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Abstract

We discuss the space of Einstein metrics, up to diffeomorphism, on
a compact manifold. In particular we mention some heuristics on its
dimension and some theorems on its compactness.

1 Introduction

Let M be a compact smooth manifold. Recall some of the basic objects of
Riemannian geometry:

• a Riemannian metric is a section g of T 2M which is everywhere sym-
metric and positive definite;

and to a Riemannian metric g are naturally associated

• its Levi-Civita connection, which is a map

∇ : Γ(TM)→ Γ(T ∗M ⊗ TM);

• several objects measuring curvature, which turn out to be tensorial; in
particular

– the Riemannian curvature, a section Rm of T 4M , defined by

Rm(X,Y, Z,W ) = g(W,∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z);

∗Rough notes for an expository talk in Princeton’s Graduate Student Semi-
nar. Errors are likely and corrections are welcome; please address them to mac-
beth@math.princeton.edu.
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– the Ricci curvature, a section Ric of T 2M , defined by

Ric(X,Y ) = Trg[Rm(·, X, ·, Y )];

– the scalar curvature, a function R on M , defined by

R = TrgRic.

To each of these curvature tensors corresponds a notion of “good metric:”

Riemannian Ricci scalar

notion
of “good
metric”

constant [sectional] cur-
vature metric

Einstein metric constant scalar
curvature metric

definition
of notion

∃λ ∈ R, such that ev-
erywhere
Rm = λ g ◦ 1g

∃λ ∈ R, such that
everywhere
Ric = λg

∃λ ∈ R, such
that everywhere
R = λ

rigidity
of notion

Most manifolds have
none: Killing-Hopf the-
orem says a complete
(M, g) has constant
curvature if and only
if it is some quotient
(M̃, g̃)/Γ, where (M̃, g̃)
is (up to scaling) one of
{sphere-with-round-metric,

Euclidean space,

hyperbolic space}
and Γ is a discrete
freely-acting group of
isometries.

Heuristic: “a few”
on “most” mani-
folds?

All manifolds
have an ∞-
dim’l space of
them: Yamabe
problem (solved
by Schoen,
1984) says every
(M, g) compact
admits some
ϕ ∈ C∞(M)
such that eϕg
has constant
scalar curvature.

As is clear from the final row, the appealing feature (or, at least, one
of the appealing features!) of Einstein metrics is that they are neither “too
rigid” nor “too abundant” for a manifold’s space of Einstein metrics to be
interesting.

1The Kulkarni-Nomizu product :

(a◦b)(X,Y, Z,W ) = a(X,Z)b(Y,W )+b(X,Z)a(Y,W )−a(X,W )b(Y,Z)−b(X,W )a(Y,Z).
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Two freedoms to note:

• R+ acts on [metrics-on-M ]: Let µ be a positive real. Then µg is
Einstein if and only if g is.

• Diff(M) acts on [metrics-on-M ]: Let ϕ be a diffeomorphism. Then
ϕ∗g is Einstein if and only if g is.

Definition. The moduli space of Einstein metrics on M , denoted E(M),
is the quotient

{Einstein metrics on M}/Diff(M).

We have not specified a topology on this moduli space. In fact we will
vary this as it suits us. Some possibilities are:

• the restriction of the Gromov-Hausdorff metric (a natural metric on
{compact metric spaces}) to E(M).
This is a very weak topology.

• the topologies whose convergence are: (M, gk)→ (M, g) if there exist
diffeos (ϕk) of M such that ϕk

∗gk → g in Ck,α or Wk,p or . . . .
These are finer topologies but very “incomplete” – they doesn’t capture
some interesting limits.

2 Examples

2.1 Oriented surfaces

In dimension 2, all three notions of “good metric” turn out to coincide.
When the surface M is oriented, the following are equivalent:

1. Einstein metrics (up to diffeomorphism and rescaling) on M ;

2. conformal equivalence classes of Riemannian metrics (up to diffeomor-
phism) on M ;

3. complex structures (up to diffeomorphism) on M , a.k.a. Riemann sur-
faces of M ’s genus;

4. smooth irreducible algebraic curves of M ’s genus.

(These equivalences are nontrivial but of course well-known. For the two
that concern us here,
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1↔ 2 is given by the map
g 7→ [g],

and the proof that this is a bijection is the Uniformization Theorem;

2↔ 3 is given by the map

[dxj
2 + dyj

2]←[ (Uj , xj + iyj)j∈J

and the proof that this is a bijection is the Korn-Lichtenstein theorem
on existence of isothermal co-ordinates.)

So the moduli space of Einstein metrics on the oriented surface Σg of genus
g is the same (up to scaling) as the moduli space of Riemann surfaces of
genus g.

Hence we have a fairly explicit description of the E(Σg)’s:

E(Σg) ∼= R+ × [quotient of Rσ(g) by a discrete group].

Here σ is the integer function defined by

g 0 1 ≥ 2

σ(g) 0 2 6g − 6
,

and the R+ factor corresponds to rescalings of the same metric. In particu-
lar, for g = 0 (the sphere),

E(Σg) = R+ = {multiples of ground},

and for g = 1 (the torus),

E(Σg) = R+ ×H2/SL(2,Z).

4



2.2 4-manifolds with E(M) empty

Let (M, g) be a compact Riemannian 4-manifold. The Chern-Gauss-Bonnet
theorem states:

8π2χ(M) =

∫
M

Pfaff(Rm)

=

∫
M
|W |2 − 1

2

∫
M
|Ric− 1

4
Rg|2 +

1

24

∫
M
R2.

(Here W is the Weyl curvature tensor, which can be defined in terms of Rm,
Ric and R by a long formula which we won’t write out here.)

If g is an Einstein metric, with Ric = λg, then R = Trg(λg) = 4λ, so
the second integrand completely vanishes:

Ric− 1

4
Rg = λg − 1

4
· 4λg = 0.

Hence the Chern-Gauss-Bonnet formula implies

8π2χ(M) =

∫
M
|W |2 +

1

24

∫
M
R2 ≥ 0.

Therefore a 4-manifold M with negative Euler characteristic can admit no
Einstein metric. For instance, for g ≥ 2 the manifold S2 × Σg has

χ(S2 × Σg) = χ(S2)χ(Σg) = 2 · (2− 2g) < 0,

so E(S2 × Σg) is empty.

2.3 Some miscellaneous Einstein metrics

For motivation, here are some well-known metrics and families of metrics
which are Einstein (although whether they represent all of E([underlying manifold])
or not may be hard or unknown):

• the constant-[sectional]-curvature metrics;

• the Fubini-Study metric on CPn;

• various Einstein Kähler metrics:

Theorem (Yau, 1976). On every complex manifold (M,J) such that
c1(M,J) = 0, in every Kähler class, there is a Kähler metric which is
Einstein with λ = 0.
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(Hence one gets lots of Einstein metrics on the smooth manifold M :
one for each point in the bundle∐

complex structures J on M with c1(M,J) = 0

{Kähler classes of (M,J)},

although some of these Einstein metrics turn out to be the same.)

Theorem (Aubin, Yau, 1976). On every complex manifold (M,J)
such that −c1(M,J) is Kähler, there is a Kähler metric (in −c1(M,J))
which is Einstein with λ = −1.

3 Dimension

LetM be a compact smooth manifold. Then each Eλ(M) is “finite-dimensional”
in the following sense:

Theorem. Let g be a λ-Einstein metric on M . Then there exists a finite-
dimensional subspace Vg of Γ(T 2M), such that for each λ-Einstein variation
(gt) of g, there is a 1-parameter family (ϕt) of diffeos of M with

d

dt
|t=0 [ϕt

∗gt] ∈ Vg.

(Hence the full moduli space

E(M) =
∐
λ∈R
Eλ(M)

is also in some sense finite-dimensional.)

Proof. Let (gt) be a λ-Einstein variation of g. There exists a 1-parameter
family (ϕt) of diffeos of M with ϕ0 = Id and such that for all t,

divg(ϕt
∗gt) = 0.

For such a family, “differentiating” the equation

Ricϕt
∗gt = λ ϕt

∗gt

with respect to t turns out to demonstrate that

h :=
d

dt
|t=0 [ϕt

∗gt]
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satisfies the equation
∆h = λh,

where ∆ is the Lichnerowicz operator on symmetric sections of T 2M :

∆h = Trg(∇∇h) + [terms (involving g’s curvature) linear in h]

Therefore for every λ-Einstein variation (gt) of g, there is a 1-parameter
family (ϕt) of diffeos of M with

d

dt
|t=0 [ϕt

∗gt] ∈ Vg := ker(∆− λ).

The operator ∆− λ has symbol

gij∂i∂j ⊗ Id,

so is elliptic; therefore
Vg = ker(∆− λ)

is finite-dimensional.

In fact we can calculate the index of the operator ∆ − λ. It has the
same symbol as the rough Laplacian Trg(∇∇h). The rough Laplacian is
self-adjoint with respect to the inner product induced by g on symmetric
sections of T 2M , and so has index 0. Therefore ∆− λ also has index 0.

4 Compactness

Problem. “How noncompact” is E(M)?

Equivalently, given a sequence (gk) of Einstein metrics, what can be said
about convergence of subsequences?

There are two simple ways in which there might fail to be any convergent
(say, in the category of compact metric spaces) subsequence at all:

1. Noncompact limits A “natural” (say, pointed Gromov-Hausdorff) limit
of a sequence (gk) of Einstein metrics on a compact manifold M might
be a noncompact space.

Example. There are sequences of flat tori R2/Z2 which converge to
the flat cylinder R2/Z.

For this reason, one typically considers only sequences (gk) with a
uniform upper diameter bound.
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2. Dropping dimension A sequence (gk) of Einstein metrics on a com-
pact manifold M might converge to a space of “dimension” less than
that of M .

Example. There are sequences of flat tori R2/Z2 which converge to
the circle R/Z.

For this reason, one typically considers only sequences (gk) with a
uniform lower volume bound.

In two and three dimensions this is all that can go wrong:

Theorem. Let M be a compact surface or 3-manifold. Then for any fixed
positive D and v, the moduli space

{g ∈ E(M) : diam(g) ≤ D, vol(g) ≥ v}

is compact.

But in higher dimensions, more intriguing things can happen.

3. Orbifold singularities A sequence (gk) of Einstein metrics on a com-
pact manifold M might converge to an Einstein orbifold – that is, an
orbifold, together with an Einstein metric on the complement of the
singular points, which extends smoothly across these points on smooth
covers of their neighbourhoods.

Non-compact toy example. There are sequences of Einstein met-
rics on the 4-manifold TS2 which converge to the flat orbifold R4/±.

Topological motivation:

TS2/[contracting-the-zero-section] ∼= (R+×SO(3))∪{0} ∼= R4/±.

Example. There is a compact 4-manifold M which has a 40-dimensional
space of complex structures all with c1 = 0, called the K3 surfaces.
By Yau’s theorem (Section 2.3), M carries a large family of Einstein
Kähler metrics.

There exists an open subset U ⊆ M diffeomorphic to TS2, and a
sequence of M ’s Einstein Kähler metrics, such that the sequence

• converges smoothly outside U ;

• “looks like” a neighbourhood of the Eguchi-Hanson toy example
inside U .
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This sequence of Einstein metrics has an Einstein orbifold limit, with
a singular point whose neighbourhood is homeomorphic to R4/±.

Theorem (Anderson, Bando-Kasue-Nakajima, . . . , 1989-90). Let M be a
compact 4-manifold. Then for any fixed positive D and v, the moduli space

{g ∈ E(M) : diam(g) ≤ D, vol(g) ≥ v}

is compact after adding in some possible Einstein orbifold limits.
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