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We consider an evolving network of a fixed number of nodes. The allocation of edges is a
dynamical stochastic process inspired by biological reproduction dynamics, namely by
deleting and duplicating existing nodes and their edges. The properties of the degree
distribution in the stationary state is analysed by use of the Fokker–Planck equation.
For a broad range of parameters, exponential degree distributions are observed. The
mechanism responsible for this behaviour is illuminated by use of a simple mean field
equation and reproduced by the Fokker–Planck equation. The latter is treated exactly,
except for an approximate treatment of the degree–degree correlations. In the limit of
0 mutations, the degree distribution becomes a power law with exponent 1.
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1. Introduction: networks and evolutionary dynamics

Whenever a phenomenon can be thought of in terms of components and relations
between components, the mathematical language of graph theory or networks
may be helpful to the description, analysis and the understanding of the relevant
problem of interest. A large amount of work is currently being carried out with
the aim to understand the structure and statistical properties of networks in the
hope that certain aspects of the general mathematical characterization of
network structure may be related to common functional properties, e.g.
vulnerability to the breakdown of part of the network (Biggs 1994; Albert &
Barabási 2002; Newman 2003).

Our aim in the present paper is to discuss an example of a persistently
evolving network of fixed size. The dynamics is driven by a Moran process
(Moran 1962) inspired by evolutionary dynamics. A time step consists of two
events: (i) a randomly selected node is removed with all its attached edges and
(ii) a randomly selected node is selected for duplication. When a node is removed,
all its edges disappear obviously as well. The duplication event involves the
creation of new edges. The daughter node inherits edges with tunable
probabilities. Mutations are represented in two ways. Firstly, the daughter
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inherits edges to neighbours of the parent with a probability that can be smaller
than 1. Secondly, edges to nodes not connected to the parent are added to the
daughter with a probability that may be larger than 0. Both these processes tend
to make the daughter differ from the parent. Finally, the parent–daughter
relationship suggests that an edge should be established between daughter and
parent with a certain probability.

Other models in the literature have considered aspects of the network dynamics
described above. For persistently growing networks, the process consisting solely
of the second (duplication) step has been considered (e.g. Vázquez 2003; Ipolatov
et al. 2005; Krapivsky & Redner 2005). One finds typical power-law degree
distributions. A model considering a stochastic combination of rewiring, addition
of new links and creation of new nodes was studied by Albert & Barabási (2000).
They found power-law degree distributions with exponents above 2. When the
probability for rewiring of edges is above a certain limit, the degree distribution
becomes exponential. A model consisting of adding and removing edges to a fixed
set of nodes was studied by Epstein & Wang (2002). The model generates power-
law degree distributions. Power-law degree distributions with exponents above 2
were also found in other models of fixed node number in which preferential
attachment is an explicit part of the dynamics (see Cheng & Tang 2004; Sarshar &
Roychowdhury 2004; Salathe et al. 2005). Our model, consisting of a fixed number
of nodes, produces typically exponential degree distributions, except in the limit of
perfect inheritance where a degree distribution pðkÞf1=k is obtained, i.e. a power-
law distribution with an exponent 1.

The paper is organized as follows. In the next section, we describe the
dynamical algorithm of the model and, to develop some intuition, discuss
the degree distribution by a simple mean field argument. Next, we derive the
Fokker–Planck equations for the degree distribution and discuss approximations
involved in these equations. In the summary and discussion section, we relate the
simple node-and-edge model to emerging network structures in the individual-
based tangled nature model (Anderson & Jensen 2005; Laird & Jensen 2006b,
2007) of evolutionary ecology and also discuss more broadly the relevance of the
simple node-and-edge dynamics and the results derived.
2. Simple node model

Let us consider the following simple node-and-edge model of a network of N
nodes and associated edges. The dynamics conserve the number of nodes. A time
step consists of choosing a node at random and removing it, together with all its
connected edges. Next, another node, a parent, is randomly selected from the
remaining NK1 nodes and is duplicated in the form of a daughter. All nodes
connected to the parent are now given connections to the daughter with
probability pe. All nodes unconnected to the parent are given connections to the
daughter with probability pn. An edge between the daughter and the parent is
placed with probability pp (for a similar model with pnZ0, see Farid &
Christensen 2006). These probabilities represent the degree of similarity or
correlations between the daughter and the parent. The daughter will be a
complete copy of the parent if peZ1 and pnZ0. It seems natural to allow for a
possible ‘interaction’ between the parent and the offspring, which is represented
Proc. R. Soc. A (2008)
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Figure 1. Simulated degree distributions of the node model for NZ200 and ppZ0:01 using the
imperfect duplication process. From short to long tail we have peZ0:01; 0:25; 0:75; 0:95; 0:99 and
0:999 and pn was chosen to be given by equation (2.2) in order to keep the connectance fixed (Laird &
Jensen 2007).
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by the possibility of establishing an edge between the parent and the offspring
with probability pp. It is straightforward to check in the mean field (Laird &
Jensen 2006a) that the described edge and node dynamics converge towards a
steady-state network with a time-averaged connectance

hC ih no: of edges

maximum no: of edges
Z

pnðNK2ÞCpp
N K1KðpeKpnÞðNK2Þ : ð2:1Þ

The dynamics is simple to simulate. The results are independent of initial
configuration. To make the transient very short, one may start the simulation
from a binomial network of N nodes where edges between any two nodes are
established with a probability equal to the mean field connectance given in
equation (2.1). After a short transient, a steady state is established. The time-
averaged degree distribution behaves exponentially for all values of the control
parameters pe, pn and pp (see figure 1 and Laird & Jensen 2006a), except in the
limit pe/1 and vanishing pn and pp, where the distribution falls off like one over
the degree. Inspired by the relation between the node-and-edge model and
the tangled nature model (see §4 below for details), we choose pp equal to the
connectance in equation (2.1); i.e. we link pe, pn and pp together by solving
the equation ppZhC i and obtain

pn Z
ppð1KpeÞ
1Kpp

: ð2:2Þ

We will, in a moment, write down the complete Fokker–Planck equation for the
degree distribution of a network evolving according to the process described
above. The full equation is, however, rather involved and can only be solved by
numerical iteration. It is therefore illuminating to make the following simplistic
and heuristic considerations. Let nk(t) denote the number of nodes of degree k
after t time steps. Let us focus solely on the following aspects of the dynamics.
Proc. R. Soc. A (2008)
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(i) Removal. A node of degree k is selected for annihilation that occurs with
probability nk(t)/N. Nodes sharing edges with the removed node decrease
their degree by 1. The probability that a node of degree k ends up as a
degree kK1 node through this process is krnkðt Þ=N1hkinkðt Þ=N , where
the degree kr of the removed node is replaced by the average degree.

(ii) Duplication. The process of attaching edges to the new daughter node will
increase the degree of existing nodes with probabilities that depend on
whether these share edges with the parent node or not. A node receives an
edge because it is selected to become a neighbour of the daughter (of a
degree kp parent) with probability

½pekpCpnðN K1K kpÞ�
nkðt Þ
N

1 ½pehk iCpnðN K1K hk iÞ� nkðt Þ
N

: ð2:3Þ

As we are seeking a qualitative self-consistent mean field equation, we substituted
the average degree hki in the last expression. A parent node of degree k receives
an edge to the daughter, which occurs with probability ppnkðt Þ=N . It is, in
general, rather complicated to estimate the probability with which the new
daughter node ends up with a specific degree (see §3 below for details). However,
in the limit pe/1, for fixed pp so pn/0 according to equation (2.2), the
probability that the daughter is allocated k edges can be estimated as

pp
nkK1

N
Cð1KppÞ

nk

N
COðpnÞ: ð2:4Þ

The first term corresponds to the daughter connecting to the parent and
inheriting kK1 edges from the parent. The second term corresponds to no edge
between the parent and the daughter and k edges inherited. Here, and in the
following few equations, we denote by OðpnÞ those terms of order pn arising from
the allocation of edges between the daughter and the nodes not connected to the
parent node. We combine these events to obtain the mean field equation for the
evolution of nk(t)

nkðtC1ÞZnkðtÞC
1

N
½Knk Chk iðnkC1KnkÞCðpp Cpehk i

CpnðN K1K hk iÞÞðnkK1KnkÞCppnkK1

Cð1KppÞnk�COðpnÞ: ð2:5Þ

In the stationary limit nkðtC1ÞZnkðtÞ, we obtain the following solution:

nkC1 ZankKbnkK1; ð2:6Þ
where

bZ
2ppCðpeKpnÞhk iCpnðN K1Þ

hk i COðpnÞ ð2:7Þ

and aZ1Cb. Using the normalization and the self-consistent equations

N Z
XNK1

kZ0

nk and hkiZ 1

N

XNK1

kZ0

knk ; ð2:8Þ
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we obtain the exponential solution nkZn0 expðKk=k0Þ with n0ZNð1Kexp
½K1=k0�Þ and

k0 Z
K1

ln 1K 1CpnKpe
2ppCpnðNK1ÞC1

COðpnÞ
h ix K1

ln
peC2pp
1C2pp

� � ; ð2:9Þ

where the approximation refers to the limit pn/0 for fixed N. The divergence
of the exponential cut-off in the limit pe/1 and pp/0 is in qualitative
agreement with the change in the exponential part of the degree distribution
obtained in simulations of the network (figure 1). However, this simplistic mean
field discussion is only of heuristic value. We now present the full Fokker–
Planck-like equation for the process.
3. Fokker–Planck equation

Some care has to be taken when we develop the Fokker–Planck equation for the
ensemble-averaged time-dependent number of nodes of degree k, nk(t),
constrained by the condition

P
knkðtÞZN . Firstly, it is worth mentioning that

the equations are concerned with the ensemble-averaged quantity nk(t) and
accordingly neglect ‘microscopic’ fluctuations in the number of nodes of degree.
Secondly, to make a closed set of equations, one needs to perform some kind of
truncation of a hierarchy of equations, which couples the degree distribution to
the degree–degree correlation functions, which, in turn, is coupled to triple
correlation functions, etc. This is usually the case. We will first write down the
equations formally, including the needed degree–degree correlation functions,
and then make clear the nature of the heuristic approximation we have used to
estimate this correlation function.

We structure the analysis in the following way. Removal (R): the effect of
removing, from a population of N, a node and its edges described by a rate term
GRðN ; k; tÞ. Duplication (D): the effect of introducing, into a population of NK1,
a new daughter node and attaching edges described by a rate term
GDuðN K1; k; tÞ. Our equation has accordingly the form

nkðtC1ÞZnkðt ÞCGRðN ; k; tÞCGDuðN K1; k; tÞ: ð3:1Þ
Removal of a node affects the network in two ways: Gr

R, the node being removed
from the network and Ga

R, the effect on the nodes being adjacent, i.e. sharing
edges, to the node being removed. Therefore,

GRðkÞZKG r
RðkÞCGa

RðkC1ÞKGa
RðkÞ: ð3:2Þ

The effect of the duplication process is conveniently broken up into three sub-
effects: Gp

Du, the effect on the parent; Gd
Du, the effect on the daughter; and Ga

Du,
the effect on the adjacent nodes, i.e. those that will receive an extra edge as a
result of the duplication. Hence,

GDuðkÞZG
p
DuðkK1ÞKG

p
DuðkÞCGd

DuðkÞCGa
DuðkK1ÞKGa

DuðkÞ: ð3:3Þ
We have suppressed the time step, t, and network size, N, for notational ease.
Proc. R. Soc. A (2008)
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Next, we derive detailed expressions for each of the terms above. The direct
effect on nk of removing a node of degree k is to decrement nk. The probability of
selecting a node of degree k is nk/N and therefore,

Gr
RðkÞZ

nk

N
: ð3:4Þ

After the removal, the degree of the nodes connected to the removed node, i.e.
the adjacent nodes, will decrease by 1. For this we need the Edge probability,

pEdðk1; k2; qÞZProbfnode of degree k1 is connected to q nodes of degree k2g:
ð3:5Þ

In general we do not have a closed analytic expression for pEdðk1; k2; qÞ, but
below we give approximate forms neglecting, or treating non-rigorously, degree–
degree correlations. Here, we note

Ga
RðkÞZ

XNK1

k rZ1

nk r

N

Xk r

qZ1

qpEdðk r; k; qÞ: ð3:6Þ

The first sum is over the degree of the removed node and the second sum is over
the number, q, of nodes of degree kZ0; 1; :::;N K1 the removed node is
connected to.

A node of degree k is selected for duplication with probability nk=ðN K1Þ. The
daughter of this node receives an edge to the parent with probability pp. Thus,
the parent increases its degree by 1 with probability

G
p
DuðkÞZ pp

nk
N K1

: ð3:7Þ

The new daughter node can add to nk by an amount determined by the
probability of finishing with k edges,

G d
DuðkÞZ ppLðkK1ÞCð1KppÞLðkÞ: ð3:8Þ

To keep track of the bookkeeping, we have introduced a new probability

LðkÞZProbfdaughter receives k edges to nodes different from the parentg;
ð3:9Þ

which is given by

LðkÞZ
XNK2

k pZ0

Xmin½k p;k�

k1Z0

Xmin½NK2Kk p;k�

k2Z0

nk p

N K1
dðk1Ck2KkÞUðk1; k2; kpÞ: ð3:10Þ

The r.h.s. adds up the probabilities associated with the process where the
daughter inherits k1 edges to nodes already connected to the parent. Each of
these edges is inherited by the daughter with probability pe. The daughter may
receive an additional k2ZkK k1 edges to nodes not connected to the parent.
Each of these edges are attached to the daughter with probability pn. The factor
Uðk1; k2; kpÞ denotes the probability of kZk1Ck2 edges allocated to the
daughter, k1 of the edges are inherited, i.e. these edges connect to some of
Proc. R. Soc. A (2008)
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the kp nodes connected to the parent. In addition, the daughter receives k2 edges,
which connect to nodes not connected to the parent. The probability for this
event is

Uðk1; k2; kpÞZ
k p

k1

 !
pk1e ð1KpeÞk pKk1

NK2K kp

k2

 !
pk 2n ð1KpnÞNK2Kk pKk2 :

ð3:11Þ
Next, we consider the effect of the duplication on the adjacent nodes, and we
need to distinguish between the nodes sharing an edge with the parent (Ed) and
nodes not connected to the parent (nEd). Let us first consider the Ed nodes. We
introduced previously pEdðkp; k; qEÞ as the probability that a node, here the
parent, of degree kp is connected to qE nodes of degree k. The duplication process
will, with probability pe, attach a new edge from the daughter to each of these
nodes and thereby increase their degree from k to kC1. Let us now turn to the
nEd nodes. There are NK2K kp nodes that share no edge with the parent. With
probability pnpnEdðNK2K kp; k; qnEÞ, a total of qnE of these nodes are of degree k
and will receive a new edge to the daughter. Here, pnEdðNK2K kp; k; qnEÞ is
equivalent to pEdðN ; k; qÞ introduced in equation (3.5), though pnEdðkp; k; qnEÞ is
concerned with the NK2K k p nodes that a node of degree kp (in a set of NK1
nodes) is not connected to. Among these NK2K kp nodes, qnE have degree k
with probability pnEdðNK2K kp; k; qnEÞ. Therefore, we have

Ga
DuðkÞZ

XNK2

qZ0

XNK2

k pZ0

Xk p

k 1Z0

XNK2Kk p

k 2Z0

Xk1
q1Z0

Xk 2

q2Z0

dðq1Cq2KqÞq
nk p

N K1
pEdðkp; k; k 1Þ

!
k1

q1

 !
pq1e ð1KpeÞk1Kq1pnEdðkp; k; k 2Þ

k 2

q2

 !
pq2n ð1KpnÞk 2Kq 2 :

ð3:12Þ
Degree–degree correlations induced by the evolutionary dynamics makes it

difficult to write an explicit form for pEdðk1; k2; qÞ and pnEdðk1; k2; qÞ. Numerical
simulations show that the network is disassortative (Newman 2003), i.e. nodes
with a high degree tend to attach to nodes with a low degree, and that the Pearson
correlation coefficient decreases rapidly with size of the network and increased
connectance. This numerical finding suggests that it makes sense to analytically
treat the degree correlations approximately. One can choose to neglect the
correlations altogether and try to estimate pEd and pnEd by purely binomial
arguments in the following way. First, we deal with pEdðk1; k2; qÞ. The k1 edges
emerging from the degree k1 node connects (in this approximation) to nodes of
degree k2 with probability ðnk 2K dk 1;k 2Þ=ðN K1Þ (remember there are NK1 nodes
when the duplication takes place), hence, we use

PEdðk1; k2; qÞZ
k1

q

� �
nk 2K dk 1;k 2

N K1

� �q
1K

nk 2K dk 1;k 2
N K1

� �k1Kq

: ð3:13Þ

When we treat pnEdðk1; k2; qÞ in the same approximation, we obtain
pnEdðk1; k2; qÞZpEdðNK2K k1; k2; qÞ since we now pick q nodes among the
NK2K k1 nodes not connected to the degree k1 node under consideration. It
appears to be better to treat the correlations by a somewhat different
Proc. R. Soc. A (2008)
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Figure 2. The degree distribution obtained by iteration of the Fokker–Planck equation (3.1).
(a) The exponential form for a broad range of parameter values in a linear–log plot. (b) The
approach towards a 1/k dependence in the limit of pe/1 in a log–log plot. The two straight lines
have slopeK1. The parameters are NZ20, peZ0:01; 0:1; 0:3; 0:5; 0:7; 0:9; 0:95 and ppZ0:01. pn was
chosen to be given by equation (2.2).
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argument that focuses on the edge dynamics. This approach leads to better
numerical convergence towards the results obtained by direct simulation
(figures 1 and 2). We use the following urn argument. We place MZ

P
knk

edges in an urn. The edges are of two types. Type A edges correspond to the
jAjZk2ðnk 2K dk 1;k2Þ edges connecting nodes of degree k2. In addition, we have
jBjZMKjAj type B edges connecting nodes of degree different from k2. The
probability that among k1 randomly picked edges q are of type A and k1Kq
are of type B is given by

pEdðk1; k2; qÞZ
k1

q

� �
k2nk 2
M

� �q

1K
k2nk2

M

� �k1Kq

: ð3:14Þ

Again, we assume pnEdðk1; k2; qÞZpEdðNK2K k1; k2; qÞ. In general, it is not
simple to find analytic solutions to this somewhat involved set of equations.
The result of iterating the Fokker–Planck equation (3.1) using these estimates
is shown in figure 2 for diversity NZ20, which makes the numerical iteration
manageable. We note good qualitative agreement with the behaviour of
simulation results presented in figure 1.

Let us finally mention that direct simulations (Laird & Jensen 2006a) of the
simple model described in §2 show that in the limit pe/1, for fixed pp/1, so
pn/0 according to equation (2.2), the degree distribution nk behaves like 1/k.
The Fokker–Planck equation (3.1) confirms this result. In this limit, the Fokker–
Planck equation reduces to

nkðtC1ÞZnkðt ÞCnk

1

N K1
K

1

N

� �
C

2pp
N K1

ðnkK1K nkÞ

C
XNK2

k 1Z1

Xk 1
qZ1

qnk1
1

N
pEdðk1; kC1; qÞK 1

N K1
pEdðk1; k; qÞ

�

K
1

N
pEdðk1; k; qÞC

1

N K1
pEdðk1; kK1; qÞ

�
: ð3:15Þ
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Including only the leading terms from k1Z1 and qZ1, one obtains

nkðtC1ÞZnk C
nk

NðN K1ÞC
2pp

N K1
½nkK1K nk �

C
n1

M

1

N
fðkC1ÞnkC1KknkgK

1

N K1
fknkKðkK1ÞnkK1g

� �
: ð3:16Þ

In the limit N/N and pp/1, this equation has the stationary solution
nkf1=k. For detailed numerical study of the 1/k behaviour, see Laird &
Jensen (2006a).
4. Summary and discussion

Let us now briefly address the relevance of the simplistic network model
discussed above. The inspiration to the model came from a study of emergent
networks in the individual-based tangled nature (Christensen et al. 2002; Laird &
Jensen 2006b, 2007). The basics of the tangled nature model (Christensen et al.
2002; Laird & Jensen 2006b, 2007) are as follows. Individuals fa; b;.g are
described by type vectors TaZðT a

1 ;T
a
2 ; :::;T

a
LÞ. The number of individuals of

type T at time t is denoted by n(T, t). Different types influence each other
through an interaction matrix (J-matrix) that accounts for all possible
interactions between any possible set of types. Once the matrix J is defined it
never changes. The dynamics consists of the configuration of occupied types
changing around in the fixed space given by the positions T and the coupling
matrix J. Selection leads to only a small fraction of types being occupied, and
their interactions will be described by a small subset of the elements of this
complete matrix. Species are defined as emergent structures in the type space in
the following way. At time t the local maxima, Tmax, of the occupancy n(T, t) are
identified. All occupied types within a distance from a given Tmax smaller than
the correlation length of the matrix J are considered to be belonging to the
species defined by Tmax.

The structure of the interaction network between extant species is found to
depend on the statistical properties of J. A proportion, q, of the elements of the
J-matrix, JðTa;TbÞ is assigned non-zero (and non-symmetric) values; all other
elements are zero. The interactions assigned in the type space can either be
uncorrelated (Hall et al. 2002; Anderson & Jensen 2005) or correlated (Laird &
Jensen 2006b, 2007). If no correlations are present in the type space, the evolved
networks of interactions between extant species exhibit a binomial degree
distribution as does the underlying network of non-zero J-matrix elements
(Anderson & Jensen 2005). The correlated case is more interesting and is
relevant to this paper. Correlations are made to decay exponentially with the
separation in type space. This implies that offspring will see a set of interactions
that are very similar to the interactions of the parent, even when mutations make
the offspring differ slightly from the parent. When correlations are present in J,
the evolutionary dynamics is able to generate a network of interactions, between
extant species, described by an exponential degree distribution. This is very
different from the binomial distributions exhibited by a network constructed by
randomly selecting positions in the same type space. This is interesting since
Proc. R. Soc. A (2008)
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Stumpf & Wiuf (2005) have studied the properties of sub-networks obtained by
random sampling nodes in a larger network. They showed that the binomial (or
Poisson) networks are invariant under decimation. If the large network has a
binomial degree distribution, a randomly sampled subset of the network will also
exhibit a binomial degree distribution. The results derived by Stumpf and Wiuf
are concerned with the statistical properties of sub-networks obtained by random
sampling. What we have found is that evolutionary dynamics is able to generate
sub-networks typically characterized by the exponential degree distributions,
even when the full network has a binomial degree distribution.

The simple node-and-edge model discussed in §2 can be seen as the
explanation of how the evolutionary dynamics is able to produce sub-networks
with a degree distribution of a functional form totally different from the one
describing the entire network, from which they are sampled. A qualitative link
between the tangled nature model and the simple node-and-edge model can
readily be established. To understand this phenomenology of the tangled nature
model, we now neglect the fluctuations present at the level of individual-based
dynamics and assume a more coarse-grained viewpoint in which we consider
species as either occupied or not. That is, we turn the coarse-grained measure
n(T, t) into a binary equal to 1 when nðT; tÞO0 and 0 when nðT ; tÞZ0. We
consider the dynamics at the level of species, which implies that creation events
correspond to one species splitting into two species (a speciation event) and
annihilation events correspond to a species going extinct. We elevate the
dynamics of the individual-based tangled nature model to the level of species
and describe this high-level dynamics by the node-and-edge model. The more
correlated the interaction matrix J of the tangled nature model is, the more
similar will the offspring species be to the parent, implying that the edge
probabilities pe should be large and pn small, respectively. If the connectance of
the interaction matrix J is large it is probable that the offspring will end up with
a link to the parent species, i.e. the probability pp should be high. An exact link
between the set of probabilities (pe, pn and pp) of the node-and-edge model and
the parameters defining the tangled nature model is not possible, nor is it needed,
since the obtained results are robust for a broad range of control parameters.

The exponential degree distributions found in the tangled nature model and
node-and-edge model may also be of relevance to naturally occurring food webs
(see Dunne et al. 2002) and of interest to protein–protein interaction networks
(Mering et al. 2002; Ipolatov et al. 2005).

I am grateful for very fruitful collaboration with Dr Simon Laird.
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