(LX](dGω)(Y )⊗σ − ι[X],Y ]]ω⊗σ)+dG(ω)(Y )⊗ΦX (σ)− (LX]ω)(Y )⊗∇Y ](σ)−ω(Y )⊗L Φ
X (d∇

Gσ)(Y ).

One can check that the last line is exactly the expansion of (L Φ
X +DΦ

X )(d
∇
Gα).

4.2.3 Equivariant curvature

As is in the non-equivariant case, there is an equivariant curvature associated to d∇
G .

Definition 4.11. The equivariant curvature of an equivariant connection d∇
G is given by the map F∇

G :
A 0(E)→A 2(E)⊕A 0(E)⊗g∗,

(F∇
G σ)(X) = ((d∇

G)
2
σ)(X)+ΦX (σ) = F∇

σ −∇X]σ +ΦX σ .

Note that by Lemma 4.4 and Lemma 4.10, the map F∇
G commutes with the g-actions constructed in

Proposition 4.3. That is, for all σ ∈A 0(E), X ∈ g,

F∇
G (ΦX (σ)) = (L Φ

X ,DΦ
X )(F

∇
G σ).

Lemma 4.12. The operator F∇
G is tensorial.

Proof. Note that F∇ is tensorial and for all f ∈C∞(M) and sections σ ∈ Γ(M,E),

(ΦX −∇X])( f ·σ) =(LX] f ) ·σ + f ·ΦX (σ)− ( f · (∇X]σ)+(∇X] f ) ·σ)

= f ·ΦX (σ)− f · (∇X]σ).

Hence F∇
G defines an element in A 2(End(E))⊕ (A 0(End(E))⊗g∗). Here an element in A ∗

Φ
(End(E))

acts on σ ∈ A 0(E) by wedge product on the form part and evaluation on the section part, producing an
element of A 2(E)⊕A 0(E)⊗g∗. Moreover the tensor F∇

G is Φ-invariant, i.e., invariant with respect to the
g-action on A 2(End(E))⊕ (A 0(End(E))⊗g∗) induced by those constructed in Proposition 4.3.
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Proposition 4.13 (Equivariant second Bianchi identity). The operator

d∇
G : A2(End(E))⊕ (A 0(End(E))⊗g∗)→ A3(End(E))⊕ (A 1(End(E))⊗g∗)

annihilates F∇
G .

Proof. d∇
G(F

∇
G ) = d∇(F∇) + (−ιX]F∇ + d∇(ΦX −∇X])). Note that d∇(F∇) = 0 by the second Bianchi

identity. Hence for all σ ∈ Γ(M,E) and smooth vector fields Y over M, we have

((d∇
GF∇

G )σ)(Y ) =−F∇(X ],Y )σ +∇Y (ΦX −∇X]))σ

=−F∇(X ],Y )σ +∇Y (ΦX (σ)−∇X]σ)− (ΦX −∇X])(∇Y σ)

=−F∇(X ],Y )σ +[∇Y ,ΦX ]σ − [∇Y ,∇X] ]σ

=−F∇(X ],Y )σ +(∇[Y,X]]− [∇Y ,∇X] ])σ = 0.

The last step makes use of the classic definition of the curvature tensor in Riemannian geometry. See, e.g.,
[Huy05, section 4.A].

In particular, if E = L is a complex line bundle, then the space of linear endomorphisms C→ C is
isomorphic to C. Hence we can identify A2(End(E))⊕ (A 0(End(E))⊗g∗) with A2(M)⊕ (A 0(M)⊗g∗),
and the Φ-invariant subspace of the former with the G-invariant subspace of the latter, namely, A 2

G(M),
Since d∇

G = dG on A ∗
G(M), the following is immediate from the equivariant Bianchi identity.

Corollary 4.14. Suppose that ∇ is a Φ-invariant connection on a line bundle L with an infinitesimal lift Φ.
The equivariant curvature F∇

G ∈A 2
G(M) is an equivariantly closed two-form.

Set µ(X) = ΦX −∇X] = F∇
G (X)−F∇, so µ defines an equivariant map g→ Γ(M,End(E)). It follows

from the equivariant Bianchi identity that

∇(µ(X)) = ιX]F∇(X).

We call µ the moment map of the action Φ due to its resemblance to the moment map in symplectic
geometry.

4.3 First Chern class on complex line bundles
For the sake of completeness, we briefly discuss in this section the equivariant first Chern class of a complex
line bundle L with an infinitesimal lift Φ.

4.3.1 The non-equivariant case

Suppose that L is a complex line bundle. The first Chern class of L is a special case of the classic construc-
tion of Chern classes on any complex vector bundle. (c.f. [Huy05, 4.4.8].) Explicitly, it is the cohomology
class c1(L) = i

2π
[F∇] ∈H2(M,R) for any connection ∇ on L. In particular, the first Chern class is indepen-

dent of the choice of the connection ∇.

4.3.2 The equivariant first Chern class

Suppose that G acts smoothly on M and L→M is a complex line bundle equipped with an infinitesimal lift
Φ, which we denote by the pair (L,Φ). Suppose further that L admits a Φ-invariant connection ∇. Note that
such a connection exists by averaging if Φ exponentiates to a lift of the G-action on L, but the author does
not know whether (L,Φ) necessarily admits such a connection in general.

Lemma 4.15. The cohomology class i
2π
[F∇

G ] ∈ H2
G(M,R) is independent of choice of the Φ-invariant con-

nection ∇.
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Proof. Let ∇′ be another Φ-invariant connection on L. Note that locally ∇′−∇ = η ∈ A 1(End(E)) is
Φ-invariant and F∇′ −F∇ = dη . (cf. [Huy05, 4.2.3, 4.3.4]) Hence

(F∇′
G −F∇

G )(X) =(F∇′ −F∇)(X)− (∇′X] −∇X])(X) = (dη)(X)− ιX](η)(X) = (dGη)(X)

is equivariantly exact, concluding the proof.

As a result, we can define the equivariant first Chern class of (L,Φ) to be the cohomology class

cG
1 (L,Φ) :=

i
2π

[F∇
G ] ∈ H2

G(M,R).

4.4 First Chern class on holomorphic vector bundles
4.4.1 The non-equivariant case

To start with, we quickly summarize the construction of the first Chern class on a holomorphic line bundle
L (cf. [Fin, chapter 2], [Huy05, chapter 4]).

If M is a complex manifold and E is a holomorphic vector bundle, then a connection ∇ : A 0(E)→
A 1(E) splits as ∇ = ∇1,0+∇0,1, where ∇1,0,∇0,1 are respectively the compositions of ∇ with the canonical
projections of A 1(E) onto A 1,0(E), A 1,0(E). The Leibniz rule implies that

∇
0,1( f · s) = ∂̄ f ⊗ s+ f ·∇0,1(s).

On the other hand, the delbar operator ∂̄ can be extended to an operator ∂̄E on A ∗,∗(E). Explicitly, let
{si} be a holomorphic local trivialization of L. Then ∂̄ acts on σ = αi⊗ si by ∂̄σ := ∂̄ (αi)⊗ si. One can
check that this is independent of the choice of local trivialization.

Definition 4.16. A connection ∇ on E is compatible with the holomorphic structure if ∇0,1 = ∂̄E .

In fact, such a connection always exists. Here we only concern ourselves with a holomorphic line bundle
E = L. Note that a hermitian structure h on L is locally a real-valued positive smooth function. We say that
a connection ∇ is compatible with the hermitian structure h if

dh(σ1,σ2) = h(∇σ1,σ2)+h(σ1,∇σ2).

Given h, there exists a unique connection ∇h, the Chern connection, that is compatible with both the holo-
morphic structure and the hermitian structure h. Locally, the Chern connection can be written as

∇
h = d +∂ logh

and the curvature Fh of ∇h is given by the closed (1,1)-form Fh = ∂̄ ∂ logh.

The cohomology class c1(L) = i
2π
[Fh] of L is independent of choice of the hermitian structure h on L.

Moreover, the converse is also true, provided that M is a compact Kähler manifold.

Lemma 4.17. ([Fin, lemma 2.10]) Let L→M be a holomorphic line bundle over a compact Kähler mani-
fold. Given a real (1,1)-form ω ∈ c1(L), there is a hermitian metric h, unique up to scaling by a constant,
such that i

2π
Fh = ω .

Proof. Pick any hermitian metric h0 as reference, which produces a closed real (1,1)-form ω0 =
i

2π
∂̄ ∂ logh

with cohomology class c1(L). Given any closed real (1,1)-form ω in the same cohomology class, we have
d(ω−ω0) = 0. The ∂ ∂̄ -lemma says that ω−ω0 = i∂ ∂̄ f for some smooth real function f , which is unique
up to some constant. One can check that h = e−2π f h0 is a hermitian metric on L with i

2π
Fh = ω .

Now we shall consider the analogue of the above for a holomorphic line bundle L with an infinitesimal
lift of the G-action.
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4.4.2 The equivariant Chern class on holomorphic line bundles with infinitesimal lifts

Let M be a complex manifold equipped with a holomorphic G-action and L a holomorphic line bundle over
M.

Definition 4.18. An infinitesimal lift Φ to a vector bundle E is holomorphic if, for all X ∈ g and smooth
vector fields Y on M,

[ΦX , ιY ∂̄E ] = ι[X],Y ]∂̄E .

In the rest of this subsection, let Φ be a holomorphic infinitesimal lift on L.

Definition 4.19. A hermitian metric on L is Φ-invariant if for all σ ∈ Γ(M,E)

X ](h(σ ,σ)) = h(ΦX σ ,σ)+h(σ ,ΦX σ).

In particular, if Φ exponentiates to a lift of the G-action on L, then a Φ-invariant hermitian metric always
exists by averaging. Now we suppose that L admits a Φ-invariant hermitian metric h.

Lemma 4.20. The Chern connection ∇h associated with a Φ-invariant hermitian metric h on L is Φ-
invariant in the sense of Definition 4.8.

Proof. Fix a non-vanishing local section σ . Since Φ covers the G-action on M, locally we can write
ΦX ( f ·σ) = X ] f ·σ + f ·φ(σ) for some function φ ∈C∞(L). One can check that Φ is holomorphic implies
that φ is holomorphic.

The Φ-invariance of the hermitian metric h implies that

X ](h(σ ,σ)) = h(φσ ,σ)+h(σ ,φσ) = (φ +φ)h(σ ,σ),

i.e., X ] logh = φ +φ . Note that φ is holomorphic, so ∂̄ φ = 0 and ∂φ = 0. Denote by Y 1,0 the holomorphic
part of a vector field Y on M, i.e., ιY ∂ = ιY 1,0d, then we have

[ΦX ,∇Y ]−∇[X],Y ] =[X ]+φ , ιY (d +∂ logh)]− ι[X],Y ](d +∂ logh)

=([X ],Y ]+ [X ],Y 1,0 logh]− [ιY d,φ ])− ([X ],Y ]+ ι[X],Y ]∂ logh)

=((X ]Y 1,0) logh+Y 1,0(X ] logh)− ιY (dφ))− (X ]Y 1,0) logh

=ιY 1,0 d(φ +φ)− ιY (∂φ)

=ιY (∂φ +∂φ)− ιY (∂φ)

=0.

Hence we obtain the equivariant Chern connection ∇h
G associated with a Φ-invariant hermitian metric

h on L. Locally ∇h
G = dG + ∂ logh and its curvature Fh

G(X) = Fh(X)+ (ΦX −∇h
X](X)) is an equivariantly

closed imaginary (1,1)-form.

It follows from Lemma 4.15 that every Φ-invariant hermitian metric h corresponds to an element i
2π

Fh
G

in the cohomology class cG
1 (L,Φ). Again, we want to know if every element in cG

1 (L,Φ) comes from a Φ-
invariant hermitian metric. Recall that there is a canonical decomposition A 2

G(M) = (A 2(M)⊗S0(g∗))G⊕
(A 0(M)⊗S1(g∗))G and the subspace of equivariantly closed real (1,1)-forms is

Z1,1
G (M) = {(ω, µ) ∈A 1,1(M)G⊕C∞(M,g∗)G | dω = 0, d(µ,X) = ιX ω, ∀X ∈ g}.

In order to adapt the argument in the proof of Lemma 4.17, which makes use of the ∂ ∂̄ -lemma, we require
that M be equivariantly formal.

Theorem 4.21. Let M be a compact Kähler manifold with a holomorphic G-action such that M is equivari-
antly formal with respect to G. Let L be a holomorphic line bundle over M with a holomorphic infinitesimal
lift Φ. Suppose that L admits a Φ-invariant hermitian metric. Then given a real (1,1)-form α ∈ cG

1 (L,Φ),
there is a Φ-invariant hermitian metric h, unique up to scaling by a constant, such that i

2π
Fh

G = α .
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Proof. Fix a Φ-invariant hermitian metric h0 on L and write its curvature as i
2π

Fh0
G = (ω0, µ0) ∈ Z1,1

G (M).
Given any [(ω, µ)] ∈ cG

1 (L,Φ), the equivariant two-form (ω −ω0, µ − µ0) is equivariantly exact. Since
M is equivariantly formal, the ∂G∂̄G-lemma (Lemma 3.6) ensures the existence of a G-invariant real-valued
smooth function f : M→ g such that (ω−ω0, µ−µ0) = i∂G∂̄G f .

Set h = e−2π f h0. Since ∇h−∇h0 =−2π∂ f , it follows from the proof of Lemma 4.15 that Fh
G−Fh0

G =

dG(−2π∂ f ). Note that (∂̄G∂̄G f )(X) = ((∂̄ − ιZ])(∂ − ι
Z]) f )(X) = (∂̄ ∂ f − ιZ]∂ f )(X). Hence

i
2π

Fh
G =

i
2π

Fh0
G − i ·dG(∂ f ) = (ω0,µ0)− i(∂̄ ∂ f − ιX]∂ f )

=(ω0,µ0)− i∂̄G∂G f = (ω0,µ0)+ i∂G∂̄G f = (ω,µ).

Moreover h is Φ-invariant since X ] f = 0 for all X ∈ g. This concludes the proof.
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